VOLUME 14

JOURNAL OF PHYSICAL OCEANOGRAPHY

SEPTEMBER 1984

On the Response of Short Ocean Wave Components at a Fixed Wavenumber

to Ocean Current Variations

O. M. PHILLIPS
Department of Earth & Planetary Sciences, Johns Hopkins University, Baltimore, MD 21218
(Manuscript received 10 November 1983, in final form 26 March 1984)

ABSTRACT

This paper is concerned with the patterns in the degree of saturation of short wind-generated waves (at
scales much smaller than those of the spectral peak but large compared with the capillary scales) that are
produced by current variations in the presence of wind energy input and loss by breaking or by the formation
of parasitic capillaries. It has two aims: the first is to provide a base for interpretation of patterns observed
in synthetic aperture radar imagery in terms of current features. The second is to give analytical expressions
for the magnitude of the variations in degree of saturation produced by given current fields so that, when
appropriate quantitative measurements become available, better parametric representations of the energy loss
rates can be developed. :

Particular care is taken to provide physically based representations of wind input and loss by wave breaking
and a relatively convenient equation (4.2) is derived that specifies the distribution of the degree of saturation
in a current field, relative to its ambient (undisturbed) background in the absence of currents. The magnitude
of the variations in b depends on two parameters, Uy/c, where U, is the velocity scale of the current and
¢ the phase speed of the surface waves at the (fixed) wavenumber considered or sampled by SAR, and
S = (L/\(uy /c)?, where L is the length scale of the current distribution, A the wavelength of the surface
waves and u, the friction velocity of the wind. When S is large (of order 10 or more) the distribution of b is
insensitive to currents for which Us/c ~ 1, but when S is of order unity or less, significant variations in b
are produced. A convergence zone is associated with a maximum in b relative to its ambient levels of

9 U 11/(n~1)
Denax = {l +— 0} s

4rm ZE
where m =~ 0.04 and n ~ 3. This appears as a bright line in the SAR imagery against the ambient
background. In general, changes of order unity in & (and the return SAR signal) should be observed if the
local current strain-rate scale
Uo/L 2 0.12g7 V2N 322 |

A local divergence or upwelling reduces the relative degree of saturation; when S is small the reduction is by
the factor (1 -+ 2U/c)~*? and continues until the waves grow back to the equilibrium level under the influence
of the wind. A divergence line would be imaged as a line across which the return decreases relatively abruptly

from the ambient level upwind, to a lower level downwind, gradually recovering to the ambient.

1. Introduction

The variety of instruments now available for active
radio probing of the ocean surface makes possible
the observation over a wide area of oceanic features
ranging from capillary and microscale breaking waves
to long ocean swells. Variations in the return signal
with position on the ocean surface gives indications
of even large scale features such as mesoscale ocean
eddies and the distribution of surface wind stress.
The scales of the surface features responsible for the
return signal depend upon the wavelength of the
incident radiation. When the angle of incidence on
the water surface is not close to normal and the
wavelength of the radiation is large compared with
the scales of occasional local occurrences such as
breaking waves, the return signal seems, as a result
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of careful measurements such as those of Keller and
Wright (1975), to be the result of first-order Bragg
scattering from predominantly freely traveling surface
waves. The wavenumber k of the surface wave sensed
is

k = 2k; siné, (1.1)

where k; is the wavenumber of the incident radiation
and @ the angle of incidence; the depression angle is
i — 6. A real or synthetic aperture radar (SAR) at a
frequency of 1.5 GHz responds to a surface wavelength
of the order of 10 cm at a depression angle of 30° or
so, and a high-resolution image such as that from
SAR gives, in the pattern of intensity variations in
the return signal, the pattern of local energy density
of surface disturbances at this scale.
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Some of these patterns are extremely intriguing.
. Beal et al. (1981) show a number of examples obtained
from Seasat, a noteworthy one giving surface expres-
sions of tidal flow over the Davis Shoals, southeast
of Nantucket Island. Another, off the mouth of the
Chesapeake Bay, suggests a complex pattern of eddies
(or perhaps water masses); at high resolution the
individual swell crests can be discerned. Fascinating
as these images are, it is far from clear how they
should be properly interpreted or what quantitative
information they may contain. If we accept the
premise that the images are derived primarily from
freely traveling short gravity waves modified by longer
waves and currents, then it should be possible to
infer at least some properties of the current field, in
particular, from the imagery. The short gravity waves
sensed by the Seasat SAR do have a significant
“lifetime™” of propagation, unlike capillary waves
which are transient and fugitive, and their interaction
with longer waves and currents may significantly
‘modify their distribution over the ocean surface. The
object of this paper is to determine the extent to
which this can occur and to seek relations by which
quantitative information might be obtained from this
imagery.

