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Growing finite-amplitude initially spanwise-independent two-dimensional ro-
tational waves and their nonlinear interaction with unidirectional viscous
shear flows of various strengths are considered. Both primary and secondary
instabilities are studied, but only secondary instabilities are permitted to
vary in the spanwise direction. A generalized Lagrangian-mean formulation
is employed to describe wave-mean interactions, and a separate theory is
constructed to account for the back effect of the developing mean flow on
the wave field. Viscosity is seen to significantly complicate calculation of the
back effect. The primary instability is seen to act as a platform for, and
catalyst to, secondary instabilities. The analysis leads to an eigenvalue
problem for the initial growth of the secondary instability, this being a
generalization of the eigenvalue problem constructed by Craik for inviscid
neutral waves. Two inviscid secondary instability mechanisms to longitudinal
vortex form are observed: the first has as its basis the Craik]Leibovich type
2 mechanism. The second, which is as yet unproven, requires that both the
wave and flow field distort in concert at all levels of shear. Both mechanisms
excite exponential growth on a convective rather than diffusive scale in the
presence of neutral waves, but growing waves alter that growth rate.
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1. Introduction

Fluid-flow phenomena whose motions exhibit both mean and fluctuating
parts are commonplace in nature and engineering, ranging from water waves
propagating on a shear current to Tollmien]Schlichting waves in a transitory
boundary layer. Important in each case is an understanding of the nonlinear
processes that couple the mean and fluctuating motions, and moreover the
secondary and possible tertiary phenomena attributable to the nonlinear
rectification of those oscillatory motions, e.g., modifications of the mean flow
as a result of the waves and the back effect, if any, of those mean-flow
modifications on the wave field.

Crucial to such studies are quantities that follow individual fluid particles,
a task for which the Eulerian equations of mean motion are poorly suited.
Indeed, Eulerian-mean vorticity as defined by Reynolds averaging has no
simple conservative properties even when viscosity is ignored and thus acts

Žto conceal the role played by nonlinear rectification in its guise as Stokes
.drift in vortex line deformation.

The quest for a more rational way to separate wave from mean flow and
wto define wave-mean interactions culminated, following much effort 1]6,

x Ž .and others , with the generalized Lagrangian-mean GLM equations of
w xAndrews and McIntyre 7 . These equations describe the back effect of

oscillatory disturbances upon the mean state and are exact provided the
mapping between the true Lagrangian and the reference GLM remains
invertible. Of course GLM still describes mean motions and is therefore
conceptually equivalent to Reynolds averaging, but it describes Lagrangian
aspects of the motion from a Eulerian framework and is consequently able
to capture structural aspects of the flow.

Of interest in the present work are mean structures that arise in unidirec-
Ž .tional viscous shear layers of various strengths owing to the presence of

Žgrowing or neutral finite-amplitude rotational waves that are initially span-
.wise independent , and specifically the evolution equations that describe the

etiology of such structures. Also of interest are connections between the
GLM approach and more conventional approaches to describing primary
and secondary instability in bounded shear layers, with a view to determine
which is more efficient.

1.1. Pre¨ious work

Mean structures that arise in wave-mean interactions of this ilk were first
w x w xinvestigated by Craik 8 and Leibovich 9 , who sought to model Langmuir

circulations. These are organized convective motions that form in the
surface layer of open bodies of water when winds of moderate strength blow
over them. The motions take the form of longitudinal vortices that align with
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the wind and act at the free surface to concentrate flotsam and various
organic films into clearly visible streaks or windrows. Craik and Leibovich

Ž . Ž 2 .considered O e neutral irrotational waves interacting with an O e unidi-
rectional Eulerian mean shear flow. They found the interaction unstable to
longitudinal vortex form via an instability now known as CL2, or

Ž .Craik]Leibovich type 2 see Section 4 .
CL2 continues to operate in stronger shear. But although only minor

Ž .modifications to the theory are required in O e shear, that is not the case
Ž .for O 1 shear flows, where the back effect of the mean-flow modification

w xupon the wave field must be explicitly calculated 10 . In essence, waves do
w xnot drive CL2 11 but act through the pseudomomentum as a catalyst: This

means that the magnitude of the mean-flow modification is bound not by
the strength of the waves but by the magnitude of the preexisting vorticity in
the initial state. With sufficiently strong preexisting vorticity, therefore, the
mean-flow modification acts to distort the waves. Of course the detailed

Ž .kinematics of the instability mechanism are less clear with O 1 shear than
Ž 2 .with O e , although the seminal idea of the CL2 instability remains within

w xthe theory and for this reason Phillips et al. 12 denote the former
Ž 2 . Ž .CL2-O e and the latter CL2-O 1 .

Ž .To construct an inviscid theory for O 1 shear flows in the presence of
Ž .O e rotational neutral waves, Craik employed the GLM-equations and

found the resulting eigenvalue problem for longitudinal vortices far more
complicated than its counterpart for weaker shear; requiring inter alia a
further differential equation to account for wave distortion. That notwith-
standing, Craik was able to obtain definite results analytically to demon-
strate the existence of longitudinal vortex instability when the spanwise
spacing of the vortices is small; and this technique was extended to a

w xdifferent, wider class of flows, by Phillips and Shen 13 , who show the
ubiquity of this instability. Detailed numerical results by Phillips and Wu
w x w x14 and Phillips et al. 12 concur and further indicate that wave distortion

Ž . Ž .acts i to diminish catalytic action for all but the shortest waves; and ii to
suppress the instability markedly if the waves are sufficiently long. Further-

w xmore, by comparison with the data of Gong et al. 15 , Phillips et al.
Ž .determine that CL2-O 1 is physically realizable.

Questions then arise regarding the influence of viscosity and growing
waves on the instability, and these set the stage for the present study in
which, as a precursor to future numerical work, we construct the relevant
eigenvalue problems.

1.2. Scope of the present work

Ž .We begin with a brief review of GLM Section 2 and then specialize the
Ž . Ž .GLM-equations to the problem of O e growing or decaying waves inter-

acting with a unidirectional viscous shear flow whose strength may range
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Ž 2 . Ž .from O e to O 1 . The waves are initially two dimensional and the shear
Ž .flow is assumed composed of two parts Section 3 : one determined by the

primary instability, which by definition can have no spanwise dependence,
the other by a secondary instability, which is allowed to vary in the spanwise

Ž w x.direction cf. 16 . In Section 4 we consider secondary instabilities that may
Ž .arise in such circumstances; two are observed: CL2 Section 4.1 and a

possibly new instability to longitudinal vortex form, in which both the mean
Ž .velocity and wave field distort in concert Section 4.2 .

