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ABSTRACT 

This study deals with the initialization of three-
dimensional wave field computations. We carry out such 
simulations with an HOS model developed at LMF-ECN since 
2002 and based on the work of West et al. (1987) and 
Dommermuth & Yue(1987). In such models, initial conditions 
for three-dimensional realistic sea state computation are 
obtained by linearly distributing energy density spectrum. This 
however implies a relaxation of the non-linear effects as 
proposed by Dommermuth(2000) for bi-dimensional 
monochromatic wave train and Tanaka(2001), over several 
tenths of wave periods. The present work tests those former 
initialization methods and exposes an alternative initialization 
based on a non-linear three-dimensional approach. Non-linear 
interaction processes are both accounted in the spectra of 
elevation and potential of velocity, in accordance with the 
formulation of Dalzell(1999) at second order in wave steepness. 
Non-linear energy calculation is then addressed and the 
efficiency of the methods as well as their possible impact on 
properties and statistics of the wave field are investigated. 

 
INTRODUCTION 

Deterministic sea state modeling is a key capability for 
many activities and their validation, safety, observation or 
forecasting. Characterizing a sea state implies to consider a 
superposition of high number of component waves with various 
amplitudes, frequencies, wave length and directions of 
propagation, interacting non-linearly with each other. For this 
purpose, we employ the High-Order Spectral (HOS hereinafter) 
method developed at ECN for various purposes (see Blondel et 
al.(2008a,b), Bonnefoy et al.(2009)). If the physics of 
propagative problem are quite well theorized, setting up proper 
initial conditions for any realistic sea state modeling may 
remain a difficult task. Unreal high frequency modes are 
generated when non-linear progressive waves are initialized 

using linear conditions. Solution generally used is either to 
allow a sufficient relaxation time for unreal mode to disappear 
[Tanaka(01)] or to implement a relaxation procedure 
[Dommermuth(00)]. Tanaka considered the spectrum of surface 
elevation and velocity potential verifying the linear JONSWAP 
distribution and showed the non-linear HOS computation 
implied a period of relaxation for non-linear energy transfer to 
occur. This was achieved after a relaxation time of about a few 
tens of characteristic periods. Dommermuth added to the linear 
initialization an adjustment procedure to allow natural 
development of non-linear self-wave and wave-wave 
interactions. This however implied a period of relaxation of a 
few tens of characteristic periods.  
The objective here is to test comparatively a non-linear 
tridimensional initialization to a second order in wave steepness 
(employed in bidimensional wave field by Blondel et al.(08)) 
with both previous methods and to estimate the impact of 
initialization on the statistics of wave field. 

 

1. FUNDAMENTALS 

1. High Order Spectral model formalism 

We consider a fluid domain of dimensions defined in a 
Cartesian system 

  

€ 

x,  z ( ) . A potential of velocity 

€ 

ϕ x,z, t( )  is 

defined so as 
  

€ 

V x,z, t( ) =
 
∇ ϕ x,z, t( )  assuming irrotational 

motion. In this study the fluid domain is assimilated to a deep-
water oceanic domain. Its frontiers being defined as periodic 
the domain might be assimilated as infinite. 

Expressing the conservation of momentum and kinematic 
condition at the free surface 

€ 

z = η  following Dommermuth and 
West et al., the system can be defined as :  

€ 

∂ϕ s

∂t
= −gη− 1

2
∇ϕ s

2
+
1
2
1+ ∇η

2( )W 2 −
pa
ρw

  (1) 



 2 Copyright © 2010 by ASME 

€ 

∂η
∂t

= 1+ ∇η
2( )W − ∇ϕ s .∇η 

(2) 

with 

€ 

ϕ s x, t( ) =ϕ x,z = η, t( ) the potential of velocity expressed 

at 

€ 

z = η  the free surface elevation, 

€ 

∂ϕ
∂z

=W the vertical velocity 

at the free surface,

€ 

pa the atmospheric pressure, and 

€ 

ρw  the 
water density. Spatial horizontal derivatives are determined 
analytically expressing surface elevation and surface potential 
on an Fourier basis such as : 

€ 

η x, t( ) = Anp
η t( )

p=−∞

+∞

∑
n=−∞

+∞

∑ eikxn xeikyp y  
(3) 

€ 

ϕ s x, t( ) = Anp
ϕs t( )

p=−∞

+∞

∑
n=−∞

+∞

∑ eikxn xeikyp y  
(4) 

The Fourier basis is determined by the Cartesian system in 

wave number, 

€ 

kxn and 

€ 

kyp being defined as 

€ 

kxn =
nπ
Lx

 and 

€ 

kyp =
pπ
Ly

. 

