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The instability of shallow-water waves on a moderate shear to Langmuir circulation
is considered. In such instances, specifically at the shallow end of the inner coastal
region, the shear can significantly affect the drift giving rise to profiles markedly
different from the simple Stokes drift. Since drift and shear are instrumental in the
instability to Langmuir circulation, of key interest is how that variation in turn affects
onset to Langmuir circulation. Also of interest is the effect on onset of various
boundary conditions. To that end the initial value problem describing the wave–mean
flow interaction which accounts for the multiple time scales of the surface waves,
evolving shear and evolving Langmuir circulation is crafted from scratch, and includes
the wave-induced drift and a consistent set of free-surface boundary conditions. The
problem necessitates that Navier–Stokes be employed side by side with a set of mean-
field equations. Specifically, the former is used to evaluate events with the shortest
time scale, that is the wave field, while the mean field set is averaged over that time
scale. This averaged set, the CLg equations, follow from the generalized Lagrangian
mean equations and for the case at hand take the same form as the well-known
CL equations, albeit with different time and velocity scales. Results based upon the
Stokes drift are used as a reference to which those based upon drift profiles corrected
for shear are compared, noting that the latter are asymptotic to the former as the
waves transition from shallow to deep. Two typical temporal flow fields are considered:
shear-driven flow and pressure-driven flow. Relative to the reference case, shear-driven
flow is found to be destabilizing while pressure driven are stabilizing to Langmuir
circulation. In pressure-driven flows it is further found that multiple layers, as opposed
to a single layer, of Langmuir circulation can form, with the most intense circulations
at the ocean floor. Moreover, the layers can extend into a region of flow beyond that
in which the instability applies, suggesting that Langmuir circulation excited by the
instability can in turn drive, as a dynamic consequence, contiguous albeit less intense
Langmuir circulation. Pressure-driven flows also admit two preferred spacings, one
closely in accord with observation for small-aspect-ratio Langmuir circulation, the
other well in excess of observed large-aspect-ratio Langmuir circulation.
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1. Introduction
It has long been known that the Stokes drift in irrotational water waves in otherwise

quiescent surroundings transitions from an exponential decay with depth in deep-water
waves (Stokes 1847) to quadratic decay in shallow-water waves (Longuet-Higgins
1953). However, that need not be the case when the waves travel on a shear layer
of sufficient strength (Phillips & Wu 1994; Phillips & Shen 1996; Phillips 2001b;
Phillips, Dai & Tjan 2010). Indeed in such circumstances the drift profile can vary
dramatically from those above, particularly in shallow-water waves. For that reason
Phillips et al. (2010) use the broader term ‘drift’ to describe the averaged nonlinear
wave–wave and wave–mean flow interactions arising in such circumstances and
reserve the term ‘Stokes drift’ solely for irrotational waves in otherwise quiescent
surroundings.

To be precise they consider two-dimensional monochromatic straight-crested waves
of phase velocity C on, and aligned with, a unidirectional mean shear flow of
characteristic velocity U along the x direction, with z vertical (positive upwards) and
y cross-stream. They denote the wave number of the waves by K and their wave
amplitude by a such that their wave slope ε=Ka; accordingly, since the characteristic
depth of the shear layer is important they define it through the layer depth h and let
α = Kh. Then, since orbital velocities in the wave field are characterized by εC , it
follows that the ratio U /C = O(εs), where s > 0 and show, finally, that the drift is
noticeably different to the Stokes drift whenever εsα−2 =O(1).

To arrive at this conclusion they restrict attention to small-amplitude waves in which
the drift d takes the form (Andrews & McIntyre 1978, see § 2)

di = ξjŭi,j + 1
2ξjξkui,jk +O(ε3), (1.1)

(here, indices (1, 2, 3) 7→ (x, y, z) with unit vectors (i, j, k), repeated indices
imply summation and commas denote partial differentiation) where ū is the mean
Eulerian velocity, ŭ is the Eulerian fluctuating velocity and ξ is the associated particle
displacement field. To highlight the importance of each term in (1.1), Phillips et al.
(2010) note that while the first term would typically be normalized in terms of the
wave properties C and K, the mean velocity and coordinates in the second term are
more appropriately scaled in terms of U and h. Then, because the shear flow is
unidirectional (Phillips 1998),

ū= εs[U(z, t), 0, 0], (1.2)

and it transpires that εsα−2 = O(1) whenever the second term is of the order of the
first. On rewriting this expression they further find that

a

h
=O

(
ε(2−s)/2

)
, (1.3)

and conclude that because the physical requirement a/h� 1 is satisfied only when
s= 0 or s= 1, the second term in (1.1) must be retained whenever s ∈ [0, 1].

Of course in the absence of shear or weak shear (s > 2), (1.1) must necessarily
recover the Stokes drift, which we now see as a particular limit described by the then
only remaining term, the first one. That said, the first term too is affected by shear
through ξ (see (4.2) in Phillips et al. 2010) and thus should not be interpreted as a
general expression for Stokes drift, although such an expression is realizable if the
first term is parsed into shear-independent and shear-dependent parts. The key point,



On Langmuir circulation in shallow waters 143

however, is that the drift is necessarily different from the Stokes drift whenever the
second term plays a role. Because of this, Andrews & McIntyre (1978) and Phillips
(2001b) refer to d as the generalized Stokes drift, although following Phillips et al.
(2010) we refer to it simply as drift, because physically that is what it is.

We might then ask what s means physically and to answer that we introduce
the wave frequency ω. Then U /C can be expressed as α(U /h)/ω, which is
shear/frequency. In the work to follow, however, s rather than ω acts to specify
the order of U /C and in turn distinguish one class of instability (to Langmuir
circulation (LC)) from another (see § 2.3.3). Because of that, Craik (1982) refers to
U /C simply as the ‘shear’, using the terms ‘strong’, ‘moderate’ and ‘weak’ shear
to concur with the indices s= 0, 1, 2. In turn Phillips (1998, 2003) denotes s as the
shear index. In the context of wind-driven surface waves then, strong shear indicates
that the ratio of the surface velocity to the wave phase velocity is O(1), as is the
case with wind-driven surface waves in the laboratory (Veron & Melville 2001). In
contrast, s may vary from 0 to 2 in oceanic waters (Melville, Shear & Veron 1998)
so there it is customary to introduce a typical level of shear determined by the phase
speed of the dominant waves, yielding s = 2 or weak (Craik & Leibovich 1976),
while in coastal waters with strong tidal currents and/or wind-induced mean flows
s= 1 or moderate (Marmorino, Smith & Lindemann 2005).

It is this latter (s∼ 1) case that Phillips et al. (2010) were particularly interested in.
Here, with ε = 0.1, the requirement εsα−2=O(1) is satisfied for s= 1 when 1.5 m<

h < 15 m or, with s = 1/2, when 3 m < h < 30 m; depths which translate to the
shallower end of the inner coastal region. This setting includes, at the deeper end,
observations by Gargett et al. (2004) (off the New Jersey coast) in which the water
is 15 m in depth and the wavelength of the dominant waves is around 100 m, to
much shallower water, 2 m in depth, as in the observations of Marmorino et al. (2005)
(in the Egmont Channel at the mouth of Tampa Bay), where the wavelength of the
dominant waves was around 5 m.

Now drift and shear are key ingredients to an instability for the formation of LC and
we might wonder whether details of their inception are in turn noticeably affected by
detailed changes in the drift? To wit, are shallow-water (in the sense of shallow-water
waves) LC different at inception from their deep-water wave counterparts? The object
of the present work is to find out.

LC are wind-aligned rolls near the ocean surface that can grow in cross-section to
the size of sports stadiums and are crucial to the formation and maintenance of the
mixed layer in the upper ocean (Langmuir 1938; Craik & Leibovich 1976; Phillips
2002; Babanin, Ganopolski & Phillips 2009). In contrast, in coastal waters, LC are
known to penetrate to the ocean floor and in doing so to enhance vastly the level
of sediment mixing (Gargett et al. 2004). Typically arising beneath surface waves
tens of minutes after the onset of winds above 3 m s−1, LC grow to spacings of
several hundred metres (Plueddemann et al. 1996), possibly kilometres (Thorpe 2004),
and extend windward up to 50 times their spacing (Marmorino et al. 2005). Froth-
marked rows known as windrows along lines of surface convergence in deep water
or suspended particles from the bottom along lines of bottom convergence in shallow
water (Hunter & Hill 1980) act to render LC visible, as do dark lines in the infrared
owing to a slightly different surface temperature on convergence lines (McLeish 1968;
Marmorino, Smith & Lindemann 2004).