Ž .Wave distortion owing to the secondary flow arising in O 1 shear is
considered in Section 5.3 and the resulting correction to the pseudomomen-
tum field in Section 5.4. The ensuing formulation is significantly more

Ž .complicated than its inviscid counterpart in O 1 shear, because the second-
Žorder Rayleigh]Craik equation and its algebraic accomplice which together

.account for wave distortion in Craik’s theory are replaced by two ordinary
differential equations, one of fourth order and the other of second. The
resulting eigenvalue problems are discussed in Section 6.

Finally, to give the analysis physical basis, we view it from the context of
two disparate physical problems: first, the growth of Langmuir cells beneath

Ž .wind-driven growing waves, where the waves typically are O e and the
Ž 2 . Ž . w xshear can range from O e to O 1 17, 34 ; and second, to compare our

findings with well-established previous results, we look at plane Poiseuille
Ž .flow, where the shear is typically O 1 .

2. The generalized Lagrangian-mean formulation

2.1. Background

w xAndrews and McIntyre’s 7 generalized Lagrangian mean equations are an
exact and very general Lagrangian-mean description of the back effect of
oscillatory disturbances upon the mean state. The Lagrangian-mean velocity
so described, however, is not the ‘‘mean following a single fluid particle,’’ but
rather the velocity field describing trajectories about which the fluctuating
particle motions have zero mean, when any averaging process, be it tempo-
ral, spatial, ensemble, or other, is applied. To express ideas like ‘‘steady
mean flow,’’ an Eulerian description of the Lagrangian mean, with position x
and time t as independent variables, is employed. Hence the GLM descrip-
tion is really a hybrid Eulerian]Lagrangian description of wave mean-flow
interactions. Andrews and McIntyre emphasize that the equations are exact
and thus valid for waves of all amplitudes, although for practical purposes
they have so far been restricted to waves of small amplitude, measured by a
dimensionless parameter e , so that any displacement j from the mean

Ž .trajectory is O e compared to the wavelength of the wavefield.
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L L² : Ž .To define an exact Lagrangian-mean operator , , corresponding to
² : Ž .any given Eulerian-mean operator , , necessitates defining with equal

Ž .generality an exact, disturbance-associated particle displacement field j x, t .
For any scalar or tensor field, w, say, of any rank, it is then possible to write

L j j² : ² :w x, t s w x, t where w x, t s w xqj , t .Ž . Ž . Ž . Ž .

Then provided the mapping

x ¬ xq j 2.1Ž .

Ž .is invertible, there is, for any given u x, t , a unique ‘‘related velocity field’’
Ž .v x, t , such that when the point x moves with velocity v the point xqj

moves with the actual fluid velocity u j, as

j­ r­ tqv ?= xq j s u . 2.2Ž . Ž .

² Ž .: ² Ž .: Ž .Further, provided j x, t s0 and v x, t sv x, t , then v is the La-
Lgrangian-mean velocity, u , which is related to the Eulerian-mean velocity

Lby the generalized Stokes drift d, as u suqd. So, in terms of the
L L Ž .Lagrangian-mean material derivative, D s­ r­ tqu ?=, Equation 2.2

becomes

L lD j s u , 2.3Ž .

l l j LŽ .where the Lagrangian disturbance velocity u is given by u x, t su yu ,
lsuch that u s0.

2.2. The generalized Lagrangian-mean equations

For homentropic flows of constant density r in a nonrotating reference
frame, the GLM-momentum and continuity equations are

L L L LD u y p q u u y p qp s x , 2.4Ž .Ž . Ž .i i k , i k k , i i

pp 1, i L j j² :p s q F y u ui j jr 2

and

L LD D q D= ? u s 0. 2.5Ž .

Here repeated indices imply summation and commas denote partial differ-
entiation.
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Observe that the nonlinear forcing of the mean flow is expressed in terms
Ž .of the mean of the vector wave property p. The ensuing vector ps p x, t isi

the pseudomomentum per unit mass, whose ith component is

l² :p s y j u . 2.6Ž .i j , i j

w xNote that the pseudomomentum or quasi-momentum 18 should not be
confused with the pressure pp. Further, F is the force potential per unit
mass and x is a function that allows for dissipative forces. In the present
work F is zero and the contribution due to the viscous force n=2 u is

L l² :x s n u q j u . 2.7Ž .i i , k k j , i j , k k

LŽ . Ž . Ž .The density D x, t of the GLM-flow u x, t is defined to satisfy 2.5 and
j Ž . Ž .is connected to the actual fluid density r x, t s r xqj , t by

D s r jJ , J ' det d qj ,� 4i j i , j

where J is the Jacobian of the mapping x ¬xqj and d is the Kroneckeri j

delta. Note that restricting attention to flows of constant density r does not
usually give rise to constant D ; but it does necessitate that D be a mean

² Ž .: Ž .quantity, to wit D x, t sD x, t , thereby allowing the mass conservation
Ž .equation 2.5 to be written as

LD J q J = ? qqp s 0. 2.8Ž .Ž .

Ž .At this point it is helpful to write 2.4 in a form akin to Navier]Stokes,
Land we do so by introducing the dependent variable q su y p whilei i i

noting that

q q q p q q q p q s y q q p q y q q q q p qŽ . Ž . Ž . Ž . Ž .ž /j j j j j i , j j j j , i i , j j j j, i , i

to find

q q q q y p q y q q P s x , 2.9Ž .Ž .i , t j i , j j j , i i , j , i i

where

1
P s q q q p q qp .j j j j2
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We also introduce the vorticity-associated vector field Ts= = q; then
Ž . Ž .noting 2.5 and taking the curl of 2.9 , yields

T q q q p T s T q q p y T q q p q « x , 2.10Ž .Ž .Ž . Ž ., ji , t j j i , j j i i i j j i jk k , j, j

where « is the alternating tensor.i jk

2.3. Small amplitude wa¨es

Various simplifications occur when dealing with incompressible, Boussinesq
Ž .flows in which e see Section 3 is characteristic of the initial disturbance.

w xFirst, the Jacobian takes the form 7

1 3² :J s 1y j j q O e 2.11Ž . Ž ., jkj k2

while the generalized Stokes drift becomes

1 3² : ² :d s j u q j j u q O e . 2.12Ž . Ž .˘i j i , j j k i , jk2

Ž . Ž .Second because the Eulerian fluctuating velocity is usu x, t yu x, t , the˘
small-amplitude Lagrangian velocity perturbation follows as

l 2u s u q j u q O e ; 2.13Ž . Ž .˘j j k j , k

Ž .and finally the viscous contribution 2.7 simplifies noticeably, as we see in
Section 3.2.

