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On the instability of wave-catalysed longitudinal 
vortices in strong shear 
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The inviscid instability of O ( E )  two-dimensional periodic flows to spanwise-periodic 
longitudinal vortex modes in parallel O(1) shear flows is considered. In such cases, not 
only is the effect of fluctuations upon the mean state important but also the influence 
of the developing mean flow on the fluctuating part of the motion. The former is 
described by a generalized Lagrangian-mean formulation; the latter by a modified 
Rayleigh equation. Of specific interest is whether the spanwise distortion of the wave 
field feeds back to enhance or inhibit instability to longitudinal vortex form. Two 
cases are considered in detail: uniform shear between wavy walls and non-uniform 
shear beneath free-surface waves. In both cases wave distortion acts to inhibit, and 
in some circumstances curtail, instability for all but the shortest waves. 

1. Introduction 
Longitudinal vortices are widely observed in fluid flow situations that exhibit both 

mean and fluctuating parts. As Langmuir circulations near the wind-driven surface 
of open bodies of water they act to mix nutrients and other biological material 
(Leibovich 1983); in the wall region of turbulent boundary layers they are closely 
linked to the regeneration of turbulence (Robinson 1991); while in the wake of surface 
marine vessels their presence and persistence give rise to footprints that last for hours, 
sometimes days (Sarpkaya & Henderson 1984). 

Initial attempts to explain the genesis of such vortices do so in the context of 
unstable laminar boundary layers where they form, in concert with oblique wave 
modes, from initially small spanwise disturbances. Such observations led Benney 
& Lin (1960), Benney (1964) and others to consider the interaction of selected 
two-dimensional and oblique wave modes. But this model postulates rather than 
explains the existence of a strongly y-periodic wave field (Craik 1985) and although 
longitudinal vortices can arise in such circumstances, they first grow only algebraically 
in time t. Another possibility is that the two-dimensional periodic flow is itself unstable 
to disturbances of longitudinal vortex form; nonlinear coupling between the two- 
dimensional waves and the spanwise periodic flow may then generate oblique wave 
modes (Herbert & Morkovin 1980). In this instance the vortices grow exponentially 
with time, at least until a finite-amplitude equilibrium is reached. An example is 
the Craik-Leibovich type 2 (CL2) instability (Craik 1977; Leibovich 1977, 1983), 
conceived as an explanation for Langmuir circulations; a second example is discussed 
by Phillips (1993). 

Essential for CL2 to occur is the presence of a wavy disturbance having a sheared 
pseudomomentum, together with pre-existing vorticity imparting an Eulerian-mean 
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236 W R. C. Phillips and 2. W u  

shear in the same sense as the pseudomomentum. When the pre-existing vorticity 
is weak (O(e2) or smaller), the pseudomomentum is equivalent to the Stokes drift 
and a kinematic description of (an inviscid flow subject to) the instability is possible: 
namely that the Stokes drift gradient causes vortex lines (which move with the fluid) 
to tilt streamwise wherever the Eulerian-mean shear is laterally distorted, giving rise 
to a longitudinal component of vorticity and ultimately vortices. 

But the mechanism is not wave driven (McIntyre & Norton 1990); rather waves 
act, through the pseudomomentum, as a catalyst. In consequence the magnitude of 
the mean flow change is not uniformly bound, in the case of O ( E )  waves, by O(e2), 
but is likely to be governed by the magnitude of the pre-existing vorticity in the initial 
state. 

As the magnitude of the mean flow change increases, however, so too does the 
degree to which it modifies the wave field; thus, might it distort the waves enough to 
destroy their catalytic action at some stage, or does it enhance the instability? Indeed 
‘the ultimate fate of an inviscid flow subject to the instability.., and in which the initial 
vorticity is arbitrarily strong, ..is still an open question’ (McIntyre & Norton). Of 
course the barrier to progress is in explicitly calculating the back effect of the mean 
flow modification upon the wave field. Craik (1977), Leibovich (1977, 1980, 1983) 
and Leibovich & Paolucci (1981) restrict attention to examples with negligible wave 
distortion, i.e. to vorticity fields of O ( E )  or smaller; only Craik (1982b) considers 
CL2 in strong shear?. Craik posed the appropriate eigenvalue problem for inviscid 
O( 1) vorticity fields and realized that definite results could be obtained analytically 
when the spanwise spacing of the vortices is small. But although he was able 
to demonstrate the existence of longitudinal vortex instability in this limit, he did 
not ascertain whether wave distortion acted to enhance or inhibit the instability. 
Our purpose is to resolve that question numerically and in the process remove any 
restriction on the spanwise spacing of the vortices. 

In constructing the eigenvalue problem for strong Eulerian-mean shear in the 
presence of two-dimensional rotational wavy disturbances, Craik (1982 a,b), referred 
to hereafter as Ca and Cb respectively, assumes O(e)  waves and employs Andrews & 
McIntyre’s (1978) generalized Lagrangian-mean (GLM) equations. GLM (see $ 2.1) 
describes only the effect of fluctuations upon the mean state, however, and so a further 
equation is necessary to account for the influence of the developing mean state upon 
the fluctuating part of the motion; we refer to that equation as the Rayleigh-Craik 
equation ($ 2.3). The ensuing eigenvalue problem is suitable for numerical calculation 
and appropriate shooting and Galerkin techniques are described in $ 3. 

Two examples are considered, those of uniform Eulerian-mean shear between wavy 
walls (9 4) and of non-uniform Eulerian-mean shear beneath surface gravity waves 
( $ 5 ) .  In each case we solve the eigenvalue problem both with and without wave 
distortion. We find that the back effect of the mean flow modification upon the waves 
diminishes their catalytic action for all but the shortest waves and can, for sufficiently 
long waves, suppress the instability markedly. Further discussion is given in $ 6.  