Field measurements further highlight a hierarchy of cross-wind scales, of which the
largest, and thus the windrow spacing (for a cell pair), is typically two to three times
the depth (Smith, Pinkel & Weller 1987; Smith 1992). This is so both in surface layers
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bounded by a thermocline and when the LC extend to the bottom. But documented
exceptions arise in the latter case where both visual (Hunter & Hill 1980) and infrared
data (Marmorino et al. 2005) depict windrow spacings around 10 times the depth. Just
how to reconcile this discrepancy is unclear, but doing so is important both as an
aid to interpret the surface expressions of LC and to understand the conditions under
which LC penetrate to the bottom (Marmorino et al. 2005).

Curiously, while there are extensive theoretical studies of LC in deep water, both
with and without a surface layer (see, e.g., the review articles by Leibovich 1983;
Thorpe 2004, and references therein), there is a dearth (Phillips 2005; Tejada-Martinez
& Grosch 2007; Martinat et al. 2011) of theoretical work where the water is shallow
enough for LC to reach the bottom. Moreover all are based upon the Stokes drift
rather than drift.

Key to our study is the credible estimation of LC spacing; an estimation that
defers to both the instability mechanism giving rise to LC and the applied boundary
conditions. Here we assume the mechanism (see § 2) is CL2 (Craik & Leibovich
1976). CL2 is an inviscid instability mechanism which occurs when the shear is
sufficiently weak (s > 1) and of the same sense as the differential drift, at least
when the waves are neutral (Phillips 2002, 2003). Various boundary conditions are
admissible in CL2 theory, but physical arguments, at least in the large, weigh towards
constant stress conditions. That said, while constant stress conditions do act to realize
finite onset spacings in deep water (Craik 1977), they appear to shed no light on
the preferred spacing in layers above a thermocline where, at least on linear grounds,
modes of infinite wavelength are the first to be destabilized.

This conundrum was first addressed by Cox & Leibovich (1993) who note that
similar findings occur in thermal convection with thermally insulating boundaries
(Sparrow, Goldstein & Jonsson 1964; Nield 1967). They further note that weakly
nonlinear effects appear to provide no remedy, because initial perturbations of finite
wavelength are found numerically to cascade to larger and larger scales (Chapman &
Proctor 1980). In contrast, theoretical considerations show that cells of finite aspect
ratio are realized in strongly supercritical nonlinear conditions, even for constant stress
boundary conditions (Chapman, Childress & Proctor 1980; Moroz & Leibovich 1985).
In seeking an explanation, Cox & Leibovich (1993) point out that constant stress
(i.e. Neumann) conditions do not reflect coupling between the perturbed motion and
the extra stress it must produce, and argue that coupling, albeit small, occurs (yielding
Cauchy boundary conditions). Then by limiting their study to long waves in layers
bounded by a strong thermocline they were able to make progress analytically to find
on linear stability grounds that the least stable onset spacing is finite. Subsequent
studies by Chini & Leibovich (2003, 2005), who consider a weaker thermocline,
concur.

But physical arguments lead only so far; the appropriate path is to derive the
boundary conditions formally and that we do in § 3.2. We find that the boundary
conditions are indeed Cauchy, albeit in a form somewhat richer than Cox & Leibovich
(1993) foresaw in which the streamwise and cross-stream wavenumbers play a role,
along with gravity and wave frequency. Our plan then is to begin where Cox &
Leibovich (1993) left off and relax their restrictions of long waves and uniform
shear.

We begin by noting that because the base flow, waves, drift, LC and boundary
conditions are interconnected we must pare each from a consistently formulated initial
value problem. This we do in § 2. In parsing the problem we observe that three time
scales play a role: the wave period, that of the evolving base flow and that of the
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evolving LC. We next note that the latter two scales are long with respect to the
wave period and are best averaged over it. But details of the wave field are lost in
that average; only quadratic measures of the wave–wave interactions, such as the drift,
remain. This means that the wave field and how it is affected by the mean flow must
be described separately, which necessitates the concurrent use of both the Navier–
Stokes (NS) equation and an averaged form of it, albeit a form that preserves the
conservative properties in the mean of NS. Ensuring this property when the wave field
is rotational, however, is non-trivial and for that reason we employ the generalized
Lagrangian mean (GLM) equations of Andrews & McIntyre (1978) which by design
satisfy this requirement. Along the way we find that the GLM equations contract to
the mean field CLg equations of Phillips (1998) which describe the base flow and
LC for s ∈ [0, 2] and see that for s= 1 they take the same form as the familiar CL
equations of Craik & Leibovich (1976), albeit with different scalings for perturbation
velocity and time. Specifically for s= 1 the cross-stream velocities describing the LC
are O(ε3/2) while the axial velocity perturbation is O(ε), which are significantly more
intense than in the weak shear s= 2 deep-water case where velocity perturbations are
all O(ε2). Accordingly the LC grow as O(ε3/2) in s= 1 shear compared with O(ε2)

in s= 2 shear.
We derive the wave field in § 3 along with the aforementioned free-surface boundary

conditions. In § 4 we assemble this information into the specific initial value problem
for the case at hand along with details of the base flow and drift given previously
for the s = 1 case by Phillips et al. (2010). Results are given in §§ 5 and 6. In § 5
results are given for the simple case of uniform shear and differential drift where we
find that Neumann conditions can in fact give rise both to finite preferred cell spacing
and also to multiple layers of LC, a feature not reported previously, to the best of the
authors’ knowledge. In § 6 we allow for more realistic distributions of shear and drift
and again observe multiple layers of LC. We discuss our results in § 7.

2. The CLg equations

We consider the formation of LC owing to an instability resulting from the
nonlinear interaction of surface gravity waves of characteristic slope ε� 1 interacting
with an evolving sheared mean flow in water of depth h. The waves give rise to an
O(ε2) drift and, if a viscous boundary condition is present, an O(ε2) wave induced
mean flow. Longuet-Higgins (1953) first investigated O(ε2) wave induced flows and
there are more recent studies by others (e.g. Blondeaux, Brocchini & Vittori 2002;
Weber & Ghaffari 2009), but different here is that the mean flow is externally driven
and is much stronger, i.e. O(ε) compared with its O(ε2) wave-induced counterpart.
Because of that; because the base flow, waves and drift are interconnected; and
because we must ensure the initial value problem describing the interaction of each
is well posed, we craft the problem from the beginning, taking particular care
with the ordering of each part. In fact, the development we outline evolved over
a series of earlier papers (Craik 1982; Phillips 1998, 2003; Phillips et al. 2010);
nevertheless for completeness we give an overview of the relevant points in each
and compliment them with a derivation of a consistent set of free-surface boundary
conditions.

We begin by noting that three time scales enter the problem, the first being the
wave period. On a scale long compared with the wave period is the second, that of
an externally driven evolving mean flow. Long too with respect to the wave period
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is the third, that of the evolving LC. We shall quantify each scale later, but for now
note that because the time scales of the wave and mean flow are disparate the ensuing
wave–mean flow interaction is succinctly described by the GLM equations of Andrews
& McIntyre (1978).

Of course for the simplest case of O(ε) waves on an O(ε2) (i.e. s= 2) mean flow,
the GLM equations relax to the CL equations of Craik & Leibovich (1976) (for the
evolution of LC in deep water see Leibovich (1980)). But because the mean flow is
not in general restricted to s= 2, Craik (1982) and subsequently Phillips (1998) (see
also Phillips & Wu 1994; Phillips & Shen 1996) considered waves interacting with
stronger shear, resulting in what Phillips (2003) denotes the mean field CLg equations
(‘g’ for generalized). Of course the CLg equations also necessarily recover the CL
equations in the appropriate (i.e. s = 2) limit. But they are richer in detail, in that
they highlight differences in scaling for both the time and velocity scales of the LC.
Moreover, as the level of shear increases, they further highlight the importance to the
instability of wave modulation caused by the evolving LC (see e.g. Phillips & Wu
1994; Phillips & Shen 1996; Phillips, Wu & Lumley 1996; Phillips 2005).

