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INTRODUCTION

Visitors to any coastline exposed to open water can see the dramatic
transformation of surface waves that occurs as they advance onto a
beach. The waves offshore have a relatively smooth water surface,
whereas the waves arriving at the shoreline have rough white fronts of
spray and bubbles. The transition between these two types of waves is the
subject of this review; the term “wave breaking” is used here to describe
the transition from a smooth wave to the quasi-steady state with a
white-water front rather than to any particular instant within the transi-
tion.

The most prominent stage of wave breaking is the initial overturning
motion of the wave crest that creates spray and white water, often by the
forward projection of a jet of water. Much wave-breaking research has
consisted of experiments to determine, for given offshore wave character-
istics and beach slope, when and where waves first break and what type
of initial breaking motion results. Galvin (1972) gives a review of such
work.

The descriptive terms for breaker type use the initial motion to
characterize them and are as follows (Galvin, 1968, 1972):

Spilling 'White water appears at the wave crest and spills down the front
face, sometimes preceded by the projection of a small jet.

Plunging Most of the wave’s front face overturns and a prominent jet
falls near the base of the wave, causing a large splash.

'Copyright covers text matter only.
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Collapsing The lower portion of the front face overturns and behaves
like a truncated plunging breaker.

Surging No significant disturbance of the smooth wave profile occurs
except near the moving shoreline.

There often appears to be a smooth gradation between all these types
of waves, which hints at the possibility of a one-parameter family of
breaking “events,” once allowance is made for the geometric scale of the
wave. However, it is the beach that causes wave-breaking, and beach
shapes vary widely, so that it is not difficult to find occasions when
waves do not fit well into the above set of descriptions. Perhaps the most
frequent such exception is the shore break, where the whole face of the
wave from trough to crest becomes vertical with relatively little or no
water in front of it. Very strong turbulent motions result; these waves
seem to be among those that surfers call “sand-busters” or “dumpers.”

Most experiments on breaking waves are influenced by the example of
a single wave train specified in deep water by frequency w, and ampli-
tude @, and incident on a plane beach of slope a. Results of experiments
of this type appear to depend on two parameters: the beach slope a and
initial wave steepness, €.g. ayw’/g. Summary diagrams for wave height
and water depth at breaking may be found in texts and manuals such as
Wiegel (1964), Silvester (1974), Horikawa (1978), and Coastal Engineer-
ing Research Center (1977). Furthermore, some experimental results
depend on a single parameter ayw?/ga?, discussed in the next section.

This review is oriented toward understanding the fluid dynamics of
wave-breaking, rather than discussing the above type of experiment. The
account of when and how waves break is entirely in terms of inviscid,
initially irrotational flow, without concern for the air above the surface or
surface tension. This idealization is proving sufficiently successful that
other physical aspects of the problem are considered secondary and are
discussed separately.

THE APPROACH TO WAVE-BREAKING

There are two major theoretical approaches to the problem of finding
where waves break on a beach; both are only appropriate for beaches of
gentle slope, and both originated well over 100 years ago.

Shallow-Water Steepening

Equations to describe finite-amplitude shallow-water waves are obtained
by assuming that water-surface slopes are sufficiently gentle that water-
particle accelerations are negligible compared with gravity. This assump-
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tion implies that the pressure at any point consists solely of the
hydrostatic pressure due to the weight of water above that point. This
theory was developed by Airy (1845) in response to Russell’s (1834; see
Miles 1980) observation of the existence of the solitary wave. Airy found
that the equations can be put into a form showing that the front face of
any wave of elevation propagating on water of uniform depth must
steepen (see Lamb 1932, Sect, 187, or Lighthill 1978, Chap. 2). Airy, and
many others since then (e.g. see Stoker 1957), took this steepening to
imply that such shallow-water waves necessarily break; this despite the
existence of the solitary wave, which is a wave of elevation that propa-
gates unchanged on uniform water depth, i.e. without breaking.

Shallow-water steepening can be simply described in the case where a
wave is propagating into uniform water conditions, e.g. still water of
constant depth. Each portion of a wave with elevation { and horizontal
water velocity u travels with the long-wave velocity corresponding to the
total depth plus the water velocity, i.e. with velocity [g(D +{)]'"/% + u,
where D is the water depth and g the acceleration due to gravity. Thus
the higher parts of a wave travel faster.

The result of wave steepening is that water accelerations increase to the
point where they have a significant effect on the pressure, and this must
be accounted for. The only analytically tractable case has been for waves
of small amplitude; that is, a “near-linear” approximation is made and
only the “first” nonlinear terms are included. The resulting equations are
the Boussinesq equations (e.g. see Whitham 1974, Sect. 13.11). Among
their solutions is the solitary wave in which the shallow-water steepening
is exactly balanced by the effect of the water’s acceleration, more
commonly called a dispersive effect (see Miles 1980 for a survey of
solitary waves).

The balance between shallow-water steepening and the effect of water
acceleration is expressed in terms of the Ursell number (Ursell 1953)

Ur = H/Do?, (1)

where H is wave height and ¢ is a measure of maximum gradients, e.g.
Da/9x. If, as is often convenient, o is replaced by D/L, where L is the
wavelength, the natural interpretation of large Ur corresponding only to
shallow-water steepening is not correct, since long-wavelength waves
frequently look like a train of solitary waves with long flat troughs
between crests. However, small values of Ur reliably indicate that any
shallow-water approximation is inappropriate (e.g. HL2/D? < 4x?2),
When solutions of the Boussinesq equations are calculated for waves
longer than solitary waves, shallow-water steepening occurs, but this is
then countered by wave curvature and maximum elevation increasing so
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as to form a sequence of undulations without the occurrence of breaking.
For example, a wave that is a smooth change in water depth between
depth D and D + AD develops into a set of waves called an undular bore
(see Peregrine 1966, or Fornberg & Whitham 1978, where equivalent
solutions of the Korteweg-de Vries equation are given).