( )3. Imposed shear of specified strength and O e waves

We apply the GLM formulation to a class of unidirectional shear flows that
have imposed on them, or are unstable to, small-amplitude waves that are
independent of spanwise direction; and of particular interest is the instabil-
ity of the ensuing wave-mean interaction to longitudinal vortex form. Our
intent in the first instance is to restrict only the slope of the waves but
remain as general as possible with regard to the level of the imposed shear.
In consequence the ensuing equations are relevant to a range of bounded
and unbounded flows, but is behooves us to discuss them with regard to
specific physical problems, viz. Langmuir circulations beneath growing
wind-driven surface gravity waves and plane Poiseuille flow.

Consider then the interaction between a unidirectional shear flow with
characteristic velocity VV and two-dimensional straightcrested waves of

Ž .wavelength l that propagate in or opposite to the direction of the basic
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flow. The amplitude of the waves is assumed to grow from infinitesimal to
Ž .finite, but we require their slope e to satisfy e -O 1 at all times. Orbital

velocities are thus characterized by e CC, where CC is a typical phase speed.
We next suppose that the characteristic thickness of the shear layer is LL

and make variables dimensionless with respect to LL and CC. Finally we write
Ž s. Ž b .VV r CC sO e and LL rlsO e , where sG0 while b is real and of either

Ž s.sign. Then the level of shear is O e and in the event viscosity plays a role,
the Reynolds number R' LL CCrn . Finally we invoke space coordinates
Ž .x, y, z and choose a reference frame that moves in the x-direction with the
phase speed of the waves cw.r

We use uppercase letters to denote quantities pertaining to the primary
Ž .flow, which by design is devoid of spanwise y dependence, and lowercase

letters otherwise, while an overbar on the unscaled dimensionless variable
denotes a streamwise average. Our unperturbed Eulerian shear flow in

w sw x Ž . w xz , z is then U z, t qic se U, 0,0 .1 2 r
˘Ž .Envisage now an O e wave field U that interacts with the primary shear

flow to excite streamwise-averaged spanwise-varying Eulerian velocity per-
turbations u, whose strength relative to the primary shear flow is measured˜
by the parameter D, and express the resulting flow field in GLM-variables.
The outcome is the velocity-associated vector field qsQqq, which we˜
expand as

s 2ys n nq y , z , t s e Q , 0, e Q qD q , e q , e q q ??? nG0 ,Ž . Ž .� 41 3 1 2 3

3.1Ž .

sw Ž .and an affiliated scalar field P, which includes the pressure as e PP x, z, t
Ž . xqD pp x, y, z, t q ??? . Note that the power n can have values other than

zero and that n is related to s, as we see in Section 4.
Ž 2 .In the first instance the waves produce O e primary fields of pseudomo-

mentum P and Stokes drift D. So since the Eulerian and Lagrangian mean
velocity fields are related through qsuqdyp, we see that Q s D y P ,3 3 3

Ž . Žwhich explains the extra primary mean field component in 3.1 in contrast
.to the primary Eulerian flow, which by design has only one component .

Ž s . ŽMoreover the O e D axial velocity perturbation owing to the interaction
.between the waves and mean flow may in turn act to distort the wave field

Ž sq2 .and produce an O e D spanwise-varying component of pseudomomen-
w xtum 10 . So with no loss of generality we write p or d as Pqp, expand as˜

2 s n np y , z , t s e P , 0, P qe D p , e p , e p q ??? , 3.2� 4Ž . Ž .1 3 1 2 3
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Ž . Ž . Ž .and with 3.1 substitute into 2.8 and 2.9 . But before doing so, it is
instructive to first explore the kinematic limitations of GLM and determine
how GLM is manifest in the presence of viscosity.

3.1. Conser̈ ation of mass

Ž .The validity and indeed strength of GLM stems from the mapping 2.1 , but
Ž .because 2.1 must remain invertible it is also, ironically, GLM’s chief

restriction. A second less problematic occurrence with GLM is that GLM
flows are usually divergent. Both difficulties are evident kinematically from
Ž .2.8 : to wit

­ D ­ d ­ d3 2 3L 2 sq2qny D ln J s e q e D q . 3.3Ž .ž /­ z ­ y ­ z

2Ž .Observe that the mean field qqp is divergence free to O e only if
D s0, which necessitates neutral waves, i.e., waves with a steady amplitude3

w xfield 18, 19; see also Section 5 . It also requires the absence of critical
Ž . wlayers, where D for monochromatic neutral waves is unbounded see3

Ž . Ž .x5.13 and 5.15 . Of course singularities do not exist within the flow field at
the critical layer; rather the Jacobian J is zero there, indicating that the

Ž .mapping 2.1 is no longer invertible. Physically, critical layers are thin layers
of fluid centered on levels at which the phase velocity of the disturbance is
equal to the velocity of the basic flow; and the fact that J s0 at critical
layers means the averaging procedure breaks down there. Of course neutral
waves give rise to streamlines that form closed ‘‘cats eyes’’ near critical

w xlayers, while streamlines due to marginally stable waves roll up 20 . In
consequence J s0 means that the averaging procedure gives simple results
only for open nonfolded streamlines. Of course such restrictions need not
negate the usefulness of GLM, but rather mean that we must restrict
attention to flows, or at least regions of the flow, in which the streamlines
are not folded.

Ž . ŽFinally 3.3 notwithstanding, we are at liberty to write =?us=? qqpy
.d s0, and introduce the perturbation Stream function c as

­c ­c2 2q s q e d y p and q s y q e d y p . 3.4Ž . Ž . Ž .2 2 2 3 3 3­ z ­ y

Thus for calculation purposes, at least for the class of problems under
consideration, the effect of a divergent mean-flow field is minor.

3.2. The ¨iscous contribution

Potentially daunting is the calculation of the Lagrangian-mean contribution
w xto the viscous force. Leibovich 21 has considered this in the context of

Ž 2 . Ž .O e shear in the presence of a wave field that is irrotational to O e and
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y1 2 4 2 2� Ž .4found that x reduces to R = uqO e LL rl . Here we allow fori

rotational waves and all levels of shear with R constant. As it happens, again
for the class of problems under consideration, the determination of x isi

usually, but by no means always, straightforward.
Ž .We begin with a Taylor expansion of the bracketed portion of 2.7 , to wit

2 2 2 2 2qsqb² : ² := u q j = u q j = u q j = j u q O e ; 3.5Ž . Ž .¦ ;˘ Ž .i j i , j j , i j j , i k j , k

2Ž Ž ..then on replacing u with q which we can do formally because qsuqO e ,
Ž .it is evident that the first}and usually dominant}term in 3.5 becomes

2 s 2ys= q s O e 1, D , e .Ž .