A further complication when considering cases in which the shear exceeds O(ε2) is
that admissible waves fields are typically rotational. Amongst other things, this means
that mean field equations derived from an Eulerian average of NS do not have the
same conservative properties as NS (Phillips 2001b). However, such properties are
by design retained in the GLM formulation. Of course it is still possible to proceed
consistently in multiple-scale problems such as that of interest using Eulerian-averaged
NS where we must solve NS side by side with the mean field equations, but our
preference is to employ GLM.

We begin then with a brief overview of GLM and go on to review the scalings and
expansions relevant to our problem along with expressions governing the mean flow.
With this knowledge we then turn to NS and focus first on the wave field and thence
boundary conditions at the free surface.

2.1. GLM theory
Andrews & McIntyre’s (1978) GLM theory is an exact and very general Lagrangian-
mean description of the back effect of oscillatory disturbances upon the mean state
with no restriction on wave amplitude, although we here restrict attention to waves
of small amplitude. In constructing GLM theory, we must first define an exact
Lagrangian-mean operator ( )

L
corresponding to any given Eulerian-mean operator

( ). This necessitates defining with equal generality at location x and time t an
exact, disturbance-associated particle displacement field ξ which has zero mean
when any average is applied. For any scalar or tensor field ϕ, it is then possible to
write

ϕ(x, t)
L = ϕξ (x, t), where ϕξ (x, t)= ϕ(x+ ξ , t). (2.1)

Further, provided the mapping x 7→ x + ξ is diffeomorphic and provided ξ(x, t)= 0,
there is a unique Lagrangian-mean velocity uL related to any given Eulerian mean
velocity u(x, t) by the drift d, as uL = u+ d.

In fact two mean quadratic measures of the nonlinear interaction of the fluctuations
with themselves and supporting shear flow arise in GLM theory, the drift d and the
pseudomomentum p, the latter relaxing to the former when the waves are irrotational
(Andrews & McIntyre 1978; Phillips 2001b).



On Langmuir circulation in shallow waters 147

2.1.1. The generalized Lagrangian-mean equations
GLM theory is compelling because it satisfies (in inviscid flow) a Kelvin-like

theorem akin to that satisfied by the Euler equations. This indicates that GLM exhibits,
in the mean, the same conservative properties as does Euler, be the waves rotational
or irrotational, and thus that the two sets of equations can be solved simultaneously:
NS/Euler to determine admissible wave fields and any modulation to them caused
by mean motions; and GLM the effect of said wave field on the mean flow (see e.g.
Craik 1982; Phillips & Wu 1994; Phillips & Shen 1996; Phillips 1998, 2005).

When written in a form akin to NS, the GLM momentum equations for homentropic
flows of constant density ρ in a non-rotating reference frame, become

q̄i,t + q̄jq̄i,j − pj(q̄j,i − q̄i,j)+Πi =Xi, (2.2)

where q̄ = ūL − p, and X allows for dissipative forces, which are discussed in detail
by Phillips (1998). Observe that the force term in (2.2) is expressed as p×∇× q̄, that
is the cross-product of the pseudomomentum and the vorticity-associated vector field
f = ∇ × q̄, and contracts to the familiar d × ∇ × ū (sometimes denoted the vortex
force) when the waves are irrotational. Further, Πi includes any external body force
Fi (but not the Coriolis force) and ℘,i the gradient of the pressure, force potential (if
any) and Bernoulli head, which vanish when we take the curl of (2.2) to realize f,
namely (Phillips 1998)

fi,t + (q̄j + p̄j)fi,j =fj(q̄i + p̄i),j −fi(q̄j + p̄j),j + εijk(Xk,j − Fk,j) (2.3)

where εijk is the alternating tensor.

2.2. Imposed shear of specified strength and O(ε) waves
Phillips (1998) employs (2.2) and (2.3) to investigate a class of unidirectional shear
flows that are subject to a field of small-amplitude waves. He assumes h is the
characteristic thickness of the shear layer and in the first instance makes variables
dimensionless with respect to h and C . Then in the event kinematic viscosity ν plays
a role, the Reynolds number R≡ hC /ν.

More specifically, for the moment referring to Eulerian variables to fix ideas, he
assumes that the flow field u(x, y, z, t) comprises a streamwise-averaged mean portion
ū(y, z, t) in the presence of a wave field ŭ(x, z, t), such that u= ū+ ŭ, where u is
necessarily a solution to the NS equations, subject to appropriate boundary conditions.
Here the streamwise average is typically over one wavelength, denoted by an overbar
on the unscaled variable. The presumption is that the mean flow can be further
decomposed into a spanwise (y)-independent portion, which for clarity is depicted by
uppercase letters and denoted as the primary flow, and a secondary perturbation flow
ũ, such that ū = Ū + ũ. The task then is to scale each variable and he begins by
noting that the mean velocity components better scale with the surface velocity scale
U rather than C and goes on to introduce a parameter ∆ to measure the strength
of spanwise-varying perturbations relative to the primary shear flow. No restriction is
placed upon the relative time scales of the evolving mean flow and wave field, but
for definiteness the mindset is that they are disparate with the mean flow having the
longer time scale. Then, if the wave field is O(ε)

u= Ū + ũ+ ŭ= εs{U(z, t)+∆u(y, z, t)} + εŬ(x, z, t)+O(εs+1∆). (2.4)
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In less familiar GLM variables, the velocity-associated mean vector field q̄(y, z, t)
concordant to ū is then

q̄ = Q̄+ q̃ = εs{[Q1, 0, ε2−sQ3] +∆[q1, ε
nq2, ε

nq3]} +O(εs+1∆) (n > 0). (2.5)

Note that the power n, which is included for generality, can have values other than
zero and that n is related to s, as we shall shortly see. Note too that although ŭ
vanishes in a streamwise average, the influence of the wave field is evident in the
Lagrangian mean as fields of pseudomomentum and drift which, as indicated above,
act to relate the Eulerian and Lagrangian mean velocity fields through q̄= ū+ d− p.
Of course to lead order the averaged quadratic measures d and p are O(ε2). But,
because evolving velocity perturbations may in turn modulate the wave field, that
modulation will produce spanwise-varying components of drift and pseudomomentum
(Craik 1982; Phillips 1998). As a consequence p is expanded as

p(y, z, t)= ε2{[P1, 0, P3] + εs∆[p1, ε
np2, ε

np3 + · · · ]} (2.6)

and similarly for d, along with the affiliated field

Πi = Fi +℘,i = Fi + εs[G,i(x, z, t)+∆g,i(y, z, t)+ · · · ]. (2.7)

2.3. The CLg equations
2.3.1. Conservation of mass

GLM flows are typically not divergence free as we see from mass conservation,
which requires

D̄LJ + J(qi + pi),i = 0, (2.8)

where J is the Jacobian of the mapping x 7→ x+ ξ . Nevertheless, because ūi,i= (q̄i+
pi − di),i = 0, we see for example that q2 = u2 + ε2(d2 − p2) and are thus at liberty to
introduce the perturbation stream function ψ as

q2 = ∂ψ
∂z

and q3 =−∂ψ
∂y
. (2.9)

2.3.2. The primary flow field
The primary flow field follows by substituting (2.5) and (2.6) into (2.2). Then,

because (2.5) must identically satisfy (2.2) with q1, q2, q3 = 0 and because Π here
reduces to the mean streamwise body force G, the x-momentum equation takes the
form (Phillips 1998)

∂Q1

∂τ
+ ε2RD3

∂Q1

∂z
=−G+ ∂2

∂z2

(
Q1 − ε2−s(D1 − P1)

)
, (2.10)

where time has been rescaled as τ =R−1t and G=R∂G/∂x.
It is important to note here that because Q1 =U + ε2−s(D1 − P1), the primary flow