Despite the existence of nonbreaking solutions, a simple smooth “step-
up” wave of height AD may break because of shallow-water steepening.
If AD/D is greater than 0.7, then the wave continues to steepen and
rapidly breaks, forming a turbulent bore (known as a hydraulic jump if
there is sufficient current to hold it stationary). For the range 0.3 <
AD/D < 0.7, undulations occur but the leading wave breaks (Binnie &
Orkney 1955). Near the lower limit of this range, breaking may not occur
for a relatively long time (Favre 1935).

From the above behavior of waves over a flat bed we can deduce when
shallow-water steepening is the primary cause of breaking for waves on a
beach. The waves must have propagated to a portion of the beach where
(a) their length is much longer than the water depth, (b) their slopes are
still gentle, and (¢) their height is almost as great as the depth,

A periodic solution of the shallow-water equations on a plane beach is
given by Carrier & Greenspan (1958). It can be matched away from the
shore with the linear wave solution (Keller 1961), and for those cases
where the beach has only gentle surface slopes it gives an accurate
solution for the perfect reflection of incident periodic waves. Linear
water-wave theory has solutions that correspond to perfect reflection for
any beach slope, but the assumptions of linear theory do not hold at the
shoreline unless the beach slope there is O(1). The Carrier-Greenspan
solution provides a local solution near the shoreline for gentle slopes.

A wave with near-total reflection satisfies the description of a surging
wave. The Carrier-Greenspan solution gives a limit to such waves, since
as the amplitude increases a vertical surface slope is predicted at the
shoreline. Meyer & Taylor (1972) show that there is a solution corre-
sponding to total reflection of waves if

ay(m/20) w0 /gat <1/2, (2)

where the factor (m/2a)!/? connects the amplitude offshore, a,, with the
amplitude of the Carrier-Greenspan solution. See Guza & Bowen (1976)
for further details and experimental measurements agreeing with this
result.

Parameters equivalent to aw?/ga?, which appears in (2), have been
found useful for correlating surf-zone properties as well as determining
whether or not waves may break. For a discussion comparing several
surf-zone properties, see Battjes (1974), where Iribarren & Nogales (1949)
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are credited with first using such a parameter to divide breaking and
nonbreaking waves. As might be expected from the above, it is the
properties of waves that are close to this nonbreaking condition that are
well correlated by using the parameter in (2) (e.g. see Guza & Bowen
1976). Its relevance to the above discussion of equations for shallow-water
waves is demonstrated by Munk & Wimbush (1969), who consider it as a
ratio of aw?/a (a measure of water acceleration up the beach slope) to ag
(the component of gravity parallel to the beach). Battjes gives further
physical interpretations.

Refraction and Waves of Limiting Steepness

For calculating the refraction of waves approaching a beach, the two
most common assumptions are that (a) there is no reflection of the
waves, and (b) the beach slope is so gentle that the waves are like plane
periodic waves on water of constant depth. In the simplest case of steady °
waves normally incident on a beach, the amplitude variation is obtained
from the constancy of wave-action flux, which is equivalent to constant
energy flow in the absence of currents. The first example of this method
is for linear long waves (Green 1838) and in that case it leads to Green’s
Law, that wave amplitude is proportional to D ~'/4,

The position of wave breaking is estimated by introducing a limit to
wave steepness. The existence of a limiting wave steepness for traveling
waves has been known since Stokes (1880) studied the flow near the crest
of such a wave, and the limiting waves may now be calculated with
considerable accuracy for any depth (Williams 1981).

In practice, coastal engineers use formulas such as

(HK)ppy = 0.89 tanh kD, (3)

due to Miche (1944), where H = 2a is the wave height, k = 2m/L is the
wave number, and L is the wave length. Van Dorn (1978) shows that
Equation (3) is a reasonable fit to experimental data from beaches of
gentle slope. Since small values of kD are most frequently encountered at
breaking, both in experiments and in nature, a limiting ratio, D/H, is
more often used. This ratio is called a “breaker index” and is given
values in the range 1.1-1.3.

Limiting-steepness waves have provided a starting point for theoretical
studies of wave breaking, Longuet-Higgins (1980a) includes an account
of the part they have played in the study of breaking waves. However,
development of accurate solutions for periodic waves of lesser steepness
(Schwartz 1974, Longuet-Higgins 1975, Cokelet 1977b, Longuet-Higgins
& Fox 1978, reviewed in Schwartz & Fenton 1982) has shown that wave
phase velocity and most other integral properties of waves such as energy


http://www.annualreviews.org/aronline

N

Annu. Rev. Fluid. Mech. 1983.15:149-178. Downloaded from arjournals.annualreviews.org
by University of Bristol Library on 06/13/05. For personal use only.

Annua Reviews )
www.annualreviews.org/aronline

154 PEREGRINE

flow have their maximum, for given mean depth and wave number, for
waves of less than maximum steepness. When accurate wave solutions are
used in a refraction calculation, this results in (a) two possible steep-wave
solutions for a restricted range of water depths, and (b) in solutions
ceasing to exist for shallower water (e.g. Sakai & Battjes 1980, Stiassnie &
Peregrine 1980, and Ryrie & Peregrine 1982). [There is a second type of
double-valued solution in Ryrie & Peregrine (1982), which Peregrine
(submitted for publication) discusses in more detail, showing the second
solution is rarely relevant.] The first two of these papers show reasonable
agreement for wave height and velocity with the detailed measurements
of Hansen & Svendsen (1979), except within one wave length of break-
ing.