Ž .Now although the second term reduces since usuqu and js0 to˘
² Ž 2 . : 2j = u , the order of = u is determined by the rotational level of the˘ ˘j i , j

waves, as

=2 u s O e 1qmq2 b ;Ž .˘

here we have set ms0 if the waves are rotational and ms1 if they are
Ž . Ž .irrotational to O e . In consequence the second and third terms in 3.5 are

Ž 2qmq2 b .both O e and are negligible relative to the first whenever 2q mq
Ž .2b ) s. Lastly, the fourth term in 3.5 is

LL l2 2qs² :j = j u s O e , 1,j , i k j , k ž /l LL

and is also negligible relative to the first term provided e 2 - LL rl-ey2 .
Indeed terms three and four may be ignored when the waves are irrotational
for all admissible s, and for sF1 when the waves are rotational, provided

1y - b -1. But both terms must be retained when the waves are rotational2

and ss2, assuming of course rotational waves exist at ss2. Thus for
completeness we write, for both rotational and irrotational waves, that

y1 2 2qsq2 bx s R = q q F qG qO e , 3.6Ž . Ž .i i i i

where

2 2 sqd nF s = p y d s e F qe D FF q ???Ž .Ž .i i i i i
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say, and

2 2 2qmq2 b sqd n² : ² :G s j = u q j = u s e G qe D GG q ??? ,˘ ˘ Ž .i j i , j j , i j i i

where d s0 for is1 and unity otherwise.
Ž .Of course 3.6 recovers Leibovich’s result for irrotational waves with

4 4 2 2Ž . Ž .ss2, because then p s d qO e and F qG sO e LL rl , but leads toi i i i

a far more complicated result when ss2 and the waves are rotational.

3.3. The primary flow field

It has long been known that finite amplitude waves act to distort the mean
w xflow from its unperturbed state 22 and we term the unperturbed flow plus

Ž 2 .this O e spanwise independent correction the primary flow field. We
Ž . Ž . Ž .determine it by substituting 3.1 and 3.2 into 2.9 . Then, on noting that

Ž .the primary flow field must identically satisfy 2.9 and because P is here1

equal to the mean streamwise pressure gradient, the x-momentum equation
takes the form

2­ Q ­ Q ­ Q­ PP1 1 12 y1 2ys 2ysqmq2 bq e D q s R qe F qe G , 3.7Ž .3 1 12­ t ­ z ­ x ­ z

while the z-momentum equation becomes

2 2­ Q ­ Q ­ Q ­ Q1 ­ P3 3 1 32 s sy2 y1 mq2 bq e y e P q e s R q F qe G .1 3 32­ t 2 ­ z ­ z ­ z ­ z

3.8Ž .

Ž .Observe that although the Stokes drift does not explicitly appear in 2.9 ,
Ž . Ž .it is evident from 3.3 and 3.7 that D , at least, plays an important role. To3

wit, it is D that acts to distort the mean flow from its unperturbed viscous3

form, a role associated in Eulerian formulations with the more familiar
Reynolds stress.

Of course in the absence of waves and with homogeneous Dirichlet
Ž .boundary conditions, 3.7 describes plane Poiseuille flow; alternatively, in

the absence of a pressure gradient and with Neumann boundary conditions
Ž .3.7 reduces to a stress Rayleigh problem with relevance to wind-driven
mean flows. Furthermore, because the wavespeed can exceed U in bothmax

w x Ž . w xPoiseuille flow 23 and in the water in wind-driven flows 17, 34 , critical
layers can be avoided.
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3.4. The secondary flow field

Although by definition the secondary flow field varies in the spanwise
direction, it is unwise to assume the total contribution of this component is

Ž .spanwise dependent. Indeed, a consequence of the nonlinear term in 3.9 is
that the spanwise-dependent portion can act to support a spanwise-indepen-

Ž 2 .dent flow, which well exceeds the O e modification discussed in Section
Ž . w x3.3, thus vastly altering the base flow defined by 3.7 24]26 .

Ž . Ž .To determine the secondary flow we again substitute 3.1 and 3.2 into
Ž . Ž . Ž s .2.9 , but this time subtract 3.7 , which leads to the O e D streamwise
evolution equation for q ,1

­ q ­ q ­ q ­ q ­ q ­ q1 1 1 1 1 1sqn 2 sq2qnq e D q q q q e D q e D p q p2 3 3 2 3ž / ž /­ t ­ y ­ z ­ z ­ y ­ z

­ Q ­ Q1 1sqn sq2qn y1 2 2 2qmq2 bq e q q e p s R = q qe FF qe GG ,Ž .3 3 1 1 1­ z ­ z

3.9Ž .

Ž . Ž sqn .while the same expansions and 2.10 yield the O e D streamwise compo-
nent of the vorticity-associated vector field,

­ T ­ T q ­ T q ­ T p ­ T p1 1 2 1 3 1 2 1 3sqn sq2qnq e D q q e D qž / ž /­ t ­ y ­ z ­ y ­ z

­ q ­ P ­ Q ­ p­ 1 1 1 12 2yn sq2ynq e T D q e y eŽ .1 3­ z ­ y ­ z ­ z ­ y

­ q ­ p ­ q ­ p1 1 1 1sq2ynq e D y½ 5­ y ­ z ­ z ­ y

s Ry1 =2 T qe 2HH qe 2qmq2 bII , 3.10Ž .Ž .1 1 1

where

­ q ­ q3 2T s y , HH s « FF , II s « GG .1 1 1 jk k , j 1 1 jk k , j­ y ­ z

Finally in terms of more familiar Eulerian variables, the streamwise
2Ž .velocity perturbation is u s q qe p y d , while the streamwise compo-1 1 1 1

nent of vorticity is

­ d y p ­ d y pŽ . Ž .2 2 3 32 2 2 2V s T q e y e s y= c q O e . 3.11Ž . Ž .1 1 ­ z ­ y
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These indicate that we may identify q with u , and T with V , only if the1 1 1 1

appropriate components of wave distortion are negligible.
Ž . Ž . Ž .But the set 3.9 , 3.10 , and 3.11 is incomplete without knowledge of the

pseudomomentum and in turn the wavefield; we determine the former in
Section 5, but first it behooves us to discuss situations in which q and T1 1

grow with time.

4. Secondary nonlinear instabilities

Our objective is to elicit secondary instabilities that lead to the growth of q1

and T with time and we begin with the premise that likely instabilities1
Ž . Ž .occur when 3.9 and 3.10 are coupled. Two scenarios, those for which

­ P r­ z is generally nonzero and for which ­ P r­ zf0, are evident.1 1

Crucial in both instances are nonlinearities owing to the waves interacting
both with themselves and the shear flow; measures of these nonlinearities
are given by the generalized Stokes drift and the pseudomomentum dis-
cussed in Section 5.4.

