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ABSTRACT

Three-dimensional numerical simulations of the generation and propagation of the

semidiurnal internal tide in a submarine canyon with dimensions similar to those of the Monterey

Canyon are carried out using a primitive equation model.  Forcing with just sea level at the offshore

boundary in an initially horizontally homogeneous ocean with realistic vertical stratification, internal

tides are generated at the canyon foot and rim, and along portions of the canyon floor.  The results

compare favorably with observations, both indicating enhancement of energy along the canyon floor

propagating at an angle consistent with linear internal wave theory.  Due to the earth’s rotation,

internal tide energy is distributed asymmetrically in the cross-canyon direction, favoring the southern

side.  The effect of canyon floor slope is explored, with the finding that small changes in the slope

result in large changes in the amount and distribution of the internal tide energy.  Canyons whose

floors are subcritical with respect to the semidiurnal frequency along their entire length have very

little baroclinic energy, whereas canyons that are near critical along much of their length, such as the

Monterey Canyon, develop strong internal tides that propagate shoreward.  Canyons that are near-

critical at their mouths but supercritical further inshore generate the most internal tidal energy

overall, although little of it makes it onto the continental shelf shoreward of the canyon head.  The

effects of internal tides within the canyons can be seen outside the canyons as well.  Water is

transported from depth onto the adjacent continental shelf along the canyon rims.  This tidal

pumping can be responsible for along-shore internal tide propagation and tidal-period surface currents

with relatively small horizontal scales of variability.
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1. Introduction

The presence of internal waves at tidal frequencies (internal tides) greatly complicates the

problem of forecasting coastal tidal currents.  In addition, the turbulent mixing due to the internal

wave field associated with abrupt topography has recently been shown to be of potential significance

in determining the abyssal circulation on basin-wide scales (Polzin et al. 1997; Munk and Wunsch

1998).  These facts point to the need to understand the interaction between open ocean tidal forcing

and the three-dimensional topographic features of the continental margins.  Among these

topographic features are submarine canyons, and it has long been speculated that submarine canyons

can act as traps for internal waves in certain frequency bands (Gordon and Marshall 1976) thus

greatly amplifying their energy (Hotchkiss and Wunsch 1982).  There have been numerous analytical

studies of the generation (e.g. Baines 1974; Sandstrom 1976) and propagation (e.g. Wunsch 1968;

Wunsch 1969) of internal waves on sloping bottoms.  Recently, two-dimensional numerical studies

(Holloway 1996; Xing and Davies 1996) and a three-dimensional numerical study (Cummins and Oey

1997) have been accomplished.  While several field experiments report on the internal wave field in

canyons (see Petruncio et al. 1998, hereafter PRP98, for a review), modeling results are limited to a

set of wave tank experiments (Baines 1983).  This study extends the state-of-the-art by applying a

primitive equation model to the study of internal tide generation and propagation in the presence of

a canyon, and by comparing the model results with observations.

Observations of the internal tide in Monterey Canyon by PRP98 motivated this numerical

study.  They reported baroclinic tidal currents an order of magnitude stronger than the estimated

barotropic currents, with potential and kinetic energy concentrated along characteristic ray paths

calculated from linear theory according to:

c f N= = − −
−

tan ( ) ( )θ ω ω2 2
1

2 2 2
1

2 , (1)

where θ is the angle the group velocity vector makes with the horizontal, and ω, N, and f are the

wave, buoyancy and inertial frequencies, respectively.  The high resolution field observations
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obtained in Monterey Bay present a unique opportunity to compare observed and numerically

modeled internal tide propagation in a canyon.

The goal of this process study is to gain insight into how canyon geometry affects the

generation, propagation, and dissipation of internal tides.  We applied the primitive equation

Princeton Ocean Model (POM) (Blumberg and Mellor 1987) to a domain with tidal forcing and

density stratification akin to that found in Monterey Canyon.  The idealized canyon used in the

control experiments approximates the size and shape of Monterey Canyon.  It includes a sloping

floor, sloping sides, and narrows toward the head, a combination of elements difficult to replicate in a

laboratory model, together with stratification, rotation, and tidal forcing.  Perénne et al. (1997)

studied a similar configuration using both model and laboratory approaches for the barotropic case

and showed the ability of canyon topography to rectify oscillatory flows.

POM was originally designed to address mesoscale phenomena with time scales ranging from

tidal to monthly, depending on domain size and grid resolution (Blumberg and Mellor 1987, Mellor

1996).  It includes a free surface, sub-grid scale mixing parameterizations, and a σ -(sigma) coordinate

system in the vertical dimension, all of which are likely to be important for studying the internal

tides in a submarine canyon.  The σ -coordinate transformation scales the z-level according to the

water depth, such that at the free surface σ = 0 (z = 0), and at the bottom σ = –1 (z = –H).  This results

in terrain-following vertical levels and allows high resolution of surface and bottom boundary layers

over variable bathymetry.

Huthnance (1989) notes the importance of appropriately representing the buoyancy

frequency profile and the internal wave characteristic in numerical simulations of internal tides, and

points out that these can be described better by levels or spectra in z than by layers.  Additionally, he

points out that vertically stretched coordinates offer the advantage of “more easily describing ∇ H”

(i.e., bottom slope, γ), which is important due to the sensitivity of internal wave reflections to the

ratio γ / c.  Furthermore, Kowalik and Murty (1993) state: “The resolution of the vertical processes

by a constant layer thickness often fails to reproduce the processes in the region of abrupt

topography variations or in the surface or bottom boundary layers.”  σ-coordinate models do,
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however, have their own limitations in the presence of steep topography as pointed out by Haney

(1991) and Kowalik and Murty.  This error source is minimized by the use of high vertical and

horizontal grid resolution, and by subtraction of a reference state density field before pressure

gradient calculations are conducted (Mellor et al. 1994).

The modeling studies confirm that canyons can act to amplify internal tides relative to those

propagating over the adjacent continental slope and shelf.  Several features of the internal tide in

Monterey Canyon are reproduced in the idealized simulations, including shoreward propagation of

internal tide energy along characteristic ray paths, bottom-intensified current and density

oscillations, and “tidal pumping” of cooler water onto the shelf near the canyon head.  A feature of

the internal tide which was suggested by the cross-canyon measurements in Monterey Canyon, and

confirmed by this modeling study, is the concentration of energy along the southern canyon wall due

to rotational effects.

The remainder of this paper is outlined as follows.  In Section 2, previous applications of

POM to the study of barotropic and baroclinic tides are briefly outlined, while in Section 3 details of

the model setup for this study, including forcing functions and boundary conditions, are provided.

Results from simulations using several different canyon floor slopes are presented in Section 4 with

focus on the case most similar in shape to Monterey Canyon.  Section 5 provides a discussion of

trapped wave theory and how it may apply to internal tides in a canyon, along with further

comparisons to observations from Monterey Canyon.  Finally, conclusions about this study and the

general applicability of primitive equation modeling to the study of internal tides are presented in

Section 6.

2. Previous tidal applications of POM

Numerous applications of POM to simulate barotropic tides (Blumberg and Kantha 1985,

Galperin and Mellor 1990, O’Connor 1991, Lewis et al. 1993) have reproduced observed coastal sea
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level variations with reasonable accuracy, but the current fields associated with barotropic simulations

can be expected to match observed currents only in shallow, well mixed seas and estuaries.  Oey et al.

(1985), Foreman (1995), and Xing and Davies (1996) note the importance of accounting for

stratification in numerical simulations of tidal currents.  However, even when density stratification is

properly represented, numerical simulations may fail to accurately represent observed tidal currents

unless bathymetric variations are sufficiently resolved as well.