2. Background 
2.1. The generalized Lagrangian-mean equations 

Andrews & McIntyre’s (1978) generalized Lagrangian-mean equations are an exact 
and very general Lagrangian-mean description of the back effect of oscillatory distur- 

t Craik (1970) deals with forced motions with oblique waves in 0(1) mean flows. 
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Longitudinal-vortex instability in strong shear 237 

bances upon the mean state. The formulation is based upon an exact Lagrangian-mean 
operator ( - ) L ,  corresponding to any given Eulerian-mean operator ( -  ), through an 
exact disturbance-associated particle displacement field <(x, t )  and is valid provided 
the mapping x t, x + < is invertible. In consequence dependent variables are given 
an Eulerian description with position x and time t as independent variables. The 
Lagrangian-mean velocity iiL is then the velocity field describing trajectories about 
which the fluctuating particle motions have zero mean, when any averaging process 
is applied. 

For homentropic flows of constant density p in a non-rotating reference frame the 
GLM momentum equation is 

(2.1) - L  - L  - L  -L D (ui - PI)  + Uk,r(Uk - p k )  + n,i = -xi, 
where repeated indices imply summation, commas denote partial differentiation and 
( x I , x ~ , x ~ )  = (x,y,z). The operator DL is defined as DL = d / d t  + Ufd/dxj, and the 
vector wave property pi, the pseudomomentum per unit mass, is 

~ 

p .  - -<. .Uf  
I - J . 1  j ,  

with DLtj = ui.  Finally Xi are dissipative terms while 

iPL - L  1 t t 
P 2 

71 = - + @ - -(u;.uj)5 

where d is the actual fluid velocity and cDL is the force potential per unit mass. 
We shall restrict attention to inviscid fluids (so X I  is identically zero) in which 

all mean quantities except possibly the mean pressure @ are independent of the 
streamwise direction; then, with cDL = 0, n,l reduces to g'f;. 

2.2. Arbitrarily strong shear and O ( E )  waves 
We consider the interaction between an O ( 8 )  primary shear flow (s 3 0) and two- 
dimensional straightcrested periodic waves that propagate in (or opposite to) the 
direction of the primary flow. Then with space coordinates (x, y ,  z), and in a reference 
frame that moves in the x-direction with the phase speed of the waves c:, which is 
not sought as part of the solution, our primary shear flow is iiL = [U(z), O,O], where 
U = U(z) - cr and U ( z )  is the Eulerian-mean velocity profile in [z1,z2]. The waves 
are spanwise-independent and of constant amplitude with slope characterized by the 
small parameter E ;  so provided the primary flow is free of critical layers ( U  = 0), then 
the temporal growth or decay rate of the waves clcr = 0 and they induce an 0(e2) 
pseudomomentum field p = [PI, 0, 01. 

We now envisage a small spanwise-periodic perturbation with streamwise-averaged 
Eulerian velocity components of the form 

(2.3) 
which, provided the amplitude field of the waves is steady, satisfy continuity correct 
to 0(c2) as (cf. Longuet-Higgins 1953; McIntyre 1988) 

18 + +,3 = 0. (2.4) 
Here is the growth rate of the spanwise perturbation and 6 is a second small 
parameter that measures the strength of this motion relative to the primary shear 
flow; 6 is assumed sufficiently small that linearization with respect to 6 yields a good 
approximation to the equations governing the spanwise periodic disturbance. For 

(fi, 6, G) = 6Re{erfe''Y [;(z), -eni8(z), E%(Z)]}, 
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238 W R. C. Phillips and 2. Wu 

instability, (2.1) and (2.4) must admit non-trivial solutions for boundary conditions 
of the form 8 = 0 at z = zl,z2; and that requires n = (2 - s)/2 (see C b ;  Phillips 
1993). Velocity perturbations in the y- and z-directions may therefore be weaker, by 
a factor of E ” ,  than the x-velocity perturbation; likewise 0 = ef+’al. So y1 = 1 for an 
0(1) shear and (2.1) and (2.4) reduce to 

012 = -Gu’, (2.5) 

Plq,ii’ 12u’ h 

8 , 3 3  + 1 2  [ 7 - 11 8 = ---PI. 
g1  

Here the prime denotes d/dz and Re{ei’J’?I} is the spanwise-periodic perturbation of 
pseudomomentum, 

p1 = e2Pp + f26Re(e“‘ei’Y?l(z)} + O(e4, ~ ~ 6 ,  e2d2), (2.7) 
that arises because the emerging secondary Eulerian velocity field distorts the primary 
wave field. 

Wave distortion of this form is negligible in O ( E )  or weaker shear flows but plays 
a role in stronger shcar. Our object is to determine that role and in particular to find 
whether it, through P1, acts to enhance or inhibit instability. 

The instability is manifested as longitudinal vortices, so of particular interest is the 
streamwise component of the vorticity-associated vector field (iii - p 3 ) , 2  - (a$ - p2),3, 
which, because the y- and z-components of Stokes drift and pseud%momentum are 
zero here, is simply the mean longitudinal vorticity, b = e6Re(eutei’YO(z)) where 

(2.8) 
6 1  

10’ 
h(Z) = - [,” + 7-12 + T2,] 

with 

12. U’” 22’ 
TI(Z) = -T, 

U’ U’ 

2 

T2(z) = 2 (5) - - - 
2.3. Craik’s eigenvalue problem for O( 1) shear jlows 

The GLM formulation provides no direct means of evaluating p1 so a separate 
examination of the wave field is necessary. To do so Cb noted that since only the 
O(e26) contribution to p1 is required, the influence on the waves of the O(e6)  velocity 
components may be ignored, i.e. the significant part of the distortion of the wave 
field is due to the O(6) spanwise-periodic x-velocity, E. We thus need consider only 
the linear theory of wave motion in the presence of our Eulerian mean flow ii + ii. 