2. Action input and dissipation processes at short
gravity-wave scales

Since we will be concerned with interactions be-
tween the short gravity waves and surface currents,
the wave dynamics are specified most conveniently
by the balance of action spectral density N(k), which
1s related to the spectrum of surface displacement
¥(k) by

NI = 90 = (/) Pe®),  (2.1)
where ¢ is the intrinsic frequency and W¥(k) is nor-
malized such that the integral over the entire wave-
number plane "

f ¥(k)dk = £,

the mean square surface displacement. The spectral
energy density of the wave field is pg¥(k), where p is
the water density.

Following energy paths, the balance of wave-action
spectral density is given by

d oN

—N®) = ==+ (C+U)-VN
=-V,-T(k)+S,—D 2.2)
(for example, see Phillips, 1980) where C = V¢

represents the group velocity and U the velocity of
the surface current. The exchanges of action density
among different wave components by wave-wave
interactions are specified by the first term on the
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right, in which T(k) is the flux of action spectral
density in the wavenumber plane. These interactions,
in a gravity wave system, are conservative so that the
integral over all k vanishes. The two remaining terms
specify the spectral distribution of action input from
the wind and the loss of action density (which at
these scales is predominantly the result of sporadic
wave breaking or possibly the formation of parasitic
capillaries). Our present degree of understanding of
the three processes represented on the right-hand side
of (2.2) decreases monotonically in the order in which
they are written though, as we shall see, some useful .
progress can be made.

The specification of the wave field is completed by
use of the kinematical conservation equation

ok

—+ V(e +k-U)=
£y (o )
together with the condition that V X k = 0, and the
dispersion relation giving the intrinsic frequency in
terms of the wavenumber magnitude:

o = (ghk)'”. 2.4)

If the underlying current is nonuniform, the wave-
number k of an energy packet varies as it propagates
across the surface—k = k(x, 7). On the other hand,
in remote sensing by radar (such as the L-band SAR
with a radar wavelength of 0.2 m), the Bragg scattering
condition selects an almost fixed surface wavenumber
k in (1.1), so that it is convenient in this context to
rewrite (2.2) to refer to a fixed, rather than a variable
wavenumber. From (2.3),

2.3)

ok; @
R ox; (o + KU
da dk; Ok; )
= +
(6k ox; -+ U, ox; k’ ox;
but since V X k = 0 and C; = do/k;,
dk; ok; ok; 19/
— ==+ C+U- —=-k— (25
dt & ( » ax; 7 dx; (23)
and since N = N(k, x, 1),
dN aN N BU ON
R AR Y
aT;
=—-——+8,-D, 2.6
ok; S (2.6)

now for a fixed wavenumber k.

To progress beyond this point, we need some
assessment of the magnitude and nature of the terms
represented schematically on the right of (2.2) or
(2.6). The spectral energy and action transfers have
been investigated extensively by Hasselmann and his
co-workers, by West (1984) and by Fox (1976). There
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is little doubt that resonant spectral-energy transfers
influence significantly the components near the spec-
tral peak and, as suggested by Kitaigorodskii (1983)
over a range of higher frequencies up to those for
which c/u, > 5 at most. Just above the frequency of
the spectral peak, the fractional rate at which action
is acquired or lost by wave interactions per wave
period in an active wave field is of the order 107
(Phillips, 1980) and this can be taken as an upper
limit to the rate appropriate to smaller scales (0.1 to
1 m) of interest here. Even so, it is, as we shall see,
generally less by about an order of magnitude than
the rate at which action is acquired by short gravity
waves from the wind, provided the wind is sufficient
to produce any such components at all.