Q1 is dominated by its Eulerian counterpart U for all s61. This is not to say the wave
field is impotent; on the contrary, it induces (in the presence of viscous boundary)
an associated Eulerian flow of the same order as the O(ε2) rectified wave field, as
Longuet-Higgins (1953) long ago determined. But for s= 1 that O(ε2) induced flow
appears solely as a higher-order correction to the O(ε) primary flow U and thus here
plays no significant role.
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2.3.3. The secondary flow field
To determine the secondary flow we again substitute (2.5) and (2.6) into (2.2), but

this time subtract (2.10), which leads to the O(εs∆) streamwise evolution equation for
q1, while the same expansions and (2.3) yield the O(εs+n∆) streamwise component of
the vorticity-associated vector field. For this general form we refer the reader to § 4
in Phillips (1998). Rather here, since our interest is with structure arising through an
instability requiring ∂P1/∂z 6= 0, we restrict attention to that case for which time is
rescaled as t= ε(s+2)/2(t− t0), with t0 being an arbitrary time at which the secondary
flow initiates, and n = (2 − s)/2. Then on assuming a body force k · F = hCS∆ϑ ,
where details of S ensure dimensional consistency and ϑ is defined in § 2.4, we find
(Phillips 1998)

∂q1

∂t
+∆

(
q2
∂q1

∂y
+ q3

∂q1

∂z

)
+ ε(2−s)/2D3

∂q1

∂z
+ q3

∂Q1

∂z
= ε−(s+2)/2R−1∇2q1 +O

(
ε(2−s)/2R−1

)
(2.11)

and

∂f1

∂t
+∆

(
∂f1q2

∂y
+ ∂f1q3

∂z

)
+ ε(2−s)/2 ∂

∂z
(f1D3)+ ∂q1

∂y
∂P1

∂z

− εs ∂Q1

∂z
∂p1

∂y
+ εs∆

(
∂q1

∂y
∂p1

∂z
− ∂q1

∂z
∂p1

∂y

)
= ε−(s+2)/2R−1∇2f1 − ε−(s+2)S

∂ϑ

∂y
+O

(
ε(2−s)/2R−1

)
. (2.12)

Note that because n varies with s it is evident from (2.5) that transverse and
axial velocity perturbations may differ in order, a point first made by Craik (1982).
Furthermore, although the evolving secondary flow distorts the wave field (see § 3.2)
giving rise to p1, the term containing p1 in (2.12) is premultiplied by εs, suggesting
that wave modulation affects the mean field significantly only in the s= 0 case (see
e.g. Phillips & Wu 1994; Phillips & Shen 1996). However we will not from this
point exclude wave modulation. This may appear odd to readers new to multiscale
problems, but the point is that effects which appear unimportant part way through
the analysis cannot be fully assessed until the analysis is complete. Indeed we shall
find (in § 3.2) that the boundary conditions on the mean flow are affected by wave
modulation, even when s = 1. That notwithstanding, wave distortion in the y and z
directions is O(ε3+s/2∆) and may be neglected for all s∈ [0, 2], allowing us to rewrite
(2.9) as

∂q2

∂y
+ ∂q3

∂z
= 0 and thus f1 =−∇2ψ. (2.13)

2.4. The energy equation
The CLg equations are rendered complete by an energy equation which accounts for
rotational waves in all levels of shear. Since thermal effects were not considered
by Phillips (1998) and the CL energy equation (Leibovich 1977) is restricted
to irrotational waves and weak shear, Phillips (2002) derives a more general
expression. In accord with the CL formulation, however, he employs the Boussinesq
approximation, replaces density by temperature and writes the streamwise-averaged
dimensionless temperature as

θ̄ (x, t)=Θ(z)+ θ(x, t) (2.14)
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where θ̄ (x, t0) = Θ(z) and θ(x, t0) = 0 at some initial time t = t0. With the usual
approximations of thermal convection, the temperature is then governed by the energy
equation which is, in GLM form,

∂θ

∂t
+ q̄ · ∇θ =−k · (q̄ + p)

dΘ
dz
+ κ∗∇2θ, (2.15)

where the thermal diffusivity is κ = κ∗hC .
As above, our intent is to isolate spanwise-independent primary fields and spanwise-

dependent secondary fields. More specifically we are interested in the modification of
the primary temperature field due to the wave field through D3. So on setting

θ = ε2Θ(z, t)+∆ϑ(y, z, t), (2.16)

it follows that the wave-induced evolution of the primary temperature field is described
by Phillips (2002)

∂Θ

∂t
+ ε2Q3

∂Θ

∂z
=−D3

dΘ
dz
+ κ∗ ∂

2Θ

∂z2
(2.17)

while the evolution equation for the secondary temperature field becomes (Phillips
2002)

∂ϑ

∂t
+∆q · ∇ϑ =−(q3+ ε2p3)

dΘ
dz
− ε2q3

∂Θ

∂z
− ε(2−s)/2Q3

∂ϑ

∂z
+ ε−(s+2)/2κ∗∇2ϑ, (2.18)

where q = [q2, q3].

2.5. The case s= 1
In the s= 2 limit, of course, the CLg equations reduce to the CL equations of Craik
& Leibovich (1976), in which the time scale of any evolving structure is t= ε2t, while
velocity scales as q̄ = (ε2(U + u), ε2v, ε2w). (Note that because the wavefield is here
irrotational, then P1 = D1 so that q̄ = ū.) When s = 1, on the other hand, the time
scale is t = ε3/2t and because n = 1/2, we see that q̄ = (ε(U + u), ε3/2v, ε3/2w). In
§ 4 we shall further find that P1 =D1 +O(ε) (Phillips et al. 2010) which means that
Q1 =U +O(ε) so that the linearized CLg equations here too have the same form as
the CL equations, albeit with scaling appropriate to s= 1, namely

∂U
∂τ
− ∂

2U
∂z2
=−G (2.19a)

with
∂u
∂t
− ε−3/2R−1∇2u = −w

∂U
∂z
, (2.19b)

∂f1

∂t
− ε−3/2R−1∇2f1 = −∂u

∂y
∂D1

∂z
− ε−3S

∂ϑ

∂y
(2.19c)

and
∂ϑ

∂t
− ε−3/2κ∗∇2ϑ =−w

dΘ
dz
. (2.19d)

We will return to the equation set (2.19) in § 4 and focus now on the wave fields
whose time scale is smaller than that of the evolving secondary field and must be
determined from NS.
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3. Wave field and boundary conditions
To recap in Eulerian variables, we have an initial value problem for u which, in

(2.4), we parsed into three parts ū + ũ + ŭ each with its own time scale. The first
two involve a streamwise average and are specified by (2.19). But although ŭ vanishes
in that average, averaged nonlinear interactions resulting from it remain as D1 and to
determine D1 we require the wave field ŭ. This we find from NS. In fact Phillips et al.
(2010) have previously deduced ŭ and D1 for the s= 1 case and so we shall give no
more than a brief outline of that derivation (in § 3.1). Not previously derived, however,
is a consistent set of free-surface boundary conditions for u which are necessary to
render the initial value problem for s= 1 well posed. These too are found from NS
using a method introduced by Phillips (2005) for free-surface waves on (s= 0) shear.

Consider then a layer of liquid in which we identify z = 0 with the mean free
surface and z =−1 with its base, which for now we consider rigid, but it need not
be. Of interest are admissible wave fields ŭ in the presence of the mean flow Ū + ũ,
which together total u as (defined in (2.4)) and satisfy NS.

3.1. Wave equations
To fix ideas we restrict ourselves to monochromatic two-dimensional waves which we
decompose into O(ε) and O(εs+1) components that each satisfy continuity,

ŭ(x, y, z, t)= ε[Φ ′, 0,−iαΦ]eiβ + εs+1[φ′, 0,−iαφ]eiβ + ŭ∗, (3.1)

but which at higher order may be subject to spanwise distortion through ŭ∗(x, y, z, t).
Here Φ and φ are functions only of z and prime denotes d/dz. Further β = αx−ω0t
and for generality ω0=ω+ εsω2, where Cω0/h is the wave frequency. On substituting
(2.4) into NS (normalized as in § 2 by C and h) and then subtracting (2.19a) followed
by cross-eliminating pressure and collecting the fundamental mode eiβ at successive
orders, we find variants of the Orr–Sommerfeld equation. Because our flow field is
devoid of critical layers, however, we do not expect viscous eigensolutions to play a
significant role, and thus take the inviscid limit, to find for s= 1 that

ε[ωΦ ′′ −ωα2Φ] + ε2[ωφ′′ −ωα2φ + αU′′Φ] = 0. (3.2)

From (3.2) then, the governing equations at successive orders are thus a shortened
Rayleigh equation subject to boundary conditions (3.10b,c), depicting O(ε) irrotational
waves

Φ ′′ − α2Φ = 0 (3.3)

and a further Rayleigh equation subject to boundary conditions (3.11a,b) at O(ε2),
depicting rotational waves:

φ′′ − α2φ =−α
ω

U′′Φ. (3.4)

Phillips et al. (2010) note that only the O(ε) solution is necessary to deduce D1 for
the s= 1 case and that the solution to (3.3) is (Longuet-Higgins 1953)

Φ = ω

α2

sinhα(z+ 1)
sinhα

with ω=
√
gαtanhα, (3.5a,b)

where C 2g/h is gravity.
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3.2. Free-surface and other boundary conditions
Equations (2.19), (3.3) and (3.4) each require boundary conditions at the mean free
surface and the bottom. Since one equation is averaged and the other not it is
tempting to derive the averaged one from GLM and the other from NS. But doing so
is unwise, because nonlinearities resulting from the product of two variables harmonic
in x can realize an x-independent component that may be overlooked. Instead we
follow Phillips (2005) and invoke no average. Here, rather than introduce some sort
of stress condition, we instead apply the momentum equation (NS) on the surface
and pare the boundary conditions into x-independent and x-dependent parts.

