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The instability to longitudinal vortices of two-dimensional density-stratified tempor-
ally evolving wavy shear flow is considered. The problem is posited in the context
of Langmuir circulations, LCs, beneath wind-driven surface waves and the instability
mechanism is generalized Craik–Leibovich, either CLg or CL2. Of interest is the
influence of non-stationary base flows on the instability according to linear theory. It
is found that the instability is described by a family of similarity solutions and that the
growth rate of the instability, in non-stationary base flows, is doubly exponential in
time, although the growth rate reduces to exponential when the base flow is stationary.
An example is given for weakly sheared wind-driven flow evolving in the presence of
growing irrotational surface waves. Waves aligned both with the wind and counter
to it are considered, as is the role of stratification. Antecedent to the example is
an initial value problem posed by Leibovich & Paolucci (1981) for neutral waves in
slowly evolving shear. Here, however, the waves and shear may grow (or decay) at
rates comparable with the LCs. Furthermore the current here has two components: a
wind-driven portion due to the wind stress applied at the free surface and a second
due to the diffusion of momentum due to the wave-amplitude-squared free-surface
stress condition. Using the case for neutral waves in non-stratified uniform shear for
reference, it is found, in general, that growing waves are stabilizing while decaying
waves are destabilizing to the formation of LCs, although the latter applies only for
sufficiently large spanwise spacings and is subject to a globally stable lower bound.
Decaying waves in the absence of wind can also be destabilizing to LCs. When the
wind is counter to the waves, however, only decaying waves are unstable to LCs.
Furthermore, while growing waves are stable to the formation of LCs in the presence
of stable stratification, decaying waves are unstable in both aligned and opposed
wind-wave conditions. Unstable stratification on the other hand, is destabilizing to
LCs for all temporal waves in both aligned and opposed wind-wave conditions.

1. Introduction
Langmuir circulations, or LCs, are organized convective motions that form in the

surface layer of oceans, lakes and ponds when winds of moderate strength blow
over them. In each instance LCs manifest as a parallel series of counter-rotating
vortices that more or less align with the wind (Langmuir 1938). Moreover, they act
at the surface to concentrate flotsam, seaweed and air bubbles into clearly visible
streaks or bands, with spacings ranging from a few millimetres (Kenney 1993) to
several hundred metres (Plueddemann et al. 1996). Many attempts have been made to
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explain LCs (see reviews by Leibovich 1983 and Gargett 1989), in part because they
are apparently ordered structures that arise from disorderly environments, but also
because they are thought to be largely responsible for the formation of thermoclines
and the maintenance of mixed layers in lakes and oceans. Indeed, in view of the
importance of the mixed layer and the heat, mass and momentum transport processes
therein (see e.g. Li, Zahariev & Garrett 1995), the notion of modelling LCs with a
view to their inclusion in future global change models is compelling.

Of the suggested range of models to explain LCs, the most plausible have as their
basis a nonlinear interaction between surface gravity waves and a weak current; and
of interest here is the prevailing theory in this category, that of Craik & Leibovich
(1976). These authors provide a rational derivation of a set of equations – the CL-
equations – thought to govern LCs, given an O(ε2) rotational mean current and an
irrotational wave field of wave slope O(ε).

Interestingly, the CL-equations predict that activity akin to Langmuir circulations
may result from either of two instability mechanisms, CL1 or CL2. CL1 requires a
surface wave field with a high degree of spatial structure, whereas CL2 acts without
special spatial structure (Craik 1977; Leibovich 1977), and is thus of particular
relevance in the open ocean (see § 4). In consequence CL2 has formed the basis
of numerous studies concerned with LCs, and the effect on them of stratification,
nonlinearity and streamwise growth (e.g. Leibovich & Paolucci 1980, 1981; Leibovich,
Lele & Moroz 1989; Cox et al. 1992; Cox & Leibovich 1993, 1997; Li & Garrett
1993, 1997; Skyllingstad & Denbo 1995; McWilliams, Sullivan & Moeng 1997; Phillips
2001b, henceforth referred to as Pb, and others).

Meanwhile test cases for such theories have resulted from an extensive observational
program of ocean LCs (Thorpe & Hall 1982; Weller et al. 1985; Smith, Pinkel & Weller
1987; Weller & Price 1988; Zedel & Farmer 1991; Smith 1992, 1998; Plueddemann et
al. 1996; Plueddemann & Weller 1999; Weller & Plueddemann 1996 and others). But
although CL2-theory can account for some field observations (see e.g. Pb), studies
employing it have, to this point, assumed neutral waves, whereas the waves in field
studies on occasion grow or decay. For example, Plueddemann et al. (1996) report an
instance where LCs are sustained by slowly decaying waves for tens of hours after
an abrupt reduction in the local wind stress. Thus the focus of the present work is to
explore the role growing or decaying waves play in the formation of LCs.

In such instances the Stokes drift is a function of time and, in the context of
CL2 (which is described kinematically in § 2.1), has two components: one aligned
with the direction of wave propagation and the second normal to the free surface.
Of course unsteadiness of the primary wave field or base flow usually implies that
the linear instability problem is non-separable and our first task is to explore that
condition here. In doing so, however, we do not restrict attention to O(ε2) shear and
the CL-equations. Rather we take a more general view, noting that LCs form in a
variety of levels of shear both in the laboratory and the ocean (Melville, Shear &
Veron 1998). In consequence we begin with Andrews & McIntyre’s (1978) generalized
Lagrangian mean (GLM) formulation. This is an exact theory of nonlinear waves on
a Lagrangian-mean flow in which the nonlinear wave–wave interaction is represented
as a rectified effect through the O(ε2) Stokes drift.

The CL-equations, of course, follow from GLM (Leibovich 1980), but relevant
here are the CLg equations, an equation set intermediate between GLM and CL
which allows for growing rotational or irrotational waves in any level of temporal
shear (Phillips 1998, henceforth referred to as P98). The CLg-equations also recover
two distinct regimes of CL-instability theory (see § 2): the strong-shear (Craik 1982c)
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non-centrifugal (P98) version in which wave modulation is important, and Craik
& Leibovich’s (1976) aforementioned weak-shear centrifugal (Craik 1982c) version.
Phillips (2003) denotes the former the generalized-CL, or CLg instability, while
retaining the well-known CL2 notation for the latter; he further notes that CLg and
CL2 are compact equivalents to the notations CL2-O(1) and CL2-O(ε2) introduced
by Phillips, Wu & Lumley (1996).

Of particular interest is whether the CLg-equations are separable with non-
stationary base flows, and we investigate this in § 3. Interestingly, not only are
the equations separable, but the growth rate of the ensuing LCs described by them
is doubly exponential in time, irrespective of the level of shear. The ensuing eigen-
problem is, however, simplest when the shear is weak, and since this case has clear
physical relevance to the open ocean, we consider it in detail in § 4. Specifically, we
question the instability via CL2, of an evolving O(ε2) shear layer in the presence of a
temporal spanwise-independent Stokes drift field within the framework of an initial
value problem introduced by Leibovich & Paolucci (1981, henceforth referred to as
LP).