The energy transfer from wind to waves has been
the subject of many theoretical and experimental
enquiries during the past twenty-five years which
have, if nothing else, demonstrated the complexity
and variety of processes involved. At these small
scales with wind blowing, the wave components are
certainly of finite amplitude, with intermittently high
curvature at their crests producing bursts of parasitic
capillaries and occasional breaking. Air flow separation
accompanies breaking as Banner and Melville (1976)
have shown and Banner (1984) demonstrates that an
enhanced local energy and momentum flux to the
waves occurs as a result. Both the short waves and
the wind are modulated and deflected by the longer
waves and swell so that for the purposes of providing
a more concrete expression for S, in (2.2), the best
guide is given by the results of careful measurements
interpreted in the light of only very general theoretical
considerations. Plant (1982), suggests from an ex-
amination of such measurements that

2
S (k) = 0.040(”—;) cosIN(K)

2
= ma('%*) Nk, say X))
where u, is the friction velocity, ¢ = (g/k)'%, the
phase speed of the component, and 6 the angle
between k and the wind. Plant estimates the numerical
coefficient to be accurate to within ~50%. Mitsuyasu
and Honda (1984) give a similar expression derived

from their experiments, with a numerical coefficient

of 0.07 but with no directional factor included.
Phillips (1980) estimated a coefficient of 0.05 and
Gent and Taylor’s (1976) numerical calculations give
approximately 0.07—the relatively small scatter of
values obtained from independent calculations or sets
of measurements gives some confidence that this is a
reasonably accurate representation over the range
1 > uy/c > 0.1 that includes most short waves of
interest. The specific directional factor (cosf) suggested
by Plant is less certain. Nevertheless, the base of data
he used is both extensive and carefully evaluated, so
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that (2.7) can be adopted with reasonable confidence
as a useful semi-empirical representation. Since we
are principally concerned with short wave components
with wavelengths of 10 cm or more and with wind
speeds of order 10 m s™* or less, the pertinent values
of u, /c do occupy the range specified above and the
fractional rate at which action is acquired from the
wind per wave period,

27Suk) 2
oN(K) 0.3(uy /C)* cost

ranges from 0.3 to 3 X 1073 and is at least an order

of magnitude larger than the net rate associated with

wave-wave interactions.

If the wind-generated waves are superimposed on
a variable current, the local rate of energy input to
the waves will vary because of variations in the local
wave-energy density and also possibly because of
variations in the relative velocity of mean wind and
current. In most cases of interest, the magnitudes of
the current variations are small compared with the
wind speed so that the influence of this latter effect -
is expected to be slight.

If the short wave components of the field have
reached a state of statistical equilibrium in a region
undisturbed by currents, then dN(k)/dt = 0 and since
for these components V- T is negligible, the densities
of short wave breaking or parasitic capillaries must
adjust themselves so that the dissipation D balances
the wind input rate. Most previous observational
studies on wave breaking, such as those of Toba and
Kunishi (1970), have sought direct relationships be-
tween the density of whitecap coverage and wind
stress. These implicitly assume such a statistical bal-
ance; our primary concern here is the response of the
short wave structure when the balance is disturbed.
Whether or not a particular wave crest breaks depends,
in fact, on its configuration and time development
and not directly on the wind speed, since (for example)
breaking can be induced by a local adverse current,
independent of the wind speed, and suppressed when
the waves overtake a locally favorable current. Ac-
cordingly, D must be regarded intrinsically as a
functional of the local spectral density, not the wind
speed; its dependence on wind speed arises only
insofar as this influences the spectral level or possibly, -
in the case of very short waves, as it influences the
microscale breaking criterion through the surface drift
(Phillips and Banner, 1974).