Equations (1) and (2) allow to advance 

€ 

η and 

€ 

ϕ s  in time 
through a Runge-Kutta scheme. The only variable remaining 
unknown 

€ 

W  is determined using decomposition in order of 
power of 

€ 

η and a Taylor development of 

€ 

ϕ  around 

€ 

z = 0 to an 
order M : 

€ 

W x, t( ) = W (m) x, t( )
m=1

+∞

∑  
(5) 

and  

€ 

W m( ) x,η, t( ) =
ηk

k!
∂ k+1ϕ (m−k)

∂z k+1
x,0, t( )

k=0

+∞

∑  
(6) 

where  the 

€ 

ϕ m( )  components of the potential are obtained 
by solving the Dirichlet problem of the free surface [see 
Dommermuth Yue(87) and West et al.(87)]. 

 

2. Initial conditions 

Setting initial conditions is a crucial task in the process of 
realistic sea state modeling. Common use is to consider a 
distribution of density of energy and to assign

€ 

η and 

€ 

ϕ s  
consistently. Taking a distribution of density of energy such as 
JONSWAP : 

€ 

Φ ω( ) =Ψ ω( )G θ( )    (7) 

with : 

€ 

Ψ ω( ) =αg 2ω−5 exp −
5ω p

4

4ω 4

 

 
  

 

 
  γ

exp − ω−ω p( )2 2σ 2ω p
2 

  
 
   

(8) 

The JONSWAP formulation corresponds to : 

€ 

α = 3.279E, γ = 3.3, σ =
0.07 ω < 1( )
0.09 ω > 1( )

 
 
 

  
 

(9) 

and 

€ 

G θ( )  the function of angular repartition : 

€ 

G θ( ) =

1
β
cos2 πθ

2β
 

 
 

 

 
 , θ ≤ β

0, θ > β

 

 
 

 
 

 

(10) 

Surface elevation and potential are then related to the 
distribution of energy through their modal amplitude:  

€ 

Aη k( ) =
g
ωk
3 Φ ωk( )ΔkxΔky eiφ  

(11) 

and: 

€ 

Aη k( ) = −
ig
ωk

g
ωk
3 Φ ωk( )ΔkxΔky eiφ  

(12) 

where 

€ 

φ  is the random phase of the complex modal 
component, 

€ 

Δkx  and 

€ 

Δky  the discretization steps in the spectral 
domain. 

 We consider here a second order non-linear initialization 
thanks to the formulation of Dalzell(99) following Longuet-
Higgins(62) and generalized to a discrete spectrum of elevation 
and potential of velocity. Expressions are given for a case of 
infinite depth.  

€ 

η x( ) = η 1( ) +ηs +η+ +η−   (13) 

The first term corresponds to the linear contribution, the 
second to the Stokes interaction of a component on itself and 
the last ones to the additive contributions within the spectrum. 
The first order elevation is written as follows : 

€ 

η1 = Anp
η eikxn xeikyp y

p=1

P

∑
n=1

N

∑  
(14) 

where N and P are respectively the number of modes along 
  

€ 

 
k x  

and 
  

€ 

 
k y  as well as the dimensions of the spatial discrete grid 

along   

€ 

 x  and   

€ 

 y . 
The second order components are expressed by : 

€ 

ηs =
Anp
η 2 knp
2

ei2kxn xei2kyp y

p=1

P

∑
n=1

N

∑  
(15) 

 

€ 

η+ =

Anp
η Aij

η B+ knp ,kij( )ei kxn +kxi( ) xe
i kyp +ky j( ) y

j= p+1

P

∑
i=n+1

N

∑
p=1

P

∑
n=1

N

∑  

(16) 
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€ 

η− =

Anp
η Aij

η B− knp ,kij( )ei kxn −kxi( ) xe
i kyp −ky j( ) y

j= p+1

P

∑
i=n+1

N

∑
p=1

P

∑
n=1

N

∑  

(17) 

 
Those are functions of sum and differences contributions 

€ 

B+  and 

€ 

B− , given in appendix A. 
 