The paper is organized as follows: the CLg equations and similarity solutions to
them are discussed in §§ 2 and 3, while a generalization of LP’s initial value problem
is posed in § 4 along with details of the primary fields, i.e. the mean Eulerian shear
layer and mean Lagrangian (Stokes drift) fields. We then investigate the instability to
LCs in neutrally stratified conditions: first in the presence of waves which propagate
in the direction of the mean Eulerian velocity (§ 5) and then opposite to it (§ 6). The
role of stratification is considered in § 7 and the results are discussed in § 8. Using the
case of non-stratified uniform shear in the presence of neutral waves for reference, we
find that growing waves are stabilizing and decaying waves destabilizing to CL2. We
further find that while the instability is subject to a low-wavenumber cutoff when the
waves grow, that is not the case when they decay. Finally, in accord with observation,
we find that decaying waves in the absence of wind are destabilizing to CL2.

2. The generalized Craik–Leibovich instability
Following Craik (1982c), who restricted attention to inviscid shear flows with

imposed neutral waves, P98 applied GLM to a class of temporal unidirectional vis-
cous shear flows with imposed small-amplitude (rotational or irrotational) spanwise-
independent growing waves. His intent was to remain general in regard to the level
of the imposed shear and restrict only the maximum slope of the waves, vis à vis the
instability of the ensuing wave–mean interaction to longitudinal vortices.

He thus considered the interaction between a unidirectional shear flow of charac-
teristic velocity V and two-dimensional straight-crested waves of wavenumber α that
propagate in the direction of the basic flow. The amplitude of the waves could grow
from infinitesimal to finite, but their maximum slope ε must satisfy ε < O(1); since
orbital velocities are then characterized by εC, where C is a typical phase speed, the
two velocity scales are usefully related by setting V/C = O(εs), where s > 0. Then by
making variables dimensionless with respect to C andL, whereL is the characteristic
thickness of the shear layer, the level of shear is also O(εs), and in the event viscosity
plays a role, the Reynolds number R ≡ LC/ν0.

For clarity upper-case letters are used to denote primary flow quantities, which by
design have no spanwise (y) dependence, with lower-case letters otherwise, while an
overbar on an unscaled dimensionless variable denotes a streamwise average. Then
with unit vectors (i, j , k) in x = (x, y, z), the unperturbed Eulerian shear flow in the
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reference frame of the waves is U (z, t) = εs[U, 0, 0] while the wave field is Ŭ (x, z, t).
Moreover if the wave field interacts with U to excite streamwise-averaged Eulerian
velocity perturbations ũ(y, z, t), whose strength relative to the primary shear flow
is measured by the parameter ∆, the outcome, in GLM variables (see Andrews &
McIntyre 1978), is the velocity associated vector field q̄ = Q + q̃, which is expanded
as

q̄(y, z, t) = εs{[Q1, 0, ε
2−sQ3] + ∆[q1, ε

nq2, ε
nq3] + · · ·} (n > 0). (2.1)

Correspondingly the wave–wave interaction produces O(ε2) fields of pseudomomen-
tum p̄ and Stokes drift d̄ , which act to relate the Eulerian and Lagrangian mean
velocity fields through q̄ = ū+ d̄ − p̄; in view of (2.1) the p̄ and d̄ fields are expanded
as

p̄(y, z, t) = ε2{[P1, 0, P3] + εs∆[p1, ε
np2, ε

np3 + · · ·]}, (2.2)

where Pi result from the primary wave field and pi represent modulations to it due to
the evolving qi field.

Evolution equations for the secondary flow then follow by substituting (2.1) and
(2.2) into the GLM equations. We need not write the full set, but note that the key
terms for CLg-type instabilities in the absence of viscosity necessitate (P98, equations
(3.9) and (3.10))

∂q1

∂t
+ ε2D3

∂q1

∂z
+ εs+nq3

∂Q1

∂z
= 0 (2.3a)

and
∂f1

∂t
+ ε2 ∂

∂z
(D3f1) + ε2−n ∂q1

∂y

∂P1

∂z
− εs+2−n ∂Q1

∂z

∂p1

∂y
= 0, (2.3b)

where

f1 =
∂q3

∂y
− ∂q2

∂z
. (2.3c)

Of interest are temporal secondary instabilities which lead to the growth of q1 and
f1 with time due to z-differentiable wave–wave nonlinearities. Of course for other
than algebraic growth the component equations (2.3a, b) must couple, and we should
like to investigate that growth with coupling in the light of growing waves. First,
however, a little background.

The CLg-equations (P98, equation (4.1)) follow from (2.3) when n = (2 − s)/2.
These describe in part (see Craik 1982c) the CLg instability, this being a wave-
catalysed (McIntyre & Norton 1990), non-centrifugal (P98) instability that occurs in
the presence of strong shear (s = 0) and rotational (or irrotational) waves that are
subject to modulation owing to q1. Wave modulation is absent in weak (s = 2) shear,
however, and in this instance, and with irrotational waves, for which p̄ = d̄ + O(ε4)
(Andrews & McIntyre 1978), the CLg equations reduce to the CL equations. The
latter, of course, describe the CL2 instability, which is a wave-catalysed, centrifugal
instability. Phillips (2003) gives a thorough discussion of both the CLg and CL2
instabilities. Of course stratification may also play a role in the instability, so we now
turn to the energy equation.

2.1. The energy equation

The CLg equations are rendered complete by an energy equation which accounts for
rotational waves in all levels of shear. Since thermal effects were not considered by
P98 and the CL-energy equation is restricted to irrotational waves and weak shear
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(Leibovich 1977), we here derive a more general version. In accord with the CL
version, however, we employ the Boussinesq approximation and replace density by
temperature; we then write the streamwise-averaged dimensionless temperature as

θ̄(x, t) = θ0(z) + θ(x, t),

where θ̄(x, t0) = θ0(z) and θ(x, t0) = 0 at some initial time t = t0, With the usual
approximations of thermal convection, the temperature is then governed by the
energy equation which is, in GLM form,

∂θ

∂t
+ q̄ · ∇θ = −k · (q̄ + p̄)θ′0 + κ∗∇2θ, (2.4)

where a prime denotes d/dz and the thermal diffusivity is κ∗LC.
As in P98, our intention is to isolate spanwise-independent primary fields and

spanwise-dependent secondary fields, so on setting

θ = ε2Θ(z, t) + ∆ϑ(y, z, t),

we find that the wave-induced evolution of the primary temperature field is described
by

∂Θ

∂t
+ ε2Q3

∂Θ

∂z
= −D3θ

′
0 + κ∗∇2Θ, (2.5)

while the evolution equation for the secondary temperature field becomes

∂ϑ

∂t
+ εs+n∆q · ∇ϑ = −εs+n(q3 + ε2p3)

(
θ′0 + ε2 ∂Θ

∂z

)
− ε2Q3

∂ϑ

∂z
+ κ∗∇2ϑ, (2.6)

where q = [ε−nq1, q2, q3].
Of course because Q3 = D3 − P3 and q3 = w + ε2(d3 − p3), both neutral and

irrotational waves render Q3 = 0, the former because P3 = D3 = 0 (see § 3.1), the
latter because P3 = D3 and p3 = d3. So if the waves are both neutral and irrotational,
an initially isothermal primary temperature field Θ likewise bounded will remain so,
in which case (2.6) reduces (for s = 2 and thus ∆ = 1 and with a rescaling in t as
t = ε2t) to the form given by Leibovich. The Θ field will not, of course, remain
unaltered if the waves (be they rotational or irrotational) grow in amplitude but, as
evident from (2.6), such changes will not significantly influence the ϑ field because
θ′0 = O(1).