The spectral level is conveniently specified by the
dimensionless function

B = g7 "2k N(k) = k*W¥(K), (2.8)

which, in any particolar spectrum, can be regarded
as a function of k/ky, where k; is the wavenumber of
the spectral peak. This function can be called “the
degree of saturation.” The simple idea of a saturation
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range at high wavenumbers of the gravity wave
spectrum (Phillips, 1958) assumed a hard upper limit
B,, independent of k/ky, for B (the saturation range
“constant”™), any further increase in the spectral level
being prohibited by immediate wave breaking. Within
the present conceptual framework, this corresponds
to a dissipation function D that is negligibly small
when B < B, but discontinuous (and in fact undefined)
as B — B,. It is more realistic to assume that the
action dissipation rate D 1) is a continuous function
of the degree of saturation B that is zero when
B = 0, 2) remains very small while B is significantly
less than the old saturation range constant when
breaking is rare, and 3) then increases rapidly when
B approaches B, and short wave breaking becomes
denser in space and more frequent in time. Its form
is then as indicated schematically in Fig. 1.

Also shown in Fig. 1 is the wind source term (2.7)
which can now be written as

S(k) = 0.04 cosb(uy /c)’gk*Bk/ko), (2.9)

from (2.8). For a particular wavenumber this is linear
in B to the accuracy of the expression (2.7) and the
slope increases quadratically with u, . The short waves
are in statistical equilibrium at the degree of saturation
B, defined by the intersection of these two curves.
Note that, according to this description, the degree
of saturation under equilibrium conditions may in-
crease somewhat with wind speed, but the generally
good observational support for the original idea of a
“hard” saturation range indicates that the variation
with wind speed must be weak and the curve of D as
a function of B must increase very rapidly indeed.
At the shorter gravity-capillary wavelengths to which
a scatterometer is sensitive, the decay time and char-
acteristic lifetimes of wave energy groups are much
shorter than they are for gravity waves, so that the
average degree of saturation over patches that are in
some places highly saturated and in others, relatively

Sy, D

-

Bo B

FIG. 1. Input from the wind S, and dissipation D of action
spectral density as functions of the degree of saturation B. The
intersection specifies By, the high wavenumber equilibrium value.
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unsaturated depends more strongly on wind speed
than does the average degree of saturation of short
gravity waves.

Before our specification can be completed for the
spectral density of action dissipation, there is one
further conceptual difficulty that must be faced. Does
the function D for a particular wavenumber depend
on the degree of saturation at that wavenumber only
or on its value over a range of surrounding (or
perhaps distant) wavenumbers? An individual break-
ing event is localized in space within a distance
probably of order k'; in Fourier space its influence
is distributed over a range of wavenumbers of order
k. Also, the statistics of wave breaking at a certain
scale (defined by the phase speed of the breaking
crest) cannot be expected in general to depend on
the spectral density or the degree of saturation at that
scale alone, but over a range of scales. Consequently
the statistical characteristics of wave breaking and the
dynamical consequences of breaking on the wave
field both involve a possibly wide spectral range.
However, if the degree of saturation B is almost
constant over this range, a condition that might be
anticipated under steady wind conditions, then on
similarity grounds one might assert that

D = gk™*/(B). (2.10)

In situations in which a much longer swell is present,
the degree of saturation of the short waves will vary
with respect to phase of the swell, being greater near
the crests (with local breaking) and much smaller in
the troughs. Although an expression such as (2.10)
may hold locally, the overall mean rate of action
dissipation will depend not only on the mean degree
of saturation but also on the swell slope, and this
additional parameter should be included in (2.10).
The function f(B) is illustrated only schematically
in Fig. 1. Although its detailed form is not known at
this stage, it may be possible to determine some of
its characteristics more explicitly from laboratory or
field observations. If the short waves are in a statistical
balance between wind and dissipation, in the absence
of much longer waves or swell, the degree of saturation’
attained is defined by the balance of (2.9) and (2.10):

0.04 cosB(uy /c)*B = f(B). 2.11)

The variation of the degree of saturation with wind
stress (normalized by phase velocity) is then

