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ABSTRACT

We present the variation that results when fetch relations for wind-generated wave spectra are scaled by the
friction velocity component in the dominant wave direction rather than the magnitude of the friction velocity,
using the data collected during the Canadian Atlantic Storms Program (CASP). The effects of three possible
drag coefficients are considered: the usual constant drag coefficient, the open-ocean long fetch drag coefficient,
and finally, the wave age dependent drag coefficient for growing waves recently measured by Smith and Anderson
in HEXOS.

Contributions to the correlation coefficients for dimensionless variables due to both scaling variables and
dimensional variables are computed. We find that the friction velocity component in the dominant wave direction
rather than the friction velocity magnitude should be used as the scaling variable. The self-correlation introduced
to the correlation coefficients is then less than that resulting from the friction velocity magnitude.

Balance relations among physical fetch relations support this conclusion and imply that the wave age dependent
drag coefficient for growing waves is the appropriate drag coefficient to use in scaling variables. We generalize
Snyder et al.’s parameterization of the wind input energy and derive a functional form for Phillips’ equilibrium
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Fetch Relations for Wind-Generated Waves as a Function of Wind-Stress Scaling

range a-function,

1. Introduction

Implications of an /~* power law for the equilibrium
range of high frequencies in the energy spectrum for
wind-generated surface gravity waves were recently ex-
plored by Resio and Perrie (1989). They discussed
spectra described by the JONSWAP parameterization
as given by Hasselmann et al. (1973),

~ol £S5 4
1!3(f)="£‘§;7rf)4 exp(-l.25%)'yz (1.1)

where f,, is the frequency of the spectral peak, a is a
proportionality coefficient specified by the high fre-
quency range (f > 2.5 f,) of the spectrum and expo-
nent £ is given by

-l H52)]

Directional spectra may be represented by (1.1) using
a spreading function J (f, 6):

1 PU)
J(f,0) = Q(f)(COSE(B—'Go)) (1.3)

where 0 is the wave direction, 6,(f) is the mean wave

(1.2)
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direction at f, P(f) is a function of frequency f, and
the normalization coefficient Q( f) satisfies

- 1 P(f)
fﬂ(f)(cosia) dé=1.

-

(1.4)

They also considered spectra with an f~* equilibrium
range at high frequencies represented by

E(f,6) = &‘Ugf“"ﬁ(]]:)ﬂ(ﬂ = 6) (L.3)

where ¢ is a nondimensional shape function modeling
the forward face, peak and high frequency regions of
the spectrum. The scaling in (1.5) uses wind speed U
at a reference height rather than the phase velocity €,
at the peak frequency of the wave spectrum as suggested
by Donelan et al. (1985).

Assuming the JONSWAP fetch relations, Resio and
Perrie (1989 ) derived transfer rates for energy and mo-
mentum from wind to waves in the case of generating
windsea. These were used as constraints on the func-
tional form assumed by the input of energy from wind
to windsea in parameterizations suggested by Snyder
etal. (1981), Plant (1982) and Phillips (1985). A par-
titioning of spectral energy, as in the original JON-
SWAP study, and a parameterization of fluxes within
}he spectrum was seen to lead to a functional form
or Q.

We suggest that different results would follow had
the scaling been done differently and the CASP dataset
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of Dobson et al. (1989) been used. We discuss the
meaning of alternate scalings in section 2, and apply
these to the CASP dataset in section 3. The spurious
effects that poorly chosen scaling variables can intro-
duce to the analysis are dealt with in section 4. Proper
scaling variables, consistent fetch relations, formula-
tions for & and for wind input energy, are presented
in section 5.

2. Nondimensional scaling

For many years it has been common to scale total
energy Ep in terms of wind speed U at some reference
height such as 10 m (Hasselmann et al. 1973). Fol-
lowing Kitaigorodskii (1962), Janssen et al. (1987) and
Dobson and Toulany ( 1989) we may also scale E using
friction velocity U ,, expressed as

E} = Eog* /U, (2.1)
where U, is related to a drag coefficient C, by the re-
lation

U, = UVC,. (2.2)

As noted by Donelan et al. (1985), waves are not
strictly locally generated, but instead are the net result
of an evolution along their entire fetch. Therefore, if
the gradient of fetch about the wind direction is large,
the wave direction is biased towards long fetch where
a lower generating force due to wind input
U cos AB( f,), is more than compensated by the longer
fetch over which it operates. We are therefore motivated
to introduce U ,., the friction velocity component in
the direction of the waves at the peak frequency f.
An alternate form for dimensionless total energy is

E§ = Eog*|Use. (2.3)
Friction velocity magnitude ¥, is related to U, by
the relation

Use = Uy cos(L0(fn)) (2.4)

where A8(f,,) is the difference between the 10 m wind
direction 6,,, and the mean wave direction 6,(f,,) at
fm. A complete account of the determination of A8(f,,),
the separation of swell from offshore waves propagating
along a specific fetch and the generation situation of
the waves is given in Dobson et al. (1989).

Clearly we could define dimensionless fetch or di-
mensionless peak frequency in the same manner as
(2.1) or (2.3) for total energy. For example, dimen-
sionless fetch X * scaled using %, may be specified by

X* =Xg/U3L (2.5)
whereas scaled by U ., dimensionless fetch X *¢ is
X* = Xg/UZ.. (2.6)
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There are several ways to specify drag coeflicient Cy.
We use C,; to denote the constant drag coefficient,

Cy=13X%X1073. (2.7)

Smith (1988) measured the drag coefficient for open-
ocean long-fetch conditions from his stable tower at
the mouth of Halifax Harbour and found that at ref-
erence height 10 m, C,; depended on U and AT, the
difference between water and air temperatures. We de-
note this drag coefficient C;, where

Car = C4[U, AT]. (2.8)

In the recent Humidity EXperiment Over the Sea
(HEXOS), Smith and Anderson { 1989 ) measured the
drag coefficient for young generating waves and related
it to wave age @,/ U, expressed in terms of U, the
component wind velocity in the direction of the waves
at f,,. This can be termed “component wave age.” De-
noting this drag coefficient C,3, Smith ( personal com-
munication) has recently suggested the parameteriza-
tion

Car+ (1.51 — 1.87€,/U,) X 1073,

Cis = when 0<@,/U <081 (2.9)