2.2. The role of growing waves

Kinematically, CL2 (CLg) occurs because the Stokes drift gradient DD1 (irrotational
portion of DP1), where D ≡ ∂/∂z, causes vortex lines to tilt forward wherever
the Eulerian mean shear is distorted in y, giving rise to a longitudinal component of
vorticity and ultimately vortices which, in the presence of neutral waves, grow (initially)
exponentially fast. We might presume, therefore, that if CLg or CL2 is to be affected
by temporal waves, then the above forcing is enhanced or diminished by an analogous
term involving DD3; and such a term exists, as we see by expanding D(D3f1). Indeed
the component −∂q3/∂yDD3 acts to counter or reinforce −∂q1/∂yDD1, in accordance
with the sign of DD3, since the components q1 and q3 are always in phase but of
opposite sign.

But the vertical component of Stokes drift S3 = ε2CD3 represents, in the context
of surface waves, the rate of change of the Lagrangian mean level of the water
surface due to the rate of change of wave amplitude, the surface being elevated by an
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O((ε/α)2) quantity (McIntyre 1988). Intuitively this quantity is small and whether S3

can significantly influence the instability by the aforementioned mechanism (or other
means) is decidedly unclear and must be resolved. Thus, in order to gain insight into
the role played by S3, irrespective of its magnitude, we first analyse the initial value
problem for the formation of LCs via CLg, in the presence of growing waves.

3. Governing equations
As a starting point we note that temporal distributions of the Stokes drift and

pseudomomentum are separable, at least for monochromatic waves, be they irro-
tational or rotational (Phillips 2001a , henceforth referred to as Pa). Separability is
relevant here because it gives rise to the possibility that the initial value problem for
the CLg-instability may reduce to a family of similarity solutions.

3.1. Wave–wave nonlinearities

The simplest example of Stokes drift of relevance occurs for two-dimensional irro-
tational monochromatic travelling waves of small amplitude which, with no loss in
generality, we employ. S1 is well known in this instance, but not S3. Nevertheless S3

can be deduced from Craik’s (1982b) expressions for the generalized Stokes drift for
monochromatic rotational waves or Pa’s counterparts for broad spectra of temporal
rotational waves. On setting L = α−1, and thus C/L = σ, where σ is the wave
frequency, both expressions reduce, for two-dimensional irrotational monochromatic
waves, to

S1 = ασa2A2(t)be2z and S3 = αa2A(t)
dA
dt
be2z (−∞ < z 6 0),

where a is a reference wave amplitude and aA(t) is the temporal wave amplitude,
while b is a positive constant (set equal to 2 to concur with LP and Pb). Thus

S1(z, t)/C = ε2D1(z, t) = ε2A(t)2be2z = ε2B1(t)D1(z) (3.1a)

say, and

S3(z, t)/C = ε2D3(z, t) = ε2A(t)
dA
dt
be2z = ε2B3(t)D3(z), (3.1b)

so that

S3

S1

=
D3

D1

=
B3

B1

= O

(
1

σTgw

)
= O(εµ) (µ > 0), (3.2)

say, where Tgw is the time scale for wave amplitude changes. Then µ > 0 indicates
that the waves grow on a scale which is long compared with σ−1, which is reasonable
physically.

3.2. Similarity solution

Since the scalings leading to (2.3) assume the dependent and independent variables
are all O(1) quantities we need not rescale them, but we do assume they are separable
as

Q1(z, t) = G(t)Q(z), p1(y, z, t) = C(t)p(y, z) (3.3a)

and

qi(y, z, t) = Ai(t)qi(y, z) with qi = [u, v,w], where i = 1, 2, 3; (3.3b)
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along with (3.1) and, since A2(t) ≡ A3(t) by continuity,

f1(y, z, t) = A3(t)

(
∂w

∂y
− ∂v

∂z

)
. (3.3c)

Note that at this point we will not specify any relationship between A1(t) and A3(t),
which means that q1 and f1, whose Eulerian counterparts represent streaks and LCs
respectively, may grow at different rates.

Substituting (3.1) and (3.2) into (2.3) then yields

κ11u + ε2−s−n+µκ12D3

∂u

∂z
+ κ13w

dQ

dz
= 0 (3.4a)

and

κ31

(
∂w

∂y
− ∂v

∂z

)
+ εn+µκ32

∂

∂z

{
D3

(
∂w

∂y
− ∂v

∂z

)}
+ κ33

∂u

∂y

dD1

dz
− εsκ34

∂p

∂y

dQ

dz
= 0,

(3.4b)

where for self-similarity κij are O(1) constants such that

κ11 =
ε−(s+n)

GA3

dA1

dt
, εµκ12 =

A1B3

GA3

, κ13 = 1 (3.5a, b, c)

with

κ31 =
εn−2

A1B1

dA3

dt
, εµκ32 =

A3B3

A1B1

, κ34 =
GC

A1B1

, κ33 = 1. (3.6a, b, c, d )

Observe that with a minor reformulation (as in § 4) and for specified κ12, κ32 and
κ34, along with boundary conditions such as those used by Phillips & Wu (1994)
for specific cases with s = 0, that (3.4) constitutes (with a further equation for p)
an eigenvalue problem for κ11 and κ31, not just when the waves are neutral but for
growing waves as well. Moreover, while the Ai usually grow exponentially fast in
separable problems of this type, that is the case here only when the wave field is
neutral, as we shall see shortly. Finally, because κ12 and κ32 are zero as a consequence
of (3.1b) only when the wave field is neutral and change sign according to whether
the waves grow or decay, the steady states for (3.4) probably reflect distinct eigen-
branches for growing, neutral and decaying waves; and in fact do, as we shall see in
§§ 5, 6.