Such circumstances and the x-averaged flow field (2.3) suggest that the x-periodic 
perturbation field takes the form 

iii = eRe{eiax[@’(z), 0, -ia$(z)]) 

+ eSRe{euteiax [a1(z) cos l y ,  a2(z) sin l y ,  a 3 ( z )  cos I y ] }  + O(E*, d2) ,  (2.9) 
where aj are derived from the modification of the O ( E )  wave field by the O(6) 
spanwise-periodic component of u. To satisfy continuity 

ia%!1+ 1@2 + @; = 0, 

while 4 ( z )  and LY denote the eigenfunction and wavenumber of the primary wave field 
which together satisfy Rayleigh’s equation, 

u($” - a24) - u”4 = 0. (2.10) 
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Longitudinal-vortex instability in strong shear 239 

Pp and 81 must be recovered from (2.2). To do so we first obtain the particle 
displacements from (2.9) through D L S j  = iij + < k U j , k .  Substitution in (2.2) then yields 
at O(e2), Ca 

(2.11) 

and a cast of O(e2S) terms which describe 8,. Then on defining $(z) = iaP1q3(z), 
employing the continuity and momentum equations and eliminating qi, Cb finds 

81 = d(z)fi(z) + 93(z)fi'(z) + Re{%(z)&z) + g(z)$'(z)}, (2.12) 

where d, 93, % and 9 are functions which are independent of 0. Specifically 

(4'12 a2 + 312 3iI2 U'(1+12)' 2a2 + 312 
d ( z )  = -___ + - (a + -)- ~ 

2u2 a2 + 12 2u2 zi= 2zi3 a2 + 12 

a2 MI2 ' 
g'(z) = q a 2  + 1 2 )  (7) ' 

%(z) = -- a24' - + -  a2u' (ic)', 
9(z)  = - a2-.212 (;) ' 

u u(a2+12) 

where * denotes conjugation. Moreover &z) relates to the O(t-S) spanwise-periodic 
wave field modification and satisfies the Rayleigh-Craik equation, 

(2.13) 1 d2 [ dz2 
d2 2 u - - ( a  + 1 2 )  -,"$ = -6 ~ - (a2 + 12)  4 + fi"4. 

- [ dz2 

Thus given the primary Eulerian-mean shear flow ii(z), the primary wave-field 
eigenfunction $(z) and appropriate boundary conditions, the eigenvalue problem for 
C T ~  is completely specified by the coupled system (2.5), (2.6) and (2.13) together with 
(2.11) and (2.12). 

Finally, Cb showed that further analytical progress is possible when l 2  >> a2 and 
a = O(1); then non-trivial solutions to (2.5), (2.6) and (2.13) with homogeneous 
boundary conditions exist provided 

for some integer N .  Here 

l . 1 , ~  = ;{-oF2(G + H) & [0r4(G + H ) 2  - 8aT2H]f), 

(2.14) 

3. Numerical procedure 
Two independent numerical approaches, a shooting method and a Galerkin tech- 

nique, were used to solve the coupled system (2.5), (2.6) and (2.13). The shooting 
scheme employed fourth-order Runge-Kutta and began at z = zl, where 6 and $ 
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are known, the object being to find values of S’ and $’ at the same point that lead 
to known boundary conditions at z = z2. When that is so the chosen values of 1, 
ol and a, all assumed real (see later), are eigenvalues. To reduce the scope of our 
search we began by setting a = o1 = 1 and stepped 1 in small increments over O(1). 
Choosing appropriate pairs of 8’ and $’ at z = zl, however, was more involved. 
Here we began by placing the centroid of an equilateral triangle at a chosen point in 
(8’, $’)-space and, for given I ,  solved the coupled system with the pair (S’, 4’) at each 
vertex on the triangle. The centroid of the triangle was then moved to the vertex at 
which 9 = J&(z2)1 + 1$(z2)1 was (for the case of homogeneous boundary conditions) 
smallest and, after reducing the size of the triangle, the process was repeated. This 
procedure continued until 9 fell below a prescribed minimum, which corresponded to 
an eigensolution. Of course the first triplet found need not lie on the al(E;a) surface 
of greatest growth rate, because a hierachy of eigenvalues o1 exist for each E .  So 
our options were (i) to fix 1 and increase 01 until its maximum was found, or (ii) 
since 6 1  increases monotonically with 1 (see $$4,5), fix o1 and determine the smallest 
1 corresponding to it. For computational reasons the second option proved easier 
and so the calculation continued until no smaller value of 1 could be found. Finally, 
using the previous solution as a starting point, eigensolutions to adjacent points on 
the ol(l; a) surface readily followed. 

Our second approach solved for o1 directly for specified a and 1 and employed a 
Galerkin-type method. Here we first utilize (2.5) to write (2.6) in the form 

&,33 + TI&,, + T2& + oc2( T3& + T$1) = 0 (3.1) 
where 

Thus, since (3.1) is real, the eigenvalues o1 may be real, imaginary or complex 
conjugate pairs. The functions & and $ are expanded in linearly independent, 
complete sets of basis functions ui and Chi that satisfy appropriate (see later) boundary 
conditions, so 

2 0 - ’  T ~ ( z )  = 1 P,,,u, T~(z)  = 

N N 

QN(z) = C biui(z), $ N ( z )  = C bN+iCbi(z), ( 3 4  
i= 1 i= 1 

such that 
N 

F~N(z)  = C [ b i ( d  + %D)ui + bN+iRe{(V + 9D)#i}] ; (3.3) 
i= 1 

here D = d/dz and bi are constants that will be chosen to satisfy the differential 
equations (2.13) and (3.1). Substituting (3.2),(3.3) into (2.13),(3.1) then yields the 
residuals 