Appropriate boundary conditions are (the kinematic condition) that the free surface
be a material surface of the fluid and (the dynamic condition) that there be continuity
of pressure ρC 2p at the surface. But because our wave field may be weakly rotational
and because viscous stresses may play a role, we cannot employ the Bernoulli form
to derive the dynamic condition. Instead we must require, in the absence of surface
tension and with the position of the free surface given by z= η(x, y, t), that

D(z− η)
Dt

= 0 and
Du
Dt
=−∇p+ kg+R−1∇2u on z= η. (3.6a,b)

We then note that ∇p has no component lying along the free surface, which means
that ∇p is along the vector ∇(z− η); so

∇p= ∂p
∂z
∇(z− η) on z= η. (3.7)

Then ∇p on z = η may be expressed in terms of variables on z = 0 using Taylor’s
theorem.

As in § 2.2 we employ the decomposition (2.4), namely u(x, y, z, t)=U + ŭ+ ũ in
which U = ε[U, 0, 0] is the imposed mean flow and the wave field is composed of
neutral waves ŭ as defined in (3.1). Finally, we express ũ and ŭ∗ in accord with (2.5)
and (3.1) for s= 1 that (i) assumes spanwise periodicity with wavenumber l and (ii)
allows for any O(ε2∆) distortion of the wave field by the perturbation field, namely

ũ(y, z, t)= ε∆ [u(z, t) cos ly, ε1/2v(z, t) sin ly, ε1/2w(z, t) cos ly
]

(3.8a)

and

ŭ∗ = ε2∆[U(z, t) cos ly,V(z, t) sin ly,W(z, t) cos ly]eiβ +O(ε3∆). (3.8b)

To satisfy continuity we further require that lv+w′= 0 and iαU+ lV+W′= 0, where
(u, v,w) and (U,V,W) are appropriate component velocities in (x, y, z).

Now the liquid surface is planar in the undisturbed state (so η=0), the velocity field
is U and the pressure is specified by the hydrostatic law p = −gz. But when small,
time-dependent three-dimensional perturbations are present, the free surface moves to
z = η, thereby introducing an excess pressure at all z. In order to determine this
pressure and ascertain boundary conditions at each order, we first expand p and η

in accord with (2.4) and (3.8b). Of course the detailed form of each is not known a
priori, but after carrying out the expansion we are left with

p= P0(z)+ eiβ
{
εP1(z)+

[
ε2∆iP2(z, t)+ ε5/2∆αP3(z, t)

]
cos ly

}+O(ε3∆) (3.9a)
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and

η= η0+ eiβ
{
εα−1η1 + ε3/2∆

[
e−iβη2(t)+ ε1/2η3(t)+ εiη4(t)

]
cos ly

}+O(ε3∆). (3.9b)

On substituting (3.1), (3.8b) and (3.9a) into (3.6) and collecting terms at each order
we find at O(1) that P0 = −gz; further, with no loss of generality, we set η0 = 0.
Accordingly at O(ε) on z= 0 we find

η1 = 1 with α2Φ =ω, ωΦ ′ = g and P1
′ = αωΦ. (3.10a,b,c)

In concert with (3.10) we further have U′ = ζ , where ζ is a constant indicative of
any external viscous stress acting on z= 0 over the time scale τ = O(1) (see § 4.2).
Proceeding now to O(ε2), we have on z= 0 (Phillips et al. 2010)

αφ = ω2

α
−U and ωφ′ = αUΦ ′ −ω2Φ

′ − αU′Φ (3.11a,b)

which serve as boundary conditions for (3.4).
In order to find a boundary condition for u, however, we must proceed to O(ε2∆)

where, after some algebra and after elimination of U, V and W, we find on z= 0 that

u′ − (α
2 + l2)Φ ′

α2Φ
u= 0 with P2

′′ =− (α
2 + l2)Φ ′

α2Φ
P2
′ and η3 =ω−2(2ωu+ P2

′)

(3.12a,b,c)
and, correspondingly, proceed to O(ε5/2∆) for boundary conditions for w and v, to
find

w′ + Φ
′w
Φ
= 0 with w′′ − l2w= 0 and η4 = ωw

αg
on z= 0. (3.13a,b,c)

Now from (3.5) and (3.10) we know on z= 0 that Φ ′/Φ =αg/ω2=α/ tanh(α), so we
see that our boundary conditions involve gravity, wave frequency and the streamwise
and spanwise wavenumbers. Furthermore they contract, as α→ 0 and l 6= 0 to (since
Φ ′/Φ∼ 1) the simple set u= 0, w′+w= 0 and w′′− l2w= 0. Alternatively for α� 1
we note that Φ ′/Φ ∼ α causing the boundary conditions to reduce to w′′,w, u∼ 0. In
short, we see that provided w 6= 0, then (3.12a) and (3.13a) are Cauchy for finite α
and l.

But does w not vanish on the plane z= 0? The answer is yes in an Eulerian mean
sense but not necessarily in a Lagrangian mean sense. Why? Because the Lagrangian
mean of the value of z at which the free surface occurs, taken over one wavelength
(or one wave period), need not be z = 0. Accordingly the modulation to the wave
amplitude η4, and thus w, need not be zero at z= 0.

In contrast the mean primary flow, wave field and velocity perturbations must vanish
at the rigid bottom z = −1, so there we require that U = 0, ŭ = 0 and ũ = 0, from
which it follows that

U = 0, u= 0 with w′ =w= 0 on z=−1. (3.14)

4. Initial value problem
Our task now is to specialize the preceding formulation into an initial value problem

relevant to the formation of LC beneath waves of characteristic slope ε � 1 that
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propagate with phase velocity C on a sheared flow whose characteristic velocity is
U such that U /C =O(ε) in water of depth h.

We begin with the water initially at rest and at constant temperature and exclude
thermal effects so S= 0. Then at time t= 0 either a wind stress ζ is applied to the
z=0 plane or a body force G is imposed throughout the water column. At any interior
point in the water, the velocity then increases with time giving rise to a primary flow
in what we define as the x direction. A complimentary wave field also propagating in
the x direction is imposed at a later time, t= t0 say.

The ensuing O(ε) wave–O(ε) mean flow interaction is described by the CLg
equations (2.19) which may be written to contain a parameter that can be expressed
as a Langmuir number (Craik & Leibovich 1976) or a Rayleigh number R (Cox
& Leibovich 1993); we choose the latter. To proceed we rewrite (2.19) in terms
of (u, v, w). Herein time must scale as th2ν−1

T , where νT is an eddy viscosity
representative of the turbulent diffusivity of momentum. Spatial scales remain (x, y, z)h.
Since the axial component of velocity is εC (U + u) = U (U + u), we find that the
component velocities must scale as

[(U(z, t)+ u(y, z, t))U , (v(y, z, t),w(y, z, t))νT/h]. (4.1)

To fix ideas we think of U as the mean velocity at the free surface in the limit τ→
∞. It remains to scale the drift (or pseudomomentum) and here we write ε2C D1 =
DD, where D is a measure of the drift, its maximum say (see § 4.3). We can then
introduce R, defined below.