3.3. Growth rates for the case A1 = A3

Of particular interest are the growth rates for A1 and A3 and how they couple with
the growth rate of the waves. To learn more of that coupling we turn to (3.6b) and
use (3.2) to obtain

A3

A1A
dA
dεµt

= κ32,

from which we find that

lnA(t)− lnA(t0) = κ32

∫ t

t0

A1

A3

d(εµt). (3.7)

Of course the simplest case of interest is that for which A1 = A3, which occurs
when the wave amplitude grows (or decays) exponentially fast, albeit as εµt, via

A(t) =A(t0) exp{εµκ32(t− t0)}, (3.8)
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in which case the temporal portions of our wave–wave measures become, from (3.1),

B1(t) =A2(t0) exp{2εµκ32(t− t0)} and B3(t) = εµκ32B1(t). (3.9a, b)

Moreover we can use (3.9) in (3.6a) to find

A1(t) = A1(t0) exp

{
ε2−n−µκ31

2κ32

A2(t0)[exp{2εµκ32(t− t0)} − 1]

}
(κ32 6= 0), (3.10)

which decrees that growing or decaying wave fields excite doubly exponential growth.
Note, however, that because κ32 is positive for growing and negative for decaying
waves, that the amplitude A1 will be significantly larger for growing than decaying
waves after time t, all other things being equal. Of course on rewriting (3.10) (see
(3.13)) to expose the influence of κ32, we find that A1 reverts to exponential growth
for neutral waves, i.e. when κ32 = 0, in accord with previous work.

It remains to determine G(t) and C(t): the first follows from (3.5a) as (see also
§ 3.4)

G(t) =
κ31

κ11

B1(t), (3.11)

while the latter follows from (3.5c) as

C(t) =
κ34κ11

κ31

A1(t). (3.12)

Thus for self-similarity the primary shear flow must grow at the same rate as the
Stokes drift, while modulation of the wave field due to the secondary flow (via q1)
must, as expected, occur at the same rate as the evolving secondary flow.

3.4. Time scales and an eigen-problem

Our task now is to gain some feel for the parameters s, n and µ and their inter-
relationship, and we do so by referring to the times scales that have so far entered
the analysis. First, the requirement κi1 = O(1) (i = 1, 3) necessitates we rescale time
in (3.4a, b) as t1 = εs+nt and t3 = ε2−nt respectively. Furthermore our restriction
A1 = A3 necessitates that t1 = t3 = t, say, and thus that s = 2 − 2n (as noted
previously by P98); it likewise decrees that the time scale over which LCs evolve is
TLC = (εs+nσ)−1. Second, as deduced earlier, the time scale over which surface waves
evolve is Tgw = (εµσ)−1, so that

TLC = εn+µ−2Tgw.

Thus if the LCs grow on a time scale that is equal to or faster than that of the waves,
then n+ µ > 2.

Returning now to (3.4), we see that terms containing κ12 and κ32 are each pre-
multiplied by εn+µ, while the term containing κ34, which reflects wave modulation, is
premultiplied by εs. Craik (1982c), in his work on CLg, notes that the O(εs) term
needs to be retained only when s = 0, because only then is wave modulation impor-
tant. The terms premultiplied by O(εn+µ), on the other hand, are concerned with wave
growth and it is appropriate to ask whether these terms too need be retained only
when n+ µ = 0? Interestingly Melville et al.’s (1998) laboratory experiments in s = 0
shear do not realize n+ µ = 0; rather they indicate Tgw ≈ TLC , suggesting n+ µ = 2.

Nevertheless on rewriting (3.10) to reflect the role of κ32, we find that

A1(t) = A1(t0) exp{κ31A2(t0)[(t− t0) + εn+µ−2κ32(t− t0)
2 + h.o.t.]} (3.13)

and see that the growth of A1 is affected not only by the eigenvalue κ31, but also
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by the growth or decay of the primary wave field through εn+µ−2κ32. Indeed growing
waves can significantly affect the growth of A1, and thus the LCs. Thus since the
influence of wave growth must be retained in (3.13) and affects the eigenstates, as we
saw in § 3.2, it is necessary to likewise retain such terms in (3.4), even though εn+µ

may not be O(1); see also § 4.2.

3.5. The role of diffusion

The inclusion of diffusive-like terms does not affect the separability of (2.3), but they
do introduce the additional terms

ε−s−nR−1κ15∇2u and ε2−nR−1κ35∇2

(
∂w

∂y
− ∂v

∂z

)
(3.14)

(in (3.4a, b) respectively), the parameter R and the further constraints

κ15 =
ν

ν0

A1

A3G
and κ35 =

ν

ν0

A3

A1B1

. (3.15)

So, with A1 = A3 as before, and purely viscous diffusion (i.e. ν/ν0 = 1) then (3.15)
are satisfied only when G and B1 are constant. Physically this requires a stationary
base flow and neutral waves, although Foster (1965), Homsy (1973) and Craik (1977)
have deduced techniques that yield precise stability limits when the primary flow is
unsteady.

But when the diffusion of momentum is primarily turbulent, and ν is interpreted
as an eddy viscosity νT say, enforcement of (3.15) is (because νT is an approximation)
secondary to that of other κij , and it is reasonable to require only that κ15 and κ35

be constant over the time scales of integration. This approximation was invoked by
LP and Pb, who set B1 and νT constant while allowing G to evolve gradually with
respect to the LCs. Of course to the same degree of approximation we could likewise
allow B1 to evolve at a rate comparable with G.

Alternatively, and with equal credibility from the view point of simplistic turbulence
models, we could impose a spatially uniform eddy viscosity νt(t) that evolves at the
same rate as the Stokes drift, say as

νt(t)

ν0

= B1(t), (3.16)

where ν0 is a convenient reference eddy viscosity. Then, since G ∝ B1 from (3.11),
all κij are constant and our eigenvalue problem is valid for both stationary and
non-stationary base flows. In short, it describes the initial evolution of LCs via CLg
due to growing (or neutral) waves and evolving (or stationary) shear flows of all
strengths. To be specific, the eigenvalue problem is defined by (3.4) and (3.14) with
(3.5), (3.6) and (3.15), subject to boundary conditions such as those introduced in § 4.1
with the addition of a further equation to describe wave distortion when s = 0. The
problem is thus simplest when s 6= 0 and we shall consider such a case in § 4.

4. An example: Langmuir circulations in weak shear
Of particular interest are LCs which form as a consequence of the dominant surface

waves in the open ocean. In this instance the mean shear and the Stokes drift are of
the same order (because the ocean surface velocity is ε2 smaller than the wave phase
velocity; see § 2) and because each is a montage of contributions from all wavenumbers
(see e.g. Smith 1992; Pb), each may vary with y, z and t. However, provided the waves
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comprise a continuous spectrum of wavenumbers of random phase, the Fourier
components in the spanwise y-direction phase mix to zero (Craik & Leibovich 1976),
rendering the Stokes drift spanwise independent. The relevant instability mechanism
is then CL2. Furthermore, because the length scales associated with LCs are typically
large compared with those of the energy-containing turbulent eddies in the ocean
background, the ensuing large- and small-scale dynamics essentially decouple (see e.g.
Phillips et al. 1996), so that turbulent diffusion of momentum may be reasonably
modelled by an eddy viscosity. We now incorporate these features and the notions of
LP to explore the influence on CL2 of growing or decaying waves.