In a study of baroclinic circulation in the northeast Atlantic shelves and seas (Oey and Chen

1992; Oey et al. 1992), tidal forcing was employed primarily to contribute to realistic bottom

friction for the study of subtidal currents.  While mean currents were accurately reproduced, the

model tidal current fields were generally weaker than observed, and Oey et al. (1992) attribute this

discrepancy to insufficient vertical resolution and smoothing of bathymetric regions with significant

variation, such as trenches and ridges.

Most significant to this study is the work of Holloway (1996) who used POM specifically to

simulate the internal tides over cross sections of the Australian North West Shelf.  Holloway's

simulations used the M2 sea level constituent for forcing and incorporated real topography in the

cross-shore direction.  Holloway’s simulations reproduced a number of features of the internal tide

that are consistent with his field measurements, including onshore propagation from the shelf break

of a predominantly first mode wave, and little energy reaching the inner portion of a 150-200 km

wide shelf.  Bottom-intensified currents near critically-sloping bathymetry were in qualitative

agreement with observations, but the amplitude of the isopycnal oscillations near the generation site

were much weaker than observed (2 m vs. 10 m).  He attributes some of the disparity between the

modeled and observed internal tides to his 2-D simplification of the actual bathymetry, in which

alongshore bathymetric variation was ignored.

Recently, a remarkable study by Cummins and Oey (1997), using a three-dimensional, tidally

forced POM simulation of the continental shelf off northern British Columbia, mapped both

barotropic and baroclinic tidal currents in the presence of realistic bathymetry.  The internal tide in

their study, whose distribution was sensitive to the locations of the major topographic features,
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significantly enhanced the overall dissipation rates computed for the barotropic tide, both through

wave radiation and through increased bottom friction.  Most of the internal tide energy in their study

propagates offshore from the shelf break, although evidence is presented for onshore propagation

associated with several complex topographic features.  The offshore baroclinic energy flux,

integrated along the 800 km of their model domain, is five times larger than the two-dimensional,

analytical estimates of Baines (1982), prompting Cummins and Oey to conclude that

“...incorporation of stratification effects in three-dimensional models may be necessary to simulate

in a realistic fashion the dissipation of semidiurnal constituents over continental shelves.”  Our

present study differs from that of Cummins and Oey (1997) in that we focus on even smaller scales

and the sensitivity of internal tide production to the particular shape of topographic features along

the continental margin, particularly submarine canyons.

3. The numerical model

a. Set up of the model domain

The bathymetry used for these simulations is idealized in order to facilitate a study of the

effects of various floor slopes on internal tides, but the basic features are representative of the

relatively steep continental slope and narrow shelf typical of the central California coast.  The

relative simplicity of the model bathymetry, as compared to the actual Monterey Bay bathymetry

(Figure 1), permits easier identification of internal tide generation sites and propagation paths.

Additionally, the performance of boundary conditions in transmitting baroclinic energy out of the

domain can be monitored more precisely than would be the case if multiple internal wave generation

sites were present.  Additional model runs with more realistic bathymetry are in progress, but they are

beyond the scope of this initial study.
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The domain includes a 2500 m deep basin, a continental slope with a maximum gradient of

7.15°, and a 20 km wide shelf, 100 m in depth (Figure 1).  The shelf and slope are incised by a single

canyon perpendicular to the coast.  The width of the canyon varies along its length, narrowing from

11 km at the intersection with the continental slope to 3 km at the head near the coast.  The eastern

boundary of the domain, which represents the coast, is the only closed boundary.

Early model runs employed a 100 km x 100 km domain, however it was found that the

domain could be reduced to 70 km x 70 km (moving both the north and south boundaries in 15 km,

and moving the western boundary in 30 km) without adversely affecting the solution.  The values of f

specified in the 70 km x 70 km model domain are appropriate for latitudes between 36° 18.6′ N and

36° 55.6′  N.

High horizontal resolution (1 km x 1 km) is used throughout the domain in order to resolve

the motion in the vicinity of the internal tide generation sites and across the narrow canyon.  High

vertical resolution (30 σ-levels) is also used throughout the model (Figure 2), in order to accurately

resolve the buoyancy frequency profile.  The σ-levels are logarithmically distributed near the surface

and bottom, with vertical resolution in the boundary layers ranging from 12.5 m over the basin to

0.5 m over the shelf.  In the middle of the water column (σ-levels 5-26), vertical resolution ranges

from 107.5 m over the basin to 4.3 m over the shelf.

The model is initialized with an in-situ temperature and salinity profile that represents

summertime stratification conditions in the vicinity of Monterey Bay (Figure 3).  The upper 1000 m

is the average of 50 CTD casts made near the mouth of Monterey Bay at 36.64° N, 122.14°W

(Rosenfeld et al. 1994).  Below that, a single cast from August 1993 is used.  The same T and S

profile is linearly interpolated onto the σ-coordinates of each grid cell, thus density is initially

horizontally homogeneous throughout the domain.  Although the equation of state used in POM

(described by Mellor 1991) uses potential temperature to calculate in-situ density, the difference

between in-situ and potential temperature at 2500 m is negligible for the purposes of this study.

The high horizontal resolution enables the use of very small values for horizontal viscosity.

Based on the summary of turbulent diffusion experiments reviewed by Bowden (1962), horizontal
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viscosity values of 1-10 m2s-1, corresponding to a Smagorinsky coefficient of 0.01, appear to be

appropriate for 1 km resolution.  The coefficient of 0.01 was used throughout these experiments.

The use of high spatial resolution over the deep basin permits clear identification of regions

associated with seaward propagating internal tide energy, however it also necessitates a very short

time step in order to ensure model stability (2 s external time step and 120 s internal time step).

b. Model forcing

The M2 tide in the eastern Pacific propagates northward with the maximum amplitude at the

coast in a manner similar to a barotropic Kelvin wave.  Analytical solutions (Munk et al. 1970;

Battisti and Clarke 1982) and field studies (Winant and Bratkovich 1981; Rosenfeld and Beardsley

1987) of the barotropic M2 tidal currents in the eastern Pacific are consistent with the Kelvin-like

wave comparison, revealing maximum flow (~4 cm s-1) parallel to the coast at local high tide and

very weak (approximately 1 cm s-1 or less) cross-shore flow.

Accounting for the alongshore propagation of the barotropic tide will be important in

simulations which incorporate realistic bathymetry beyond the mouth of Monterey Bay.   However,

in this simplified process study the model was forced at the seaward (western) boundary by specifying

the free surface elevation as a cosine wave with a period of 12.4206 h (the M2 period) and an

amplitude of 0.5 m, with no variation in the north-south direction.  The implications of neglecting

alongshore barotropic forcing are considered in the discussion section below.  The forcing that was

used here is representative of the barotropic M2 tide in Monterey Bay, which essentially co-oscillates

(Petruncio 1993, PRP98) with an amplitude of 0.5 m.  It will be demonstrated that this forcing

produces weak (0.5-1.5 cm s-1) barotropic cross-shore currents similar to those observed, but for

different reasons.  In the model, the surface wave that is reflected from the continental slope and the

coastal boundary is approximately 180° out of phase with the incoming tide and has a slightly

reduced amplitude due to dissipation through bottom friction (Clarke 1991) and internal tide

generation.  Thus, currents from this reflected wave nearly cancel currents associated with the
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shoreward propagating wave.  Observations of the internal tide (PRP98) provide evidence for the

appropriateness of a reflective boundary at the coast for the internal modes as well.