B _ ENUCHY
W‘O'O““’s”[w( 5 )] . @12

According to the simplest ideas of a saturation spec-
trum independent of wind speed, the right-hand side
of (2.12) would be zero since the slope of f(B) is
infinite at saturation. On the other hand, if a variation
with wind speed of B as specified by (2.12) could be
established reliably, then this would define the slope
of the curve f(B) near equilibrium.
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Another constraint is provided by the observation
that the local action density of these short waves on
the ocean is stable to perturbations on a scale large
compared with the wavelength, in the sense that if
locally the action density is high, the increased spectral
density of breaking reduces it, and if it is low, the
decreased spectral density of breaking allows the wind
input to restore the equilibrium. The larger, dominant
wave components at large fetch and duration may
show a “groupiness” as a result of the instabilities
associated with nonlinear wave interactions, but as
we have seen, the time scales of these instabilities at
higher wavenumbers are negligibly slow compared
with those of the wind input and wave breaking. If
under a constant wind field, the degree of saturation
B is perturbed by an amount B’, then with the neglect
of the resonant interactions, we have for the rate of
change of the perturbation in action spectral density
N,

:—1:,=SW(B+B’)—D(B+B’)..
Since N' = g'/2k™%2B' and in the equilibrium state
S{(B) = D(B), this can be expressed, using (2.9) and
(2.10) as

_l_ oB’
o Ot

= m(uy /B’ + [ f(B) — f(B + B)], (2.13)

where m = 0.04 cosf. For small perturbations B’

108" ( (u,\ af},
aaz"{m(c) aBJ%"

and the condition for statistical stability is
9 ux )’
o m(_*) ,
c

0B
which, in terms of Fig. 1, implies that the slope of
the curve D as a function of B must be greater than
that of S,, at the point of intersection (as, indeed, we
had anticipated). As u,/c increases, the equilibrium
point rises and the slope df/dB at the equilibrium
point increases even more rapidly. If the curve f(B)
can be expressed reasonably accurately as a power
law, the relaxation rate

-{- ()}
v {63 " c ’
can be expressed simply and explicitly in terms of

uy /c. For, suppose that

J(B) = aB",

(2.14)

(2.15)

(2.16)

where 7 is certainly greater than one, then at equilib-
rium

m(uy /c)’B = aB",

O. M. PHILLIPS

1429

so that
df

- = n—-1 2
B naB nm(uy [c)°,

v =mn — ) ug/cfe. (2.17)

Even though the numerical value of 7 is not known
(one might guess something in the range 3 to 5) this
is a useful result. It can be written alternatively as

(2.18)

showing that for a given wind stress, the relaxation
rate towards equilibrium increases as the cube of the
frequency for these short wave components.

However, if the perturbation in B is not small, the
expected strong nonlinearity in f(B) when B is small
indicates that the recovery will be different for a local
increase in degree of saturation from what it will be
for a decrease. If the decrease in B is such that f(B)
is then negligible and breaking virtually ceases, the
recovery will be initially at the undamped growth
rate (proportional to the slope of the line in Fig. 1
marked S,), which may be much slower than <y
(proportional to the difference in the two slopes at
the intersection.) A large local increase in B is then
expected to disappear more rapidly by much enhanced
breaking than a large local decrease in which breaking
ceases. If at equilibrium between breaking and wind
input (so that S,, = D) the degree of saturation is By,
then from (2.9) and (2.10)

m(uy /c)’gk™*By = gk *aBy",
when the representation (2.16) is used. Consequently

y = m(n — Duig >,

a = m(uy [c)*By,' ",

and the balance of the last two terms on the right-
hand side of (2.6) can be written in terms of this
equilibrium level as

gk™*m(uy /c)*[1 — (B/Bo)* '1B. (2.19)