Rl({bi}, Z)  = 

N 

C [bi(D2 + T1D + T2 + 0F2T3 + or2T4(.02 + gD))ui + b~+i~c~T4Re{(% + 9D)$i}] , 
i= 1 

(3.4) 
and 

N 

Rz({bi},z) = C [bi(T~ + T6D2)ui + bN+i[U(D2 - a2 - 1 2 )  - U”]Cbi] , (3.5) 
i= 1 
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Longitudinal-vortex instability in strong shear 24 1 

where Ts(z) = [D2 - a2 - 12]4 and T~(z)  = -4. The residuals and each of the 
approximating functions are required to be orthogonal as 

where 

This leads to 2N linear, homogeneous algebraic equations for bi which can be written 
in the form 

2 = o,2J2z, (3 .6)  
where 

Here LI,, M,, and zero entries are all N x N matrix blocks, with 

( h ) l ,  = (UL, (D2 + TlD + T 2 ) U J L  

(L21)1, = (#,AT5 + T6D2)U,), 
(L22)1, = (4t, [UP2 - a2 - 1 2 )  - u”14,), 
(Mil), = (4 [T3 + T4(& + 9 m u , ) ,  
(M1211, = (u1, T4Re{(W + 9D)4,}). 

Non-zero solutions to (3.6) exist if and only if the determinant of the coefficients 
vanishes, namely 

Moreover because (3.7) is a 2Nth-order polynomial equation, an N-term Galerkin 
expansion produces the first 2N among the infinite number of eigenvalues of the 
system (3.6).  

Of interest is the largest real value of o1 for each pair (a , l )  and the eigenfunctions 
ir and 3. Chebyshev polynomials were used as basis functions. The accuracy provided 
by the N = 15 expansion was considered adequate for our purposes for the problem 
of $ 4  and N = 20 for the problem for $ 5 .  All computations were performed on 
a DECstation 5000/200 using double precision arithmetic with IMSL routines to 
solve the eigenvalue problem (3.6).  Both the shooting and Galerkin approach yielded 
results identical to five decimal places. But although useful as a cross-check, the 
shooting method lacked the specificity of the Galerkin approach and was restricted 
to isolating real eigenvalues, 01 ; and as the project developed the Galerkin approach 
came to be used exclusively. The Galerkin program was written in mixed Fortran and 
C and ran very efficiently. But while a timescale of minutes was sufficient to generate 
the information to produce figure 1 say, figure 8 required a timescale of days. 

d e t ( 9  - = 0. (3.7) 

4. Uniform shear between wavy walls 
As our first example we consider a uniform Eulerian-mean shear flow U = z in 

[zl, z2] with z # 0, upon which is superposed a two-dimensional wave-like disturbance 
a4 = yexp(-az) which satisfies (2.10). We assume that the disturbance is brought 
about by rigid wavy walls at z1 and z2, so 3 = Q = 0 on each wall. Cb has shown 
that this interaction leads to instability over some (a, 1 ;  y) ;  but what is unclear is how 
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242 W R. C. Phillips and 2. Wu 

wave distortion affects that instability. We thus consider the problem both with and 
without wave distortion over [zl, z2] = [l ,  21. 

4.1. No wave distortion 
When wave distortion is ignored, we need solve only (2.6) with = 0, 

3Y A = - 
2 4  2a2 

Ae-2"2 

ii'P,q, = - (1 + 2az + 2a2z2 + $a3z3), 

(from (2.11)) and the boundary conditions i i )(zl) = G(z2) = 0. There is no general 
solution, but the problem is tractable in the following limiting situations. Before 
treating them, however, we note that because 01 occurs always as the ratio ally we 
set, with no loss of generality, y = 1. 

In the first limit l 2  >> a2, a = O(1) and here two linearly independent solutions 
may be constructed via the WKBJ approximation. Equivalently we may set H ( z )  = 0 
and replace G ( z )  with Zi'P?,. Then A1,2 = -$q2G[1 k 11, so A1,2 are real provided 
01 is real and the integrand in (2.14) is imaginary (and so non-trivial solutions exist) 
only if -ill = a,2G is greater than unity. The largest upper bound for 01 is then seen 
to occur when G is maximum (in this instance at z = 1) and -Al is minimum, i.e. 
approaching unity from above, indicating 

crl - Aie-a ( l+  2a + 2a2 + ga3)t (a  + 0, l 2  -, 00). (4.2) 
The second limit requires (az( << 1 ;  then (2.6) becomes 

cy,33 + 1 2  [ - 11 cy = 0. 
4 2 4  

This is Mathieu's modified differential equation which can be transformed to the 
standard form (Abramowitz & Stegun 1964) 

( r  - 2q cosh 28)K = 0 
d2K 
dQ2 
__-  

with iii = ziK(8) and z = ( A / a : ) f  exp((8 + i7c/4)}; it is subject to the boundary 
conditions K = 0 at both e(z1) and O(z2). Further r = 0.25 and q = fi l2A4/al.  In this 
domain the most unstable real root a1 - Ail/2 as 1 -P 0 and, in accord with (4.2), 
cr1 - A4 as 1 --+ 00. Thus the magnitude of crl increases with 1 from zero when 1 equals 
zero to a constant given by (4.2) as l 2  -+ co; concurrently a1 varies inversely with a 
for all 1. Details over a wider range of az are provided by our numerical solution, 
which is, of course, in accord with the above results, as we see in figures 1 and 4. 