CdZ’

where corrections for sensor tilt have been made to the
data. We emphasize that this formulation will need
further minor corrections when all the data from
HEXOS has received a final analysis. As this assumes
neutral stability, Cy; should generally be appropriate
for growing wind-generated waves when we correct our
data to neutrally stable conditions,

otherwise

3. CASP growth curves

Recent analysis of data collected during the Cana-
dian Atlantic Storm Program (CASP) by Dobson et
al. (1989), found good agreement with earlier exper-
iments such as Donelan et al. (1985) in Lake Ontario
and JONSWAP. New insight was gained into the wind
profile for generating waves in fetch-limited situations.
Specifically, data collected by Smith and McPherson
(1987) verified earlier modeling of the planetary
boundary layer by Taylor and Lee (1984), that as fetch
increases from the shoreline and waves are initiated
and grow, the change in roughness at the boundary
layer leads to an increase in the wind speed at a ref-
erence height. The wind profile is a function of fetch
and falls within the envelope defined by the two curves
of Fig. 1. These are generated by considering different
upstream roughnesses for the shoreline. The upper
curve corresponds to marsh, whereas the lower curve
corresponds to forest. These are shown to present the
two extremes that Taylor and Lee (1984) give as a
function of the terrain onshore from the experiment.
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FiG. 1. The wind profile as a function of fetch from Taylor and Lee (1984) for upstream

roughness lengths such as marsh 0.07 m, the upper curve ——, forest and low terrain 1 m, the
lower curve ——, compared to aircraft winds collected by Smith and MacPherson (1987) at 50
m elevation — - —, showing standard deviation error bars.

The actual Taylor and Lee (1984 ) model for the wind
profile that we used falls between these two extremes
and follows the Smith and McPherson (1987 ) empirical
curve well,

In JONSWAP and Donelan et al. (1985), dimen-
sional wave variables were scaled by in situ wind. In
the present analysis, wave measurements at each buoy
were scaled by the wind, linearly averaged along the
fetch from the shore to each of the wave buoys exactly
following the procedure of Dobson et al. (1989). This
represents the ability of the waves to “remember” the
wind all along the fetch. Scaling by the average wind
along the fetch is certainly only one way to represent
this memory. As mentioned in Dobson et al. (1989),
the greatest discrepancy between linearly averaged wind
and in situ wind occurs not at the shortest fetches but
at the intermediate fetches, at about 15 km, when the
fetch-averaged wind is about 0.9 of the in situ wind.
Linearly averaged wind is the same as in situ wind for
fetches that approach zero or infinity.

It was seen in JONSWAP, Donelan et al. (1985),
and Dobson et al. (1989) that dimensionless variables
such as peak frequency, total energy and wave age, can
be parameterized by simple power-law relations. In
terms of dimensionless fetch X *, we present these as

E3‘ = &(X*)° (3.1)
It =Fx*y (32)
a* = A(X*)* (3.3)

and alternately in terms of inverse wave age U, /C,:

E; = E[U,/G,) (3.4)
X* = X[U,/C,)* (3.5)
a* = A[U,/6,)°. (3.6)

When scaling uses the friction velocity component in
the direction of the waves U ., the corresponding non-
dimensional fetch X *¢ relations are

E§c = (X *)° (3.7)
fae = F(xrey” (3.8)
o* = A(X*4)* (3.9)
and in terms of inverse wave age U,./C,:
EG° = E[Uy /G, (3.10)
X+ = X[Use/ €5)° (3.11)
a* = A[ Uy /C,°. (3.12)

Dimensionless peak frequency f¥ in (3.2) is computed
by scaling peak frequency f,, with friction velocity U,

o =ImUslg (3.13)

and similarly in (3.8), f.X¢ is scaled using U ,..
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We evaluate the various forms of & from the energy
formulation (1.5),

. (27)? 1
gUx (In—1.5/m)
N f 4
4 m
X J:,sf,,.f E(f) exp(—f4 )df (3.14)

where fy is nyquist (0.64 Hz for the CASP dataset).
Scaling with respect to U .. leads to an analogous re-
lation for a*“.

The variation in scatter in the total energy fetch re-
lations (3.1) and (3.7), that results from scaling in
terms of U, and U .. and the drag coefficients Cy,, Cy,
and Cy3, is shown in Figs. 2a—f. This is for waves as-
sociated with winds whose mean directions were within
a £15° window from normal to the shoreline as seen
from a given buoy. The corresponding families of
curves are presented in Figs. 3a and 3b for a £15° and
a £30° window from normal to the shoreline, respec-
tively. The slopes, intercepts and correlation coefficients
R, corresponding to these curves and to the scatter of
Figs. 2a—f, are written in Table 1. For a given drag
coefficient, scaling by ¥, results in the same correlation
coefficient as scaling by U .. Generally C,; results in
better (that is, closer to unity) correlation coefficients
than C,,, which in turn does better than Cj ;.

The slopes, intercepts, and correlation coefficients
for the f,, variation with X in (3.2) and (3.8); the &
variation with X in (3.3) and (3.9); the E; variation
with U,/ €, in (3.4) and (3.10); the X variation with

(NN

bl Ll

105- il i

10" 5

E, 10 4 -
10° 3
i ;
] i
ld T — LIREA)
10 1d 10 1¢
X

FIG. 2a. Dimensionless energy Eg as a function of dimensionless
fetch X * using C,, and U, scaling, for waves associated with winds
whose directions were within a £15° window from normal to the
shoreline. Least squares fit is indicated by (——).
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FIG. 2b. As in Fig. 2a but using C,, and U, scaling.

X

U./C,in (3.5)and (3.11); and finally, the & variation
with U,./@, in (3.6) and (3.12) are also presented in
Table 1. Results corresponding to the +30° window
are given in Table 2.

The variation of f,, with X and U,/ @, follows the
trend set by the variation of E, with X. Scaling by U,
results in the same correlation coefficient as scaling by
U, for a given drag coefficient. Generally scaling with
C 3 results in better correlation coefficients than scaling
with Cy,, which in turn does better than C, . This
trend is repeated in the variation of Ey with U./C,
except that some preference is shown for scaling by
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FIG. 2c. As in Fig. 2a but using C;3 and U, scaling.
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FIG. 2d. As in Fig. 2a but using C,; and U, scaling.

U .. rather than by U, . The variations of & with X and
U ./ @, have better correlation coefficients when scaling
uses U 4. rather than U, for a given drag coefficient.
In these computations, C;3 surpasses Cy,, which in
turn does better than C; .