4.1. Background

LP consider the formation of LCs via CL2 in an initially quiescent liquid which is
subject to acceleration at its free surface. They take the view that the instability works
its way down from the surface, following the imposition there of a wave field and a
wind stress; the layer may then be thought of as infinitely deep and the shear within
it to resemble a Rayleigh stress layer. Craik (1982a), however, notes that the shear
layer is actually made up of two mean components: one arising from the diffusion of
momentum due to the applied wind stress and a second due to the viscous diffusion
of momentum due to the wave-amplitude-squared surface stress condition (see § 4.3).
Indeed, because the second component and differential Stokes drift are always present
in free-surface wavy flows, the flow is susceptible to destabilization by CL2 even in the
absence of wind, a result consonant with Plueddemann et al.’s observations. Inclusion
of the second component therefore not only enhances the physics in the model but
further means that we can credibly allow for both growing and decaying waves, the
former probably propagating in the direction of the wind, the latter in no wind, or
propagating counter to it.

We thus extend LP’s initial value problem to consider the formation of LCs beneath
growing or decaying surface waves of characteristic slope ε� 1, in the presence of
stress-driven shear in deep water. Here the water is initially at rest and its temperature
varies as θ0(z). Then, at time t = 0, surface waves and a stress u∗, due both to the wind
and induced viscous action of the waves, are imposed. The stress, which is aligned
in the positive x-direction, provides the only source of external work. Furthermore, it
causes the velocity in the substrate to grow and affects, either directly or indirectly,
growth (or decay) of the wave field, which may propagate in either the positive or
negative x-direction. The wind on the other hand, when present, propagates always
in the positive x-direction. Finally, we set z positive vertically upwards and let the
mean free surface coincide with the (x, y)-plane.

Because the waves are irrotational, q̄ contracts to its mean Eulerian form ū, but in
order to compare our results with those of LP and Pb it is necessary to recast the
CLg equations discussed in §§ 2 and 3 in the manner of Leibovich (1977). Specifically,
while retaining the above spatial and temporal scales as

{[x, y, z]α−1, TLCt}, (4.1)

but noting that t here is equivalent to t in § 3.4 with TLC = (ν0/σ)1/2/aαu∗, the
streamwise-averaged Eulerian mean and perturbation velocity components are here
written as

C[U + ũ] =

{
[U(z, t) + u(y, z, t)]V, [v(y, z, t), w(y, z, t)]u∗a

(
σ

ν0

)1/2
}
, (4.2)
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where V = u2∗/αν0. Further with D ≡ ∂/∂z, and temperature perturbations ϑα−1θ′0,
the ensuing linear perturbation equations relative to the substrate U(z, t) and linear
thermocline θ0(z) are, P98,

∂u

∂t
= −wDU − D3Du+ La∇2u (4.3a)

and
∂Ω

∂t
= −D(D3Ω)− ∂u

∂y
DD1 + Ri

∂ϑ

∂y
+ La∇2Ω, (4.3b)

where, since the wave field is irrotational,

Ω = f1 =
∂w

∂y
− ∂v

∂z
, (4.3c)

with, from (2.6)
∂ϑ

∂t
= −w + LaPr−1∇2ϑ, (4.3d)

with ∇ · u = 0 where u = (u, v, w).
Three parameters enter (4.3): the Langmuir number La, the turbulent Prandtl

number Pr (where κT is the eddy diffusivity of heat) and the Richardson number Ri,
as

La =
ανt

au∗

(ν0

σ

)1/2

, P r =
νt

κT
, Ri =

νt

ν0

ν0

σ

N2

(au∗α)2
,

where N2 = βgθ′0 is the Brunt–Väisälä frequency with β the thermal coefficient of
expansion and g gravity.

Finally, to complete the initial value problem, we introduce the boundary conditions

k · u = D(u× k) = ϑ = 0 on z = 0, (4.4a)

u→ 0, ϑ→ 0 as z → −∞, (4.4b)

the initial values

u(x, 0) = u0(x), ϑ(x, 0) = 0 (4.4c)

and the requirement that u0(x) is solenoidal.

4.2. Numerical formulation

Prior to proceeding numerically, we rewrite (4.3) in a form that assumes the following:
first, that the LCs are spanwise periodic with wavenumber l; second, since the
substrate is a boundary layer, that the perturbations approach a constant value
exponentially fast as z → −∞ (see Brown & Stewartson 1965; Phillips 1996); and
third, in view of § 3, that the dependent variables are separable. We thus write

(u, ϑ) = A1(t)[û(z), ϑ̂(z)]Re{eγz+ily} (4.5)

(where γ > 0 is a constant) and, since the physical domain is semi-infinite, map to the
finite plane with the transformation ζ = ez , rendering D ≡ ζ∂/∂ζ.

From § 3.2 and (4.3) we then have

κ11û = −ŵDU−D∗3(D + γ)û+ La(M− l2)û, (4.6a)

κ13(M−l2)ŵ = l2ûDD1−D[D∗3(M−l2)ŵ]+γD∗3(M−l2)ŵ+La(M−l2)2ŵ−l2Riϑ̂, (4.6b)

κ14ϑ̂ = −ŵ + LaPr−1(M− l2)ϑ̂, (4.6c)
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where κ14 = A−1
1 dA1/dt, with the operator

M ≡ ζ ∂
∂ζ

(
ζ
∂

∂ζ

)
+ 2γζ

∂

∂ζ
+ γ2

and boundary conditions

∂û

∂ζ
+ γû = ŵ =

∂2ŵ

∂ζ2
+ (1 + 2γ)

∂ŵ

∂ζ
+ γ2 = ϑ̂ = 0 on ζ = 1, (4.7a)

û = ŵ = ϑ̂ = 0 with all derivatives bounded on ζ = 0. (4.7b)

Note that while (4.3a) and (4.3b) are together separable for both stationary and
non-stationary base flows (see § 3), the inclusion of (4.3d), which accounts for thermal
effects, restricts separability to stationary base flows, at least away from the linear
steady states. This means that while no restrictions with regard to the respective
growth rates of the LCs and waves apply to the eigenvalue problem defined by (4.6a),
(4.6b) with κ = κ11 = κ13, Ri = 0 and (4.7), its counterpart for Ri 6= 0 has similar
ubiquity only for the linear steady states (κ11 = κ13 = κ14 = 0). So, since the purpose
of this example is to ascertain the role of growing waves, we shall restrict attention
when Ri 6= 0 (§ 7) to the linear steady states. Moreover, to accentuate the influence of
wave growth, we assume in all cases that D∗3 = εµκ12D3 = O(1). We then study the
instability at snapshots in the time evolution of the substrate velocity and waves.