-In experiments, waves on beaches do not retain the symmetry about
their crests that a periodic wave train on uniform depth has. Hansen &
Svendsen (1979) include measures of asymmetry and profile measure-
ments that illustrate this point. The same authors (Svendsen & Hansen
1978) give a perturbation analysis of cnoidal waves on a sloping bottom.
Their comparisons with experiment look satisfactory in the range 25 <
Ur < 300, and they find a maximum asymmetry for Ur ~ 50. Here we are
using Ur= HL?/ D3,

Any solution depending on local plane-wave solutions, or perturba-
tions to them, implies that wave properties can adjust to changes in
depth. If the time scale of such an adjustment is long, then there must be
a correspondingly slow variation of depth. An adjustment involving
adjacent waves can occur more readily in deep water, where any dis-
turbance i1s communicated through the half-space of fluid, than in
shallow water, where disturbances propagate along a strip of fluid with
velocities that cannot be much greater than (gD)'/2. An indication of
this difference is the way the ratio of group velocity to phase velocity
approaches unity as D/L — 0. In long waves, wave crests behave like
independent entities. Thus periodic waves can be accurately represented
by a train of solitary waves [e.g. see Stiassnie & Peregrine 1980, Witting
(unpublished) 1981, and Williams 1981].

The “rate of adjustment” of a train of solitary waves to disturbances
can be estimated from the interaction between a nearly equal pair of
solitary waves for which there is an exact solution of the Korteweg-
de Vries equation (Whitham 1974, Equation 17.21). (The Korteweg-de
Vries equation is an appropriate approximation to the Boussinesq equa-
tions.) By using such an estimate, Stiassnie & Peregrine (1980) show that
in this regime waves have time to interact with their neighbors only if

a<2(3)*(H/D)*exp[ - 4(3Ur)' . (4)
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This is a very severe requirement on a, since Ur should be greater than
O(50) for the train-of-solitary-waves approximation and if Ur = 50, the
exponential in expression (4) equals 0.002.

This suggests that for practical beach slopes a slowly varying
periodic-wave solution is inappropriate once Ur > 50, and consideration
of each wave crest as an independent entity may be better. An ap-
propriate solution to examine is that for a solitary wave. It has often been
remarked that waves on beaches resemble solitary waves (e.g. Munk
1949). Departures from a true solitary-wave profile as it propagates over
varying depth have been analyzed for (a) wave reflection by Peregrine
(1967) and (b) direct perturbations by Kaup & Newell (1978). Miles
(1979) discusses the changes that occur, Grimshaw (1979) provides a
theoretical framework for a more general study, and Ippen & Kulin
(1955) and Street & Camfield (1966) report experimental results. Chan &
Street (1970) give a numerical solution. To date no work allows for
seaward flow between each crest.

All the perturbations of a solitary wave as it moves over differing
depths are at the back of the wave. These can grow and give rise to
further wave crests (Madsen & Mei 1969), and very long waves on gentle
beaches show this phenomenon (Gallagher 1972). Perhaps it is more
relevant that in the regime described by the Boussinesq equations the
forward face of any wave of elevation tends to become like a solitary
wave, unless it is interacting with other significant waves.

Freilich (1982) has made a comparison between calculations with the
Boussinesq equations and observation of ocean waves arriving at a beach
in the region before they break. A very satisfactory agreement was
obtained between measured spectra at depths of 10 m and 3 m when the
10 m spectrum was used as input to a spectral representation of
Boussinesq’s equations to calculate that at 3 m.

Instabilities

When approximate methods, such as refraction methods or integration of
the Boussinesq equations, are used for waves on beaches they fail or are
unreliable as waves approach the steepness that limits periodic waves, or
the maximum solitary-wave height. This is usually interpreted to imply
that breaking soon follows, as is observed to be the case (except where
the possibility of multiple-crest formation must also be considered). If
waves at this point are close to symmetrical, the study of wave-train
instabilities is relevant.

For symmetrical periodic traveling waves, Longuet-Higgins (1978b)
has found that deep-water waves become unstable with a rapidly growing
instability once their steepness, ak, exceeds 0.406. This should be com-
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pared with a maximum steepness of 0.443 and the steepness of maximum
phase velocity, which is 0.436. The perturbation giving this instability
involves a reduction in amplitude of alternate crests and an increase in
amplitude of the remaining crests. Longuet-Higgins finds that the per-
turbation has no contribution from the first harmonic in its Fourier
description and is stationary relative to the wave; hence he associates the
instability with the maximum of the first harmonic of the basic periodic
solution, which Schwartz (1974) shows to be at ak = 0.412.

However, Longuet-Higgins (1978a) shows that there is almost certainly
an instability associated with the maximum of a wave’s phase velocity.
Further support for this instability comes from Cleaver’s (1981) stability
analysis of Longuet-Higgins & Fox’s (1977) local solution for flow at and
near the crest of steep waves. Cleaver finds an instability that becomes
more stable if matching conditions from less-than-maximum-steepness
waves are included.

Numerical computations (Longuet-Higgins & Cokelet 1978) clearly
show that the first-mentioned instability rapidly leads to wave breaking,
It is possible that the energy transfer between wave crests is simply
sufficient to increase the local wave steepness to a point where the second
instability, associated with maximum phase velocity, can grow to break-
ing. There is a corresponding slackening followed by a final increase in
the growth rate shown in Figure 16 of Longuet-Higgins & Cokelet (1978),
together with a localization of the perturbation, as shown in their Figure
14. Thus it appears that all waves close in form to the steepest possible
wave suffer from one or more rapidly growing instabilities. It is ap-
propriate to refer to them as “Longuet-Higgins instabilities.”

There are other instabilities of wave trains. The modulational instabil-
ity of Benjamin & Feir (1967) is investigated by Longuet-Higgins (1978b)
and Cleaver (1981) and does eventually lead to wave breaking (Benjamin
1967, Longuet-Higgins & Cokelet 1978). However, (a) it is likely that the
final breaking process can be ascribed to a Longuet-Higgins instability,
(b) the growth rate of the instability is relatively small, and (c¢) it
diminishes as the water depth is decreased, so it is unlikely to be of much
importance on beaches.