Ž .4.1. Case i : ­ P r­ z/01

Ž . Ž .When ­ P r­ z/0, Equations 3.9 and 3.10 are coupled via q ­ Q r­ z1 3 1
Ž .and ­ q r­ y­ P r­ z, so to explore such coupling we require ns 2y s r21 1

Ž sq2.r2 Ž y1r2 .and rescale time as t se t. Then provided LL rl)O e

­ q ­ q ­ q ­ q ­ Q1 1 1 1 1Ž2ys.r2q D q q q q e D q q2 3 3 3ž /­t ­ y ­ z ­ z ­ z

s eyŽ sq2.r2Ry1=2q q O e Ž2ys.r2Ry1 4.1aŽ . Ž .1

and

­ T ­ T q ­ T q ­ q ­ P­1 1 2 1 3 1 1Ž2ys.r2q D q q e T D qŽ .1 3ž /­t ­ y ­ z ­ z ­ y ­ z

­ Q ­ p ­ q ­ p ­ q ­ p1 1 1 1 1 1s sy e q e D y½ 5­ z ­ y ­ y ­ z ­ z ­ y

s eyŽ sq2.r2Ry1=2 T q O e Ž2ys.r2Ry1 . 4.1bŽ . Ž .1

Ž .Note that because n varies with s it is evident from 3.1 that transverse and
axial velocity perturbations may differ in order. Accordingly, wave distortion

Ž .may be ignored for shear of O e or less but plays an important role
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Ž . Ž .through p at O 1 , where a further equation see Section 5 must enter to1
Ž .complete the set 4.1 . That notwithstanding, wave distortion in the y- and

Ž 3qsr2 . w xz-directions is O e D and may be neglected for all sg 0,2 , allowing us
to write

­ q ­ q2 3 2q s 0 and thus T s y= c . 4.1cŽ .1­ y ­ z

Ž . Ž 2 .In the presence of irrotational neutral D s0 waves and O e shear,3
Ž .P reduces to D and 4.1 reduce to the set of equations studied by Craik1 1

w x w x8 and Leibovich 9 , who determined that, subject to homogeneous Dirich-
let or Neumann boundary conditions, q and T can grow exponentially fast.1 1

The resulting instability is known as Craik]Leibovich type 2 or CL2, to
Ž .which, for reasons discussed in Section 1, we append usually the level of

Ž 2 .shear. To occur, CL2-O e requires the presence of a wavy disturbance
having a sheared pseudomomentum, together with preexisting vorticity im-
parting a Eulerian-mean shear in the same sense as the pseudomomentum.

Ž .Here a kinematic description of an inviscid flow subject to the instability is
Žpossible: viz. that the Stokes drift gradient causes mean vortex lines which

.move with the fluid to tilt streamwise wherever the Eulerian-mean shear is
laterally distorted, giving rise to a longitudinal component of vorticity and
ultimately vortices that grow exponentially fast.

Ž Ž sq2.r2 .CL2 is thus an inviscid instability, although the O e growth rate
predicted by inviscid theory will be annihilated by viscous damping unless

Ž yŽ sq2.r2 .RGO e . Craik and Leibovich did not study growing waves, but as is
Ž .evident from 4.1 such waves have the greatest influence on the instability

Ž .in weak i.e., ss2 shear; of course CL2 remains the underlying instability
mechanism, but because D is a function of time, details of the secondary3

flow and its growth rate will doubtless be affected. It is shear currents of this
order that most commonly occur in the open ocean and it would seem that
growing waves, due perhaps to a freshening breeze, may play an important
role in the formation of Langmuir circulations hitherto absent, as in the

w xobservations reported by Smith 27 .
w xExponential growth can also occur when ss1 or ss0 10 . However,

Ž .although requirements for instability are as above for CL2-O e , the
w x Ž .Craik]Phillips]Shen criterion 10, 13 must be satisfied to excite CL2-O 1 :

viz. that from the reference frame of the wave, and in the direction of
Žincreasing mean flow, the gradient of the mean flow normalized by the

. Žmean flow must exceed the gradient of the wave amplitude normalized by
. w x Ž .the wave amplitude . Phillips and Shen 13 have further shown that CL2-O 1

is ubiquitous to a wide range of physically occurring bounded and un-
w xbounded flows; and, by comparison with the data of Gong et al. 15 , Phillips

w x Ž .et al. 12 have determined that CL2-O 1 is physically realizable. Such
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Ž .knowledge begs the question whether the CL2-O 1 instability has a role in
w xthe well-known secondary instability studied by Orszag and Patera 16 .

Recall that both are catalyzed by two-dimensional finite-amplitude waves;
both require concurrent stretching and tilting of vortex lines that lead to
longitudinal vortices, which grow exponentially fast on a convective scale;

Ž .and finally, both are ubiquitous. Indeed, we might well infer that CL2-O 1
and Orszag]Patera are identical instabilities viewed from different refer-
ence frames. But not quite yet: Orszag and Patera determine that centrifu-

Ž 2 .gal effects play little role in their instability, whereas CL2-O e , for
Ž 2 .example, is formally equivalent}albiet in an averaged sense for an O e

Ž .mean curvature, not for an O e local curvature}to the Taylor]Gortler¨
w xinstability 10 . So before making the above inference we must first dispel

Ž .the notion that CL2-O 1 too is centrifugal.
This we do by considering the root mean square kinetic energy K of each

of the Fourier modes in the expansion

u x, t s e iŽm a *xqnl*y.U ma*, nl*, z , tŽ . Ž .Ý Ý m , n
< < < <m F M n F N

so that

1r2
z2 2 2 2K ma*, nl* s U qV qW dz ,Ž . H m , n m , n m , n½ 5

z1

where a* and l* are the fundamental wavenumbers in the x- and y-direc-
Ž . Ž .tions respectively. Then in view of 5.1 and 5.2 it follows that because, for

Ž s sq1 .example, U sO e D, e D , then0, 1

K 0, l* s O e sD , e sq1D , K a*,0 s O e ,Ž . Ž . Ž . Ž .

K a*, l* s O e sq1D .Ž . Ž .