4.2. Wave distortion 
We now allow the wave field to distort and begin our study by looking at the limit 
l2 -, 00. Here, for a = O(l), 

2 -2az 
G + H = -  2y ( a z +  1) 

2 2  

and is real. But unlike the former example, and even though we limit our search to 
real eigenvalues cr1, it is evident that 4 2  are real only if 

ye-"' 
0 1  < -(az + 1) (a  = O(1)). 

.Jzz 
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-1 0 1 2 3 4 5 
a 

FIGURE 1. Curves of cI against CI in the limit l2 + co, both with and without wave distortion. 

When 21,~ are real, Cb has shown that instability occurs whenever az > 0 or -1 < 
az < 0 throughout the flow, but not when az < -1 throughout the flow. 

Unfortunately, solving (2.14) to determine the ol-upper bound proved quite a 
challenge and we eventually succumbed to the simpler numeri2al soluticn of (2.13) 
and (3.1). To lend credibility to the calculation we replaced P1 with bP1 and first 
considered the case b -+ 0. Doing so, also with y = 1, recovered (4.2) as it should. 
Setting b = 1 then yielded the asymptote given in figure 1, which depicts o1 values 
well into the range for which 21,~ are complex. 

Cb did not investigate such cases, but his results for real A1,2 are representative of 
complex 2,,2 : specifically, instability occurs whenever the local wave amplitude 141 
everywhere decreases in the direction of increasing speed of the primary flow U relative 
to the wave, i.e. az > 0 throughout the flow. However when the wave amplitude 141 
everywhere increases in the direction of increasing speed IGl, instability occurs only 
when the wave is sufficiently long that laz( < 0.5 throughout [z1,z2] - in contrast 
to lazl < 1 for real A1,2 - and no such instability is evident for waves short enough 
that lazl > 0.5 everywhere in [z1,z2] .  Moreover, the growth rate of the instability is a 
maximum when 141 is everywhere constant throughout the flow, i.e. az -+ 0 and the 
maximum is bounded. 

Such behaviour is markedly different to the non-distortion case where 01 is un- 
bounded as az -+ 0 and the flow is unstable for all U’P?, > 0. Indeed the distortion 
and non-distortion cases are asymptotically equivalent only as az -+ +GO. In the 
l 2  + GO limit, therefore, and indeed for all 1 2 ,  it is evident that wave distortion plays 
an increasingly greater role as az decreases from +a. 

Of course 4 is infinite when a = 0, but we should like more detail as a + 0. We 
thus consider the case l 2  >> a2, a --$ 0. Then with the rescaling G = a+*, 8 = $*, (2.6) 
becomes 

+ -@; Y 2  + l 2  [$ - 11 G* = $ { [P + $1 & - i&,,} (4.3) 
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FIGURE 2. Real (solid line) and imaginary parts (dashed h e )  of the growth rate oi in the 

long-wave limit c i  -+ 0, near 1 = lo 

with from (2.13) 

The eigenvalue problem (4.3), (4.4) for o1 is now a function only of 1. On solving it 
using a Galerkin technique similar to that outlined in Q 3, we find that o1 (the largest 
positive real eigenvalue) decreases monotonically with 1 from 01 - 1 in the limit 
1’ -+ GO to a real minimum not at 1 = 0 but, as we see in figure 2, at 1 = lR = 1.34350. 
The eigenvalue (TI has no real roots over 0 d 1 < l R ,  only complex ones which appear 
at lR as a Hopf bifurcation (see later). We thus ask whether 01 = 0 and 1 = 0 ever 
coexist? 

Consider then the case a2 >> 12, 1 + 0 and assume that, 

on rescaling $+ = ol$ and 8+ = 8, (2.6) and (2.13) become 

az + 1 az + 1 az + 1 8,i3 - IC2Q2- 
a2Z 

and 

with Q = yecaz/z. Of interest are real positive a for which there exist real eigenvalues 
ic. Our results, also obtained using Galerkin techniques; indicate that real IC do exist 
for a 2 a ~ ,  where a~ = 0.76350, at which point IC = ICR = 2.n. But of the 2N 
roots for IC, only 25 are real and 2K are imaginary ( J ,  K integer); the remainder 
are complex conjugate pairs. Specifically, J = 0 for a < aR and K = 0 for a > al, 
where aI FZ -0.61. Moreover J = 1 ( K  = 1) at a = aR+ (a  = ar-) and increases 
with increasing (decreasing) a until eventually J = N ( K  = N ) ,  at which point all 
the eigenvalues are real (imaginary). Finally, while the real parts of the complex 
conjugate pairs are positive when N > J > 0, they change from positive to negative 
in al d a d aR and remain negative for N > K > 0. So on writing 01 = acp fiac;, we 

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0022112094004453
Downloaded from https:/www.cambridge.org/core. IFREMER - Brest, on 15 Jan 2017 at 17:05:20, subject to the Cambridge Core terms of use, available at

/www.cambridge.org/core/,DanaInfo=www.cambridge.org,SSL+terms
https://domicile.ifremer.fr/10.1017/,DanaInfo=doi.org,SSL+S0022112094004453
/www.cambridge.org/,DanaInfo=www.cambridge.org,SSL+core


Longitudinal-vortex instability in strong shear 245 

5 

4 

3 
I 

2 

1 

n 
-0.5 0 0.5 1 .o 1.5 2.0 

(TI ER 

a 
FIGURE Contours of constant growth rate LT, in a-l space with stability boundaries a-mg which 
o1 is not constant. The boundary connecting lR to aR separates instability to longitudinal vortex 
form (I) from that with alternating sign (11); the dashed curve separates I1 from a region which is 
stable to longitudinal vortex form (111). 

must interpret the right-hand side of (2.3) as 

dRe{ ezC:fei(fyT~C;:t) [6(z), -t-i6(z), t-G(z)]}. 