An analysis by McLean et al. (1981) of three-dimensional perturba-
tions extends Longuet-Higgins (1978a,b). The Benjamin-Feir instability is
found to extend to waves of steepness ak = 0.39 before disappearing. The
Longuet-Higgins instability that involves alternate wave crests is found to
exist, with small growth rates, at all wave steepnesses and to have a
maximum growth rate for oblique perturbations. Su et al. (1982a) report
experiments in which steep two-dimensional deep-water waves develop a
three-dimensional breaking pattern that is qualitatively similar to what
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one would expect for this instability. The work of McLean et al. (1981)
does not extend to sufficiently steep waves to examine the phase-
velocity-maximum instability. For values of kD = O(1), the Benjamin-Feir
instability diminishes in importance (Cleaver 1981), but experiments (Su
et al. 1982b) and theory (McLean 1982) show that the alternate-crests
instability becomes more important.

For shallow-water depths, the modulational and alternate-crests insta-
bilities are likely to be unimportant because they involve transfer of
energy between each crest and its neighbors. Natural breaking waves are
frequently observed to be uniform along their crests for considerable
distances, so it is also unlikely that three-dimensional instabilities are
important in this context. This leaves the constant-phase-velocity instabil-
ity as the one most likely to be relevant to wave breaking, though even
that may often be of little or no significance, since waves on a beach are
being subjected to a finite disturbance.

WAVE OVERTURNING

In a majority of wave-breaking events on beaches, an element of the
water surface becomes vertical; a portion of the surface then overturns,
projects forward, and forms a jet of water. Such overturning may be
small or large compared with the wave and is well developed in plunging
breakers. Observation shows it occurs both when waves are nearly
symmetrical (perhaps liable to instability) and quite asymmetrical (usu-
ally due to shallow-water steepening).

Overturning looks very similar whatever its scale, suggesting that there
may be some similarity solution that gives a local description of the
overturning motion. The demonstration by Cleaver (1981) that the local
flow at the crest of a steep progressing wave suffers from an instability
supports this notion. It is possible that the full nonlinear development of
the most unstable linear perturbation gives such a similarity solution.
However, the disturbances that provoke breaking are not infinitesimal,
nor are the waves initially symmetrical. Numerical solutions for overturn-
ing waves give only a little support to this idea.

Experimental measurements of wave profiles and of velocity distribu-
tions as waves begin to break are numerous. Recent publications are by
Van Dorn (1978), Hansen & Svendsen (1979), Kjeldsen & Myrhaug
(1980), Flick et al. (1981), and Hedges & Kirkgoz (1981). Reference to
these papers and the surveys by Galvin (1972) and Cokelet (1977a) will
reveal most earlier work. Field measurements are less comprehensive.
Papers to refer to are by Iwagaki et al. (1974), Thornton et al. (1976),
Suhayda & Pettigrew (1977), Weishar & Byrne (1978) and Hotta &
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Mizuguchi (1980). However, since the flow is unsteady, measures of
acceleration or pressure are desirable; these have become available from
numerical solutions for wave overturning.

The first demonstration of a numerical solution for wave overturning is
by Longuet-Higgins & Cokelet (1976) and has been followed by
others—Longuet-Higgins & Cokelet (1978), Cokelet (1978), Peregrine et
al. (1980), Vinje & Brevik (1980), Mclver & Peregrine (1981), and
Srokosz (1981). The comments here are based on these papers and
further results from P. Mclver and A. New of Bristol University. Except
for the work of Vinje & Brevik (1981) and A. New, all results are for
deep-water waves; however, the finite-depth computations appear to be
similar. A variety of disturbances are used to provoke breaking, yet
superficially the overturning motions resemble each other and natural
waves unless there is an appreciable standing-wave component. Velocity
and acceleration fields, however, show more variation. Figure 1 illustrates
a wave breaking in finite water depth.

A detailed study of a few overturning-wave solutions (Peregrine et al.
1980) reveals three features of the overturning motion, all of which are
apparent before the face of the wave has a vertical tangent (see Figure 2).

(i) Water-particle velocities exceed the wave velocity. This property has
often been quoted as a criterion for wave breaking. In fact the “wave
velocity” is not well determined, since its shape is unsteady and each
point such as the highest point or point of maximum slope has a
different, time-varying velocity. Computations indicate that it is realistic
to expect velocities up to twice the phase velocity of a linear wave.

Figure 1 A sequence of computed wave profiles for a periodic wave after an “impulsive
depth perturbation™ from 0.20 to 0.07, where the wavelength is unity. (Figurc supplied by
A. New, Bristol University.) Profiles are plotted with a uniform velocity imposed to match
the trough profiles.
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(i) In a thin region on the front of the wave, water accelerations
exceed the acceleration of gravity. The existence of such a region was
unexpected; with hindsight, it is clear that appreciable accelerations are
necessary to accelerate the water near the surface that is projected
forward in a jet. Computed solutions show accelerations greater than 5g
in the subsequent development of the overturning, and it seems likely
that such accelerations occur in natural waves.

(iii) An extensive, poorly defined region on and beneath the back slope
of the wave has low water accelerations. This region ensures that the high
pressure gradients necessary to produce the acceleration in region (ii) can
exist. Hydrostatic pressure and wave asymmetry suffice to provide this
“support” to region (ii). Such support can have a more precise physical
form in other circumstances. For example, if a rigid vertical plate is
moved horizontally “sweeping up” a layer of water, that water rises up
the plate and is then projected forward. The plate will support whatever
pressure is necessary to accelerate the water.

Study of the dynamics of overturning reveals nothing special about the
instant when the wave first has a vertical tangent, or the emergence of the
overhanging jet. The following comments provide a partial explanation.
The dynamic boundary condition at the free surface is physically “ weak”:
the pressure is constant, it is not driving the flow, all acceleration is due
to the water’s inertia and to gravity. The kinematic boundary condition is
that the surface is a material surface moving with the water. In almost
every velocity field, material surfaces become strongly distorted and
folded. Thus, for motion with a free surface, one can expect the surface

(1)
171771

(iii) (1)

)/

Figure 2 Sketch of three dynamically significant regions in a wave approaching breaking,
(i) Particle velocity greater than phase velocity of steepest wave. (ii) Water accelerations
greater than gravity. (iii) Water accelerations less than one-third gravity (after Peregrine et
al. 1980).
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to develop thin sheets in any region in which the water motion is so
energetic that gravity is of little importance. The argument above indi-
cates that overturning should not be interpreted as a singularity of the
surface or the flow in the water. This argument is insufficient in itself to
explain wave breaking. It is also relevant to the later spray-forming stages
of the breaking process.