The significance of slanting fetch with respect to the
CASP data was considered by Dobson et al. (1989).
Results obtained when the wind direction 6,, is within
+30° from normal to the mean shoreline, were gen-
erally consistent with JONSWAP fetch curves, which
analyzed waves associated with winds whose mean di-
rections were also within a £30° window from normal
to the shoreline. Narrowing this window to £15° or
+5°, or using U, as a scaling variable, led to relations
that agree with the higher resolution results of Donelan
et al. (1985).

We suggest that the +30° window allows contami-
nation from slanting fetch waves. This increases the
computed growth in wave energy relative to the growth
seen when a narrower window is specified. Further-
more, using the wind velocity component in the dom-
inant wave direction (at f,,) enhances the computed
growth in wave energy relative to that seen when wind
speed magnitude is used as the scaling variable.

However, variations in exponent ¢ from different
experiments are difficult to explain. For example, we
found that - is 0.88 scaling with %, and drag coeffi-
cient Cy as opposed to 0.75 scaling with U, and C,
assuming the +15° window. Using the in situ scalar
wind speed as scaling variable in the analysis of the
JONSWAP data, Hasselmann et al. (1973) found < to
be 1.0 or slightly lower in Phillips’ (1977) reanalysis,
for waves associated with the £30° window. In either
case this exceeds the 0.88 or 0.75 reported in Table 1,
whereas Donelan et al. (1985) used the in situ wind
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FIG. 2e. As in Fig. 2a but usingCy, and U, scaling.

velocity component in the dominant wave direction
U, as scaling variable and obtained - very close
to 0.75.

In an attempt to bring these results together, Walsh
et al. (1989) derived the direction of maximum wave
energy and period growth for slanting fetch situations.
They suggested that ¢ and Zare coupled and should
satisfy

fho ez
//6 + 2//6/ eg) — 50(5/2)

(3.15)
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FIG. 2f. As in Fig. 2a but using C;3 and U, scaling.
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TABLE 1. The exponents, coeflicients and correlation coefficients R, corresponding to the fetch relations of (3.1)~(3.12) as a function of
drag coefficient and wind stress scaling for waves associated with winds within a +15° window to normal from the shoreline.

Scaling with U, Scaling with U .

Ca Ca Cas Ca Caz Cas
e 0.75 £ .09 0.78 = .08 0.93 £ .08 0.88 +£.10 0.90 + .09 1.04 + .09
& X 10* 52.8 30.5 3.02 9.57 7.16 0.816
R 0.88 0.90 0.93 0.88 0.90 0.92
/ —-0.24 + .02 —0.24 £ .02 —0.28 = .02 -0.27 £ .03 —-0.27 £ .02 —-0.30 £ .02
F X 10 291 3.30 5.50 4.56 4.86 771
R -0.92 —-0.93 -0.94 -0.91 -0.92 —0.94
P 0.06 + .05 0.08 £ .05 0.13+£.05 0.12 £ .05 0.13 £ .05 0.17 + .05
A X 102 6.25 4.87 2.15 2.97 2.57 1.23
R 0.24 0.30 0.49 0.41 0.45 0.59
€ -3.21+.19 -3.22+.17 -337+£.13 -3.32+.13 -3.31 x£.12 —-3.44 + 10
E X 10? 3.19 3.04 1.89 2.58 2.61 1.69
R -0.96 -0.97 —0.98 —-0.98 —-0.98 -0.99
¢ —-3.63 £ .32 -3.58 £.29 -3.23£.24 —3.09 £ .29 =3.11 £.27 —-291 £ .22
X X 10? 0.733 0.854 2.54 2.85 2.72 5.32
R —-0.92 -0.93 -0.94 -0.91 -0.92 —-0.94
¢ -0.39 £ .19 -0.43 £ .18 —0.55 £ .15 -0.59 £ .16 —-0.60 £ .16 —-0.67 £.13
A X 10? 4.90 4.32 2.96 2.93 2.85 2.26
R —0.40 -0.45 —0.63 —-0.62 —-0.63 -0.67

where /4 and ¢ are reference values for and . As-
suming —0.23 and 0.76 for 4 and ¢, from Donelan et
al. (1985), Walsh et al. (1989) approximate this as

¢ +4/=—0.16 (3.16)

which also satisfies our +£15° window results when U ..
and Cg s are used as scaling variables.
In Fig. 4 we compare (3.15), as plotted by Walsh et

al. (1989) using/() and ¢, from Donelan et al. (1985),
to what we achieve from the possible scalings recorded
in Tables 1-and 2. When /= —0.30 and ¢ = 1.04 the
agreement is striking, and supports using U 4. and Cy3
as scaling variables. Also plotted are the results of Has-
selmann et al. (1973), Phillips (1977), Liu and Ross
(1980), Donelan et al. (1985) and Walsh et al. (1989).
It is worth reiterating that the determination of (3.15)

TABLE 2. As in Table 1 but for winds within a +£30° window.

Scaling with U, Scaling with U,
Ca Ca Cas Ca Caz Cas

e 0.80 + .06 0.85 £ .06 0.99 £ .06 1.04 + .08 1.06 + .08 1.17 +£ .07
6 X 10* 21.0 9.35 1.02 0.848 0.621 0.095
R 0.87 0.88 0.91 0.87 0.88 0.91
y4 —0.25 + .02 —0.26 + .02 -0.29 + .02 —0.31 + .02 —0.32 + .02 -0.34 = .02
FXxX10 3.61 4.31 7.20 8.87 9.41 13.9
R —0.90 -0.91 -0.93 -0.89 -0.90 -0.92
a 0.07 £ .04 0.10 + .05 0.15 +.04 0.16 = .04 0.17 + .04 0.21 + .04
A X 102 4.80 3.03 1.43 1.50 1.17 6.22
R 0.21 0.29 0.44 0.44 0.47 0.59
€ -3.19+.13 325+ .13 =336 .10 —3.35+ .08 —3.36 + .08 —3.45 = .06
E X 10? 3.18 2.60 1.80 2.27 2.16 1.57
R —0.96 —-0.96 -0.98 -0.99 -0.99 —0.99

£ -3.30+.22 -3.21+ .20 —2.96 £ .16 —2.55 + .18 -2.56 + .17 —-2.50 + .14
X X 102 2.13 2.85 6.26 15.6 15.1 18.8
R -0.90 —-0.91 -0.93 —0.89 -0.90 —0.92
¢ —0.42 + .16 —-0.53 + .15 —-0.61 + .12 —0.65 + .11 —0.69 + .11 —0.72 = .09
A X 10? 4.13 2.94 2.34 2.32 2.06 1.81
R —0.34 —-0.44 -0.57 —0.63 —0.65 -0.73
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in Fig. 3 is not absolute, but simply the result of as-
suming that Donelan et al (1985) were correct in par-
ameterizing in terms of U, because U, worked well
with their Lake Ontario data and the radar data of
Walsh et al. (1989). Interestingly, our values of / and
¢ have a variation that is greater than the other five
experiments collectively. The growth rates seem almost
continuously adjustable and depend on the scaling and
the method of analysis. It is impressive that all (—/j
¢) points lie very close to a line parallel to the straight
line (3.16), compared to the results obtained by Has-
selmann et al. (1973), Phillips (1977), Liu and Ross
(1980).