Sea level forcing at the western boundary is accomplished by specifying the surface elevation

at the boundary as:

η ωt
M MR t A t+ =1

2 2( ) cos( ) (3)

where η t+1 is the surface elevation at the forward time step, R(t) is a “ramping” function that

increases linearly over each external mode time step from 0 to 1 over an inertial period (and remains

equal to 1 thereafter), AM2 is the amplitude of the M2 tide (0.5 m), ωM2 is the M2 radian frequency

(1.4052 x 10-1 s), and t is the model time, which is incremented each external mode time step.  The

ramping function is used to reduce the transient oscillations which are generated by starting the

model from rest.

For both the external and internal modes, radiation conditions were applied to the north and

south boundaries.  The internal mode boundary conditions are discussed further in the Appendix.

4. Results

Six numerical experiments were carried out, two of which used continental slope/shelf

bathymetry with no alongshore variation, while the other four included canyons of various shape

(Table 1).  All of the experiments involved running the model with tidal forcing in the prognostic

mode for four days, with only the last three semidiurnal tidal cycles used for analysis.  The cases

without alongshore bathymetric variation were conducted in order to assess the generation of internal

tides along the continental slope and shelf break, and propagation across a narrow shelf, in the

absence of canyons.  In addition to confirming previous analytical solutions for internal tide

generation, they serve to contrast the results obtained with various canyon shapes.  The cases

involving canyon geometry were specifically designed to investigate the sensitivity of internal tides

to canyon floor slope.  Three different floor slopes were investigated, including one which shoals at
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an angle that is critical (γ /c = 1) or near-critical for the M2 frequency along much of its extent.  The

critically sloping canyon floor is of prime interest, due to its apparent importance in the case of

Monterey Canyon and the failure of linear theory to adequately describe critical bottom reflection

(Wunsch 1969).

In the remainder of this section, the results of the experiments using simple continental

slope/shelf bathymetry are discussed first, and are then contrasted with the canyon case which most

closely resembles Monterey Canyon in size and shape.  Results of the canyon floor slope

investigation are then presented.

a. Internal Tide Generation Over the Continental Slope and Shelf Break

The steep continental slope typical of the eastern Pacific was approximated with two

different geometric shapes: a linear, 6.62° rise with an abrupt shelf break, and a cosine function with

an amplitude of 1200 m and wavelength of 60 km (Figure 4).  These runs are referred to as cases 0a

and 0b, respectively (Table 1).  The cosine amplitude of 1200 m in case 0b was chosen so that the

trough of the wave shape would correspond to the onset of the continental rise at a depth of 2500 m,

and the crest would occur at the 100 m deep shelf break.  The maximum slope resulting from the

cosine function was 7.15°, occurring at a depth of 1300 m (the inflection point of the cosine shape).

The two shapes are useful in demonstrating the sensitivity of internal tide generation to the rate at

which the bathymetry in the generation region transitions from supercritical (γ /c > 1) to subcritical

(γ /c < 1).

The model results show that the barotropic tidal currents (as represented by the depth-

averaged currents) are weak, as expected for a wave that is nearly standing in the cross-shelf

direction.  Maximum shoreward flow of approximately 1.5 cm s-1 occurs, as expected, at the shelf

break (Baines, 1983) during rising tide.  The increase in barotropic current speed at the shelf break is
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a result of the rapid depth change from basin to shelf.  It is the vertical velocity induced by the

barotropic tidal current flowing over the slope that is the driving force for internal tide generation.

The cross-shelf slices of the current fields during rising tide shown in Figure 4 reveal the

relatively strong baroclinic currents resulting from internal tide generation at the shelf break.  As

discussed by Prinsenberg et al. (1974), who used a modal representation of the current field, the

discontinuity in the barotropic cross-shelf velocity at the shelf break results in the generation of two

beams of internal waves propagating seaward, and a narrow beam of waves propagating shoreward.

These beams can be seen in the cross-shelf velocity snapshots shown in Figure 4.  Superimposed on

the velocity plots are rays (calculated according to (1) using the initial density profile) indicating the

M2 characteristics emanating from the shelf break.  As described by Prinsenberg et al., the two

characteristics emanating seaward describe the boundaries of the in-phase currents associated with the

seaward propagating energy.  The lower half of the seaward beam is enhanced by the weak internal

tide generation along the continental slope, as discussed in Prinsenberg and Rattray (1975). The

presence of several additional beams emanating downward along the continental slope in the case of

the cosine-shaped bathymetry can be attributed to the broader area available for internal tide

generation, as compared to the linear slope case that represents an abrupt change from supercritical

to subcritical bottom slope at the continental shelf break.  This result is in agreement with the study

of Baines (1974), who found that bathymetric features with concave downward shapes were

especially efficient generators of internal tides.

Although not very noticeable in the particular phase of the tide depicted in Figure 4, the base

of the 6.62° linear continental slope was also found to be an internal tide generation site.  Generation

occurred at a depth of approximately 2200 m (where the slope of the M2 characteristic is, over a

short depth range, equal to 6.62°) and resulted in a beam of internal tide energy propagating upward

and seaward from that generation site.  Use of the steeper concave-upward shape at the base of the

continental slope was found to nearly eliminate internal tide generation in that portion of the

domain.  Since internal tide generation at the foot of the continental slope was not the focus of this

study, the cosine-shaped continental slope was used for each of the model runs involving canyon
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bathymetry.  In models with realistic bathymetry, internal wave generation could be expected to

occur at various locations along the continental slope, as well as at the shelf break.

By contrast with the offshore-propagating energy, the narrow shelf beam is well-described by

a single characteristic reflecting between the sea surface and bottom inshore of the shelf break.  A

closeup view of the currents between the shelf break and the coast at four points in the tidal cycle is

provided in Figure 5.  In the case of this abrupt shelf break, the most intense currents are found

during rising and falling tides at locations where the beam reflects from the surface and bottom.  This

was also generally true in the case of internal tides generated at the rounded shelf break, although the

beam was slightly more diffuse due to the wider area available for generation.

b. Monterey Canyon case

1) CANYON SHAPE

This section discusses the results of a simulation involving a canyon fairly similar to

Monterey Canyon in its shape, size, and proximity to the coast, and will be referred to as the

Monterey Canyon case or case 1 (Table 1).  The bathymetry for this simulation is depicted in Figures

1 and 6.  The floor of the real Monterey Canyon increases in depth from 100 m to 1000 m over a

distance of approximately 20 km, with an average slope of 2.6°.  Its slope is critical with respect to

the M2 frequency in the 600-800 m depth range for typical buoyancy frequency profiles.  In order to

construct a model canyon with its head located near the shore, and ensure realistic width and depth

while limiting the steepness of the sides to avoid pressure gradient truncation error (Haney 1991), a

canyon floor slope of 1.55° was used.  The model canyon head is located 1 km from the closed

eastern boundary, and the floor increases in depth from 100 m to 937 m (where it intersects the

continental slope) over a distance of 31 km.  The rim of the canyon is 11 km wide at the foot, and

narrows to 3 km at the head.  The canyon floor has a constant width of 3 km.  The steepness of the
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walls varies.  It is no greater than 12.2° at any point, yet it is supercritical for the M2 frequency

everywhere.  For the initial density profile and the M2 frequency, the model floor slope is critical at

a depth of about 300 m.

2) CROSS-SHORE (ALONG-CANYON) ENERGY PROPAGATION

As in the previous cases without a canyon, the barotropic currents outside the canyon were

found to be strongest at the 100 m deep shelf break, with amplitudes of less than 1.5 cm s-1.  Within

the outer part of the canyon, the depth-averaged current ellipses are similar in magnitude to those on

the adjacent outer shelf but more rectilinear (Petruncio 1996).  The largest depth-averaged currents

(~2 cm s-1) are found near the head of the canyon as predicted by Baines (1983).