The velocity field in the water can be represented by flow singularities
outside the region occupied by water. This proves to be surprisingly
effective (Mclver & Peregrine 1981, 1982), and only a few singularities
are required. This approach was investigated when the author discovered
that in certain instances most of the velocity field of the near-vertical
front face of the wave could be described by a single line sink.

There are some analytic solutions that contribute to understanding
aspects of an overturning wave. Longuet-Higgins (1980b) gives a solution
having the shape of a rotating hyperbola with asymptotes that enclose a
steadily reducing angle. Mclver & Peregrine (1981) verify with numerical
computation that it is a suitable model for flow near the tip of a
projected jet, but in order to obtain sufficient resolution near the sharply
curved tip, an atypical example with zero-gravity was examined.
Longuet-Higgins (1981a) investigates the simplest combination of Stokes’s
(1880) solution for the crest of the steepest wave and a branch point of
the velocity potential, which gives some realistic-looking profiles for the
surface as it becomes vertical.

The high water accelerations on the face of the wave reveal the
importance of that area. A. L. New (conference lecture, 1981) fitted
ellipses to large portions of the face in some computed solutions and
photographs of waves. He found that there was a good fit and the ratio
of the axes of the ellipses was always close to V3. An analytic solution
that has fluid round the exterior of an ellipse has been found (New,
personal communication). New’s results in turn stimulated Longuet-
Higgins (1981b, 1982) to find further analytic solutions that satisfy the
boundary conditions, and one of these, P,, fits the underside of breaking
waves remarkably well. It is a self-similar solution; in suitably oriented
Cartesian coordinates the surface is given by

(x,y) = At*(=3p2 +4,— p3 +2p), (5)

where A4 is a constant (see Figure 3). Comparisons between analytic
solutions and computational results are sufficiently good (Mclver &
New, personal communication) to encourage further investigation.

If satisfactory analytic solutions are found, they should help to provide
a measure of the “strength” of an overturning event. A quantitative
measure is desirable since the established descriptive approach is entirely
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qualitative, and there are significant differences other than those of
geometric scale relative to the rest of the wave. The emerging jet can have
quite different velocities relative to the wave (e.g. see Srokosz 1981). For
example, most of the face of a wave may become vertical but the jet can
be very small with a low relative velocity, whereas in another case the jet
can have sufficient relative velocity to plunge far ahead of the wave crest.

Another property that varies is the direction of the jet, e.g. if there is a
strong reflected wave the jet can be projected almost vertically. In a field
study, Weishar & Byrne (1978) found that the horizontal distance the
plunging jet traveled and the time it took to fall were both greater than
the simple free-fall trajectory that Galvin (1969) obtained by assuming
horizontal projection at the wave-crest velocity. Their suggestion that this
may in part be due to a vertical component of projection is consistent
with computed solutions that show variations in the direction of projec-
tion of the jet.

The duration of the overturning flow is an aspect of the motion about
which very little is known. For example, can it be defined? It is important
to define some such quantity in order to be able to quantify energy and
momentum loss from the wave motion.

There is likely to be some interdependence among these properties,
especially for waves on beaches, where breaking most commonly occurs
for the single reason that waves propagate into diminishing water depths.

Figure 3 Longuet-Higgins (1981b) P; solution superposed on a breaking wave (photograph
courtesy of Surfing Magazine).
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Overturning does not necessarily occur in spilling breakers. There is
reasonable doubt about the initiation of spilling breaking. In many cases
it commences with a relatively small overturning. Miller (1976) illustrates
this with a photograph in which overturning on the scale of 5 mm is
occurring. However, in other cases white water seems to appear without
surface slopes becoming near-vertical. A possible mechanism in these
cases is Rayleigh-Taylor instability. This occurs if a sufficiently large
portion of the surface has an acceleration component directed into the
fluid greater than the component of gravity in that direction. The
development of Rayleigh-Taylor instability usually leads to a highly
convoluted surface that is also characteristic of a breaking wave.

There is, however, no clear evidence for the occurrence of Rayleigh-
Taylor instability in water-wave motion. As mentioned above, white
water appears to arise without overturning. Note that photography of
wave profiles through the transparent side of a flume is an unreliable
guide in this context because the wall boundary layer often “breaks” in a
different manner from the main part of the waves, and bubbles in the
boundary layer can obscure a small jet in mid flume (e.g. see comments
in Ippen & Kulin 1955).

Steadily propagating wave solutions have no accelerations greater than
1g, though the maximum standing wave has an acceleration of g at its
crest. In computations, marginally destabilizing accelerations have been
found in circumstances with an appreciable standing-wave component.
The large scale of the numerical discretization relative to the size of these
regions, and the presence of numerical instabilities, allow no definite
conclusions to be drawn (Mclver & Peregrine 1982).

Another possible “cause¢” of wave breaking is the steepening and
breaking of short waves as they are overtaken by the crest of a longer
wave. In a wind-driven sea, this occurs frequently and it is also seen on
beaches. There are many factors involved in the interaction of short
waves with long waves. Those interested may consult Garrett & Smith
(1976) and Peregrine (1976, Sect. 1IF). Dagan (1975) analyzes the case of
linearized short waves on a steep free surface, which is equivalent to an
instability analysis of spatial growth. For waves on beaches the simulta-
neous breaking of both long and short waves can occur, and it is unlikely
that short waves are more than incidental to the breaking of larger waves.