To clarify the role of fetch-dependence in the wind
speed U and the drag coefficient C,in Fig. 4, we rewrite
the total energy fetch relation (3.7) and the peak fre-
quency fetch relation (3.8) in terms of dimensional
variables,

¢ (U cosAb(f,,)) 2 Cy*>°

Fo= g ° X (317)
_ gl+/ y
Sm = (U cosA8([,,)) ¥ C,05 X7, (3.18)

We suggest that A6(f,,) is a function of fetch. At
small fetch, A8(f,,) tends to zero because the propa-
gation direction of young waves is near that of the wind.
Long fetch within the CASP wave buoy array favours
increased A6(f,,) because the fetch gradient about the
wind direction is large. A lower generating force due
to U cos AG(f,,) is balanced by a relatively longer fetch
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FIG. 3a. The family of curves for total energy as a function of
fetch. The scaling is in terms of U, and the drag coefficients C; for
dotted curve, C,, for dashed curve, Cy; for thin solid curve, and in
terms of U, and drag coefficients C, for dot-dashed curve, C,, for
short-long dashed curve and C,3, for heavy solid curve; for waves
associated with winds within +15° from normal to the shoreline.
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F1G. 3b. As in Fig. 3a for a window of +30°.

associated with differing wind and wave directions

(Donelan et al. 1985). The cumulative effect of com-

bining observations from various days, fetches, wind

speeds and directions is increased slopes in Figs. 4a

and 3b and exponents e in Tables 1 and 2, compared
scaling by the scalar wind speed.

0.6 T T
0.20 0.30

FIG. 4. Comparison of the coupling relation for #and # (3.15)
assuming Donelan et al. (1985)’s reference /4 and ¢, (solid), to «
+ 4/= ~0.16 (dashed). Coordinates (=4 ¢) from CASP are denoted
(X) scaling with U, (O) scaling with U, ., for the +15° window,
(O) scaling with U, , and (+) scaling with U, for the +30° window.
Numbers 1, 2 and 3 indicate scaling with drag coefficients Cyy, Ca2
and Cy3. Letters D, J, L, P and W are for Donelan et al. (1985),
JONSWAP, Liu and Ross (1980), Phillips (1977) and Walsh et al.
(1989).
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Only data for which % > 5 m s™! were considered for
Figs. 2a—e and 3a-b. The variation of C;, with U for
a given AT (the difference in temperature between wa-
ter and air) is shown in Fig. 5 from Smith (1988).
Assuming constant AT, C;, should therefore increase
as waves are generated at the shoreline and propagate
offshore, in conjunction with the increase in U pre-
sented in Fig. 1 and the analysis of Smith and Mc-
Pherson (1987) and Taylor and Lee (1984). We show
AT for the CASP data in Fig. 6, measured as the dif-
ference in temperature between the water at the sea-
ward end of the wave buoy array and the air at the
shoreline. During situations when waves are propa-
gating offshore, the wind direction is 340° true +15°
or +30°, depending on the window, and AT varies
from +15° to —5°C. The true AT is actually less than
the values shown in Fig. 6 and decreases as distance
from the shoreline increases and the water warms the
air during offshore situations. Therefore, the dominat-
ing effect is that the drag coefficient Cy, decreases with
fetch and both ¢ and #increase compared to scaling

0.0
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with Cy. Furthermore, an explicit decrease in drag
coefficient with increasing @,/ U, as seen in C,3 spec-
ified by (2.9), insures that ¢ and /increase dramatically
compared to scaling with Cj;.

To explain why our (—/, ¢) points appear to spread
out along a line in Fig. 4, we consider the variation of
wave steepness, written as Ey'/?k,,, with fetch. From
(3.7) and (3.8), it follows that

Eol/zkm = 47 2F 28 1/2(X*C)(4/Z0-£)/2
or in terms of dimensional variables

Xg cos?A0( f,) @e)2
UCy

(3.19)

Eo'kiy = 47r2726”2( .
(3.20)

The exponent (44 + #)/2 on the right side of this
equation is small. Walsh et al. (1989) found that it is
—0.08. Our (=4 ¢) values in Fig. 3 lie along a line

e +4/=—0.19 (3.21)
parallel to (3.16) and the correlation coefficient is 0.99.

1
U1 M/S

T T —
5 20 25

FIG. 5. Variation of drag coefficient C,, (X103) at 10 m with wind speed for sea-air potential
virtual temperature differences of —20° to +40°, from Smith (1988).
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FIG. 6. Variation in the difference in temperature between the
water at the seaward end of the wave buoy array and the air at the
shoreline, with wind direction for the CASP data.

Wave steepness is therefore almost invariant with re-
spect to fetch, regardless of the analysis that is applied.
Fetch dependence within scaling variables % .. and C
or the +15° or +30° window is relatively quite minor.
The great range of growth rates along (3.21) reflect the
dominance of this constraint.

4. Statistical implications of curve fitting and scaling
self-correlation

There are two concerns that must be dealt with in
discussing the scaling used to find relationships among
dimensionless variables as we are doing in this paper.
First, how do we know that the suggested scaling is

&, $,8,
R(logX, logy ) + 5?— R(log% log#) + —_ R(log‘y log ) +

R(log¥, log¥) =
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ultimately the “best” or most correct? Is it simply that
the associated correlation coefficient is highest or is it
motivated by the most cogent physical arguments?
Second, are we introducing any spurious self-correla-
tion by using scaling variables that have a common
factor, as in the manner in which we compute dimen-
sionless total energy and fetch in (2.1) and (2.5)?