Numerical solutions to (4.6) with (4.7) and D∗3 = 0 are given by LP and Pb.
Galerkin techniques were employed in both studies, although Pb used orthogonal
basis functions while LP did not, which led to flawed results (for their Ri 6= 0 cases).
LP also set γ = 0 while Pb used γ = 1. In addition to ensuring that the perturbation
quantities in (4.5) have the correct asymptotic behaviour in the limit z → −∞, the
value γ = 1 has the added advantage of rendering results insensitive to the choice of
boundary conditions in that limit, because u and all derivatives of it with respect to
z are homogeneous there.

Here the numerics resemble those of Phillips & Wu (1994) and Pb: specifically, the

dependent variables û, ŵ and ϑ̂ are each expanded in linearly independent, complete
sets of basis functions truncated after N terms. The eigenvalues κ11 = κ13 are unkown.
Substitution of the expansions into (4.6) and evaluation of the inner products then
leads to a system of linear, homogeneous algebraic equations of the form κL = M,
where the elements of the matrices L and M are known from the inner products.
The resulting eigenvalue problem was solved using LaPak with N = 25, and the code
was validated by accurately reproducing other linear instability problems, for example
the Dean problem (see Drazin & Reid 1981) and the thermohaline Rayleigh–Jeffreys
problem (Baines & Gill 1969).

4.3. Primary shear

LP regard the O(ε2) mean shear to be solely wind initiated through the wind stress
at the surface, but it can, as Craik (1982a) notes, be just as readily attributed to
the free-surface boundary condition, i.e. by the induced viscous action of the waves
(Longuet-Higgins 1953). Specifically, if we suppose that a uniform wave field is
rapidly set up at t = t0 and that the waves are subsequently maintained at constant
amplitude by suitable periodic normal stresses, then we may replace the wind stress
in LP’s analysis by the velocity gradient determined by the free-surface boundary
condition. The velocity gradient is likewise determined if the surface is truly free
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Figure 1. Gradients of the Eulerian mean velocity in accelerating laminar flow at t0 = 0.01, 0.1,
1.0, 10.0, 100 and as t0 →∞.

with no applied normal stresses, although then the wave amplitude decays owing to
viscous action.

Here we allow for both a wind stress and a free-surface wave stress. However, rather
than treating a plethora of cases we choose to employ a consistent set of base flows.
Indeed, irrespective of the relative values of the wind stress and free-surface wave
stress, we assume their (vector) sum is at all times constant (see §§ 5, 6). Physically this
is a very severe restriction, because it requires that higher wind stresses be offset by a
decrease in wave stress through a decrease in wave amplitude. Nevertheless it enables
us to compare results from case to case and it is not at odds with our similarity
solution.

Finally, in order to compare our results with those of LP and Pb, we assume the
developing substrate shear DU(z, t) due to the constant stress u∗, is given always by a
solution to the stress Rayleigh problem as DU(z, t) = erfc(η) where z = −2η(tLa)1/2.
However, in order to comply with the separable form required in (4.6), we write near
our initial time point of interest t = t0, that

DU = G(t)DU(z) = G(t)erfc(η0), where η0 = − z

2(t0La)1/2
. (4.8)

Equation (4.8) is plotted in figure 1 for various values of t0, some of which, namely
t0 = 0.01, 1 and ∞, are used in the examples to follow.

4.4. Wave amplitude

We also require the dimensionless wave amplitude A as a function of the wave ‘age’
τ and determine it by first interpreting a (in § 3.1) as the maximum amplitude of the
waves, so that the actual amplitude is aA(τ). The non-dimensional amplitude A(τ)
is then subject to the requirements that it be unity when the waves are neutral and, if
the waves are growing, that it satisfyA(τ) ∼ 0 as τ→ −∞ andA(τ) ∼ 1 as τ→ +∞;
the obverse is the case if the waves are decaying. We shall not solve for A(τ); rather
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Figure 2. Sketch of the amplitude function A its gradient dA/dτ and the products A2 and
AdA/dτ for growing (m = 1) and decaying (m = −1) waves.

we assume it takes the form

A(τ) =
1

2

[
2− m2 +

mτ

|τ| erf(H |τ|)
]

(−∞ < τ < ∞), (4.9)

where m = [1, 0,−1], according to whether the waves are growing, neutral or decaying.
For convenience we set H =

√
π, so that erf(H) ≈ 0.99. Curves of A, A2 and

AdA/dτ are plotted in figure 2. Here we see for growing waves that D3 ≈ 0 when
τ = −1 while D3 is a maximum near τ = 0.2; likewise D3 ≈ D1 when τ = 0.3, while
D1 ≈ 2D3 when τ = 0.5. Lastly, although D1(−0.5) ≈ 0, it transpires that D3(−0.5)
while small is much greater than D1(−0.5). Similar cases exist for decaying waves,
albeit with D3(τ) replaced by −D3(−τ) and so test cases were done at various τ = τ0

values of interest, namely τ0 = 0, ±0.2, ±0.3, ±0.5, ±1.
Finally we note that the levels of maturity of the evolving shear flow and wave

field are uncoupled. For example waves may be present because of some distant past
weather event, while locally the wind speed might increase from zero. Alternatively
the wind might increase from zero in otherwise quiescent conditions causing both the
shear and waves to grow. In short the age of the shear t0 and the age of the waves τ0

(not to be confused with the wave ‘age’ used by oceanographers), are uncorrelated.

5. Aligned wind and waves
We begin by considering flows in which the wind and waves propagate in the same

direction. In order to do so we note that because external work, accomplished by
the application of suitable stresses, is required to maintain purely periodic waves in
a viscous liquid, we take the view that the waves are neutral or grow only in the
presence of a wind stress, and decay only in the absence of a wind stress. Then, in
order to compare various cases, we require, as mentioned in § 4.3, that the sum of
the wind and free-surface wave stresses, remains constant. Rather than specify the
proportions of each stress, however, we instead specify values of τ0 and t0. This then
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Figure 3. Developing shear at t0 = 0.01, 1 and t0 →∞ with neutral waves:
(a) neutral curves; (b) growth rates at La−1 = 5.

permits us to consider and compare several credible scenarios, beginning with the
case of developing shear in the presence of neutral waves. In all cases the flow is
non-stratified (i.e. Ri = 0).