The surface potential at second order is obtained by a 

Stokes development and a Taylor expansion around 

€ 

z = 0 : 

€ 

ϕ s x( ) =ϕ 1( ) x,z = 0( ) +ϕ 2( ) x,z = 0( ) +η 1( ) ∂ϕ
1( ) x,z = 0( )
∂z

 
(18) 

The first order potential is expressed in Dalzell as: 

€ 

ϕ 1( ) x,z = 0( ) = i Anp
η g
ωnp

eikxn xeikyp y

p=1

P

∑
n=1

N

∑  
(19) 

and the second order by : 

€ 

ϕ 2( ) x,z = 0( ) =

i Anp
η Aij

η A+ knp ,kij( )ei kxn +kxi( ) xe
i kyp +ky j( ) y

j= p+1

P

∑
i=n+1

N

∑
p=1

P

∑
n=1

N

∑

+ i Anp
η Aij

η A− knp ,kij( )ei kxn −kxi( )xe
i kyp −ky j( )y

j= p+1

P

∑
i=n+1

N

∑
p=1

P

∑
n=1

N

∑

 

(20) 

Sum and differences contributions of wave numbers 

€ 

A+ and 

€ 

A−  are given in appendix A.  

 

3. Non-linear relaxation 

Spurious wave damping as expressed by Dommermuth(00) 
through a relaxation coefficient for non-linearities to be taken 
progressively into account has also been implemented to 
compare the performances of the different methods. Parameters 
Ta and n control the relaxation of the non-linear terms F and G 
such as: 

€ 

∂ϕ s

∂t
= −gη+G 1− e− t Ta( )n 

 
  

 
   (21) 

€ 

∂η
∂t

=W + F 1− e− t Ta( ) n 
 
  

 
   (22) 

 
This however implies that proper relaxation requires time 

or inversely that quick initialization implies poor accuracy. 
 

2. NUMERICAL RESULTS 

1. Second order test case 

We consider here the theoretical test case of propagation 
for regular Stokes wave. An ideal time-domain second order 

solver is able to propagate through time and space a stable 
Stokes solution such as: 

  

€ 

η x, t( ) = a cos kx −ωt( ) +
1
2
ka 2 cos 2 kx −ωt( )( )

ϕ x, t( ) = a sin kx −ωt( )

 

 
 

  
 

(23) 

When initialized linearly, a non-linear solver will combine 
the proper non-linear solution (free and bound mode) to a free 
standing mode at 2k, with a pulsation 

€ 

ω 2k( ) ≠ 2ω k( ) , 
validating the initial conditions: 

€ 

η x, t = 0( ) = a cos kx( ) +
1
2
ka 2 cos 2 kx( ) − 1

2
ka 2 cos 2kx( )   (24) 

This is indeed equivalent to the combination of a linear free 
mode and a spurious non-linear one:  

  

€ 

η x, t( ) = a cos kx −ωk t( ) +

1
2
ka 2 cos 2kx − 2ωk t( ) − cos 2kx( ) cos ω2k t( )[ ]

 
(25) 

  
The non-linear solver (HOS) we will use  in this section is 

not strictly equivalent, when set with M=2, to the ideal second 
order solver discussed above. Indeed, second order in 
development of the vertical velocity in HOS does not properly 
correspond to a second order in wave steepness, as HOS 
cinematic boundary conditions are expressed at free surface 

€ 

z = η  when Dalzell development of nonlinearities to a second 
order (i.e. Stokes waves in case of regular waves) is expressed 
around the mean lever

€ 

z = 0. As the difference implied is 
greater than two in term of non-linear order (and then lower in 
magnitude), it was interesting to test comparatively linear and 
non-linear initializations and their impact on stability in HOS 
M=2.  