Ž 2 .Thus, in O e shear, the greatest kinetic energy is to be found in the a*
and higher-order modes, as would be expected with a centrifugal instability.
But because the extent of the mean-flow modification in CL2 is bound by
the level of shear and not by the strength of the waves, the measure D may
exceed e ; indeed a useful estimate in the fully nonlinear state is that

sq1r2 Ž .D'e . In consequence K 0, l* dominates when ss0; and because
Ž .K 0, l* comprises modes that are streamwise independent, this form of the

instability is not likely to be centrifugal. Thus the Orszag]Patera and
Ž .CL2-O 1 instabilities have much in common and may well be related.
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Hence we may conclude that CL2 is a robust instability whose details vary
Ž .according to the level of shear and type of waves i.e., growing or neutral

Ž .and that CL2-O 1 and the Orszag]Patera instability have much in common.

Ž .4.2. Case ii : ­ P r­ zf01

Ž .Consider now the case for which ­ P r­ z is in general zero. Here 3.9 and1
Ž .3.10 are indirectly coupled through q ­ Q r­ z and ­ Q r­ z ­ p r­ y, via3 1 1 1

the distortion of pseudomomentum by q . We thus set ns1 for all s and1
sq1 Ž y1r2 .t se t giving, for LL rl)O e ,

­ q ­ q ­ q ­ q ­ Q1 1 1 1 11ysq D q q q q e D q q2 3 3 3ž /­t ­ y ­ z ­ z ­ z

s eysy1Ry1=2q q O e 1ysRy1 4.2aŽ . Ž .1

­ T ­ T q ­ T q ­ Q ­ p­1 1 2 1 3 1 11ysq D q q e T D yŽ .1 3ž /­t ­ y ­ z ­ z ­ z ­ y

­ q ­ p ­ q ­ p1 1 1 1 ysy1 y1 2 1ys y1q D y s e R = T q O e R 4.2bŽ . Ž .1½ 5­ y ­ z ­ z ­ y

Ž . Ž .along with 4.2c . The set 4.2 is reminiscent of equations describing the
w x w xBenney]Lin 28 and Craik]Leibovich type 1 29, 33 instabilities, but these

instabilities are fundamentally different, because each assumes an imposed
spanwise-periodic wave field and initially grows algebraically in time. Here,
the imposed wave field is two dimensional and the equations are coupled not
through the dependent variables but rather through wave distortion: that is,
the velocity field and wave field distort in concert. In the process, mean
vortex lines associated with the primary flow are distorted spanwise and

Žproduce streamwise vorticity that may grow, at least initially provided
.D s0 , exponentially fast. Moreover, the instability can occur for all s if3

Ž . Ž .D s0, but is restricted to moderate O e or strong O 1 shear if D /0.3 3

Finally although the instability is inviscid it is subject to annihilation by
Ž ysy1. Žviscosity unless RGO e . Of course as with the ss0 case in Section

. Ž .4.1 a further equation must enter to complete the set 4.2 and we proceed
to derive such in Section 5.

But we have as yet no proof that this instability exists: scenarios in which
­ P r­ z,0 require a unique relationship between the wave field and the1

mean flow. In the case of monochromatic waves, for example, that relation-
Ž .ship must not only in the case of inviscid flow satisfy the Rayleigh equation

Ž .but must also ensure that the right-hand side of 5.14 is constant. In short,
admissible wave and mean fields must first be determined as eigensolutions

Ž . Ž .of 5.4 and 5.14 . This is a nontrivial but tractable problem numerically,
although of course the existence of such eigensolutions is no guarantee that
all, or indeed any, are unstable to longitudinal vortex form.
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5. Monochromatic wave fields

Ž . Ž .To close 4.1 or 4.2 , we must specify the wave field and determine the
degree to which it distorts. To help fix ideas we consider monochromatic
waves that if distorted do so in a spanwise periodic manner as, in Eulerian
variables,

i a xu s e Re g t e f9 z , 0,yiaf zŽ . Ž . Ž .� 4˘ w

sq1 i a xq e D Re g t g t e UU z cos ly , UU z sin ly , UU z cos lyŽ . Ž . Ž . Ž . Ž .� 4w ¨ 1 2 3

q O e sq2 , e sD2 . 5.1Ž . Ž .

During the initial stage of the instability, and so long as D is small enough
that linearization with respect to it yields a good approximation of the

Ž . s ¨ tequations governing the spanwise instability, it follows that g t ;e ;¨
Ž . s w t Ž .accordingly g t ;e . More specifically, while the O e waves are allowedw

w Ž s . Žto grow or decay as ac , the O e D axial velocity perturbation grows ori
. ¨ ¨decays as ac with phase speed c ; soi r

s w s a cw yicw and s ¨ s a c¨ yic¨ .Ž . Ž .i r i r

Ž . w Ž .Then f z , c , and a in 5.1 denote the eigenfunction, eigenvalue, andi

wavenumber of the primary wave field, which satisfy the Orr]Sommerfeld
Ž .equation 5.4 .

In due course the interaction of this x-periodic wave field with the mean
Ž .shear gives rise to streamwise-averaged perturbations to the mean flow

having both spanwise-independent and spanwise-periodic perturbations.
w Ž .xWhen ss0 the latter take the form cf. 3.1

¨ w ws t i l y a c t a c ti iu s D Re e e u z ,yee i¨ z , ee w z 5.2Ž . Ž . Ž . Ž .˜ ˆ ˆ ˆ½ 5
Ž .such that l̈ qw9s0 to satisfy continuity ; observe that while the axial flowˆ ˆ
grows as eaci

¨ t, the transverse flow grows as ea Žci
¨qc i

w . t.
Ž . Ž .Finally, the UU components in 5.1 derive from modifications to the O ej

Ž s .wave field by the O e D spanwise-periodic component of u, giving rise to a˜
spanwise-periodic variation in pseudomomentum, p . While in principle this1̃

Ž .can occur for all s see Section 4.2 , it is of major importance only when
ss0. But because the GLM-formulation provides no direct means of
evaluating wave distortion a separate examination of the wave field is
necessary; we do so in Section 5.3 and then determine p in Section 5.4.1̃
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5.1. The primary instability initially

Ž . Ž .The primary velocity associated field Q is described by 3.7 with 5.1 and1
Ž .5.13 . Then with the base flow U }be it Poiseuille flow or say a wind-driven

w xboundary layer of finite extent 30 }assumed known in the absence of
waves, we decompose Q as e sQ se sUqe 2 Q P, and seek the spanwise-1 1 1

P Ž . Ž 2 .independent perturbation Q z, t . The O e correction to the base flow is1
Ž w x.then given by cf. 29, Sect. 9.1

2 9w2 < <ac fw­ ­ 1 iy1 P s 2 a c t y1 mq2 biy R Q s ye e U9q R F qe G ,Ž .1 1 12 2 w 2ž /­ t 2 ž /­ z U qci

5.3Ž .