5.1. Developing shear with neutral waves

Here the waves reach maturity well before the substrate, so we let τ0 → ∞ and
consider three values of t0, namely 0.01, 1 and ∞, as shown in figure 3(a). This case
was first investigated by LP who found, in accord with figure 3(a), that the least stable
situation occurs in the limit t0 →∞. Of course we might reasonably question whether
the growth rates close to these boundaries are large enough to convey meaningful
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Figure 4. Developed shear (t0 →∞) with growing waves at τ0 = 0, 0.2, 0.3, 0.5:
(a) neutral curves; (b) growth rates at La−1 = 5.

information, and to resolve that question we plot the largest positive eigenvalue κ at
lc0 (see below) for the latter two cases in figure 3(b). It is clear from 3(b) that κ is
markedly different in each case and that the case τ0, t0 → ∞ is the least stable. Pb
further determined that the τ0, t0 →∞ curve depicts the least stable neutral curve for
the double limit Pr = Ri = 0, and so for that reason we use it as a reference in the
cases to follow. Note too that onset in the reference case occurs at lc0 = 0.3187 and
La−1

c0 = 1.5157.
Physically the limit t0 → ∞ means that the full extent of the developing LCs are

subjected to uniform shear, in which case we describe the shear as ‘developed’ or
‘mature’. Such usage is of course from the viewpoint of the instability, because in fact
the shear layer grows indefinitely.

5.2. Developed shear with growing waves

We now consider the reverse case, in which the substrate reaches maturity prior to the
waves. Here the shear is uniform while the waves continue to grow. Neutral curves for
this case are plotted in figure 4(a) along with the reference curve, which is of course
recovered, as (see figure 2) τ0 →∞. Of particular interest is the case for which D3 is a
maximum (τ0 = 0.2) which falls to the right of the reference curve. This indicates that
growing waves in the presence of uniform shear are stabilizing to the generation of
LCs. In fact, of the growing wave cases considered, the least stable is that for τ0 = 0.5
(at which point D1 ≈ 2D3). The eigenvalues κ shown in figure 4(b) agree. Note too
that the spanwise wavenumber at onset at τ0 = 0.5 is lc = 0.3320; thus since lc > lc0
we infer that growing waves act to increase the onset spanwise wavenumber.

5.3. Developed shear with decaying waves

Of course if after some time the wind were to suddenly cease, the waves would then
decay in the presence of uniform shear. In this instance, as we see in figure 5(a), the
flow is stabilizing to LCs for l > lc0 and destabilizing for l � lc0. Note, however,
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Figure 5. Developed shear (t0 →∞) with decaying waves at τ0 = −0.5, −0.3, −0.2, 0:
(a) neutral curves; (b) growth rates at La−1 = 5.

that La−1
c at all times exceeds the global lower bound of 1.4395 for non- or stably

stratified flow reported by LP and that the maximum growth rate occurs in the
stabilizing wavenumber range, as we see in figure 5(b). The interaction is also slightly
stabilizing at onset for τ0 = −0.5, where, compared with La−1

c0 , we have La−1
c = 1.5418.

Furthermore lc = 0.3063 here, suggesting that decaying waves act to decrease the
spanwise wavenumber at onset. Finally, we note that contrary to the above cases
for growing or neutral waves, which are unstable only for wavenumbers l > 0, the
case with decaying waves is unstable even in the limit (not shown) l → 0, albeit at
La−1

c � La−1
c0 .

5.4. Developing shear with growing waves

We turn now to the case in which neither the shear nor the waves are mature.
Interestingly, although the interaction is stable to the formation of LCs when t0 = 0.01
for τ0 ∈ [−1, 0.5], it is unstable to LCs at τ0 = 1, as we see in figure 6. Since D1 � D3

when τ0 = 1 it is evident that the stabilizing effect of growing waves (through D3)
can be overcome by D1 to drive the instability, even when the shear layer is thin
(i.e. the e-folding depth is � 1). Note, however, that LCs form only for spanwise
wavenumbers larger than lc0, and thus that there is a long-wave cutoff.

For more developed shear on the other hand, i.e. t0 = 1, the flow is unstable to
LCs at all τ0, albeit for a restricted range of l; this case is shown in figure 7. Here,
in accord with our earlier findings for growing waves, the flow is stabilizing to the
formation of LCs and onset occurs at spanwise wavenumbers in excess of lc0.

5.5. Developing shear with decaying waves

On the other hand developing shear, which can occur in the absence of wind owing
to the wave-induced surface stress of decaying waves, is unstable to LCs for all
τ0 considered at both t0 = 0.01 and t0 = 1, as we see in figures 8 and 9. But
comparison of these figures with figure 5 shows that developing shear is stabilizing



334 W. R. C. Phillips

1

0.1

0.01
1 10 100

La–1

l s0=1

10

ref

Figure 6. Neutral curves for developing shear at t0 = 0.01 with growing waves at τ0 = 1.
Note that the flow is stable to the formation of LCs for τ0 ∈ [−1, 0.5].
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Figure 7. Neutral curves for developing shear at t0 = 1 with growing waves at τ0 = 0, 0.2, 0.3, 0.5.

to the formation of LCs, at least for l > 0.05. Not surprisingly the case t0 →∞ is the
least, and t0 = 0.01 the most, stabilizing, with the implication that the flow is stable
to the formation of LCs in the limit t0 → 0, i.e. in the absence of shear, as it must be.

6. Opposed wind and waves
We now consider the situation in which the wind and waves propagate in opposite

directions. Physically this situation might arise if the waves are a result of some distant
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Figure 8. Neutral curves for developing shear at t0 = 0.01 with decaying waves at
τ0 = −0.5, −0.3, −0.2, 0.
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Figure 9. Neutral curves for developing shear at t0 = 1 with decaying waves at
τ0 = −0.5, −0.3, −0.2, 0.

weather event, while local winds of increasing strength oppose them. Their respective
stresses are thus opposite, but we take the view that their vector sum is, as before,
constant. Thus, since u∗ is by definition aligned in the x-direction, the magnitude
of the wind stress must necessarily exceed the magnitude of the free-surface wave
stress, so that the mean Eulerian shear flow is counter to the streamwise component
of Stokes drift. Decaying, albeit steepening waves are therefore physically intuitive.
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Figure 10. Developed shear (t0 →∞) with opposed decaying waves at τ0 = −0.5, −0.3, −0.2, 0:
(a) neutral curves for stationary solutions; (b) growth rates at La−1 = 100 for both stationary and
convective solutions.

Interestingly, we find the flow is unstable to LCs only if the waves are decaying, as
we see in §§ 6.1, 6.2. Here the substrate is also neutrally stratified (so Ri = 0).

6.1. Developed shear with decaying waves

We look first at figure 10(a) and observe that the flow is least stable when τ0 = −0.3,
at which point D1 ≈ −D3. Observe too that the neutral curves are vastly different from
the single elbow form of their coflowing counterparts. Rather, the neutral curves are
here fingered, with bands of l that are unstable to LCs and bands that are stable; also
the onset La−1 far exceeds La−1

c0 . Notice though, that the bands blend into each other
as the waves evolve with τ0. These (figure 10a) curves are, however, for stationary
solutions: indeed, looking at figure 10(b), which is a trace of κ at La−1 = 100, we
see that the flow is in fact unstable to LCs at wavenumbers l � 1. This instability,
however, is associated with convective solutions which have noticeably higher growth
rates than their stationary counterparts. Interestingly, Pb also observed convective
solutions, but only for Ri 6= 0; here, however, Ri = 0.