The curve connecting lR to aR is shown, with impinging contours of constant 01, 

in 1-a space in figure 3. Note that the ( lR ,  aR)-curve is not a line of constant 01 but 
rather a demarcation between eigenvalues for g1 for which J = 0 and J = 1. The ( l ~ ,  
aR)-curve also depicts marked suppression in catalytic action beyond that for J 2 1 
as shown in figure 4; so although the flow remains unstable to longitudinal vortex 
form on the long-wave side of the curve, the vortices are relatively weak rolls. On the 
J 2 1 side of the curve, the instability is dominated by eigenmodes which are real; 
the real parts of the complex conjugate pairs are tertiary at best. But only complex 
conjugate pairs occur on the J = 0 side of the curve where the instability not only 
grows, so long as acy > 0, but is subject to a standing oscillation owing to the +ac: 
contribution: that is, the longitudinal vortices stand in space and alternate in sign (see 
$6); there is also the possibility that a +ac; or -ac: alone each gives rise to spanwise 
propagating rolls with equal and opposite phase speed. Of course on fixing 1 on the 
( l R ,  cIR)-curve and further decreasing a, we ultimately reach a point at which C I C ~  < 0 
for all eigenmodes; here the flow is neutrally stable to longitudinal vortex form. The 
neutral curve is depicted by dashes and indicates that az - -0.5 as l 2  + 00 and that 
CIZ = alz  when 1 = 0. 

Figure 5 shows 6- and 4-eigenfunctions typical of those for any CIZ for which the 
flow is unstable to longitudinal vortex form. Observe that their complexity, measured 
in terms of the number of inflexion points or zeros, increases with 1, or equally the 
level of instability, while the point of peak distortion (and maximum longitudinal 
vorticity) shifts toward the wall at which the primary mean velocity, relative to the 
wave, is minimum, i.e. tl(zl). Hence, because 4 is a maximum at z1 for az > 0, and 
a minimum there when az < 0, it is evident that the amplitude of the primary wave 
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I 
FIGURE 4. Variation of the growth rate o1 with 1 both with and without wave distortion, for t( = 1. 
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FIGURE 5. The eigenfunctions $ ( z )  and G(Z) for various values of I in the long-wave limit a -+ 0. 

field plays little if any role in determining the location of the vortices, behaviour 
consonant with the waves acting solely as a catalyst to the instability. 

Looking now in more detail, we see that 4 and G are much the same at each 1 and 
contain inflexion points only on the z = z2 side of their peak, except in the vicinity of 
the (ap,, lR)-curve and along 1 = 0, a > tlR where catalytic action is greatly reduced. 
Here the G-eigenfunction changes noticeably: first, an inflexion point occurs on the 
z = z1 side of the peak; and second, we see that while G’(zl) = 0 for a < a~ we have 
G’(z1) > 0 for M > up,. Hence, while an appropriately placed inflexion point in the 
G-eigenfunction is the hallmark of suppressed catalytic action and thus suppressed 
instability to longitudinal vortices, an appropriately placed turning point is necessary 
to incite vortices of alternating sign. 
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5. Non-uniform shear beneath surface gravity waves 
As our second example we consider a unidirectional shear layer in the presence 

of O ( E )  two-dimensional surface gravity waves that are independent of the spanwise 
direction. Craik (1977), Cb and, for stratified flows, Leibovich (1977) & Leibovich 
and Paolucci (1981), have studied the interaction of such waves with O ( E )  or weaker 
shear flows, but here the shear is O( 1). In lakes and oceans the shear is wind induced 
and its interaction with surface waves gives rise to longitudinal vortices known as 
Langmuir circulations. These are thought to be largely responsible for the formation 
of thermoclines and the maintenance of mixed layers in lakes; they also provide a 
wonderful elevator/descender mechanism for plankton and other marine organisms. 

In such circumstances we expect the velocity profile U ( z )  to decrease with depth 
from the mean free surface z = z2 = 0 and thus assume 

zi = cr(pehz - 1) ( h  > 0) (5.1) 

over -m < z d 0 ;  so to avoid critical layers p < 1, where p = U(O)/cF, and c: may 
be of either sign. 

5.1. Boundary conditions 
The position of the free surface is given by z = y(x, y ,  t )  and appropriate free-surface 
boundary conditions are continuity of pressure and the requirement that the free 
surface is a material surface of the fluid. So in the absence of surface tension, 

= O  on z = y ,  D(z  - r )  9 = 0  and 
Dt 

while at large depth the fluid velocity must decay to zero, 

u -+ [-cp,O,O] as z -+ -a. (5.3) 

In the undisturbed state, which is a solution to the boundary value problem given 
by (2.1), continuity and the boundary conditions (5.2) and (5.3), the fluid surface 
is planar (so y = 0), the pressure is given by the hydrostatic law 9 = -pgz and 
u = [U, 0, 01. But with small, time-dependent three-dimensional perturbations, the 
velocity field is conveniently decomposed into the mean flow zi, O(6) streamwise- 
averaged modifications to it 5, and O ( E )  fluctuations owing to the wave field 5, whose 
streamwise average is zero. Thus u = [zi + ii + i i , C  + i7,G + $1, with the pressure 
9 = -pgz + and free surface z = re, although in order to express (5.2) and (5.3) 
at O(E) ,  O(6) and O ( E ~ ) ,  9 and y are best expanded in a form reminiscent of the 
velocity components (2.3), (2.9). Thus 