THE EVOLUTION OF A PLUNGING BREAKER

Once the jet from an overturning wave hits the water, at the plunge
point, water splashes up, sometimes to a height greater than the original
wave. From the plunge point onward the breaking process appears to
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degenerate rapidly into a chaotic motion of air and water. However, close
and careful inspection often reveals a surprising amount of order within
the wave. A misleading impression of the flow is easily obtained, since in
any one direction a single drop or bubble is sufficient to interrupt a line
of sight.

The subsequent evolution of the wave depends on the position of the
plunge point, i.e. the place and instant of time where the falling jet
touches the undisturbed surface. If it is near the crest of the wave the
resulting splash may be directed down the wave and it becomes a spilling
breaker. At the other extreme, which is most likely on a steep beach, the
jet may travel beyond the base of the wave; if it lands in water of
negligible depth the jet is simply redirected up the beach and constitutes
the major part of the run-up due to the wave. Such an event can lead to
an excursion of the shoreline that greatly exceeds that due to a more
normal wave impeded by backwash from its predecessor. The more usual
intermediate case is now discussed.

The plunging jet closes over the air beneath it to form a tube around
which there is considerable circulation. Air pressure usually prevents the
rapid collapse of this tube, and even without air pressure the circulation
around the tube implies that there is a minimum radius at which
centrifugal acceleration balances an inward pressure gradient. The non-
circular initial state and three-dimensional instabilities both contribute to
this tube having a relatively short life. Sometimes the trapped air vents
through the surface with a sudden spout of spray. Sawaragi & Iwata
(1974) indicate that the tube or vortex descended toward the bed in their
experiments, which included measurements of several relevant quantities.

The splash-up commences from the plunge point. At the present time
only a few visual and photographic observations of the splash-up have
been made and its mechanism and the origin of the water in the
splash-up are not clear. The water must come partly from the jet and
partly from previously undisturbed water; the division might be even or
tend toward one extreme.

One view is that the jet “rebounds” (Figure 4a). At the other extreme,
it can be considered to penetrate the surface and then, because of its
forward motion and downward momentum, it acts like a solid surface
and “pushes up” a jet of previously undisturbed fluid. This is illustrated
by a sketch in Figure 4b and by a photograph in Figure 5. The
photograph shows a wedge of water free from bubbles that looks as if it
has been pushed upward. An intermediate possibility is sketched in
Figure 4c.

Peregrine (1981) describes an initial attempt to analyze a simplified
model of the splash-up. A thin uniform jet falls onto a thin layer of water
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resting on a rigid surface. A one-dimensional model is used but is
inadequate because it does not consider the vorticity at the interface
between the two fluid regions.

Figure 6 is a photograph of a large jet, caused by overturning, falling
onto a thin fast-flowing backwash; a splash is emerging above a thin
layer of air. Peregrine’s (1981) analysis indicates that the relative velocity
between the two bodies of water is too great for any simple splash
solution to be relevant. The dynamics of this example are obscure.

The type of questions a model of the splash-up might answer could
also be examined experimentally. For example, is it possible for the

(a) ®)

(c)

Figure 4 Sketches of possible modes of splash-up after the plunge point. Water in and
from the falling jet is shaded.

Annu. Rev. Fluid. Mech. 1983.15:149-178. Downloaded from arjournals.annualreviews.org
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Figure 5 Wedge of clear water apparently pushed up by the plunging jet of a wave
breaking from the left on a 1:35 beach. Photograph taken at ISVA, Technical University of
Denmark. (The upper sloping black strip is a support for the flume.)
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splash-up to fall back onto the initiating jet? Can part of the jet “return”
under the tube of trapped air and augment (or disrupt) the circulation
around it?

Although the range of possible motions is wide, on gently sloping
beaches a plunging jet usually causes a splash to be projected forward
over another tube of air to hit undisturbed water at a second plunge
point, with the cycle starting again with another splash-up. Galvin (1969)
calls this second plunge point the splash touchdown point and gives
measurements of the distance between the first two plunge points. Miller
(1976) draws attention to these cycles of plunge and splash-up that
entrap tubes of air and give rise to strong vortex-like motions in each
cycle.

Several splash-up cycles can occur before the turbulence, which is
usually evident from the plunge point onward, destroys the organized
nature of the motion and a bore results. The two photographs in Figure 7
illustrate three cycles and how the motion in the flume is sufficiently
deterministic that it may be reproduced on different occasions. These
cycles also occur in natural waves, as is shown in Figure 8, where the
plunge point for each cycle is visible as a cleft in the surface.

The vortex-like motions from each cycle all have the same direction of
rotation, and hence high rates of shear exist between them. This and the
high shears arising at each plunge imply that the turbulent intensity is

Figure 6 Splash of a large plunging jet into a thin rapid backwash.
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very high. This is consistent with the rapid decrease in height and loss of
energy from the wave motion in this region. Svendsen et al. (1978) call
this the “outer region” of the surf zone and plot results from experiments
on gently sloping beaches that indicate that many waves lose 50% of their
breaking height while traveling a distance less than 10 times the water
depth at breaking. Sawaragi & Iwata (1974) estimate the energy loss from
the wave into the first vortex-like motion to be about 15-30% of the
dissipation that occurs there.

Figure 7 These two photographs are taken with the same wave conditions on different -
occasions and illustrate the order in the cycles of “plunge-splash-up™ that occur after
breaking. The exposure in the top photo is much longer than in the bottom. Bottom
photograph courtesy of I. A. Svendsen. Both taken at ISVA, Technical University of
Denmark.
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o
o

Figure 8 A natural breaking wave illustrating the “clefts” that mark successive plunge
points. Photograph taken at the Scripps Institution of Oceanography pier.

QUASI-STEADY BREAKING WAVES

Most breaking waves settle into a quasi-steady state after the plunge
point and any ensuing plunge-splash-up cycles. Exceptions occur where
the plunging jet or its succeeding splash penetrate shallow water and are
deflected by the bed to become part of the run-up, or where irregularities
of the beach cause breaking to be an intermittent process.