Vertical sections of the cross-shore currents along the axis of the canyon at four points in

the tidal cycle are depicted in Figure 7.  The currents associated with the internal tides propagating

along the floor of the canyon were found to be 3-4 times stronger than those propagating across the

shelf in the case with no canyon (Figure 5).  Maximum cross-shore current speeds of 8 cm s-1 were

found to occur during rising tide, near the critical region of the canyon floor at 300 m depth.

As was observed to be the case in Monterey Canyon during an April 1994 field experiment

(PRP98), internal tide energy in the model canyon propagates shoreward nearly parallel to the

canyon floor, and downward phase propagation results in maximum shoreward flow occurring later

with depth.  The linear internal wave characteristic emanating from the foot of the canyon defines

the upper boundary of the strongest currents.  The phase lag between the model currents and sea level

is within 1/4 cycle of that reported by PRP98 for the April conditions; near the head of the canyon,

maximum shoreward flow occurs in the lower half of the water column, close to the time of high tide.

The observed semidiurnal currents and the model currents derived using M2 forcing are depicted at

similar phases in Figure 8.  Although the model currents are 50% weaker than those observed, the

structure of the observed and modeled current fields are similar, with strong shoreward flow along the

floor, offshore flow near the surface, and isophase lines nearly parallel to the canyon floor.
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The region of strongest current activity in the model simulation lies in the bottom boundary

layer, at floor depths of 200 to 300 m.  Inspection of the density field in this boundary layer (Figure

9) reveals the presence of bore-like surges along the canyon floor.  A thin layer of dense water is

seen to surge up the floor during rising tide, resulting in isopycnal displacements of 5-10 m.  At these

depths, the vertical resolution in the bottom three σ-levels is between 1 and 1.5 m.  This boundary

layer activity is consistent with the 2-D numerical simulations of Slinn and Riley (1996), who

observed that critical angle internal wave reflection on floors with shallow slopes (3.4°-9°) resulted in

the upslope propagation of thermal fronts in the bottom boundary layer.

The specified tidal forcing is monochromatic and, although nonlinear interactions can give

rise to other frequencies (Xing and Davies 1996), most of the energy remains in the semidiurnal

band.  Therefore, the amplitudes of the M2 tidal currents (u0, v0, w0) and density (ρ0) oscillations are

estimated directly from the variance fields, since this method is less computationally intensive than

using a least squares harmonic analysis for the M2 frequency at each grid point.  To estimate the M2

amplitudes, the u, v, w, and ρ  fields, sampled at an interval of 3720 s (12 points per tidal cycle),

were demeaned and the resulting perturbation quantities (e.g., ′A ) used to compute amplitudes

according to A Ao = ( )'2
2

1

2 , where the overbar denotes the mean value over three tidal cycles.  We

found that amplitudes calculated in this manner were practically identical to those arrived at from the

harmonic analysis method of Foreman (1978).

In order to observe the effects of the internal tide on the near-surface and near-bottom

currents, the shallowest (between σ-levels 1 and 2 at 0.27-6.75 m) and deepest (between σ-levels 29

and 30 at 0.27-6.75 m above the bottom) tidal ellipses are shown in Figure 10.  The near-surface

ellipses 5 to 10 km south of the canyon are amplified 5-10 times above their barotropic values.  This

is where beams emanating from the southern canyon rim reflect from the surface.  This pattern is in

general agreement with HF radar-derived tidal ellipses for Monterey Bay (PRP98), although the near-

surface ellipses directly over the head of the model canyon are only slightly amplified above their

barotropic values.
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Within the model canyon, progressing toward shore, the near-bottom currents significantly

strengthen at a depth of 300-350 m in the critically sloping region about 8 km from shore.  The

near-bottom currents are also intensified over the southern rim of the canyon, where significant

internal tide generation is observed to occur.

Thus far we have looked at model results in terms of the amplitude of the tidal currents

produced in the simulations.  Velocity, however, is not the quantity most representative of the

energy conversions taking place between the barotropic forcing and the baroclinic internal tides.

Therefore, the energetics associated with the internal tide were investigated by calculating the mean

perturbation kinetic energy density, KE = (
1
4 0 0

2
0
2

0
2ρ u v w+ +( ) ) and potential energy density, PE =

(
1
4

2
0

2

0
2

g

N

′ρ
ρ

) on along- and cross-canyon slices.  For these computations, N was computed from the

vertical gradient of the model mean density field calculated over 3 tidal cycles, using centered

differencing between σ-levels.  The vertical velocity used in calculating KE was first converted from

σ to z-coordinates according to:
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where wσ is the vertical velocity referenced to σ-coordinates, σ  is the value of the σ-coordinate for

the grid cell of interest, D is the total depth (bathymetric depth plus free surface elevation) and η  is

the free surface elevation (Blumberg and Mellor 1987).  In this application however, the horizontal

gradients of η are negligible and were not included.  Once computed, KE and PE were summed to

obtain the mean perturbation total energy per unit volume (E).

Figure 11 shows u0 and E in a slice along the canyon.  Maximum values occur near the floor

close to the canyon head.  A “shadow zone” of minimal internal tide energy exists between the M2

characteristic rays emanating shoreward from the foot of the canyon and the reflected ray

descending from the sea surface near the canyon head to the floor of the deep basin.  The increase in

E with depth is consistent with the E profiles calculated from both the April and October field
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measurements reported by PRP98.  However, the maximum value of 2.1 J m-3 is 25-50% of the

observed magnitudes.  Qualitative agreement with the measurements was also found in the ratio of PE

to KE.  PE was found to be greater than KE near the head of the model canyon, as was the case in

the real canyon.  Linear theory, on the other hand, predicts a PE:KE ratio of 1:2.26 for the M2

frequency at this latitude.  The observed and modeled skewing of the energy distribution towards

more PE may be related to internal wave shoaling near the canyon head, although this speculation

requires further study.

E in five cross-canyon slices, obtained every 6 km between 26 km and 2 km from shore, are

depicted in Figure 12.  Progressing shoreward from the deepest slice 26 km from shore, E is seen to

be focused near the floor (as was found to be the case in the along canyon slices), but is

asymmetrically distributed in the cross-canyon direction, with a greater percentage lying along the

southern wall.  This asymmetry in energy distribution is likely due to rotational effects, and is

discussed further in Section 5.  Local internal tide generation along the canyon floor is expected

where the floor slope is critical for the M2 frequency, which occurs at a depth of about 300 m and 8

km from shore.  Indeed, the internal tide appears to be much more energetic in the final 2 slices 8

km and 2 km from shore, and energy near the floor is more symmetrically distributed.

In order to observe changes in total internal tide energy in the cross-canyon slices, it is a

simple matter to multiply values of E by the average vertical and horizontal thicknesses of the

corresponding σ-cells and sum over the slice, using the 1 km model resolution for the cross-shore

dimension.  Given the E distributions seen in Figure 12, particularly near shore, it is important to

include the energy associated with the waves generated along the rims within these volume segments,

since they may represent a transfer of energy from internal tides propagating along canyon to those

propagating along the coast.  A cross-canyon (along-shore) segment width of 31 km was therefore

chosen so that contributions from the rim-generated waves would be included in the calculation.  The

total energy in each volume segment is depicted in Figure 13 along with similar computations for the

additional canyon cases discussed below.
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In case 1, the total perturbation energy in the vicinity of the canyon decreases between the

volume segments centered 26 km and 14 km from shore.  This energy decrease most likely

represents turbulent dissipation of the internal tide due to shear along the canyon floor and walls.