9 = Po(z )  + € 9 l ( X ,  z )  + 6P2(x,  y ,  z ,  t )  + € 6 9 3 ( X ,  y ,  z ,  t )  + 0 ( E 2 6 ,  €a2), 
r = yo + q 1 ( x )  + 6y2(y, t )  + E6V3(X, y ,  t )  + 0 ( E 2 6 ,  E d 2 ) ;  

we also note that Pi = p g y i  for i = 1,2, ... on z = 0. 
Rayleigh's equation (2.10) then follows by eliminating pressure from the O ( E )  x- 

and z-momentum equations, while eliminating yl from the O ( E )  version of (5.2) gives 
the free-surface boundary condition 

ii2# - (zizi' + g)@ = o on z = 0, (5.4) 

4-+0  as z -+-a .  (5.5) 

while (5.3) requires at O ( E )  that 
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Only the x-momentum equation appears at 0(6),  as 

892 ce''(olG + $a') cos ly = -- 
pax 

while from (5.2) at O(6) aq2/at = 0 on z = 0. Thus in view of (2.5) and because 
q2 = o at time t = 0, it and 9 2  remain zero for all time; in consequence we must 
proceed to O(e6)  to determine h(0). 
6 is an O(e6)  quantity, and to analyse events at this order we must decompose 

q 3  into an x-averaged and x-periodic part, namely q 3  = Re{e"' cos l y (a  + beiEx)}. 
Eliminating q 3  from the O(e6) form of the free-surface boundary conditions (5.2), and 
noting o = eel, then yields the boundary conditions G(0) = 0 and 

which describes the distortion of the wave amplitude at the free surface due to an O(6) 
axial velocity modification to the primary shear flow. Note, however, that &O) = 0 for 
12+a2 which constitutes the major portion of our domain of interest; for the purpose 
of our calculations, therefore, we shall permit wave distortion only in the interior. 
Finally, at large depth, we see from (2.3) and (2.9) that at O(e6) (5.3) requires 

& + O  and 8 - 0  as z + -a. 

Boundary conditions appropriate to our coupled system (2.13), (3. l), therefore, are 
two homogeneous Dirichlet conditions at z = z1 and two at z = z2. We shall consider 
two cases: the first (5  5.3) excluding wave field distortion, the second (9 5.4) permitting 
it. But before proceeding we require a wave field compatible with (5.1). 

5.2. Primary wave field 
Such a primary wave field follows on noting that (5.1), (2.10) and the substitutions 

a 4  = i"(i), 5 = behZ 

lead directly to the hypergeometric equation 

- d2x + (1 + 2a/h) dx = o  
d i2  i d l  i(i - 1) 

So provided IpI < 1, then I l l  < 1 and the solution is 

x = A1F(a,b;c; i )  + A2l1-"F(a - c + 1,b - c + 1;2 - c;<) ,  (5.6) 
where F(a, b ;  c; i) is the hypergeometric series (Abramowitz & Stegun 1965), 

and A1,A2 are constants. We shall set A1 = y and to ensure x(() is bounded, A2 = 0; 
then 

a 4  = y i Z ~ ( a , b ; c ; i )  for i in (O,PI, (5.7) 
in accord with (5.5) which requires 4 + 0 as [ + 0. Note that because the wave 
phase speed is not sought as part of our solution we may disregard the free-surface 
boundary condition (5.4). 
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FIGURE 6. Curves of crl against c( for various values of p in the limit l2  -+ a: (a )  without wave 
distortion; ( b )  with wave distortion. 

Straightforward analysis then yields the product U'P?, ; on factoring out the largest 
singularity we find 

with 

Note that S3, dS3/d[ and thus U'PE3 are bounded as a -+ 0. 

5.3. No wave-field distortion 
Consider first the case without wave distortion. Here we need solve only (2.6) with 

= 0 and the boundary conditions $(z , )  = G(z2) = 0. Then in 5-variables, and on 
writing ii, = 5-f W ,  (2.6) becomes 

Two linearly independent solutions for W may be constructed via the WKBJ approx- 
imation as ( l /h )2  -+ 00. On setting H = 0 and G = U'P;,, these satisfy the boundary 
conditions W(0) = W ( p )  = 0 provided (2.14) is satisfied. Then A1,2 is real provided ~1 
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FIGURE 

is real and the largest upper bound for (r1 is seen to be 

(rl - IPlfhi(asl  + hs2){ as ( ; ) 2 + 0 0 ,  (5.8) 

where si = IpI(p - l)-4Si(p;tl)/2 
Thus the flow is unstable to longitudinal vortex form (at least for 0 < IpI < 1) 

provided asl + hs2 > 0, the growth rate increasing dramatically as p + 1. Further- 
more (rl is bounded as a -+ 0 (in contrast to our previous example) and, because 
limor-rm(ai p") + 0 for p < 1, diminishes to zero as a -+ co. 

Further details are given by the numerical solution in which we set y = h = 1 
and confine attention to the finite domain -1 < z < 0. Results as l 2  -+ co for 
various values of positive p are depicted in figure 6a and are in accord with the 
aforementioned asymptotic behaviour. The variation of crl with 1 is given in figure 
7a ; as in the previous example (9 4.1), (r1 increases uniformly from zero at I = 0 to a 
finite upper bound as l2 -+ 00. 

( i  = L2). 

5.4. Wave-jeld distortion 
Allowing the wave field to distort again plays little role for sufficiently large a, but 
causes a marked diminution in growth rate as tl -+ 0, as we see in figure 6b. The 
diminution is further accentuated as p increases (figures 6b and 7b), an occurrence 
reflected by the placement (in a, 1-space) of the boundary separating eigenvalues 
for (rl for which J = 0 and J = 1 (see 94); figure 8. In short, as p increases, a 
progressively larger portion of (a, 1)-space is subject to standing longitudinal vortices 
which alternate in sign. 