3. The influence of a background sea state on mean
short wave properties at given &k

The short ocean wave components that are generally
responsible for radar backscattering do not, of course,
exist in isolation. Longer waves or swell produce
modulations in the intensity of the backscattered
return, measured by Wright et al. (1980) with a
spatial scale of variation that images the long wave
field. Beal (1981) has made use of these modulations
to study the evolution and propagation of swell across
the Atlantic continental shelf of the United States.
Frequently, the orbital velocities associated with these
longer waves are larger than the propagation speeds
of the short components sensed and one’s intuitive
feeling might be that an irregular or random field of
longer waves would so scramble the propagation
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characteristics of the shorter waves as to obscure any
likelihood of interpreting the large scale patterns in
their intensity in terms of currents. However, this
particular concern does not seem to be justified.
Consider a surface current field U(x, ¢) whose scales
of spatial and temporal variations L and T are large
compared with the wavelength and period of long
waves or-swell, the scales over which the tangential
components of their orbital velocity u varies. Local
mean values of the wave field, indicated by an
overbar, are defined over scales that are small com-
pared with those of the current field but large com-
pared with those of the swell. Fluctuations or modu-
lations produced by the swell are represented by the
difference between the actual values and the mean
values defined in this way. Thus, the action density
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is represented as N(x, #) + N, the short-wave group
velocity at constant k (which varies because of the
variations in the local g at the surface as the short
waves ride over the swell) by C + C’, and so forth. If
the short waves are everywhere close to saturation
under the balance of wind input and wave breaking,
then (2.5) can be written as :
oN aN J oN
6t+(C+U+u’) k’ax(U'+u')6k

Xj J i )
=-—y(N=Np), (3.1)

where resonant wave-wave interactions are neglected,
Ny is the equilibrium value of N in the absence of
long waves or currents and v the relaxation rate of
the previous section. Substitution of local mean and
fluctuating quantities into (3.1) and averaging gives

N . . aN aU; N — au N’

—+(C+ U ——=—(C '

Y (C, U)— o -k o 9k (Cj + u)oN'/ox; + k; 6 8k — YN = Np). (3.2)
The left-hand side of this equation has the same form.
as the original equation (2.6) so that the influence of U = Upf(x/L) = Uyf(§), say.

the swell on the mean action spectral density is
represented by the two new terms on the right. Now,
to the first order, the wave-induced modulations N’
are proportional to N (Wright et al. 1980) and to the
root-mean-square slope e of the long wave field, as
are the local gradlents with respect to x and k, so
that the covariance terms are of order ¢*a,N, where
g, is the swell frequency. Their only effect, then, is
to modify slightly (by order ¢?) the equilibrium mean
spectral levels from those which would be obtained
in the absence of swell.

The fact that the swell can therefore be ignored in
a consideration of the local mean backscattering (over
scales large compared with the swell wavelength) from
short propagating waves is at- first sight counter-
intuitive, but the essence of the matter is that the
modulation patterns at a fixed wavenumber are peri-
odic and noncumulative provided the swell slope is
sufficiently small that the dissipation response can be
linearized.

4. Variations in /N produced by surface currents

The dynamical balance (2.6) can be written in
terms of the degree of saturation B by substituting
N = g'2k™92B(k) and the expression (2.19).

aB oB 9 kik; 8U
a G U’) *3 k2 ox;
aU; 4B u*) { (B)"“}
—— = -+ Y
7 ax; ak; m( c ! By B ,( D

If the magnitude of the current variations is repre-
sented by U, and the length scale over which they
occur by L, then

Also, if () = B/B,, the local degree of saturation
relative to its equilibrium level, then under steady
conditions (4.1) can be written in dimensionless form
as .

RN
e (e
= 21rm{—I§ (Ec’i) }{ 1— b1}, 4.2)

where ¢ represents the phase velocity and A the (fixed)
wavelength of the components considered.

It is interesting to note that this equation involves
only two basic parameters, Up/c expressing the
strength of the current field and S = (L/A)(ux/c)
representing the combined influence of the wind, the
scale of the current field and, implicitly, breaking.
This second parameter can also be written as

o (@)
27 g ’ or as am\C mo| . R

where C is the group velocity. The latter form provides
a useful physical interpretation of this parameter as
proportional to the ratio of the time taken for an
energy packet to move over one scale distance L to
the characteristic growth time of the waves under the
influence of the wind alone. If this parameter is large,

- readjustment of the waves is rapid in the time taken

to traverse the current variation, so that the response
in the relative degree of saturation is small. Small
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values of the parameter indicate situations where the
readjustment time is long, so that one might expect
a significant response.