6.2. Developing shear with decaying waves

Much the same features occur as the substrate grows, although, in accord with our
earlier findings, the case with fully developed shear is the least stable, as we see by
comparing figures 10, 11 and 12. Also evident is a region of instability for l � 1. This
is the least stable finger and continues to the long-wave limit l → 0; this finger is also
present with developed shear but is outside the plotted range.

7. The role of stratification
Pb considers the formation of LCs in the presence of neutral waves and stratification

over a wide range of Pr and Ri and finds, inter alia, that CL2 is destabilized by
diminishing Pr, and thus that LCs can be absent or present at the same La. He
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Figure 11. Neutral curves for developing shear at t0 = 0.01 with opposed decaying waves at
τ0 = −0.5, −0.3, −0.2, 0.
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Figure 12. Neutral curves for developing shear at t0 = 1 with opposed decaying waves at
τ0 = −0.5, −0.3, −0.2, 0.

further finds that although CL2 is subject to a global lower bound in La−1, La−1
G

say, which is independent of Pr and Ri for stabilizing Ri, that is not the case for
destabilizing Ri, where La−1

G may diminish to zero. Our intent here is to ascertain the
role of stratification on the instability in the presence of temporal waves. In view of
the wide parameter range, however, we choose representative values of Prandtl and
Richardson numbers, Pr = 6.7 and Ri = ±0.1. We further choose the least stable
base flow (t0 → ∞) and the least stable case for growing (τ0 = 0.5) and decaying
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Figure 13. Neutral curves for developed stably stratified shear (t0 → ∞, Ri = 0.1 and Pr = 6.7),
with neutral (τ0 → ∞) and decaying (τ0 = −0.5) waves: note that this configuration is stable to
growing waves.
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Figure 14. Neutral curves for developed unstably stratified shear (t0 →∞, Ri = −0.1 and
Pr = 6.7) with growing (τ0 = 0.5), neutral (τ0 →∞) and decaying (τ0 = −0.5) waves.

(τ0 = −0.5) waves. These cases are plotted in figures 14, 15 and 16. Finally, in view
of our discussion in § 4.2, we here limit our results to the linear steady states.

7.1. Aligned wind and waves

Consider first stable stratification (Ri > 0). Here we find that growing waves aligned
with the wind are stable to the formation of LCs, while neutral and decaying waves are
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Figure 15. Neutral curves for developed stably stratified shear (t0 → ∞, Ri = 0.1 and Pr = 6.7)
with opposed decaying waves (τ0 = −0.5). Note that this configuration is stable to neutral and
growing waves.
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Figure 16. Neutral curves for developed unstably stratified shear (t0 →∞, Ri = −0.1 and
Pr = 6.7) with opposed growing (τ0 = 0.5), neutral (τ0 →∞) and decaying (τ0 = −0.5) waves.

unstable to LCs. Furthermore, while both cases are stabilizing relative to the reference
case, decaying waves are destabilizing relative to neutral waves (for Ri = 0.1), at least
for l < 1, as we see in figure 13. Note too that the curve for decaying waves depicts
a fingered pattern reminiscent of its counterparts in § 6, although here the fingers are
connected.

In unstably stratified (Ri < 0) conditions on the other hand, growing, neutral and
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decaying waves are unstable to the formation of LCs and destabilizing relative to the
reference flow, as we see in figure 14. Moreover, relative to the case of neutral waves at
Ri = −0.1, and in accord with our earlier findings, decaying waves are destabilizing,
at least for l < 0.1, and growing waves stabilizing.

7.2. Opposed wind and waves

Finally, only decaying waves are destabilizing to LCs when the wind and waves are
opposed and the flow is stably stratified, as we see in figure 15. On the other hand,
all waves are destabilizing to LCs when the flow is unstably stratified. Note, however,
that in this instance growing waves are destabilizing and decaying waves stabilizing
relative to the neutral wave case at Ri = −0.1. Furthermore, decaying waves depict a
long-wave cutoff, as we see in figure 16.

8. Discussion
Nature is hostage neither to theory nor the constraints of field observations. So

in comparing our theory with observations of wind, waves and LCs, we should be
aware of a plethora of additional variables: internal waves, thermoclines, swells from
afar, variations in mixed layer depth and more, which occur in Nature, but which are
not considered in the theory. Nevertheless, it remains instructive to compare what we
know from theory with what we know from field observations.

At the onset of a wind event after a quiescent period there would presumably be
developing shear and growing waves, with an associated tendency for the instability
to occur at relatively high wavenumber (figures 6 and 7). If the shear reaches full
development while waves are still growing (which seems plausible), then the unstable
wavenumber is near lc0 (figure 4). Unless the wind drops very slowly, the wave field
will decay more slowly than the (wind-driven) shear, and the instability will move to
lower wavenumber (figure 5).

At the risk of reading too much into these idealized results, we can relate this
sequence of events to observations of LC evolution during the Surface Waves Processes
Program (Plueddemann et al. 1996; Plueddemann 2001, private communication). Here
the most energetic LCs tend to be small at the onset of a wind event and achieve
their maximum size (which seems to be limited by the mixed layer depth) at about
the time the wave field matures. Moreover decaying wave fields apparently continue
to ‘force’ the largest LCs, which accounts for the observation of LCs persisting after
a dramatic drop in wind speed. But it is not clear whether only the largest scales
persist and thus a careful study of the variability of LC scales during wind–wave
events is warranted. Also unclear is how the relative growth rates and wave age (as
used here; see § 4.4) can be estimated during an event, and thus directly related to the
theory. Nevertheless the similarities between the theory and observation are striking,
particularly in the light of Pb’s recent finding that CL2 can also credibly explain
some of Smith’s (1992) observations.

But how is the instability influenced by temporal waves? As noted above, CL2
occurs because the differential Stokes drift DD1 causes vortex lines to tilt forward
wherever the Eulerian mean shear is distorted in y, giving rise to a longitudinal
component of vorticity and ultimately vortices. Here we find that temporal waves,
through the gradient DD3, act to further advect vortex lines, but up or down (i.e.
in z) according to whether the waves are growing or decaying, thereby increasing or
decreasing the z-gradient of streamwise vorticity and, in turn, the rate at which the
instability grows.
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That rate, as we saw in § 3, can be doubly exponential in time. This, of course, does
not mean a change in time scale (for the formation of LCs) from tens of minutes
to minutes, but it does mean that LCs in growing waves are more vigorous (intense)
at a given time after onset than their counterparts in decaying waves, a feature that
should be clear from an observational viewpoint. Finally we note that examples of
wavy shear flows that are unstable to doubly exponentially growing longitudinal
vortices are rare, to our knowledge the only other example being in Wu (1993).

I should like to thank Greg Chini, Alex Craik and Al Plueddemann for their
interest and helpful comments. The work was supported by the National Science
Foundation through OCE grants 9818092 and 0116921.
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