Ž .where prime denotes drdz and the eigenfunction f z is a solution to the
Orr]Sommerfeld equation

1w 2 i¨ 2 4Uyic f0y a f y U0 f s f y2a f0q a f , 5.4Ž .Ž . Ž . Ž .i i aR

Ž .which follows by eliminating pressure from the O e x- and z-momentum
Ž .equations. Note that although the calculation of 5.3 is straightforward

1provided b G , that is not the case for other b where computation of G12

cannot be avoided. Indeed, in such instances it is easier to calculate the
Ž 2 . P P P PO e Eulerian correction, U say, and deduce Q as Q sU q D y P .1 1 1 1

5.2. The secondary instability initially

Ž .In the presence of neutral or almost neutral waves, and on noting 5.12 ,
Ž . Ž .both 4.1 and 4.2 take the generic form

X2 2 ¨ ¨D y l ys u s R Q w , 5.5aŽ .ˆ ˆ1 1

X X¨ 2 0 s¡y R l P uye Q p for case iŽ .ˆ ˆ1 1 12 2 ¨ 2 2 ~D y l ys D y l w sˆ1 X¨ 2¢R l Q p for case ii .Ž .ˆ1 1

5.5bŽ .

Here Ds drdz and we have introduced the vortex Reynolds number R¨ s
Ž sq2.r2 Ž . ¨ sq1 Ž .e R for case i and R se R for case ii with the requirement that
¨ Ž . ¨ ¨ ¨R GO 1 in each case; accordingly s s R s .1

Ž . Ž Ž .. w xWith ss2, 5.5 recover for case i equations given by Craik 8 to
Ž .describe the initial growth of Langmuir circulations; while with ss0, 5.5
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w xrecover equations given by Phillips 31 to describe an evolving secondary
instability on a two-dimensional nonlinear equilibrium solution in plane
Poiseuille flow.

( )5.3. Wa¨e field modification for O 1 shear flows

Secondary velocity components of all orders affect the wave field, but
Ž . Ž . Ž sq2 .because 4.1 and 4.2 require only the O e D component of p, to wit p ,˜ 1

Ž s .it is evident that distortion is caused predominantly by the O e D compo-
Ž sqn .nent of u; in consequence O e D and higher-order components of˜

velocity may be ignored. Thus in calculating p , we need consider only the1̃

linear theory of wave motion in the presence of a Eulerian mean flow Uqu,˜
w xassuming u is sufficiently small 10 . Moreover, bearing in mind that the˜

back effect of the secondary flow on the wave field plays a role only when
Ž . wss0 in case i and that the analysis is easily rescaled for s)0 as may be

Ž .xnecessary for case ii , we shall, in this and the following section, confine
attention to the case of strong shear, viz. ss0.

Prior to calculating p , however, we require the modification to the wave1

field by u . Unfortunately this cannot be determined from the GLM-equa-1

tions; rather we must employ Navier Stokes and consider the wave field
separately. We begin by noting that continuity is maintained provided

X ˆ y1 ˆŽ . Ž . Ž .i a UU q lUU qUU s0. Then on defining f z s i a UU z , where f z is the1 2 3 3
Ž .O eD spanwise-periodic wave field modification, we have

i l X̂
UU y UU s f . 5.6Ž .1 2a

ˆOur intent is to construct an equation for f in the vein of Orr]Sommerfeld
Ž .and to do so we turn to the O eD components of the Navier]Stokes

equation:

u9XyLUU quf9yufq UU s y pp, 5.7aŽ .ˆ ˆ1 3i a

yiaLUU s l pp, 5.7bŽ .2

yiaLUU q a 2 uf s y pp9, 5.7cŽ .ˆ3

� Ža ci
wqs ¨ . t i a x* 4 Ž . Ž .in which eD r Re e e cos ly pp z is the O eD pressure compo-

nent and the operators are

y1 w 2 2 2L s i aR M y Uyic and M s D y a q l .Ž . Ž .Ž .i

Ž . Ž .Eliminating pp, UU , and UU from 5.7 and employing 5.6 then yields1 2

y1Yw 2ˆ ˆ ˆUyic Mf y U0 f q uMf y u f s i aR M f , 5.8Ž . Ž .Ž . ˆ ˆi
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which is devoid of the eigenvalue s ¨ and, in the inviscid limit and for
w xneutral waves, recovers the Rayleigh]Craik equation of 10 .

5.4. Stokes drift and pseudomomentum

Measures of the nonlinear rectification of oscillatory disturbances are given
by the Stokes drift and pseudomomentum. Thus having determined the
Ž .O eD distortion to the primary wave field due to the secondary flow, we

Ž 2 . Ž 2 .may now return to GLM and calculate the O e D correction to, and O e
components of, the pseudomomentum. In doing so it transpires that al-

2 2Ž . Ž .though viscosity plays a role at O e D , it plays none at O e , so that D and
w xP are as given by Craik 32 .
Ž . Ž .d and p follow from 2.6 and 2.12 after first obtaining the particle

L Ž .displacements. To wit, on noting that D j s dj rdt and employing 2.3 andj j
Ž . Ž .2.13 , we see that j x, t is given by integration ofj

dj j s u q j u 5.9Ž .˘j k j , kdt

along mean trajectories

dx Ls u x, t . 5.10Ž . Ž .dt

w x Ž .Of course the displacement field must conform with 7 postulate viii that
j be zero at some time t and position x . But if j takes the formj 0 0 j
Ž . i a x* s w tf z e e , then if ts t is finite so too is the wave amplitude; and this0

means that different particles in an averaged ensemble are located on
different streamlines, causing d and p to oscillate. To circumvent such

w xbehavior we follow 32 and allow t ªy`, at which point the wave0

amplitude is essentially zero and the particles to be averaged are equally
Ž .spaced along the same streamline. One further point: when integrating 5.9

Ž .along mean trajectories 5.10 to determine j , we shall assume j is smallj j

compared with the radius of curvature of u , and thus treat u constant withj j

respect to time, i.e., we assume x*s x qUt.0

So on writing

0 a ci
w tq i a x* ˆ aci

w tq i a x* s ¨ tj s e Re J e q eD Re j e e cos ly js1,3 ,Ž .½ 5 ½ 5j j j

5.11Ž .
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w xwhere j is displacement from the a¨erage position, then Craik 32 finds atj
Ž .O e that

9f yf0 0 0J s , J s 0, J s ,w1 2 3wž / Uyici a UyicŽ . ii

Ž .while we find at O eD that

9 wU9UU qia Uyic UUŽ .yf û 3 i 1ĵ s y ,1 2 2w 2 wž /i a Uyic a UyicŽ . Ž .i i

UUf û 3ĵ s q .3 w2w i a UyicŽ .Uyic iŽ .i

ˆNote that although j is nonzero at this order, it is not required to2

determine p .1̂
ŽLikewise, writing the Stokes drift and pseudomomentum as cf. Section