For the sake of definiteness, suppose that the 1-
direction in (4.2) is chosen as the direction of the
wavenumber being sampled. The middle term on the
left-hand side then reduces to

9 Uo 8
2 ¢ 9%

expressing the influence of convergence or divergence
of the current field in this direction. The third term
involves the variation with respect to magnitude and
direction of the degree of saturation and must be
considered when a current, varying in X, is in the
transverse direction so that energy paths are deflected.
Little is known (although much is speculated) about
the angular distribution of the wave spectrum or b,
so that in order to obtain a sense of the magnitude
to be expected of the variations in the local degree of
saturation relative to the background, we will neglect
the variations of » with k and consider convergences
or divergences only with U; = U(x;). In the flow
over relatively shallow topography such as the Nan-
tucket Shoals, both local convergences (dU/dx < 0)
and divergences (dU/dx > 0) can be expected; under
open sea conditions, divergences would be expected
in regions of local upwelling while local convergences
may be found along fronts, with one water mass
overriding another, slightly denser.
With f(§) = (f(§), 0, 0), say, Eq. (4.2) reduces to

b,

1 b 9Us df -
( f(S)) G5 gt ammSu -,

(4.3)

where S is the sensing parameter (L/A)uy/c)>. The
value of the index », although greater than 1, is not
known at this time; for the purposes of these calcu-
lations n was taken as 3. A smaller value gives a
more gradual onset of energy loss by breaking as b
increases and so a larger response to convergences; a
larger value reduces the response. This is shown
explicitly as follows. The wind is supposed to act in
the x-direction also so that m = 0.04 and a current
distribution of the form

J® = 3{1 + tanhg)

was chosen. The Eq. (4.3) was integrated numerically
with b = 1 at £ = —2 for various values of U,/c and
S, using an Apple II computer. When Uy/c < —0.5,
Eq. (4.3) has a mathematical singularity at which the
coefficient of the first turn vanishes. In those cases,
the integrations were performed following the direction
of the wave energy flow, from § = —2 to within one
step of the singularity and then from £ = +6 back to
the singularity since in this part of the physical
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domain, the backwards energy convection of the
current overcomes the forwards propagation. If the
waves on the far side of the convergence zone have
had sufficient fetch and duration to achieve equilib-
rium, then b = | at £ = 6 also and it is found,
somewhat surprisingly, that the two branches of the
solution form a continuous curve across the singularity
at which [1/2 + (Up/c) f(£§)] = 0. On the other hand,
if the fetch or duration on the far side is limited,
then b on the far side may be less than unity for
these waves and a real, physical singularity will occur
at this point. It seems that only in this case will an
abrupt change in the return signal coincide with this
singularity.

Some results of these calculations are illustrated in
Fig. 2. When the parameter S is O (=10), the responses
of b to the current field are small and limited essen-
tially to the region of current variation. For smaller
values of S, the magnitude of the response increases;
in a convergence (Up/c < 0) the region over which b
is significantly greater than 1 remains limited to the
convergence region because of the relatively rapid
reduction in wave energy by breaking. However, in a
divergence the degree of saturation at a given &
reduces as a result of two effects—the divergence
spreads the action density out over a greater spatial
interval and (more important) the energy packet at
the wavenumber observed after divergence was, before
the divergence, at a larger wavenumber or smaller
scale, so that its action density was less. At values of
S less than about 4, the recovery distance of the wave
field after suppression is significantly greater than L
so that the waves remain unsaturated for a consider-
able distance.

In a convergence zone, the maximum degree of
saturation relative to the background occurs close to
the point of maximum strain rate, when f'(§) = 1.
From (4.3) this occurs when

2% = 2emS(1 — b™Y)
2¢

so that the maximum contrast is

9 Uo}l/(n—l)

bmax = {1 + 47m cS

(4.4)