Suppose we have a dataset of dimensional variables
denoted % (i) and ¥ (i) and we scale them by (i)
and «(¢) to form dimensionless variables X (i) and
Y (i) where

N (4.1)

Y@ =«DY )
We are really working with log 2 and log¥ in deriving
the power-law relations of (3.1)-(3.12) because we
assume a linear relation between the logarithms of di-
mensionless variables of the form

% (i) = x(i)%(i)]

log¥ = alogk + 7. 4.2)
The slope « in (4.2) is given by
o = Rgy[var(log¥)/var(logX)]'/? (4.3)

where Ry is the correlation coefficient R(log%
log¥ ) between log¥ and log %, defined as

cov(log¥%, log¥)

oy = - = 4.4
R [var(logX ) var(log¥ )]'/2 (44)
in terms of the usual relation for covariance,
cov(%6, V) = (6 = (WY —(FD)) (4.5)
ensemble mean,
1 N
<%>Eﬁz X, (4.6)
i=1
and variance
var(26) = cov(26, X) 4.7)

Following Jenkins and Watts (1968) and Kenny
(1982) the correlation coefficient between log¥ and
log% is

R
&x o (loge, log#)

esa 2 l/2 csb 2 1/2
e |l ses |
(4.8)
where for example,
&2 = var(logXk). (4.9)
This relation may also be written as
Rsg = $ 2 S 172 Sﬂz S, 172 (4.10)
= —] [ e
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In the case of dimensionless total energy E¥ and fetch X* scaled with wind velocity U, as in (2.1) and

(2.5), the correlation coefficient R(logEg, logX *) is

Su,
REDX 2( $

R -4 S, Ryq, +8 T,
U R N v

2

Regxs = pl 172 p) 72 -
S\ ofSu. S\ (Su,
[1 * 16( c‘°Eo) 8(&Eo)RE°‘u*] [l +4( &X) ( Sx )Rm ]

In the limit when 8¢, > ¢ and x> 4 then (4.11)
implies

(4.12)

which is ideal in that there is no contamination of the
dimensional correlation coefficient Rgx by the vari-
ance §'¢,. However, there is also no significant en-
hancement of the dimensionless correlation coefficient
Rgyx» due to contributions from Rgy, and Ryq,.
This enhancement may generally be an objective in
choosing scaling variables.
When §g, =~ &4 and 5 ~ 4, then

4Rxqy, + 8
1172

REBX' ~ REoX

Ry — 2Reg, —
[17 — 8 Rgu,]1"*[5 — 4Ry«

Rgtxc ~ (413)

which does allow enhancement of Rggx+ due to con-
tributions from Rgyq, and Ryq,. However, this is
somewhat costly because in assuming g, ~ &4 and
&y =~ &4 we are allowing considerable spuriousness.
For example, if REO‘II. < 1and szu‘ < 1 then Rpxy»
is almost 1.0. The relation for Rgs«y+« is therefore quite
insensitive to correlation between E, and X, as it be-
comes

Riyye ~ 0.108 R,y + 0.868.  (4.14)

It would be preferable to have Rg, and Ry, con-
tributions arise when 0 € Rgyy, < 1 and 0 € Ryq,
<1 but ¢, » 4 and Sx » 'y, which would be a
subcase of the limit taken to obtain (4.12).

Finally if §5, < 4, Sx < Sy, then
Reixs ~ 1.0 (4.15)

which is completely spurious because Rgyx« is essen-

(4.11)

tially unity whether or not any of U, E, or X are cor-
related.

In Table 3 we present the correlation coefficients
and variances that appear in (4.11) and we compute
the ratio of Rysxs to 88%,(Sx8x,) ! as an inverse in-
dex of the relative contamination introduced into the
dimensionless correlation coefficient due to §e,. It
is surprlsmg that the ratio of Rgys to 88%,
(8xS8k,) " is highest for scaling using Cy;, followed by
Cy and finally Cy3, whereas in Table 2 we found that
Rgix» was the same for scaling using U, or U, for a
given drag coefficient and was highest for scaling using
Cas, followed by Cy- and finally Cy;. This ratio is also
lower when U, rather than U, is used in the scaling
variable, implying that the variance of U, is higher
than that of U, . While U ,.is marginally better at cor-
relating with X than U, U, clearly correlates better
with Ej, than U .., no matter which drag coefficient is
used.

To consider the influence of U, and U, on corre-
lation coeflicients of dimensionless variables, we use
(4.10) to relate the dimensional correlation coefficients
involving E, and U to those involving Eg and U .,

S
Regu, + Q;LM R, cosAf
REO‘II = Ys 2
*e S cosas & cosAd v
[1 + ( é;tu* ) + 2 &u‘ R‘Zl.cosAo
(4.16)

and it is understood that, for example, Rgcosas
= R(logEy, log cosAf8). The above analysis is con-

TaBLE 3. The correlation coefficient for dimensionless total energy with fetch, as well as the correlation coefficients and variances which
constitute it, and the ratio of Rggys to 883, [Sx8£] ™" as an inverse index of the relative contamination due to &4, , for winds within the

+30° window as in Table 2.

Rex = 0.519, 8, =0.320, &g =0.387

Scaling with %,

Scaling with U .

Cd 1 Cd2 Cd3 Cdl Cdz Cd’ 3
Su,/Sx 0.44 0.48 0.55 0.54 0.57 0.66
Su /S5 0.36 0.40 0.46 0.45 0.47 0.54
Regu, 0.719 0.738 0.658 0.537 0.581 0.515
Rya, -0.012 0.009 —0.094 —0.078 —0.057 ~0.135
Repe 0.872 0.883 0.914 0.872 0.883 0913
Repe[88%./8xSEY" 0.688 0.575 0.452 0.449 0.412 0.320
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TABLE 4. Variation of the correlation coefficients and variances constituting Ry, as a function of the angle between wind direction and
the direction of the dominant wave | Af|; where winds are within +30° of normal to the shoreline and C, scaling is used.

&2 " &cosAB
| A8 (X10%) Su. Reyosss Ratpcosn0 Regu, Regu,,
90° 1.7 0.772 -0.072 —0.047 0.719 0.537
60° 3.88 0.442 -0.118 —0.114 0.712 0.671
30° 0.405 0.143 -0.114 —0.120 0.699 0.687
15° 0.208 0.033 —0.353 -0.330 0.754 0.750

cerned with wind blowing from land to sea with the
restriction that the angle between wind direction and
the direction of the dominant wave satisfy | Af| < 90°.
Swell is separated from growing wind-sea as in Dobson
et al. (1989) and results are shown in Table 4. It is
evident that as Af is narrowed, &2, decreases,
Rgycosao and R cosns increase, Rgye,. approaches
Egyu,, and both increase. This increase in Rg,«,, and
Rg,u, is not obvious because although the variance in
Uye, Fo and U, decrease, the statistical population
also decreases and therefore noise increases. Table 4 is
for waves associated with the +30° window from nor-
mal to the shoreline. Had this restriction been tightened
to £15°, the reduction of &2, and the convergence
of Ryyu,, to Ry, are still evident, as Af is decreased
from +90°. However, results are more subdued because
the data population is smaller and the noise larger.