The total energy present in the vicinity of the canyon nearly doubles however, between segments

centered 14 km from shore and 8 km from shore, indicating that contributions from internal tide

generation on the floor of the canyon far outweigh the losses due to dissipation.  It should be noted

that if the floor slope served only to focus the energy associated with the shoreward propagating

internal tide into a decreasing cross-sectional area, the total baroclinic energy present would either

remain constant, or decrease due to turbulent losses in the bottom boundary layer.  However, the

critical floor slope also provides a generation site for internal tides; energy is therefore transferred

from the barotropic tide to the baroclinic tide not only at the foot of the canyon but along the floor

in the upper reaches of the canyon as well.

3) ALONG-SHORE ENERGY PROPAGATION

Energy transfer is also likely to occur along the canyon rims.  Significant isopycnal

displacements associated with the internal tides are observed near the rims of the canyon close to the

head of the model canyon (Figure 14).  As the strong shoreward flow encounters the head of the

canyon, isopycnal displacements of 5 to 10 m move water from beneath the canyon rim up onto the

shelf.  As the isopycnals sink back down below the rim, lenses of dense water pinch off and remain on

the shelf, in the manner suggested by Shea and Broenkow (1982).  Based on observations from

Monterey Canyon, Shea and Broenkow consider this process a potentially significant source of

nutrient enrichment for Monterey Bay.

This “tidal pumping” along the rim of the model canyon near its head is clearly a source of

along-shore-propagating internal tides.  Evidence for this is seen in the cross-canyon E sections in

Figure 12.  A snapshot of the along-shore velocity component in an along-shore slice near the head

of the canyon is depicted in Figure 15.  This was taken from an early model run using the larger 100
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km x 100 km domain, which provides a better view of the gradual change of the along-shore internal

tide from beam-like near the generation site at the canyon rims to first-mode-like near the model

boundaries.  The surface and bottom reflections of the beams emanating from the north rim of the

canyon are regularly spaced and, after the second surface reflection, visual inspection indicates that

most of the higher modes have been damped out.  The remaining signal propagates as a first vertical

mode internal Kelvin wave.  The signature of these waves can be seen in surface current patterns, as

well as in small (3-4 mm) deflections of the sea surface, that decay exponentially offshore over a

distance of 4 km, which is approximately one internal Rossby radius of deformation.  The northward

alongshore phase speed of 35 cm s-1, estimated from successive plots of free surface elevation, is very

close to the theoretical value of ( )′g H
1

2  = 37.8 cm s-1.    

The beams of internal tide energy in Figure 15 projecting southward from the canyon rim are

slightly more intense and appear less regularly spaced.  The irregular spacing is probably due to the

fact that the waves on the south side of the canyon are not propagating along the coast, but are

propagating seaward across the shelf as ordinary internal Poincare waves.  The sea surface signature

of these waves is much broader and indicates a radial spread of internal wave energy away from the

canyon.  This interpretation of the north-south asymmetry in wave generation and propagation is

supported by model runs with the Coriolis parameter set to zero (i.e., no rotation).  In the absence of

rotation, the waves have no preferential direction of propagation.  Instead, symmetric generation of

internal waves along the rims of the canyon and radial spreading of internal wave energy away from

the canyon head are observed.

c. Effect of canyon floor slope

In order to further investigate the effects of canyon floor slope on internal tide propagation,

additional experiments were conducted with bottom slopes of 0.74°, 1.55°, and 2.29° (cases 2a, 2b,
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and 2c, respectively, Table 1).  In all three cases, V-shaped canyons with width constant along the

length (3 km at the floor and 11 km at the rim) were used (Figure 16).  Due to the fact that the ratio

γ : c at the bottom of the water column varies along the length of the canyons (since N is a function

of depth), the two steepest model floor slopes cannot be strictly defined as either subcritical, critical,

or supercritical.  The 0.74° floor slope however, is subcritical along its entire length.

The mean perturbation energy density, E, was calculated for along-canyon and cross-canyon

slices as described in the previous section.  Looking first at the along-canyon comparisons in the

region of the canyon (Figure 17), we see that the largest energy density is found along the floor in

the case of the 1.55° floor slope.  The peak value occurs where the floor slope is parallel to the

linear internal tide ray path (cf Figure 11).  In the more steeply sloping case with a floor slope of

2.29°, there is a broad region near the floor with large energy densities, particularly in the deep water

at the foot of the canyon.  In the 0.74° and 1.55° cases, the foot of the canyon represents a change

from supercritical to subcritical bathymetry, while in the 2.29° case this change is from supercritical

to critical.  The transfer of energy from the barotropic tide to the baroclinic tide is, therefore,

accomplished more efficiently with the 2.29° floor slope, since the barotropic motion (guided by the

floor slope) and the baroclinic motion (guided by the frequency of the forcing and the degree of

stratification) lie in the same plane.  However, little of the energy generated at the foot of the 2.29°

canyon floor reaches the shelf, since the floor is supercritical for the M2 frequency at shallower

depths.  Finally, the 0.74° floor slope results in relatively low E values since it is subcritical with

respect to the M2 frequency along its entire length.

E along three cross-canyon slices are presented for each of the constant width canyons in

Figure 18.  Note that the vertical scale used to depict the slice at a given offshore location is kept the

same for each of the three canyons, but the scale changes between offshore locations.  Due to the

short length of the canyon with the 2.29° floor slope, the slice closest to shore (2 km from shore)

actually represents the portion of the continental shelf which lies shoreward of that canyon, and

illustrates the minor amount of baroclinic energy reaching the shelf in that case.  The distribution of

E in each of the three canyons shows some evidence of trapping along the south wall.  Total energy
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estimates for these three cases are also depicted in Figure 13.  These curves show that the amount of

energy present near the foot of the canyon with the 2.29° floor slope is more than twice that

present in the other canyons, but that little of that energy reaches the inner shelf.  The increase in

energy that occurs between 14 km and 2 km from shore with the 0.74° floor slope (case 2a) most

likely indicates some contribution from generation along the canyon rim.  The contribution of

energy from that process is apparently sufficient to offset turbulent losses in the bottom boundary

layer.  The energy in the 1.55° floor slope case also increases between 14 km and 2 km from shore,

however this increase is larger than in the subcritical case, due to an additional contribution from

generation along the critically sloping floor in the vicinity of 8 km from shore as was seen in case 1.

5.  Discussion

a. Trapped internal wave theory

Linear theory for freely propagating and standing internal waves is reviewed in PRP98.  Here

we discuss theory relating to trapped, or evanescent, internal waves since our results indicate their

presence.  The effect of canyon walls on internal tide propagation has been discussed in traditional 2-

D terms, i.e. as either subcritical or supercritical for internal waves incident from above (Gordon and

Marshall 1976; Hotchkiss and Wunsch 1982).  Hotchkiss and Wunsch state that the effect of sloping

walls in a V-shaped canyon is to enhance the focal properties of canyons so that energy entering the

canyon from above will tend to be concentrated near the floor.  Hotchkiss and Wunsch also consider

the effect of internal tide generation at the rim of a canyon, noting that beams of energy should

radiate toward both the shallow and deep water (i.e., up onto the shelf, and down into the canyon).