In the cases shown in Fig. 2, n has been taken as 3;
since the coefficient 27m ~ 20, by, varies approxi-
mately as (Up/c)'/2S™/2 for values of S < 4U,/c or
so. But the value of the index 7 in the representation
(2.15) cannot be regarded as known and, in fact, the
expression (4.4) may allow it to be determined by
field measurements of the maximum contrast in the
degree of saturation at a fixed k in convergence zones
over a range of values of S and Uy/c, although if n is
significantly greater than 1 (as expected), the depen-
dence on »n is rather weak.
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FIG. 2. Relative degrees of saturation b = B/B, at a fixed wavenumber as functions of
position in a local convergence or divergence centered at x = 0: in (a) § = (L/ANuy/c)? = 12;
in (b) 4; in (c) ! and in (d) 0.5. The three upper curves in each group represent the convergence
cases with Up/c = —1.2, —0.8 and —0.4; the three lower curves are for divergences with
Us/c = 0.4, 0.8 and 1.2. The black dots represent positions where U(x)/c = —0.5.

A general conclusion from these computations is
that if freely propagating waves under the influence
of wind and breaking are to experience a significant
variation in the degree of saturation at a fixed wave-
length A, then the second term in the bracket of (4.4)
must be greater than unity, say, or

Uo ¥

— = 0.05.

eS”
Expressed alternatively in terms of the strain rate in
a convergence, a significant response requires

(4.5)

Uo ui
1—20.12%3—/2. (4.6)

For example, if uy = 20 cm s™! and A = 16 cm, then
U,/L must be greater than about 2 X 1072 5™}, which
is a very large oceanic strain rate outside frontal
regions. Light winds clearly favour a more sensitive
response.

It should be noted, however, that for a given
convergence field and wind stress, (4.4) can be written
as

9 _ Uog”z)\m 1/(n—1)
Dmax = {l + 5 m~'(2x) 73 '—L:i—' , 4.7
and the contrast in degree of saturation increases
.with wavelength, the smaller value of Up/c being

more than compensated by the increase in S™'.
Increased harmonic content’ of these longer waves
and denser breaking patches may give enhanced
Bragg and specular scattering that may possibly dom-
inate the direct return from freely travelling waves at
the wavenumber sensed by Bragg scattering in the
background.

In a region of surface divergence (and upwelling),
when S is small the recovery of the wave field by the
wind is slow over the scale of the divergence, and the
reduction in b can be estimated by neglecting the
wind input (and wave breaking) over this interval.
With U, f(§) = U(¥), Eq. (4.3) reduces to

1, VeV, 9 d (UG, _
(2+ c)d£+2d.f(c)b 0.

“which integrates exactly to

b = (1 + 20/, 4.8)

since b = 1 when U = 0. This reduction [U(§) > 0]
at a fixed wavenumber is, of course, greater than for
an energy packet or wave train at a fixed apparent
frequency, as calculated by Longuet-Higgins and Ste-
wart (1960) since the waves elongated by the diver-
gence to the wavenumber k& had a larger wave-
number and smaller spectral density than the waves
at wavenumber k before the straining.
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The Seasat synthetic aperture radar imagery, such
as that reproduced in the book by Beal ez al. (1981;
see especially p. 22 and 96), offers a number of
examples that seem, in the light of these results, to
be interpretable as lines of local convergence or
divergence. There is unfortunately little independent
information on the current field or the local wind
stress so that attempts at a quantitative comparison
must await imagery for which more complete docu-
mentation, particularly “ground truth” measurements
of the surface current variations, become available.
Nevertheless, the analysis given here does allow the
following conclusions to be drawn:

1) The magnitude of the response of short gravity
waves to variations in surface current is, from (4.4)
and (4.5), a function of the combination

Uy _ Ug2xc?
cS L gui

rather than of the strain rate or of U,/c separately;
for strain rates characteristic of oceanic conditions,
the response is small except under light wind condi-
tions.

2) The patterns produced by local convergences
and divergences are characteristically different; in a
local convergence the augmentation in degree of
saturation is limited to the convergence zone and
recovers rapidly beyond it, while in a divergence, the
reduction occurs in the divergence zone and recovery
to the equilibrium level is more gradual.

3) These conclusions are insensitive to the precise
parameterization of the rate of energy loss in terms
of the degree of saturation. Nevertheless, measure-
ments in a strong convergence such as those produced
by tidal flows over relatively shallow bottom topog-
raphy should allow, through (4.4), estimates of the
index n which is at present unknown.
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