In Table 5 we present a reanalysis of the correlation
coeflicients and variances that appear in Table 3, with
the restriction that the angle between wind direction
and dominant wave direction |Af#| < 15°. The ratio
of Riyx+ to 88 4> (SxSk,) " is still highest for scaling
using C,, followed by C;, and finally C,;3. However,
Ry x+ is the same for scaling using U, or U, for a
given drag coefficient. The variance of U .. is now mar-
ginally lower than that of %, while U,. and %, are
essentially equivalent in terms of their ability to cor-
relate with X and Ey, no matter which drag coefficient
is used. The ratio of Rgzx+ to 88 4 (SxSk,) ™" is now
higher when U, rather than % is used in the scaling
variable, for each choice of drag coefficient. This im-
plies that reducing the variance of the scaling variable
U .., as we have done in the restriction |Af| < 15°,
reduces the contamination of the correlation coefficient
due to self-correlation and makes U . preferable to U ,,
as the appropriate scaling variable.

In summary, we suggest that a proper treatment of
the correlation coefficient of dimensionless variables
Ry must report the correlation coeflicient of dimen-
sional variables Ry, and the latter must be significant.
A discussion of the components that make up Ry is
possible from (4.10). Any enhancement of Ry« over
Ry generally results from spurious self-correlation and
from scaling variables that have a good physical basis.
When a well-defined selection is made, for example,
the CASP data with the restriction that the angle be-
tween wind direction and dominant wave direction

| Af| < 15°, better results follow from using physically
motivated scaling variables. A more compelling dem-
onstration would require data that is more free of noise.
It is clear that we do introduce spurious self-correlation
in scaling variables by a common factor, as in (2.3)
and (2.6). Tables 3 and 5 show that simply using scal-
ing variables with the highest values for Ry ignores
contamination due to spurious self-correlation.

5. Balance relations
a. Total energy parameterization

Surface wave fields evolve in space and time ac-

cording to the energy balance equation

%“FV'AE:Sm‘FSm'l‘SdS
where E(f, 8; x, t) is the two-dimensional wave spec-
trum; V = V(f, #) is the deep water group velocity;
and S}, is the energy input by the wind, S;, the nonlinear
transfer due wave-wave interactions, and Sy, the wave
breaking dissipation. Refractive terms representing in-
teraction with slowly varying currents, and dissipative
bottom terms are not included in this discussion and
are normally small.

Detailed energy balances are examined under var-
ious conditions by Komen et al. (1984), Hasselmann
et al. (1985), Hasselmann and Hasselmann (1985) and
Young et al. (1987). Rather than take this approach,
we consider the basic large scale characteristics of wave
generation dynamics following Resio and Perrie
(1989). Therefore, denoting total energy E, where

By = f:ﬂ fow E(f, )dfds

we are concerned with the rate of gain of total energy
0E,/dt at a particular point on the sea surface.

When no swell is present, total wave energy is related
to the shape of the spectrum and the location of the
spectral peak. For an f~* equilibrium range, a dimen-
sionally consistent spectral-form is (1.5). Because ¢
and J are dimensionless in (1.5), we assume they are
not strongly influenced by external parameters and that
total energy can be represented as

Ey=lo*gU, [, 3 (5.3)
where / is a dimensionless constant. This follows the

(5.1)

(5.2)



NOVEMBER 1990

argument of Hasselmann et al. (1973) for an f = spec-
trum. Inverting (5.3) gives the variation of o* with E,
and f,,.

Resio and Perrie (1989) considered the implications
of an f~* equilibrium range for predicted growth pat-
terns, the functional form of the input function due to
wind S;, and for the equilibrium range of the spectrum.
JONSWAP fetch relations were assumed in their anal-
ysis. We present a new analysis within the context of
the fetch relations found in the CASP data.

Given the energy fetch relation (3.1), the scaling
implemented in (2.1) and (2.5) implies the corre-
sponding dimensional relation

6214—25
Ey=6 g;_, X (5.4)
and the rate of change of total energy with fetch
oF, UL
— =6 ) G .
ax P e (5.5)

The wave studies of Kitaigorodskii (1962), Mitsu-
yasu (1968), Toba (1973) Hasselmann et al. (1973)
and others show that wave spectra evolving with fetch
tend to follow a self-similar pattern. Thus, any ensem-
ble-averaged spectral function can be written as a di-
mensionless coefficient times the value at the spectral
peak. For group velocity and phase velocity, this leads

to
(Cey =B l@g]
(Cpy = B1C,
where B, and B, are dimensionless coefficients.

Therefore, we write the fetch-limited time rate of
growth as

9K, _ 9E,
at e ax

Equations (5.5) and (5.7) are fundamental relations
for wave energy growth in terms of fetch and duration.
For a given wind situation, equation (5.7) implies that
total energy in the group velocity frame of reference
increases at a decreasing rate as time evolves, if ¢ < 1.

(5.6)

4-2¢

U
= B,6,6 ﬁ eX (5.7)
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The corresponding rate of change of total momen-
tum is

M, 1 0E, BC,, ,UT* o
—_— T ———— = ——— &
o (C)) ot BC, g7°
EUL?
zé——g;_g eX*! (5.8)

which implies that a decreasing proportion of momen-
tum transfer from wind to water may be retained by
the wave field provided ¢ < 1 in (3.1).

b. Wind input spectral energy

At present there is some uncertainty about the func-
tional variation that the wind input Sj,, should take.
The consistency of the forms suggested by Plant (1982),
Phillips (1985) and Snyder et al. (1981) is considered
in Resio and Perrie (1989 ) assuming JONSWAP fetch
relations. Following their approach, we partition an
actively growing wave spectrum in Fig. 7a into three
primary regions: ‘“‘forward-face,” ‘“mid-range” and
“high frequency” as a lowest order approximation. For
most single peaked spectra, detailed numerical calcu-
lations show that net energy transfer due to wave-wave
interactions may be described by three extrema, as pre-
sented in Fig. 7b, which approximately coincide with
the regions of Fig. 7a. It follows that nonlinear transfers
take energy from the midrange and give it to the for-
ward face and the high frequency regions. As nonlinear
transfers are conservative, energy taken from the mid-
range is equal to that gained by the other two regions.