Initialization is compared for an initial Airy linear wave 
solution, an initial Airy linear simulation with non-linear 
relaxation as expressed by Dommermuth(00) and a Stokes 
wave. Their propagation is performed with HOS M=2, and the 
amplitude is taken so as to consider a wave steepness given by 

€ 

ka = 0.1.  
The amplitude of the second order component (i.e. at 

€ 

2kp ), 
shows the influence of spurious modes with amplitude about 2 
times the theoretic second order amplitude, in the case of linear 
initialization (Figure 1). Oscillations up to 

€ 

±4% are also present 
in case of Dalzell initialization. Those are indeed part of the 
difference of non-linear development in HOS M=2, and their 
magnitude remains weak compared to the standing mode of the 
linear case. Spurious modes at higher harmonics are also 
present but apparently lower in the case of second order non-
linear initialization. 

This is tested here for the theoretic test case of regular 
waves. For such cases, non-linear initialization enables to reach 
initially the same accuracy as a relaxation process with Ta = 2 
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to 3 Tp, and an efficient time of relaxation of about 4 to 6 Tp 
(Figure 2). 
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0

0.5

1

1.5

2

2.5

Tp

|A
η 2

A
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Figure 1 ­ Theoretic test case : amplitude of the second mode 
of 

€ 

η  through  time  for  linear  (red  dotted)  and  non­linear 
(black  continuous)  initialization  in  a  HOS M=2  computation 
(both  normalized  by mean  value  of  the  second  order mode 
amplitude). 
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Figure  2  ­  Comparison  of  the  amplitudes  of  the  second 
mode of surface elevation for non­linear (black continuous) 
and  linear  with  relaxation  of  non­linearities  (n=2,  Ta=2 
(cyan  dash­dotted),  Ta=3  (red  dashed),  Ta=8  (blue 
continuous)).  All  normalized  by  the  mean  value  of  the 
second order mode amplitude. 

It then appears that second order non-linear initialization 
following Dalzell’s formulation provides an immediate quite 
stable estimation of the non-linearities at 

€ 

k = 2kp . For such a 
theoretic test case Dommermuth initialization enables however 
a more accurate estimation of the whole range of non-linear 
harmonic components although it will require a significant 
relaxation period [Dommermuth(00)]. 

 

2.  Realistic continuous spectrum 

The main goal of this study remains the evaluation of 
performances for various initialization methods for continuous 
spectrum of realistic sea-states. This is tested now on various 
distribution laws for the spectrum of density of energy. So as to 
compare coherently those different initializations, non-linear 
energy is taken as the physical quantity of reference. Its 
expression is given by:  

€ 

E =
1
2

φ
∂η
∂t
dx∫∫ +

1
2

η2dx∫∫   (26) 

Its calculation is included in a convergence loop, so that 
the non-linear energy of the initial state corresponds to the same 
prescribed energy, independently of the initialization methods. 
In fact, in case of nonlinear initialization, the energy of linear 
free components and second order bound components need to 
be equivalent to the energy of the initial linear sea state. 

 

2.1. Numerical details 

Modeling a realistic sea state implies to take into account 
directional nonlinear interactions. The nonlinear order is set up 
to an order M=3 and enables to consider properly up to 
nonlinear Hasselmann(62)’s transfers. HOS simulations on 
spatial grid size of about 768 by 375 nodes are performed on 
durations up to

€ 

100Tp . Spatial domain is chosen square so that 
it length is equal to

€ 

50λ p , setting the peak wave number at the 
50th component. Total energy is set so as to verify a pseudo 
steepness parameter such as 

€ 

ε = Hs kp = 0.1. Various 
distributions laws with the same initial random phase draw 
were tested in term of efficiency for three types of initialization: 
linear distribution, Dommermuth nonlinear relaxation, and 
second order nonlinear initialization, which is assumed to make 
up a first step toward a fully nonlinear relaxed sea state. A 
comparative review of their performances is then achieved.  

 

2.2. Nonlinear transfers 

Following Tanaka(01), the directional nonlinear transfer 
through time are evaluated studying the time variations of the 
density of spectral energy given by : 

€ 

TE kx , ky( ) =
Ekx , ky t2( ) − Ekx , ky t1( )

Δt
 

(27) 

with: 

€ 

E kx , ky( ) =
1

2ΔkxΔky
Akx , ky
η

2
 

(28) 
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Figure  3  ­  Transfer  in  the  spectral  density  spectrum 
between  initial  state  t=0  and  t=1Tp  for  three  different 
initialization procedures. 