Returning now to (2.19), we see that our equation for the primary flow remains

∂U
∂τ
− ∂

2U
∂z2
=−G, (4.2a)

while, on assuming spanwise periodicity with wavenumber l as per (3.8b), our
evolution equations for the secondary flow become

∂u

∂t
− (D2 − l2)u=−wU′ (4.2b)

and

(D2 − l2)
∂w

∂t
− (D2 − l2)2w=Rl2uD′, (4.2c)

where

R= U Dh2

ν2
T

and D2 = d2

dz2
. (4.3)

Note that the primary U and secondary (u, v,w) flows evolve on time scales τ =R−1t
and t= ε3/2t, respectively, and are disparate unless ε3/2R=O(1), which is unlikely. In
fact, typically R� ε−3/2, which means that the primary flow grows over a time scale
long with respect to the LC. This disparity allows us to treat τ as a parameter and,
since LC initiate at t0, to specify τ > 0 at t= 0. To proceed we require U′, D′ and
boundary conditions.
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4.1. Boundary conditions
Free-surface and rigid-bottom boundary conditions for the s= 1 case were derived in
§ 3.2. Hence, in view of (3.12) and (3.13) we write

U′ = ζ , u′ − κα∗u=w′′ + l2

α∗
w′ =w′′ − l2w= 0 on z= 0 (4.4a,b,c,d)

and
U = 0, u=w′ =w= 0 on z=−1, (4.5a,b,c,d)

where

κ = α
2 + l2

α2
and α∗ = α

tanh α
. (4.6)

4.2. Base flow
The CL2 instability is wave driven (McIntyre & Norton 1990; Phillips 2003) and
draws energy from the shear U′ through the differential drift D′. Consistent profiles
for both for s= 1 flows were derived by Phillips et al. (2010) as outlined below.

4.2.1. Rayleigh stress problem in water of finite depth
Our first candidate for the base flow is in the Couette class and results from a

constant stress U′(0, τ ) = ζ = 1 applied at the free surface z = 0 for τ > 0 with a
rigid no slip boundary at the base z = −1. Then on solving (4.2a) subject to (4.4a)
and (4.5a) with G= 0 the velocity gradient is (Phillips et al. 2010)

U′(z, τ )= 1− 8
π 2

∞∑
n=0

π

2(2n+ 1)
exp

[
−
(

n+ 1
2

)2

π 2τ

]
sin
(

n+ 1
2

)
πz. (4.7)

Observe that U′(z, τ )→ 1 as τ→∞ indicating that the solution recovers Couette flow
as it must.

4.2.2. Starting pressure-driven flow
Our second candidate is in the Poiseuille class and mimics a pressure-driven flow

representative of a current with a rigid boundary at z=−1 and zero imposed tangential
stress at the free surface z= 0. Here we again solve (4.2a) subject to (4.4a) and (4.5a)
albeit with ζ = 0 and G 6= 0; then (Phillips et al. 2010)

U′ =G

{
z+ 8

π 2

∞∑
n=0

(−1)n

(2n+ 1)2
exp

[
−
(

n+ 1
2

)2

π 2τ

]
sin
[(

n+ 1
2

)
πz
]}

. (4.8)

In the examples to follow we set G=−2.

4.3. Drift
Finally, when surface waves of slope ε ride on U, they act to effect a mass
transport through a Lagrangian drift velocity resulting from an averaged quadratic
(i.e. wave–wave and wave–shear) nonlinearity DD(z; α), where, for two-dimensional
monochromatic waves of small amplitude, D = a2ωK.
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Phillips et al. (2010) use (1.1) in combination with (3.1) to show (for s= 1) that
D′ takes the general form

D′ = 1
2

csch2 α

{
2α sinh 2α(z+ 1)+ ϑ

[
2αU′′ sinh 2α(z+ 1)

− 1
2
[U′′′ − (U′′′ + 4α2U′) cosh 2α(z+ 1)]

]}
(4.9)

with the parameter
ϑ = ε

2α3/2
√
g tanh α

. (4.10)

Observe that in the absence of shear, or if ϑ→ 0, that (4.9) relaxes to the well-known
Stokes drift (Stokes 1847; Longuet-Higgins 1953). To be precise, the term proportional
to ϑ =O(ε) is asymptotically small relative to the Stokes drift once α > O(1).

It is also useful to know that in the limit α→ 0, we find that the U′′′ term vanishes
leaving

D′ ∼ 2(z+ 1)+ ε

α2√g
[

U′′(z+ 1)+ U′

2

]
(4.11)

from which we see that D′ ∼ 2(z+ 1) if U′ = 0 or D′ ∼ α−2 if U′ 6= 0.

4.4. Numerical formulation
Our intent is to solve (4.2a) subject to (4.4) and (4.5) numerically using the Galerkin
method. Details are contained in Phillips & Wu (1994) and Phillips (2001a), but
briefly the dependent variables u and w are each expanded in linearly independent,
complete sets of basis functions in z that satisfy (4.4) and (4.5) truncated after N
terms. The time-dependent coefficients multiplying the basis functions at each order,
a(t) say, are unknown. Evaluation of the inner products on (4.2) then leads to a
system of 2N linear, homogeneous ordinary differential equations (ODEs) of the form

da
dt
= A(t)a, (4.12)

where the elements of the matrix A(t) are known from the inner products. In view of
(4.7) and (4.8), however, it is evident that A(t) relaxes to a constant as t→∞ and the
problem reduces to one with constant coefficients. We then expect asymptotic stability
to be determined solely by the growth rates, that is eigenvalues, corresponding to the
constant matrix A(∞).

We use Chebyshev polynomials as basis functions as their properties can be
exploited by Gaussian quadrature to provide accurate, efficient integration of the
inner products. Finally, the eigenvalue problem (4.12) is solved using Lapak with
N = 25. In limiting cases we accurately recovered the analytical onset values in the
case of Cox & Leibovich (1993), as discussed in § 5.1.

5. Results: the limiting case U′ = 1, |D′| = 1

Cox & Leibovich (1993) consider the formation of LC in a surface layer −16 z6 0
bounded by a thermocline in the presence of deep-water waves. In order to proceed
analytically they restrict attention to waves in the α→0 limit for which the differential
drift, when normalized appropriately, is given by limα→0 eαz ∼ 1 throughout the layer.
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This they consider in conjunction with a stress-driven flow (§ 4.2.1) in the limit τ→
∞ for which U′ is likewise unity throughout the layer. We shall ease these restrictions
§ 6 but for the moment we should like to revisit their case (§ 5.2) and thence consider
a simplistic pressure driven flow representative of a current (§ 5.3). First, however, we
shall compare the boundary conditions we derived in § 4.1 with their heuristic ones.

5.1. Comparison with the heuristic boundary conditions of Cox & Leibovich
Cox & Leibovich (1993) correctly argued that the free-surface boundary conditions are
Cauchy, although the precise form is somewhat richer than they foresaw. Specifically,
their counterpart to (3.12a) on z= 0 is

u′ + γtu= 0, (5.1)

where γt is a positive constant. In fact, as we saw in (4.4b), u is not premultiplied by
a constant but rather by a term which varies with α and l. There is also a difference
in sign.

Accordingly, for their boundary conditions on the stream function ψ = (w/l) sin ly,
they assume

w′′ + 1
2γtw

′ =w= 0. (5.2)

In this instance their sign concurs with ours but again w′ in (4.4c) is premultiplied
by a term which varies with α and l. We further note that (5.2) can replicate (4.4d)
only if w= 0.

At the bottom of the layer they assume a strong thermocline with boundary
conditions u′ − γbu= 0 and w′′ − γbw

′ = w= 0 where γb is a positive constant. We
do not derive boundary conditions at a thermocline, but for comparative purposes we
shall employ their conditions and also Dirichet, as would occur at a rigid boundary.

Finally, since we are dealing with multiple boundary conditions, it is helpful to have
a symbol for each. So, since (4.5) are largely Dirichet we denote them by D; likewise
since (5.1) and (5.2) with γt = 0 or γb = 0 are Neumann we denote them by N. Our
remaining conditions are both Cauchy, so we refer to (5.1) and the set (5.2) with γt 6=
0 or γb 6= 0 as C and (4.4) as P. Further, to indicate which is at the free surface z= 0
(top) and which is at the bottom z=−1 we group them in the order top–bottom. Thus,
CD means C on top and D on the bottom.