Another possible effect which has not received attention in the literature is that energy propagating

shoreward in a canyon can become trapped along the right side of the canyon (facing shoreward), if

certain conditions are met (Rhines 1970).
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Rhines (1970) presents a theoretical treatment of inertia-gravity wave propagation which

includes the combined effects of stratification, rotation, and topography based on linearized,

Boussinesq equations for wave motion in a rotating, stratified fluid bounded by a single wall.  Rhines

shows that edge waves may occur for all frequencies less than N sin γw, where γw is the angle of the

inclined wall from the horizontal.  Rotational effects cause the waves to propagate with shallow

water to the right, however the maximum trapping frequency is independent of f.  The frequency of

the trapped waves and their angle of propagation are related to the inclination angle by

ω γ φ= N sin sinw , where φ is the angle between the upslope direction and the horizontal component

of the phase velocity.  The degree of trapping (i.e., the proximity to the wall of significant motion)

is shown to be strongly dependent on γw and its relation to a trapping coefficient S = N/f.  In the

limiting case of a vertical wall, the edge wave is simply an internal Kelvin wave, with motion

decaying exponentially away from the wall.  For relatively small slopes (γw ~ S-1) and ω ~ f, the case

most applicable to internal tide propagation, strong trapping occurs, with motion penetrating about

one wavelength into the fluid.  In this case, the “wall” is more appropriately described as the bottom,

and the waves are referred to as “bottom-trapped” waves.  As in the case of free internal tides

propagating normal to the depth contours, planes of constant phase for the bottom-trapped waves

are almost parallel to the boundary.  Rhines speculates that the semidiurnal barotropic tide incident

on the continental rise could produce strong trapped motions propagating energy along the isobaths

(i.e., along the continental slope), as well as the more commonly discussed free waves.

In the Monterey Canyon case experiment (case 1), conditions are favorable (ωM2 < N sin γw )

for trapping the internal tide along the southern wall in the middle and deeper parts of the canyon.

Examination of perturbation energy in cross-canyon slices of the model data does in fact reveal

asymmetric energy distribution (Figures 12 and 18), with greater energy density existing along the

southern wall of the canyon.  It is also found that generation of internal tides at the rim of the

canyon is asymmetric, with stronger generation occurring along the southern rim.

Generation of internal tides at the rim of a canyon could be caused by the vertical

components of both the barotropic and baroclinic tidal currents, however the vertical component of
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the baroclinic tides encountering the rim of this model canyon would be an order of magnitude

stronger than that of the barotropic tide.  The horizontal components of the barotropic tidal

currents near the head of this model canyon are only a few millimeters per second, and the vertical

component induced by the sloping sides of the canyon would be even smaller.  The fact that internal

tide generation is stronger on the southern rim of the model canyon is in accordance with the

increased baroclinic energy already present along the southern wall due to trapping of shoreward

propagating internal tides.  In the real ocean, a greater contribution to internal tide generation by the

horizontal component of the barotropic tide would be expected in canyons which are not sheltered

by a bay, and which are thus exposed to stronger alongshore (cross-canyon) barotropic currents.

b. Comparison with prior idealized study of Baines (1983)

Some aspects of the present study are similar to the combined laboratory and analytical work

described by Baines (1983) in which a constant-slope, constant-width, narrow canyon was simulated.

In that study, the strengths, phases, and reflection conditions of internal tides generated within the

idealized canyon were also sensitive to the ratio γ / c.  The laboratory results were dominated,

however, by reflections from the open boundary at the foot of the canyon leading to down-canyon

energy propagation, particularly in the critical case, γ / c =1.  We do not see that in our primitive

equation simulations.  Differences in canyon geometry and stratification between our study and that

of Baines (1983) may explain this difference in behavior.  Our canyon floor slopes are small

compared with the continental slope, whereas the canyon floor and continental slope have identical

steepnesses in the Baines study.  As a result, there is no equivalent to the canyon foot generation site

in the earlier work.

Because of the variable buoyancy profile employed in our case, we have focused on the

importance of local internal tide generation where the floor slopes are critical for only a few

kilometers.  That is, γ / c is spatially variable within a run.  Multiple generation sites, such as the

canyon foot and the locally critical floor region, can produce complex interactions and affect the

internal tide phases to some degree, but we see upward (shoreward) energy propagation along the
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bottom in all cases.  Hence, reflections of the baroclinic motions from our model coastal boundary---

and from supercritical portions of the canyon floor---are important, but they result in depth-

concentrated (high-mode) reflections that do not resonate with the offshore open boundary in the

manner reported by Baines (1983).

c. Comparison to observations

Figure 8 depicts snapshots of the semidiurnal currents observed in Monterey Canyon and the

model-derived M2 currents for the idealized canyon shape.  Although the model currents are 50%

weaker than observed, the structure of the observed and modeled current fields are qualitatively

similar, with strong shoreward flow along the floor and offshore flow near the surface.  In both cases,

the isophase lines are nearly parallel to the canyon floor.

There are several reasons why the model currents might be expected to be weaker than the

baroclinic tidal currents observed in Monterey Canyon.  One is the simplified model bathymetry.

The only internal tides entering the model canyon are those generated at the foot, along the floor,

and on the rims.  In the real ocean one may expect to find features seaward of a canyon which also

generate internal tides and further contribute to the amount of internal tide energy focused by the

canyon.  Such is the case in Monterey Bay, where a large feature (“Smooth Ridge”) favorable for

internal tide generation lies just seaward of Monterey Canyon (PRP98).  The strength of the internal

tides generated at a given site is affected by the depth of the generation site, since for a given cross-

shelf barotropic mass flux, the barotropic current speeds will be greater above a shallow shelf break

than a deeper one.  Also, the complicated shape of the shelf break in the vicinity of Monterey Bay

may result in propagation of internal tide energy into Monterey Canyon from other shallow

generation sites.

Secondly, some of the disparity between the strength of the modeled and observed internal

tides can also be attributed to the use of only one tidal constituent in the model.  This simulation was

forced with a sea level amplitude of 0.5 m, corresponding to the M2 tidal constant amplitude of 0.5
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m measured in Monterey Bay.  The April 1994 measurements described in PRP98 were made during a

time of spring tides when the observed tidal range, a result of superposition of tidal constituents not

separable in a 25 h time series, was closer to 1 m.  A model simulation forced with 1 m M2 amplitude

(simulating superposition of several semidiurnal tidal constituents) results in a model current field

with similar vertical structure but maximum amplitudes of 15 cm s-1, much closer to the observed 20

cm s-1 internal tide amplitude.

Thirdly, it is noted that the barotropic tidal currents in the Eastern Pacific, seaward of

Monterey Bay, have a significant along-shore (hence, cross-canyon) component, which could

generate significant internal tides along the canyon rims and at other topographic features which lie

beyond the mouth of the Bay.  This additional internal tide generation could contribute significantly

to the internal tide energy levels within Monterey Canyon.  The model’s barotropic tidal current is

purely cross-shore.  Finally, the presence of upwelling plumes, fronts, and eddies near Monterey Bay

may modify the propagation paths of internal tide energy, and could serve to focus additional energy

into Monterey Canyon.  The initial horizontal homogeneity of the model density field precludes this

possibility.

Once generated, the internal tidal currents propagating within the model canyon are

influenced by their interactions with the turbulent boundary layers.  Therefore, some aspects of these

results, such as the magnitude of the currents within the canyon and the amount of tidal pumping

along the canyon rims, will depend on the details of the turbulence closure scheme and accompanying

model coefficients.  Only the standard POM closure scheme was used in this study (Mellor and

Yamada, 1982).  Future studies would benefit from a sensitivity study to a wider variety of turbulence

coefficients, as performed recently by Holloway and Barnes (1998).  Even more appropriate may be

simulations using a variety of turbulence closure schemes, as employed by Allen et al. (1995) in two-

dimensional simulations of coastal upwelling fronts.
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6. Conclusions

This study, using the Princeton Ocean Model with 30 σ-levels in the vertical and 1 km x 1

km horizontal resolution, demonstrates that internal tide generation can occur at the foot, floor, and

rims of a submarine canyon, when forced with 0.5 m amplitude semidiurnal sea level oscillations

along the offshore boundary.  The baroclinic tidal currents in the model dominate the barotropic tidal

currents, which have weak cross-shore components.  This situation is typical of the central

California coast and other coastal regions with narrow continental shelves.