 
Figure  4  –  Transfer  in  the  spectral  density  Spectrum 
between t = 5Tp and t=6Tp. 

Figure  5  ­  Transfer  in  the  spectral  density  spectrum 
between t=10 and t=11Tp. 
 
 

 
Figure  6  ­  Transfer  in  the  spectral  density  spectrum 
between t=20 Tp and t=21Tp 
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the spectral density of energy function of the complex modal 
amplitude. Such transfers are plotted in Figure 3 to 6 for the 
different initializations. 

The integrated transfer through direction [Tanaka(01)] will 
also be a valuable variable to study : 

€ 

TE k( ) =
Ek t2( ) − Ek t1( )

Δt
 

(29) 

with: 

€ 

E k( ) = k E kx ,ky( )
kx+ky =k
∫ dθ   (30) 

Considering the linear nature of the spectral density, it has 
to be pointed out that it is not evaluated here to assess any 
energetic quantity, but to provide a valuator of the nonlinear 
evolutions among the amplitude spectrum. Whereas Tanaka 
used this quantity over few tens of characteristic periods in 
order to compare computed transfers to Hasselmann’s theory, it 
was chosen here to evaluate the transfer over one characteristic 
period. This way, the valuator is assumed to capture the non-
linear adjustments at the basis of initial set up. A moving 
average is used over ten by ten squares grid points in the 
spectral domain to filter the high frequency spectral variations. 
Considering the high number of frequencies, the moving 
average acts as a multiple initial phase draw for the various 
components. The major trend in term of nonlinear transfers is 
then made more obvious. The figures presented here show 
consistently the same initial phase draw for all three different 
methods of initialization. 

Common JONSWAP sea states [Equation (9)] are used as 
initial conditions. The nonlinear relaxation as expressed by 
Dommermuth allows to take gradually into account the 
nonlinear terms. The first time steps are then predominantly 
linear for this initialization.  

2.3. Results 

Bidimensional expression of the nonlinear transfers gives a 
first qualitative sight of the processes at stake. Those nonlinear 
transfers appear to remain low up to five times the peak period 
(Figure 3 and 4). Linear and nonlinear initializations show slight 
differences over the first time steps (Figure 3), but their 
qualitative specifications tend to reduce comparatively through 
time (Figure 4 and 5). After about twenty characteristic periods, 
all three methods of relaxation seem to produce quite similar 
transfers (Figure 6). 

This is also verified through the study of transfers for the 
integrated spectral density and provides a more quantitative As 
shown by Tanaka, relaxation of the nonlinear set up occurs after 
an order of one tens of time the characteristic period. By 
relaxed sea state, it is implied that free wave components are 
accompanied by the appropriate corresponding bound waves. 
During relaxation, progressive waves are observed in the 
spectral space (Figure 4). This is consistent with what was 
expressed in paragraph 1 for the regular sea state as it reveals 
the presence of spurious standing components which are now 

transient. Indeed, the standing modes are dissipated through 
third order nonlinearities (i.e. four waves resonant interactions). 
The main differences occur at the first time steps (Figure 7 and 
8), and after the 10 Tp evaluated relaxation period the 
correlation between quantities of transfer for the three methods 
of initialization becomes significant (Figure 9 and 10). 
 

2.4. Statistics 

The influence of initialization is also sensible in term of 
statistics of the sea states. The density of probability of surface 
elevation is computed for each case and compared to 
distributions of reference. 

 

 

 
Figure 7 and Figure 8 ­ Integrated nonlinear transfers for second 
order  non  linear  initialisation  (black  continuous),  linear  (red 
dashed) and relaxed (blue dash ­dotted) initialization between 0 
and 1 Tp and 5 and 6 Tp. 
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A linear distribution is assumed to follow a Gaussian 
repartition [Longuet-Higgins(52)] under the form: 

€ 

fG η( ) =
1

σ 2π
exp −

η− µ( )2

2σ 2

 

 
 
 

 

 
 
 
 

(31) 

with 

€ 

σ  and 

€ 

µ  the standard deviation and mean of the data set, 
respectively. Many formulations for probability distribution of 
nonlinear sea states are available,  and among them we chose to 
consider Tayfun(80)’s formulation for non linear stokes 
expansion to the second order: 
 