The quasi-steady state is one in which the wave form changes relatively
slowly and has a strongly turbulent region on the face of the wave. If the
turbulence is confined to a region near the crest of the wave, the wave is
a “spilling breaker.” On the other hand, if the whole face of the wave is
turbulent it is a “bore” (or “turbulent bore” if considered in circum-
stances where undular bores may be occurring). There is, of course, a
whole range of intermediate waves.

The mean flow in quasi-steady breaking waves includes a recirculating
region, or “roller,” since water can be seen “tumbling” down the front of
the wave. However, the turbulent velocities in the roller exceed the mean
velocities relative to the wave in the roller and so attention should be
focused on the turbulence (Peregrine & Svendsen 1978). Right from the
toe of the roller, turbulence can be seen to spread away from the surface.
It is generated by the velocity difference between the undisturbed water
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and that tumbling down the wave’s face. In this respect the mechanism
for generation of turbulence is similar to the one occurring in the
turbulent mixing layer that arises when parallel streams of differing
velocities are allowed to meet. However, it is likely that active generation
of turbulence is confined to those portions of the front of the wave with a
significant slope of the mean surface.

A moderately detailed model of the mean flow in a steady bore has
been devised (Madsen 1981, Madsen & Svendsen 1982) that gives a good
account of many features, such as the roller and the bore’s surface
profile, for the steady case of a transition between two constant levels.
Extension to the more general cases found on beaches would involve
modeling the balance between (a) gravity causing turbulent water to fall
forward, and (b) the wave’s velocity relative to water in front, which
tends to sweep the turbulent water over the wave’s crest.

The classical bore model of a simple transition between uniform levels
is helpful in studying the surf zone. However, the bores are often
sufficiently weak, or the level behind them drops so quickly, that sec-
ondary undulations grow. On the other hand, Svendsen et al. (1978) find
that their estimates of the rate of energy dissipation in bores on a beach
are greater than the classical value. These properties, the dynamics of
spilling breakers, and the unsteadiness of these waves are closely related
and require more study.

Behind the region of active turbulence generation, the turbulence
continues to spread, as is demonstrated by Banner & Phillips (1974) and
Peregrine & Svendsen (1978) (see Figure 9). Detailed velocity measure-
ments in this region by Battjes & Sakai (1981) and Duncan (1981) for a
wave behind a two-dimensional hydrofoil and measurements by Stive
(1980) of an ensemble of breaking waves in a laboratory beach confirm
the views expressed by Banner & Phillips and Peregrine & Svendsen that
the turbulence is similar to that in a two-dimensional turbulent wake. In
Figure 9, the spread of turbulence is made visible by minute bubbles (rise
velocity around 1 mm s~ !) that were originally floating on the water
surface.

In considering the experiments with hydrofoils, it is tempting to extend
the analogy with a wake and to use the momentum deficit associated with
the wake as a parameter for breaker strength. However, if this is done a
paradox appears once a turbulent bore is considered. The successful
classical approach to finding the changes in height and velocity across a
bore involves an assumption of conservation of momentum, and hence
no momentum deficit.

This apparent paradox may be resolved by considering the dimension-
less energy-momentum flux diagram introduced by Benjamin & Lighthill
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(1954) (see Figure 10). In the figure, the hydrofoil meets water with a
subcritical velocity corresponding to a flow at 4. The wave drag on the
hydrofoil gives an equal and opposite force on the flow, reducing the
momentum flux (or flow-force) and creating a flow at point B. If there is
no flow separation, viscous forces and dissipation are negligible so that
the flow’s energy is unaltered. However, point B is outside the region of
steady wave solutions, breaking occurs without further loss of momentum
from the flow, and the resulting wave train corresponds to point C. The
energy loss BC is the measure of the breaking. Any “momentum deficit”
must be examined in this context; there is a change in mean depth and to
analyze an experiment it is necessary to measure such changes as well as

2 the wave train.
;’3 A bore meets water at a supercritical velocity, i.e. a flow relative to the
= bore corresponding to point D on the supercritical flow curve. The
S turbulence in the bore reduces the energy to point E on the subcritical
g flow curve, or else to an intermediate point F where a wave train forms
B behind the initial breaker. The effect of breaking in both these examples
8
g /
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&
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Figure 10 Energy-momentum flux diagram, after Benjamin & Lighthill (1954). The
diagram is distorted for clarity. The two heavy lines represent steady uniform flows, the
upper being subcritical, the lower supercritical. The broken line represents flows with

stationary waves of maximum steepness.
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is a loss of energy. Transfers of momentum between waves and mean
flow are not considered since S is the total momentum flux.

A hydrofoil suffers no wave resistance in a two-dimensional supercriti-
cal flow since the flow force cannot be reduced; an exception occurs if it
has sufficient drag to generate an upstream propagating bore that trans-
forms the flow it meets into a subcritical one.

For breaking waves on beaches there is no reference frame in which
the waves are steady, but the overall effect of wave breaking can be
deduced in a similar manner. For example, in an idealized case on a
horizontal bed consider a uniform wave train that suffers wave breaking
(say, due to an instability) but then reforms into another uniform wave
train. The conservation of mass and momentum then give, after averag-
ing over a wave period,

Ub,+1,=UD,+1, (6)
and

(DlUl + Il)(Ul + II/DI)+%gD]2 + Sxxl = (D2U2+ 12)(U2+12/D2)
+4gD} + S, .5, (7

where U is the uniform current, D the depth, I the mass flow associated
with the waves, S, the wave-momentum flux, density is taken equal to
unity, and subscripts refer to conditions on each side of the breaking
region. If the wave motion is defined in such a way that I,=1,=0
[corresponding to Stokes’s (1847) second definition of phase velocity],
Equations (6) and (7) simplify and it can be readily shown that a loss of
momentum from the wave motion leads to an increase of water depth if
U is zero or if the flow is subcritical. Subcritical flow conditions are
normal on a beach and the resulting depth increase, “wave set-up,” is
well known. Supercritical flows can occur, for example, on the shoreward
side of shallow sand bars, and in such cases there is a decrease of depth
due to wave breaking.