Observed self-similarity in growing wave spectra
leads us to assume that the main processes associated
with growth are strongly related to the peak frequency
location. Hasselmann et al. (1973) found from detailed
numerical calculations that momentum transfers from
midrange frequencies correspond approximately to
constant proportions of momentum to lower frequen-
cies where it is retained and to higher frequencies where
it is dissipated. The equilibrium range and frequencies
above the peak are approximately constant after the
overshoot-undershoot phenomena has passed imply-

TABLE 5. As in Table 3 but with {Af| < 15°.

Ry = 0384, 8y =0321, &z = 0.360
Scaling with U, Scaling with U,

Ca Ca Cas Ca Ca Cu3
Su./Sx 0.44 0.49 0.57 0.43 0.49 0.56
SuSe 0.39 0.44 0.50 0.38 0.43 0.50
Regu, 0.754 0.781 0.713 0.750 0.778 0.709
Rxu. ~0.057 —0.037 —0.114 —0.061 —0.041 ~0.118
Ry 0.829 0.852 0.886 0.828 0.851 0.885
Repe[88%,/S xS g™ 0.604 0.494 0.386 0.627 0.500 0.395
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FIG. 7a. A single peaked wave spectrum showing the three regions:
“forward-face”, “midrange” and “high-frequency.”

ing that the quasi-permanent retention of wave energy
happens only at frequencies lower than the peak. This
leads us to assume that the net gain of momentum on
the forward face is approximately the net gain of mo-
mentum for the entire spectrum. In turn this is ap-
proximately a constant fraction of the momentum flux
out of the mid-range frequencies which we estimate as

oM, _ 1 My
ot p ot

(5.9)

where p is a partitioning constant for the fraction of
total momentum flux transferred from midrange fre-
quencies to frequencies less than the spectral peak. For
self-similarity within the spectrum, this momentum
flux must be balanced by an input of momentum by
the wind.

Denoting the input of momentum due to wind by
S'a, (5.8) implies

2.5 fm laM()

S Ndf=—— 5.10
|, sutnar=— (5.10)
16UL?
%———_JﬂXg_l. (5.11)

p2 g

In terms of the usual energy input due to wind, this
may be written as

2.5 fm 1& ﬂ4—25
[ Suthrar~ 8,6, 5 =2
1.2fm p

X!
2 g ¢

(5.12)

4

which places a constraint on the functional form
for Si,.
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The Snyder et al. (1981) parameterization for wind

input spectral energy may be generalized to the form
({l n

Sin =~ Qz(@—*) JE(Sf)

p

(5.13)

where ¢, is a dimensionless constant, and » is to be
determined. It is suggested by Snyder et al. (1981) that
n = 1, whereas Phillips (1985) suggests, n = 2. From
the spectral energy parameterization (1.5) we find

2.5
f y: Sin(f)df = UL o* f,72"g" " (5.14)
1.2

where r; is a dimensionless constant. Equating this to
the right side of (5.12) and rearranging terms, o* may
be related to f X and X *:

o = ry(f5) X0

where r; is a dimensionless constant.

(5.15)

c. Equilibrium range constraints on spectral energy
and a*

An alternate way to derive the relationship for a* is
to consider the equilibrium range. The total energy
flux from the central portion of the spectrum to high
frequencies, parameterized in terms of integral prop-
erties of the spectrum and the location of the spectral
peak may be written as

E3m9
Ig=4d, 0{
g

(5.16)

where d, is a dimensionless constant. In terms of mo-

4 0 L i L L L
3.0 -
2.0 B
o~
T
o
= 1.0 forward |
~ face
z mid- high
n range frequency
0.0
-1.0 -
-2.0 T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 1.2
f (Hz)

FiG. 7b. Nonlinear energy transfer due to wave-wave interactions
showing three extrema which approximately coincide with the “for-

ward-face”, “midrange” and “high-frequency’” regions.



NOVEMBER 1990

mentum flux from mid-range frequencies to high fre-
quencies this becomes
E‘O:;fm9
Im=d, wrYvE
fie,
where d, is a nondimensional constant.
Equation (5.17) describes the momentum flux to
high frequencies due to nonlinear wave-wave inter-
actions. We suppose that the energy input into the
spectrum occurs within a somewhat localized domain
and that an approximate balance between total mo-
mentum flux into the spectrum from the wind source
and fluxes to higher and lower frequencies is

(5.17)

(5.18)

where 7;, is the net rate of momentum transfer from
atmosphere to wave field, 7/,is the rate of momentum
‘transfer from the midrange frequencies to the spectral
forward face and 7, is the rate of momentum transfer
from the midrange frequencies to the high frequencies
of the spectrum.

Following Hasselmann et al. (1973) and Resio and
Perrie (1989), details of spectral shape are ignored and
the proportion of total momentum flux from midrange
to the forward face taken as a constant Q. We have

Tin ~ Tff+ Thf

Tff"—' Q‘rhf (519)

and by conservation of wave-wave interactions

Tff+ Thf = (1 + Q)Thf ~ Tin- (520)
Therefore from Egs. (5.11) and (5.17),
oM, 1 8U?°
in = = o~ - X1 5.21
Tin at p 2g2—-e e ( )
= (1 + Q)d: Ev fw’ (5.22)
2 g4@p .

and substituting equation (5.3) for total energy, o*
varies as

o* = A(X*)DB(fx)71/3 (5.23)
where A is a nondimensional constant.

In Tables 6a and 6b, we compute the exponent a in
the fetch relation (3.3) for o*, using the energy nor-
malization condition ( 3.14) and the CASP data. These
are compared with the theoretical values specified by
the total energy relation (5.3) and the equilibrium range
expression (5.23). The most consistent determination
of o* and the maximum correlation coefficients R for
a* occur when U, and C,; are used as scaling vari-
ables. This remains true when wave age is used as the
independent variable.

The equilibrium range o* relation (5.23) may be
equated to the expression for a* (5.15) derived as a
consequence of the generalized Snyder et al. (1981)
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spectral wind input S;,. We infer the exponent # of the
generalized wind input

4 20— 1)
37T 37

Scaling with C;; and U, values of n are computed
to be about 1.3 whether X* or U, /@, is used as the
independent variable. Scaling with %, and C, implies
that n is about 2.0 as reported by Phillips (1985).