Tidal forcing in the presence of a continuously stratified density field results in internal tide

energy propagation along paths that are well described by the characteristic slopes given by the linear

dispersion relation for internal waves.  Beams of energy are observed to propagate shoreward and

seaward from the shelf break and from the canyon foot.  The strength of the internal tides

propagating shoreward in model canyons, and the amount of internal tide energy reaching the

canyon head, are found to be very sensitive to canyon floor slope.  Specification of a 1.55° floor

slope, which is slightly subcritical for the M2 frequency near the foot of the canyon and critical in

the upper reaches of the canyon, results in a bottom-intensified internal tide which propagates

energy along the length of the canyon from the foot to the head (Figure 11).  In this case, internal

tide generation is observed to occur not only at the canyon foot but also along the critically sloping

portion of the canyon floor, and on the rims of the canyon near the canyon head as well.

Generation along the floor results in a significant contribution to total perturbation energy within the

model canyon, however the strong currents associated with generation along the floor appear to be

confined to a thin bottom boundary layer.  The importance of internal tide generation along the

floors of real canyons, which are not as straight and smooth as the model canyon floor, remains to

be established.

A minor reduction in floor slope (from 1.55° to 0.74°), such that the canyon floor is

subcritical for the M2 frequency along its entire length, results in much weaker canyon currents (1.5

cm s-1 versus 8 cm s-1) and virtually no generation of internal tides along the canyon rims.  A minor
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increase in floor slope (from 1.55° to 2.29°), such that the canyon floor is critical at the foot and

supercritical near the head, results in much more energy near the foot, but much less energy

shoreward of the canyon head due to backward reflection of the internal tide energy in the upper

reaches of the canyon (Figure 17).

The vertical motions associated with the internal tide near the head of the model canyon

result in pumping of cold water from the canyon onto the shelf (Figure 14), as suggested by Shea and

Broenkow (1982) based on observations from Monterey Canyon.  Bottom-trapping (Rhines 1970)

may result in a focusing of shoreward-propagating internal tide energy along the southern wall of the

model canyons.  This may also result in stronger generation of internal tides and greater pumping of

cold water along the southern rim near the canyon head.  Relatively strong internal tide generation is

observed to occur along the canyon rims near the head, with subsequent propagation of internal tides

in the alongshore direction (Figure 15).  Trapping due to rotational effects was also observed in these

alongshore-propagating internal tides, which propagate as internal Kelvin waves north of the canyon

but are more diffuse on the south side.

Upward propagation of internal tide energy from the canyon rims, and the subsequent

reflection of this energy from the sea surface, results in amplification of surface currents near the

canyon head.  This mechanism for enhancement of surface tidal currents may explain observations

of stronger semidiurnal surface currents above the head of Monterey Canyon (Paduan and Cook

1997; PRP98).

Despite the use of simplified bathymetry and tidal forcing, the numerical simulations

reproduce several features of the internal tide that are in qualitative agreement with observations in

Monterey Canyon, including upcanyon energy propagation, bottom-intensified currents above the

canyon floor, internal tide generation along the rim of the canyon, and tidal pumping of dense water

up onto the shelf near the canyon head.  The fact that these features are observed in the presence of

simplified bathymetry and forcing is encouraging for the future use of this model as a numerical

laboratory to simulate internal tide generation and propagation in the presence of realistic

bathymetry and, indeed, large efforts are underway to use realistic numerical modeling to assess the
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role of barotropic-to-baroclinic energy conversion along continental margins (Cummings and Oey,

1997), at the Hawaiian Ridge (Kang et al., 2000; Merrifield and Holloway, 1999; Luther, 1999), and

associated with particular features such as the Monterey Submarine Canyon (Rosenfeld et al., 1999).
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APPENDIX

Internal Mode Boundary Conditions

The formulation of boundary conditions for internal waves is an area of active research.  The

simplest approach is to apply a sponge boundary condition in which the velocity is gradually reduced

to zero over a number of model grid points.  There are a number of drawbacks to sponge boundaries,

however, including greater computational expense (as compared to a radiation condition) due to the

requirement for a larger domain, and the prevention of two-way information flow that is desirable in

nested grid systems.  A more physically correct, but computationally complex, approach is to

decompose the baroclinic mode velocities into a set of internal orthogonal modes and prescribe

boundary conditions for each mode (Shulman and Lewis 1995).  If the internal waves in the model

domain are propagating mainly in the first baroclinic mode, a simplified radiation condition can be

formulated based on the approximate phase speed of the first mode wave, c g Hi ≈ ′( )1 2/
.  This

approximation can be incorporated into the explicit gravity wave radiation condition (Chapman

1985):

U U UB
t

B B
t+

±= + −1
1 1µ µ( ) , (A1)

where µ = c t xi∆ ∆/ .

If the phase speed of the internal waves is improperly specified (via the µ term in the

radiation boundary condition), only partial transmission of the internal waves through the boundary

will occur.  In our case, initially imperfect transmission was detected in animations of sea level, which

depicted internal Kelvin waves propagating along the closed eastern boundary and then turning the

corner (as if the open boundary were closed) and propagating westward with a slightly reduced

amplitude.  The model domain size was subsequently chosen such that the internal Kelvin waves

would be propagating in the first mode by the time they encountered the open boundary, and the

phase speed of a first mode wave was used in the formulation of the radiation boundary condition.
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The choice of ∆x =1 km (constant throughout the domain), ∆ti =120 s, and the estimated

maximum internal phase speed of ci ≈ × × =( .
.

) .9 8
0 15
1027

2500 1 89
1

2  m s-1 results in µMAX = 0.227.  µ

is assumed to vary only with water depth (the density perturbation is assumed to be constant along

the boundary), and is therefore approximated by µ ≈ ( )0 227
1 2

. /
/

H HMAX .  This approximation is

successfully applied on the north and south boundaries of the domain.

This approximation is not suitable at the western boundary, where the internal tide is

propagating in a beam-like manner (i.e., in many modes).  A sponge boundary condition is therefore

employed at the western boundary.  The internal velocity components are gradually reduced to zero

at the western boundary through multiplication with the sponge, which is defined as:

SP
i

N
= − − −



1 1

2 2[ ] (A2)

where i is the grid point number (increasing in the eastward direction from 1 to iMAX) and N is the

total number of grid points used for the sponge, which in this case is 10.
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Figure 1.  Monterey Bay bathymetry and a sample model bathymetry that incorporates a relatively

narrow shelf, a steep (7°) continental slope, a deep basin, and a canyon head lying close to shore.

Figure 2.  Along-canyon (upper) and cross-canyon (lower left) sections through the model domain

showing the vertical distribution of the 30 sigma levels, and a cross-shelf section (lower right)

depicting the upper 15 sigma levels.

Figure 3.  Temperature and salinity profiles used for model initialization, and the corresponding

density (σθ) and buoyancy frequency (N) profiles.

Figure 4.  Cross-shelf sections of u during rising sea level for a sharp (upper) and cosine-shaped

(lower) continental shelf break together with characteristics (solid lines) from the linear internal

wave dispersion relation including rotation effects.

Figure 5.  Cross-shelf sections of u at four times during the semidiurnal tidal cycle, as indicated by

the stage of the sea level, together with characteristics emanating from the shelf break (solid lines)

and reflecting from the coastal boundary (dashed lines).  Note the 180° phase shift in horizontal

velocity after reflection from the vertical boundary.

Figure 6.  Case 1 model bathymetry.  In plan view, depth is contoured every 200 m from 100 m t o

2300 m.  The horizontal dotted line indicates the location of the along-canyon (x-z) slice used for

data analyses.  The three vertical dotted lines indicate the positions of cross-canyon (y-z) slices 26,

14, and 2 km from shore.