€ 

fT η( ) =
1− 7σ 2 8

2π 1+ 3G + 2G 2( )
exp − G 2

2σ 2

 

 
 

 

 
  

(32) 

 

€ 

G = 1+ 2η −1  (33) 

 
The comparison to computed repartitions of 

€ 

η is then very 
sensible to the number of nodes on the spatial grid of 
computation. The noisy repartitions are generally filtered for 
interpretation purpose and a moving average is used here to 
filter those high frequency variations. As expected, the initial 
states follow quite properly the theoretical distribution 
functions (Figure 11). The linearly initialized sea state then 
quickly moves toward a more nonlinear distribution both in 
crests and troughs values. The nonlinear initialized sea state is 
oscillating in the vicinity of the theoretical nonlinear 
distribution and generally presents a better agreement than the 
linearly initiated state in term of crest elevation, up to about 
10Tp (Figure 12), when the differences become insignificant.

 

 
Figure 9 and Figure 10 ­  Integrated nonlinear transfers  for second 
order  non  linear  initialisation  (black  continuous),  linear  (red 
dashed) and  relaxed  (blue dash  ­dotted)  initialization between 10 
and 11 Tp and 20 and 21 Tp. 
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Figure 11 and Figure 12 ­ Initial distribution of surface elevation for 
linear set up (red), second order nonlinear set up (blue), theoritical 
Gauss  linear (blue dash­dotted) and Tayfun nonlinear distribution 
(green dashed) at t=0 and t=10Tp  
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CONCLUSIONS 
Three procedures of initialization for nonlinear sea state 

simulations have been tested on two different types of wave 
field. 

Firstly bidimensional regular waves have been simulated at 
low order of nonlinearities (HOS simulations with M=2). When 
the simulation is initialized by a linear wave field, we observed 
spurious standing waves of amplitude up to two times the 
theoretical second order amplitude. The occurrence of those 
spurious waves has been explained by second order theory. 
Then a second order nonlinear initialization proved to 
significantly and immediately reduce the amplitude of those 
spurious components. The relaxation procedure proposed by 
Dommermuth(00) is able to provide a more accurate solution if 
enough time is allowed for the relaxation to occur. 

Secondly we have performed tridimensional simulations of 
realistic sea states (irregular waves) with a higher order of 
nonlinearities (HOS model with M=3). This higher order of 
nonlinearity enables the spurious components to be dissipated 
through four waves interactions. Both linear and nonlinear 
initializations generate standing erroneous components during 
the first time steps, but the second order nonlinear initialization 
seems to provide a nonlinearly more relaxed sea state as 
suggested by integrated transfers and surface elevation 
statistics, in accordance with nonlinear theory. The relaxation 
procedure is able to damp spurious standing wave but implies 
however to provide the needed duration of relaxation. All three 
methods provide quite equivalent sea state after ten to twenty 
times the characteristic peak period. 
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APPENDIX A 

THREE DIMENSIONAL SECOND ORDER NONLINEAR 
THEORY 

` 
 
Following Dalzell(99) the second order nonlinear sum and 

differences contributions for both

€ 

ϕ sand 

€ 

η are given by the 
following expressions : 

 

€ 

A+ knp ,kij( ) =
ωnpω ij ωnp +ω ij( ) 1− cos θ np −θ ij( )[ ]

ωnp +ω ij( )
2
− g knp + kij

 
(34) 

€ 

A− knp ,kij( ) =
ωnpω ij ωnp −ω ij( ) 1+ cos θ np −θ ij( )[ ]

ωnp −ω ij( )
2
− g knp − kij

 
(35) 

for 

€ 

ϕ s , and : 
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ωnp
2 +ω ij

2( )
2g
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ωnpω ij

2g
1− cos θ np −θ ij( )[ ]

ωnp +ω ij( )
2

+ g knp + kij

ωnp +ω ij( )
2
− g knp + kij
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B− knp ,kij( ) =
ωnp
2 +ω ij

2( )
2g

+
ωnpω ij

2g
1+ cos θ np −θ ij( )[ ]

ωnp −ω ij( )
2

+ g knp − kij
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2
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 

 

 
 

 

 

 
 

 

(37) 

for 

€ 

η. 
 