From the generalized relation for total wind input
energy (5.14) and the Table 1 relation for o* as a func-
tion of U ./ €C,, we obtain

(5.24)

2.5 fm
f Su(f)df ~ RUZAf) 057 £, 07703 (525)
1.2/m
which may be rewritten as
2.5 m
[ sundr =~ rtttz g, (5.26)
1.2fm

Using the wind input of Snyder et al. (1981) with n
= 1 in (5.13) and the spectral energy parameterization
of JONSWARP (1.1), the total wind input energy (5.14)
is

2.5 fm .
f. S = refifo % (527)

Hasselmann et al. (1973) found in JONSWAP that
& ~ 3.38( £, (5.28)

which implies
2.5 i
[ swhdf ~ r* o2 (5.29)
1.2fm

where r3-rs are appropriate constants. This is consistent
with (5.26) and confirms that total wind input energy
has the same functional dependencies with either
choice of scaling variables.

6. Concluding remarks

We have scaled the dimensional variables for wave
spectra with the friction velocity magnitude U, and
also the friction velocity component U ., in the direc-
tion of the waves at the peak frequency f,,. We have
looked at three possibilities for the drag coefficient: C,
a constant, Cy, the long-fetch open-ocean parameter-
ization found by Smith (1988), and C,; the wave age
dependent drag coefficient derived by Smith and An-
derson (1989) in the HEXOS experiment for growing
wind-generated waves.

Fetch relations exhibit a very large range of growth
rates which generally support the slow variation in wave
steepness with fetch found by Walsh et al. (1989).
Scaling with U .. and C;; was shown to exactly match
their relation. The relations for total energy and peak
frequency as a function of fetch depend on the scaling
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TABLE 6a. Exponent < in fetch relation (3.3) is calculated from the energy normalization condition (3.14) in row 1, from the total energy
relation (5.3) written as o* = LEg( /%)’ in row 2, and from the equilibrium range relation (5.23) in row 3. Assuming independent variable
U,/C,, exponent { in fetch relation (3.12) is calculated as above, from energy normalization condition in row 4, from the total energy
relation in row 5, and from the equilibrium range relation in 6. Correlation coefficients R as well as comparative ratios to rows 1 and 4 are
also presented. As in Table 1, the +£15° window is used.

Scaling with U, Scaling with U,

Row Ca Ca2 Cas Ca Caz Cas
1 a 0.06 + .05 0.08 £ .05 0.13 £ .05 0.12 + .05 0.13 £ .05 0.17 £ .05
R 0.24 0.30 0.49 0.41 0.45 0.59
2 a 0.03 0.06 0.09 0.07 0.09 0.14
Percent of 1 50.0 75.0 69.2 58.3 69.2 82.4
3 a -0.003 0.007 0.07 0.05 0.057 0.113
Percent of 1 -5.6 11.1 53.8 41.7 43.6 66.7
4 ¢ —-0.39 + .19 —0.43 £ .18 -0.55 £ .15 —0.59 + .16 -0.60 + .16 -0.67 = .13
R —0.40 —0.45 —0.63 —0.62 —0.63 -0.67
5 ¢ -0.21 -0.22 -0.37 -0.32 -0.31 -0.44
Percent of 4 53.8 51.2 67.3 54.2 51.7 65.7
6 —0.031 -0.071 -0.258 -0.210. -0.230 -0.372
Percent of 4 7.9 16.5 355 38.2 55.5

46.7

and the method of analysis. The dominating constraint
is that, regardless of the method of analysis, wave
steepness is almost invariant with respect to fetch.

In terms of duration- and fetch-limited growth, scal-
ing variables imply a broad range of variation. For ex-
ample, if the exponent on the fetch-limited relation for
total energy (3.1) is greater than 1, the rate of change
of total energy increases with time. If this exponent is
less than 1, as we find in the CASP data scaling with
Ca and U, or as Donelan et al. (1985) found, the rate
of change of total energy is decreasing.

" The correlation coefficients for dimensionless vari-
ables Ry 4 were related to the correlation coefficients
among scaling variables, dimensional variables, and
the variances of these variables. We suggest that a

proper treatment of Rgy must report the correlation
coefficient of dimensional variables Ry and the latter
must be significant. The situation where the scaling
variables have a common factor %, introduces spu-
rious self-correlation to Ry and this self-correlation
can be dominating. In the CASP dataset this effect can
be reduced by choosing scaling variables that are well
motivated and by selecting well defined data and scaling
variables whose variances are low relative to the dy-
namical variables that are being scaled. These condi-
tions were best met by restricting the angle between
wind direction and the dominant wave direction to
| Af| < 15° and scaling with U .. rather than with U, .

Scaling with U ,. and C;3; was shown to result in the
greatest consistency among fetch relations in calculat-

TABLE 6b. As in Table 6a, but assuming +30° window as in Table 2.

Scaling with %, Scaling with %,
Row Ca Caz Cas Ca Caz Cas
1 a 0.07 + .04 0.10 £.05 0.15 £ .04 0.16 = .04 0.17 + .04 0.21 £ .04
R 0.21 0.29 0.44 0.44 0.47 0.59
2 a 0.05 0.07 0.12 0.11 0.10 0.15
Percent of 1 71.4 70.0 80.0 68.8 58.8 71.4
3 a 0.016 0.037 0.093 0.117 0.127 0.17
Percent of 1 229 370 61.2 73.1 74.7 81.0
4 ¢ —042 £+ .16 —0.53 .15 —0.61 = .12 —-0.65 + .11 —-0.69 + .11 -0.72 £ .09
R —0.34 —0.44 —0.57 —0.63 -0.65 -0.73
5 -0.19 -0.25 —0.36 —0.35 —-0.36 —0.45
Percent of 4 45.2 47.2 59.0 53.8 52.2 62.5
6 ¢ -0.113 -0.173 -0.323 —0.367 —0.385 —0.475
Percent of 4 269 . 326 53.0 56.5 55.7 65.0
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ing o*, with respect to the CASP dataset. A parame-
terization of o* derived from equilibrium range rela-
tions (5.23) was shown to verify well with o* behavior
in the total energy relation (5.3).

A generalization of the Snyder et al. (1981) param-
eterization for the spectral energy input to the waves
by the wind was also suggested and evaluated in terms
of the fetch relations. Whereas scaling by %, and C
implies that the ¥,/ @, term has an exponent of about
2.0 as reported by Phillips (1985), we demonstrate that
scaling with U . and C,; implies an exponent of about
1.3. This is shown to lead to an expression for the total
wind input energy consistent with that resulting from
the Snyder et al. (1981 ) parameterization (n = 1) using
the JONSWAP spectral parameterizations.
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