Figure 7.  Along-canyon sections of u at four times during the semidiurnal tidal cycle, as indicated

by the stage of the sea level, together with characteristics emanating from the shelf break (solid



35

lines).  Note that the velocity scale in Figure 7 has been expanded to ±6 cm s-1, versus the ±2 cm s-1

scale used for the shelf currents in Figure 5.

Figure 8.  Along-canyon section of the model u (cm s-1) at time of high tide (lower), and the

observed u (cm s-1) 2.5 h after M2 high tide (upper), as derived from harmonic analysis of in-situ data

(PRP98).

Figure 9.  Density sections along the critically sloping portion of the model canyon at six times

during the tidal cycle.  In-situ densities ranging from 1027.35 to 1027.95 kg m-3 are contoured at

intervals of 0.05 kg m-3.

Figure 10.  Tidal ellipses for the shallowest (left) and deepest (right) model currents, assuming all of

the variance is at the M2 frequency.  Depths are contoured in 50 m intervals starting at 100 m.

Figure 11.  Along-canyon sections of M2 u amplitude (upper) and energy density, E, (lower) with

characteristics emanating from the shelf break (solid lines) and reflecting from the coastal boundary

(dashed lines).

Figure 12.  Case 1 cross-canyon sections of energy density, E.  Note that a different vertical scale is

used for each section.

Figure 13.  Total energy in three cross-canyon sections (positions indicated in Figure 6) for model

case 2 (Figure 18).  Total energy values are shown for two additional cross-canyon sections for case 1

(Figure 12).  Each value represents energy integrated over a volume 31 km alongshore by 1 km

cross-shore by depth.
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Figure 14.  Cross-canyon density sections 2 km from the eastern boundary at six times during the

tidal cycle.  The in-situ densities are contoured in intervals of 0.03 kg m-3, and range from 26.335 kg

m-3 to 26.635 kg m-3.

Figure 15.  Along-shelf section of v 2 km from model eastern boundary showing evolution of the

internal tide from beam-like near the canyon rims to first mode-like further away.

Figure 16.  Bathymetry for model cases 1 and 2, as described in Table 1, are shown.  The contour

interval is 100 m.

Figure 17.  Case 2 energy density, E (J m-3), along-canyon sections.  The canyon floor slope for

each case is indicated.  The canyon is 11 km wide at the rim and 3 km wide at the floor in all three

studies.  Bottom profiles for the continental shelf and slope adjacent to the canyon (dashed lines) are

also shown.

Figure 18.  Case 2 energy density, E (J m-3), cross-canyon sections 26 km (upper), 14 km (middle),

and 2 km (lower) from the eastern boundary.
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TABLE 1.  Canyon slopes and widths for the numerical simulation cases discussed in the text.

Case

Number

Continental

Slope Shape

Canyon

Floor

Slope (°)

Canyon Rim

Width (km)

Canyon Floor

Width (km)

0a linear

0b cosine

1

(Montere

y

Canyon)

cosine 1.55 11 → 3 3

2a cosine 0.74 11 3

2b cosine 1.55 11 3

2c cosine 2.29 11 3



Figure 1.  Monterey Bay bathymetry and a sample model bathymetry that incorporates a relatively
narrow shelf, a steep (7°) continental slope, a deep basin, and a canyon head lying close to shore.
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showing the vertical distribution of the 30 sigma levels, and a cross-shelf section (lower right)
depicting the upper 15 sigma levels.
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density (σθ) and buoyancy frequency (N) profiles.



60 50 40 30 20 10 0
2500

2000

1500

1000

500

0

Max Velocity = 2.41 cm/s

Distance from Shore  (km)

D
ep

th
  (

m
)

60 50 40 30 20 10 0
2500

2000

1500

1000

500

0

Max Velocity = 2.29 cm/s

Distance from Shore  (km)

D
ep

th
  (

m
)

<== Westward         Velocity, cm/s         Eastward ==>

2 1.5 1 0.5 0 0.5 1 1.5 2

Figure 4.  Cross-shelf sections of u during rising sea level for a sharp (upper) and cosine-shaped
(lower) continental shelf break together with characteristics (solid lines) from the linear internal
wave dispersion relation including rotation effects.



2 1.5 1 0.5 0 0.5 1 1.5 2

40 30 20 10 0
400

350

300

250

200

150

100

50

0

D
ep

th
  (

m
)

Max U = 1.54 cm/s

High Tide

2 1.5 1 0.5 0 0.5 1 1.5 2

40 30 20 10 0
400

350

300

250

200

150

100

50

0

Distance from Shore  (km)

Falling Tide

2 1.5 1 0.5 0 0.5 1 1.5 2

40 30 20 10 0
400

350

300

250

200

150

100

50

0

Distance from Shore  (km)

D
ep

th
  (

m
)

Low Tide

<== Westward         Velocity, cm/s         Eastward ==>

2 1.5 1 0.5 0 0.5 1 1.5 2

40 30 20 10 0
400

350

300

250

200

150

100

50

0

Rising Tide

Max U = 2.41 cm/s

Figure 5.  Cross-shelf sections of u at four times during the semidiurnal tidal cycle, as indicated by
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velocity after reflection from the vertical boundary.
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Figure 6.  Case 1 model bathymetry.  In plan view, depth is contoured every 200 m from 100 m t o
2300 m.  The horizontal dotted line indicates the location of the along-canyon (x-z) slice used for
data analyses.  The three vertical dotted lines indicate the positions of cross-canyon (y-z) slices 26,
14, and 2 km from shore.
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Figure 7.  Along-canyon sections of u at four times during the semidiurnal tidal cycle, as indicated
by the stage of the sea level, together with characteristics emanating from the shelf break (solid
lines).  Note that the velocity scale in Figure 7 has been expanded to ±6 cm s-1, versus the ±2 cm s-1

scale used for the shelf currents in Figure 5.
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Figure 9.  Density sections along the critically sloping portion of the model canyon at six times
during the tidal cycle.  In-situ densities ranging from 1027.35 to 1027.95 kg m-3 are contoured at
intervals of 0.05 kg m-3.
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Figure 14.  Cross-canyon density sections 2 km from the eastern boundary at six times during the
tidal cycle.  The in-situ densities are contoured in intervals of 0.03 kg m-3, and range from 26.335 kg
m-3 to 26.635 kg m-3.
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Figure 16.  Bathymetry for model cases 1 and 2, as described in Table 1, are shown.  The contour
interval is 100 m.



35 30 25 20 15 10 5 0
1000

800

600

400

200

0

D
ep

th
 (

m
)

Distance from Shore (km)

Max = 2.3 J m−3

Case 2c
Floor Slope = 2.29o

0

0.05

0.1

0.15

0.2

0.25

35 30 25 20 15 10 5 0
1000

800

600

400

200

0

D
ep

th
 (

m
)

Max = 3.2 J m−3

Case 2b
Floor Slope = 1.55o

0

0.05

0.1

0.15

0.2

0.25

35 30 25 20 15 10 5 0
1000

800

600

400

200

0
D

ep
th

 (
m

)

Max = 0.2 J m−3

Case 2a
Floor Slope = 0.74o

0

0.05

0.1

0.15

0.2

0.25

Figure 17.  Case 2 energy density, E (J m-3), along-canyon sections.  The canyon floor slope for
each case is indicated.  The canyon is 11 km wide at the rim and 3 km wide at the floor in all three
studies.  Bottom profiles for the continental shelf and slope adjacent to the canyon (dashed lines) are
also shown.
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Figure 18.  Case 2 energy density, E (J m-3), cross-canyon sections 26 km (upper), 14 km (middle),
and 2 km (lower) from the eastern boundary.