Looking now to the eigenfunctions, figure 9, we see that they depict much the 
same features of those in our earlier problem (94.2): (i) as (rl increases, the peak, 
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FIGURE 8. Boundaries separating regions unstable to longitudinal vortex form (I) from that with 

alternating sign (11) for various values of j in (a, 1)-space. 
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FIGURE 9. The eigenfunctions &z)  and ;(z) for various values of 1 for a = 1 and j = 0.5. 

and thus the location of the vortices, shifts toward the boundary (in this case the 
free surface z = z2)  at which the mean velocity zi relative to the wave, is minimum; 
(ii) the eigenfunctions exhibit an inflexion point on the 21 side of the peak except 
when a marked suppression in catalytic action occurs; (iii) the vortices stand but 
alternate in sign or propagate spanwise (see @4.2,6) when a turning point occurs 
in the fi-eigenfunction at 2 2 .  Further, when standing oscillations first occur, the 
fi-eigenfunctions, appropriately oriented and scaled, are virtually identical to their 
counterparts in $4.2. One remaining feature is the presence of a zero in the 3- 
eigenfunction for 1 = O(1); as 1 increases the zero shifts towards, and vanishes on 
reaching, z1. 
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6. Results and discussion 
Our study indicates that O ( E )  two-dimensional periodic flows in the presence of 

0(1) shear are unstable to longitudinal vortex form. Waves, however, do not drive 
the instability; they act as a catalyst and it is evident that wave distortion, caused 
by the back effect of the mean flow modification, affects that catalytic action. Least 
affected are short waves (N + oo), so here the added complication of accounting for 
wave distortion is unjustified. But a different story is true for wavenumbers N ,< 0(1), 
where wave distortion acts to diminish, and in some cases markedly suppress, catalytic 
action and thus the instability. Hence while the Craik-Leibovich type 2 instability 
does operate in arbitrarily strong inviscid shear flows, the timescale over which it 
operates will very likely depend upon the wavelength of the imposed waves: be they 
short the instability will grow exponentially until nonlinear effects are large enough 
to curb that growth; be they sufficiently long, an exponentially growing instability 
may not occur at all or, alternatively, the CL2 instability may endure long enough 
for longitudinal vortices to form, but then be suppressed owing to spanwise-periodic 
wave distortion. 

Wave distortion also introduces eigenmodes of the standing-wave type: in the 
context of longitudinal vortices this means that such modes will align vorticity in the 
positive x-direction for half the cycle and the negative x-direction for the remainder. 
These modes occur on both sides of the ( x R ,  lR)-cume, but they play little role on 
the short-wave side except in the nearest vicinity of the curve, where they alternately 
act to intensify and abate the longitudinal component of vorticity. On the long-wave 
side of the curve, however, such eigenmodes dominate and here the vortices may 
stand in space and alternate in sign. Of course this does not mean that vortex 
lines end and then begin in space at the instant the orientation of the longitudinal 
component of vorticity changes sign, but rather that the instantaneous vorticity vector 
has no longitudinal component at that instant. There is also the possibility, even 
likelihood, of individual rolls propagating spanwise with equal and opposite phase 
speeds. 

As is evident from (2.8), the vorticity field b(z) is determined primarily by U ̂ and 
2, while from figures 5 and 9 we see that, as 1 increases, the turning point in Q(z) 
moves progressively closer to the boundary at which the mean velocity zi relative to 
the wave is a minimum. Of course the turning point never reaches ;he boundary; 
rather, as 1 + co and GI asymptotes to an upper bound, 6, and thus s2, approach a 
limiting form. The vortex core is barely 20% of the z-domain in this limit compared 
with the whole z-domain for N andA 1 = O(1). Results without wave distortion are 
qualitatively the same. Thus, since s2 = O(oll), we can say that higher growth rates 
give rise to vortices that are smaller and significantly more intense than lower growth 
rates. Further, because the vortices occur near the boundary at which U is minimum 
irrespective of wave amplitude, we can also say that shear and wave amplitude (each 
near its maximum) do not act in concert to focus longitudinal vorticity. 

CL2 is a candidate instability for the formation of longitudinal, or more appro- 
priately ‘quasi-streamwise’, vortices in turbulent boundary layers (Leibovich 1977 ; 
Craik 1985). Such vortices are most evident in the wall region (where the shear 
and turbulence intensity are greatest) and are closely linked to the regeneration of 
turbulence through events known as ejections and sweeps, collectively termed burst- 
ing. Specifically, transverse velocity components briefly peak to O ( E )  values creating 
high levels of Reynolds stress as they do so. B and iii then fade, but distinct axial 
velocity perturbations - streaks - remain and maintain a spanwise spacing almost 
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independent of scale. A most thorough account of events in the wall region is given 
by Robinson (1991). 

Our longitudinal vortices of highest growth rate are also in the region of highest 
shear. But for their transverse velocity components to reach O ( E )  requires 6 = O( l), 
which invalidates (3.1) and very likely (2.13). Nonlinear counterparts to (2.13) and 
(3.1) can of course be constructed, but while we can reasonably expect nonlinearity 
to contain the instability we can be certain only that wave distortion will suppress it. 
Longitudinal vortices formed prior to suppression, however, may either continue to 
grow algebraically owing to the presence of newly formed oblique waves or undergo 
algebraic decay through viscous action. Interestingly, both scenarios give rise to 
an algebraic streamwise growth of the spanwise-varying part of 6 (Phillips 1993), 
a curious parallel with the observed behaviour of streaks. Finally, viscosity is not 
necessary for the instability, but it will likely play a role at some (a , l )  and of course 
allow the introduction of a second lengthscale. Only then can we view 1 in the context 
of streak spacing in a boundary layer and, to paraphrase McIntyre & Norton (1990), 
determine the ultimate fate of a viscous flow in which the initial vorticity is arbitrarily 
strong, subject to the instability. 
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