The above interpretation is only appropriate in shallow water. In
deeper water the momentum loss from the waves is better interpreted as a
surface shear stress acting on the mean flow. Duncan (1981) considers
the detailed dynamics of the roller region to be best described as giving a
surface shear stress, and he makes a first approximation for distinguish-
ing between wave and mean motion. However, as Mclntyre (1981) states,
caution is necessary in ascribing momentum to the wave motion.

This consideration of mean flow changes and apparent surface stresses
brings us to the topic of surf-zone dynamics, which is outside the scope
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of this review. However, the above discussion shows that a full under-
standing of wave breaking should include properties such as the rate-of-
momentum transfer from the wave motion to the mean flow.

OTHER PHYSICAL EFFECTS

Air

The direct dynamic effects of the air on breaking are probably slight
unless there is a large, say O(20 m s~ 1), relative velocity between the air
and the water, in which case there can be considerable spray formation
before the plunge point. For steady waves, Dore (1978) shows that
surface boundary-layer effects are sometimes significant. The indirect

effects of air, as in bubbles (see below) and in cushioning the collapse of
the tube beneath a plunging jet, are more important.

Surface Tension

The clearest effect of surface tension is on steep waves less than about 10
cm high. The development of a plunging jet and the entrainment of air
are both inhibited. Such waves, right down to an amplitude of around 2
mm, can still develop strongly turbulent regions, so that it is sensible to
retain the description “breaking” even though the water surface remains
continuous. Banner & Phillips (1974) note how important this type of
breaking wave can be for sustaining wind stress on the sea.

Drops and Bubbles

The combination of air and surface tension in drops and bubbles
fashions much of what is visible of a breaking wave. Their dynamic
effects on waves are mainly such as to increase the rate at which the
motion becomes more disorganized and turbulent. The buoyancy of
bubbles is irrelevant in the main breaking process, but has some in-
fluence on the nature of the decaying turbulence left behind by breakers.

Perhaps the most important dynamic effect of bubbles is the way in
which they, along with the air, cushion the impact of waves on any
objects in the breaking zone of a beach. The velocity of sound in water
can be reduced by an order of magnitude due to the presence of bubbles.
It should be noted, however, that the typical size of bubbles is very
different in salt and fresh water (e.g. see Scott 1975 and Monahan 1969,
1971). This is of particular importance if laboratory experiments are
being used to model ocean conditions.
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Vorticity

The main features of breaking waves generate ample vorticity. Here we
mention the effects of preexisting vorticity, which has been generated by
viscosity or turbulence in the water before the wave meets it.

The effect of a velocity shear near the surface, such as might be due to
an on- or offshore wind, has been described by Banner & Phillips (1974)
and Phillips & Banner (1974). An onshore surface shear tends to reduce
the height of a wave at breaking; an offshore shear increases it. An
extreme example is the surface-shear wave described by Peregrine (1974).
It occurs in fast-flowing backwash and may reach a height several times
the depth of water before collapsing.

If water is flowing toward the wave, the shear near the bed can have an
overwhelming effect on the internal-flow pattern. The increase in pres-
sure on the bed as a wave approaches can lead to flow separation from
the bed. This has not been studied thoroughly, but it is clearly important
for sediment transport. Matsunaga & Honji (1980) report experiments
where flow separation at the base of a breaking wave is a major influence
on the beach profile.

Measurements have been made of the flow pattern in hydraulic jumps,
i.e. stationary bores. Resch & Leutheusser (1972) have shown how the
inflow conditions affect its structure. A uniform inflow, which would
correspond to conditions a bore would meet when propagating onto a
weak current, leads to an internal-flow pattern as described above, with
turbulence spreading downward into the incident flow. An inflow that
has the fully developed profile of a steady turbulent flow gives rise to
separation under the front of the wave and a substantially different flow
field, though without any significant change in the surface profile. This
latter case is relevant to waves that are almost brought to rest by the
backwash, a common happening.

CONCLUDING REMARKS

In this review I have attempted to indicate how much, or little, is known
about the dynamics of wave breaking. This means that breaking is
treated as a specific event for each identifiable wave. Such an approach is
desirable for understanding and accounting for natural waves. The
variation from wave to wave is usually quite considerable. For example,
some discussions of waves on beaches refer to a “break point.” Figure 11
shows the distribution of the points at which breaking started from a
24-minute filmed sequence of waves on a North Devon beach. There is
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no one break point; there is instead a wide breaking zone. The beach
from which this record comes was almost perfectly plane, with a slope of
1:60 at the time of filming. The majority of natural beaches have
nonuniform profiles, often including bars.

Another source of variation is the response of the surf zone to the
incident waves. Appreciable surface displacements and corresponding
currents occur on gently sloping beaches; these are sometimes known as
“surf beats” and are also ascribed to edge waves, but they may primarily
be due to the envelope of amplitudes of the incident waves. The existence
of these longer-scale motions means that successive waves enter different
depth and current conditions.

To gain adequate understanding of wave breaking on beaches, it seems
desirable to exploit the fact that most wave breaking occurs when waves
are not far removed from the solitary wave in character, and to examine
analytically, numerically, and experimentally the behavior of such waves
on differing slopes against differing currents.

Only occasional reference has been made here to the large body of
literature of measurements of wave properties on beaches. This is because
properties such as the change of wave height with depth are better
understood if considered in the context of surf-zone dynamics. For
example, some experimenters measure the first few waves of a wave train
in order to avoid the influence of reflected waves; if those waves are
breaking waves, however, the chances are high that the “mean” level is
steadily rising and the shoreward mass flow is significant, since those
waves are establishing the set-up of mean level on the beach. In natural
waves, such changes of level and current do not cease. Recent papers in
this area are Guza & Thornton (1982) and Symonds et al. (1982).
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Figure 11 The spatial distribution of breaking waves in a time interval of 24 minutes on a
natural beach of slope 1:60.
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