5.2. Uniform shear: Cox & Leibovich revisited
Cox & Leibovich (1993) employ NN and then CC with, as noted above, U′ = 1 and
D′ = 1. With the former, in neutrally buoyant conditions, the critical wavenumber lc
is zero, so that the first motions to become linearly unstable occur on the largest
horizontal scale available. This occurs when the critical Rayleigh number R∗c = 120.
Note that because of a difference in normalization their Rayleigh number R∗ = 4R.
Our calculations concur precisely and we plot R∗1/2 in figure 1.

Cox & Leibovich (1993) then employ CC with γt= 0.06 and γb= 0.28, these being
values they obtained from physical arguments. Our neutral curve likewise recovers
theirs and is shown in figure 1. Chini & Leibovich (2003) later considered NC (not
shown), with which we likewise concur.

Finally to see how our consistent boundary conditions affect the results we include
PD (with (4.4) in the limit α→ 0) to compare with CD, and PC to compare with
CC. As we might expect the ensuing neutral curves are not dissimilar to those of Cox
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FIGURE 1. Neutral curves for various boundary conditions with uniform gradients of drift
and mean velocity with onset values (l, R∗1/2

) in the limit α→ 0: (a) NN, (0,
√

120);
(b) CC, (1.111, 14.035) after Cox & Leibovich (1993); (c) PC, (1.610, 16.741); (d) CD,
(1.773, 19.763); (e) PD, (1.930, 21.280).

& Leibovich (1993) and are in fact asymptotic to them for large l. From the figure we
further see that the curves depict increasingly higher onset numbers (lc,R∗c 1/2) (given
in the caption for figure 1) as we progress from NN to CC and thence to PC, CD
and PD.

5.3. Non-uniform shear
Comfortable that our numerics concur with previous work we now proceed with
further cases, the first being an idealistic version of a current-like flow. Before
proceeding, however, it is useful to review the instability criterion for CL2, which
decrees that an inviscid fluid system of infinite depth be stable to the formation of
LC if the product D′U′ is everywhere negative (Leibovich 1977b). This statement
gives rise to two questions: first, whether or not the qualifier ‘everywhere’ conversely
requires D′U′ be everywhere positive for Langmuir circulation to form and if not,
over what fraction of the domain must D′U′ be positive? And second, if LC do form
when D′U′ is not everywhere positive, whether they confine themselves solely to that
part of the domain in which D′U′ is positive?

To gain insight into these questions we contrive that D′U′ be positive over only a
portion of the domain: to wit for simplicity we leave D′ = 1 as before but set U′ = 1
in [−1, z∗] with U′=−1 in [z∗, 0], yielding a crude approximation to a parabolic-like
flow. We then investigate the stability of the system.

Interestingly, we find the system is unstable for all z∗ 6= −1, from which it follows
that D′U′ need not be everywhere positive for LC to form. However, if we take this
to the limit where D′U′ is positive only at a point (say as z∗ → −1) we find that
while LC do indeed form, they do so only in the limit R∗→∞. That said, onset R∗
plummets to realizable values when D′U′ is positive over 0< 1+ z∗� 1. In summary,
then, instability is assured when D′U′ is positive at a point and realized easily when
D′U′ is positive over more than a point.
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FIGURE 2. Eigenfunctions for (a) u and (b) w for various boundary conditions in uniform
shear, (i) NNA, (ii) CCA and (iii) CCA, and non-uniform shear, (iv) NNB, (v) CCB and
(vi) CCB. Here l→ 0 for N boundary conditions and l= 1 otherwise.

But are LC confined solely to the region in which D′U′> 0? To resolve this we turn
to the eigenfunctions (normalized to unity), shown in figure 2. These were evaluated
in the limit l→ 0 for N boundary conditions and at l= 1 otherwise. For comparison
we include eigenfunctions for the case with uniform shear (subscript ‘A’) and those
for non-uniform shear with, for illustration, z∗ =−0.9 (subscript ‘B’).

Looking first at the results for uniform shear (figure 2 curves (i), (ii) and (iii))
we note that our numerics precisely recover the analytical solutions given by Cox &
Leibovich (1993) for NNA (i). On comparing these with CCA (ii) we see that while w
is essentially unchanged from its NNA counterpart, the eigenfunction u is somewhat
different, depicting a perturbation flow at the free surface as expected. Finally, we
noted earlier that while the perturbation flow u on z = 0 vanishes as α → 0 with
PD boundary conditions, that is not the case for w and both are reflected in the
eigenfunctions as we see in (iii).

Turning now to non-uniform shear (figure 2 curves (iv), (v) and (vi)) we observe
that the eigenfunctions for u (figure 2(a)) depict little action in the upper part of the
layer with a maximum at (NNB, CCB i.e. curves (iv) and (v)) or near (PDB, curve
(vi)) the bottom. Their counterparts for w likewise peak near the bottom and NNB
and CCB are virtually identical, with PDB not dissimilar. That said there are three
key points to note.

First, the eigenfunctions for w (or streamfunction ψ) depict multiple zeros and thus
a change of sign in the interior. This means the LC do not form in a single layer,
which is the expectation (and the case in uniform shear), but rather form a stacked
array. Second, the intensity of the LC diminish with distance from the wall. Third, and
of particular importance, the LC are not confined to the region in which D′U′ > 0.

To the best of the authors’ knowledge, the notion of stacked Langmuir circulation
has not previously been reported but it is of key interest from the viewpoint to
sediment transport from the ocean floor. More profound is that Langmuir circulation
excited as a consequence of the requirement D′U′ > 0 are not confined to the region
in which D′U′ is positive, a feature which may partially explain why the ocean mixed
layer can exceed the depth to which the drift extends.

Of course our findings may be an artifact of the simplistic velocity and drift
distributions we have employed here and so to find out we now consider the
dynamically consistent drift and shear distributions (Phillips et al. 2010) reported
for shallow-water waves propagating on a moderate shear flow.
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6. Results: the general case
We now ease the restrictions imposed in § 5 and consider a broad range of water

waves (from shallow to deep) of constant slope ε = 0.1 in sheared layers, bounded
by a rigid bottom. To that end we employ the velocity profiles and drift distributions
derived by Phillips et al. (2010). Further, since it is useful to discuss the results from
the viewpoint of a reference and specifically since we are interested in the role of
drift rather than Stokes drift, we utilize analogous results based upon the Stokes drift
as the reference, noting (see § 4.3) that the drift is asymptotic to the Stokes drift for
α > O(1). That said the ensuing reference results are affected by α, which appears
both in the Stokes drift and the boundary conditions; and by τ , which determines U.
To proceed, therefore, we choose as a reference the neutral curve for which τ →∞
and ϑ = 0, with α set to the same value as the other curves under discussion.

6.1. NN boundary conditions
Concordant with our approach in § 5, we begin with NN boundary conditions but
now consider non-uniform distributions of shear and differential drift. To that end we
consider neutral curves for R1/2, first with l at constant α (in figure 3(a, b)) and then
with α at constant l (in figure 4(a, b)). In each case we also vary τ , but only show
that variation in figure 3(a, b) where we consider events in the limit α→ 0 (in fact
α = 0.001).

Looking first at the reference curve in figure 3(a) (shown for illustrative purposes
×10−2) we see, as Cox & Leibovich (1993) found, that the least-stable mode occurs
always at zero wavenumber in shear-driven flows (figure 3(a)). On the other hand, the
least-stable mode occurs for non-zero values of l in pressure-driven flows (figure 3(b)),
typically at values of about three or larger. This result is important because it means
that stress-free or NN conditions, long thought to be inappropriate to the class
of equations (2.9) on the finite domain can, in some circumstances, be physically
meaningful boundary conditions.

Observe too that the results are strongly dependent on τ . Looking first at figure 3(a)
we see that, relative to the reference case, the influence of shear acts to significantly
lower the value of R at which onset occurs, the minimal occurring in the limit τ→∞.
In pressure-driven flow on the other hand (figure 3(b)), R can be higher or lower than
the reference level, with again the minimal value occurring in the limit τ→∞.