.3.2

22 0 0 2 a c tid , p s e Re D , P e½ 5ž /ž /j j j j

3yd j1 ˆ 2 a ci
w t s ¨ tq e D Re d , p e e cos ly js1,3 ; 5.12Ž . Ž .ˆ½ 5ž /j j

Ž 2 . w xthen at O e and on assuming a streamwise average 32 ,

2 9w < <ac f1 i0D s 5.13Ž .3 2 w 22 ž /U qci

2
291 f f0 2P s y U q a . 5.14Ž .w w1 ž /2 ½ 5Uyic Uyici i

Ž .In consequence the Jacobian 2.11 becomes

2 02 < < we f 2 a c tiJ s 1y e , 5.15Ž .2 w 24 ž /U qci

indicating that provided f and U are analytic, difficulties with the mapping
Ž . 2 w 2 Ž 2 .2.1 are to be expected only if U qc FO e .i
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Ž 2 .Looking now to the O e D correction to pseudomomentum, we find
after some lengthy algebra that

ˆp s AA z u z q AA z u9 z qRe AA z f z q AA z UU , 5.16Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .� 4ˆ ˆ ˆ1 1 2 3 4 1

where AA , AA , AA , and AA are functions that are independent of s ¨,1 2 3 4

specifically

2¡ 2 92 w 2U yc1 f fi 2~AA s a qw w1 2 w 2 ž /2 Uyic Uyic¢U qc i ii

¦9 9f f* f* f ¥yUU9 q ,w w3 3ž / ž /w wUqic Uyic §i iUyic UqicŽ . Ž .i i

29 9 9w wUqic f Uyic f*Ž . Ž .1 f* f fi i
AA s q q ,w w w2 2 2ž / ž /w w4 ž /Uqic Uyic Uyici i iUyic UqicŽ . Ž .i i

9 21 UU9 f* a Uf*
AA s y ,w w w w3 ž /Uyic Uyic Uqic Uqici i i i

9U f*
AA s y .w w4 ž /Uyic Uqici i

Ž . Ž . Ž .Also required in 5.16 is UU , which follows from 5.6 and 5.7 , as1

a 2 l 2
ˆ ˆLUU s Lf9q uf9yu9f yU9f . 5.17Ž .ˆ ˆŽ .1 2 2 2 2a q l a q l

Ž .Note that in contrast to its inviscid counterpart, which is algebraic, 5.17 is
Ž .an ordinary differential equation. For that reason our AA ’s is1,4 shouldi

w x Ž .not be confused with Craik’s 10 AA, BB, CC, and DD, although of course 5.16
recovers Craik’s form in the appropriate limit.

Thus given U for the problem at hand, f and the primary flow field are
Ž . Ž . ¨determined by 5.3 and 5.4 , while the eigenvalue problem for s is1

completely specified by appropriate boundary conditions and the coupled
Ž . Ž . Ž . Ž . Ž .system 5.5 , 5.8 , 5.16 , and 5.17 together with 5.14 and, if needed,

Ž .5.13 . Finally, although the viscous eigenvalue problem is significantly more
complicated than its inviscid counterpart, it is nevertheless suitable for
numerical treatment by methods similar to those employed by Phillips and

w x w xco-workers 12, 14 . Some preliminary results are reported by Phillips 26 .
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6. Recapitulation and concluding remarks

This article deals with growing finite-amplitude waves and their nonlinear
interaction with unidirectional viscous shear flows. The shear may take
any of a range of strengths and the wave field is initially independent of
the spanwise coordinate. The analysis largely employs the generalized

w xLagrangian-mean formulation of Andrews and McIntyre 7 and is in part a
w xgeneralization of a theory developed by Craik 10 , who dealt with secondary

instabilities owing to neutral waves in inviscid shear flows.
Once the waves are other than infinitesimal, the primary instability acts as

a catalyst for, and is thus subject to, secondary instabilities. These instabili-
ties manifest as structures of longitudinal vortex form and arise through the
stretching and rotation of mean vorticity. Such events are concealed by the
Eulerian equations of mean motion, but not by GLM, which describes mean
vorticity kinematics in a manner akin to the description of instantaneous
vorticity kinematics.

Two instability mechanisms to longitudinal vortex form were observed,
both inviscid: The first has as its basis the Craik]Leibovich type 2 mecha-
nism, which was originally conceived as an explanation for Langmuir circula-

Ž .tions. Unfortunately the physical basis for the mechanism in strong O 1
Ž 2 .shear lacks the clarity of its forebear at O e , in part because the Stokes

drift, which has clear physical interpretation, is replaced by the physically
nebulous pseudomomentum. The kinematics are further confused by wave

Ž 2 .distortion which, while negligible in O e shear, plays an increasingly
important role as the level of shear increases. But the mechanism remains
inviscid and wave catalyzed and has a growth rate very much higher than the
diffusive growth rate of the primary instability. Finally, while the instability

Ž 2 . Ž .is centrifugal in O e shear that is not the case in O 1 shear.
The distinctive feature of the second instability mechanism is that the

wave and primary flow field distort in concert at all levels of shear. This
mechanism would occur in regions of the flow where the vertical gradient of

Ž .the streamwise component of pseudomomentum is zero or almost zero and
in consequence requires a unique relationship between the wave field and
the mean flow field. The equations describing the instability bear similarity

w x w xto those describing the Benney]Lin 28 and CL1 33 instabilities, but these
mechanisms are fundamentally different. Indeed this apparently new and
still unproven mechanism assumes a primary wave field that is initially
independent of the spanwise coordinate, while Benney]Lin and CL1 require
a wave field with spanwise structure. Moreover Benney]Lin and CL1 grow
algebraically in time, while this mechanism can initially grow exponentially
fast.

GLM does not directly account for wave distortion and to determine it
requires a separate examination of the wave field. This examination was
carried out for monochromatic waves and indicates that distortion is de-
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scribed by two ordinary differential equations, one of fourth order and the
w xother of second; this pair replace Craik’s 10 second-order Rayleigh]Craik

equation and its algebraic companion. Of course as Craik notes, viscosity
plays a role only at rigid boundaries and critical layers, thereby simplifying
the analysis over much of the domain. Nevertheless, the calculation of
wave-mean interactions that contain regions where viscous effects are im-
portant, will require significant computational effort. The methods used,
however, need not be greatly different from those employed by Phillips and

w xco-workers 12, 14 .
Finally, the ostensibly formidable viscous contribution to GLM turns out

to be difficult to calculate only in the case of very weak shear in the
presence of rotational waves.
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