But what of the role of α? Before looking at specific cases, we note from (4.2c)
and (4.9) that onset is to be expected as R→ 0 in the limit α→ 0 for any U′ 6= 0
and necessarily increases as α increases, provided of course that ε does not go to
zero faster than α2. That said, the value of R at which onset occurs is ultimately
asymptotic to the reference curve which acts to bound it from above for shear-driven
flows (since they are destabilizing to the formation of LC) and from below for
pressure-driven flows (which are stabilizing) as we see in figure 4, where we plot
two cases representative of the least-stable limits in l, namely l→ 0 and l = 3 for
τ →∞. This further necessitates that R first climb (with increasing α) through the
reference level, as we see in figure 4(b). Of course the same behaviour occurs in
figure 4(a) as well, but it is hidden because of its high gradient in the vicinity of
α → 0. Also beyond the bounds of figure 4(a) is the peak in the onset value of
R, a feature which is shown in figure 4(b). Since l is larger in figure 4(b) (with τ

constant) we might infer that the peak in R decreases with increasing l, and that is
in fact the case. Concordantly, on fixing l and varying τ we likewise find the peak
in R diminishes with τ and reaches its lowest value in the limit τ→∞.
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FIGURE 3. Neutral curves of R1/2 against l for various τ in the limit α→ 0 for NN
boundary conditions: (a) shear driven; (b) pressure driven.

6.2. PD boundary conditions
Consider now the case in which we impose (4.3) and (4.4), i.e. P boundary conditions,
at the free surface and no slip, i.e. D at the sea floor.

As above we first plot onset R against l at various τ (figure 5) although here at the
physically realizable α = 0.1. Looking first at the shear-driven case (figure 5(a)) we
observe, in accord with our findings above, that R is always lower than the reference
curve. Observe too that R diminishes with increasing τ and that critical values occur
for Rc = 6.847 at lc = 1.492 in the limit τ → ∞; note also that lc is essentially
independent of τ .

Neutral curves for the pressure-driven case (figure 5(b)), on the other hand, depict
two distinct forms. The first is typified by the reference curve which has a minimum
at about l= 2 and is emulated by our curve at τ = 0.1, albeit at higher R. The second
form emerges as τ increases through 0.2 where the neutral curve then highlights two
local minima. Initially Rc is lowest at the minima with the largest l. But that becomes
less the case as τ increases, to the point that for the least-stable case τ→∞, critical
R is much the same at each l, which occur near l ≈ 0.04 and l ≈ 4. Immediate
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FIGURE 4. Neutral curves of R1/2 against α as τ→∞ for NN boundary conditions in
shear- and pressure-driven flow: (a) in the limit l→ 0 and (b) at l= 3.

questions are what is the structure of the LC at each l and whether one spacing is
preferred over the other? To answer the former we look at the eigenfunctions at each
spacing, while for the latter we look at the growth rates at each spacing.

The eigenfunctions for u and w at the least-stable (Rc, lc) for shear- and
pressure-driven flow are shown in figure 6, where we see that the structure can vary
significantly from case to case. Specifically one cell fills the layer in shear-driven
flow with the axial perturbation reaching its peak midway through the layer, much as
in the model case in § 5.2. In pressure-driven flows, on the other hand, we observe
two layers of LC at l = 4 with the stronger cell at the ocean floor and noticeably
weaker cell near the ocean surface. This is so for all τ with l > 0.3. Once τ > 0.2,
however, a second structure emerges for l< 0.3 in which just one cell fills the layer,
albeit with a u component vastly different from its shear-driven counterpart.

Now there is little change in U′ as τ increases through 0.2, but there are significant
changes in D′, in that it changes sign in the upper part of the layer, rendering D′U′<0
there. This phenomenon concurs with that observed in § 5.2 where we further found
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FIGURE 5. Neutral curves of R1/2 against l at α= 0.1 for various τ with PD boundary
conditions: (a) shear-driven flow; (b) pressure-driven flow.

that LC will form whenever D′U′ is positive over some portion of the domain. But
why multiple cells, why not just one in the region in which D′U′ > 0? The simple
answer would appear to be one of kinematics, in that the instability gives rise to and
drives the lower dominant cells and that continuity of velocity necessitates they in turn
drive those above. Contour plots of w for a single and double layer of cells are given
in figure 7. In viewing them note that, as discussed in § 3.1, a Lagrangian average of
the location of the free surface need not occur at z= 0 and thus that w need not be
zero on z= 0, which is why only some streamlines in figure 7(a) are closed.

Finally, of particular interest is the role of α, and to build our understanding of it we
begin by looking at the variation of onset R1/2 with α for the least-stable case τ→∞
at a typical l, say l = 1 as shown in figure 8. Not surprisingly R1/2 here emulates
that in figure 4 in which the neutral curves increase with α from zero and quickly
(α< 1) asymptote to the reference curve (for which R is not zero at α= 0). Of course
of particular interest is the variation of lc with α, but rather than directly plotting
that, and because of the occurrence of two local minima in l, we first plot onset
R1/2 against l as in figure 5, although here at various values of α with τ constant,
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specifically τ →∞, figure 9. Here we see two local minima for α < 0.2 and thus
expect two branches on a plot of lc against α. In fact, in figure 10 we plot L= 2π/lc,
that is the windrow spacing (two cells) to depth ratio, which allows direct comparison
with observation.

Looking first to the branches at the bottom of the figure we see that the aspect ratio
of the cells ranges from 1.5 to 3, values completely in accord with deep-water ocean
observations (Smith et al. 1987; Smith 1992) and those for small-aspect-ratio cells
commonly observed in coastal waters (Marmorino et al. 2005). This is the case for
both shear- and pressure-driven flows. Note too that although the spacing is different
for sufficiently small α, it is independent of details of the underlying flow once α >
0.2. The upper branch on the other hand is solely for pressure-driven flow for α< 0.2.
Here we find that L is at least 40, a value well beyond the value of around 10 reported
by Hunter & Hill (1980) and Marmorino et al. (2005).

But which cells are more likely in pressure-driven flow with α < 0.2: highly
elongated cells or roughly round cells? To answer that we look at the growth rates.
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FIGURE 7. Contours of w∝ψ for pressure-driven flow with PD boundary conditions for
α = 0.1 and τ→∞ at (a) l= 0.03 and (b) l= 4.

Curiously they differ by a factor of less than two, with the growth rate for the
large-aspect-ratio cells being higher. This suggests that both are likely present at any
time which would, in turn, affect any windrows and thus observed spacing.

7. Discussion
Because differences in the mean shear affect the differential drift in shallow-water

waves and because the relationship between them underlies the CL2 instability
criterion to LC, Phillips et al. (2010) infer that LC first form near the free surface in
Couette-like shear-driven flow (and grow downwards, top down) and near the ocean
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FIGURE 9. Neutral curves of R1/2 against l at various α with τ→∞ for pressure-driven
flow with PD boundary conditions.

floor (and grow upwards, bottom up) in Poiseuille-like pressure-driven flows. Our
findings here largely endorse their conjecture and further bring to light the presence
of multiple layers of LC in the bottom-up situation. Interestingly when this occurs,
the layers extend into a region of flow not satisfied by the CL2 instability criterion.
This should not be interpreted to mean the criterion is violated but rather that LC so
formed by the instability can, as a dynamic consequence, induce and drive coupled
LC in a contiguous region of rotational flow. Thus, in addition to a single layer of
LC spanning the entire water column in the sense reported by Gargett et al. (2004)
as Langmuir supercells, they can likewise effectively mix and transport sediment, etc.,
as a stacked array. We note that this is not the same as the discrete spectrum of
Langmuir cells which combine to form Langmuir turbulence and in fact of particular
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interest would be an analogous large eddy simulation calculation of the cases studied
here.

Clear too from our study is the finding that omission of the shear-related component
of drift (that is use of the Stokes drift alone), can yield very misleading onset results
particularly in pressure-driven flows. Of course this finding is most relevant in shallow
water waves in the inner coastal region and diminishes once α > O(1).

Finally, with regard to boundary conditions, we found that NN conditions, long
thought to yield non-physical results when applied to flows on the finite domain, can
be meaningful in the sense that they act to realize finite spacing, but only in pressure-
driven flows. On the other hand the presence of a small perturbations in shear stress
on the free surface, as occur with the consistent PD boundary conditions derived
herein, act to ensure finite onset spacing irrespective of the details of the primary
shear flow. Furthermore, in pressure-driven flow these conditions admit two preferred
spacings, one well in accord with observations for small-aspect-ratio LC and the other
well in excess of observed large-aspect-ratio LC.
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