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Abstract. The problem of the propagation of small-amplitude surface gravity waves in a
basin of constant mean depth with one- and two-dimensional bottom roughness is solved in the
framework of the Berkhoff model by a mean-field method. In both cases the solutions obtained
are compared with the solutions of sets of exact linearized equations of the hydrodynamics of
an incompressible fluid. The comparison of the exact and approximate mean-field attenuation
coefficients has shown that the Berkhoff approximation is appropriate for the solution of this
problem in the case of shallow water for an arbitrary correlation length of bottom irregularities
and in the case of arbitrary depth and large-scale irregularities. An explanation is given for
the limits of applicability of the Berkhoff approximation which are connected with the weak
variability of the vertical structure of the wave field in shallow water and in a basin with large-
scale depth fluctuations. The mean-field attenuation coefficients reach their maximum values in
the regionk0h0 > 1 (wherek0 is the wavenumber of the surface gravity wave in a basin of
constant depthh0). The location of these maxima is practically independent of the correlation
length of the bottom irregularities. For the case of one-dimensional irregularities the effect
of bottom roughness on the surface gravity wave velocity is investigated. It is shown that the
surface wave in a basin with an uneven bottom may propagate more slowly, as well as faster than
the wave in a basin with an even bottom, depending on the relations between the wavelength,
depth and correlation length of the bottom imperfections.

1. Introduction

The mean-field method is used for waves of different physical nature (see, e.g., [1–9]) and
has now been developed to describe the propagation of nonlinear waves in random media
[10–13]. The propagation of surface gravity waves in a basin with a stochastically irregular
bottom has been investigated in a number of papers. Usually, a set of exact linearized
equations of the hydrodynamics of an incompressible fluid has been used. These equations
have been solved by a Fourier transform method. A dispersion equation has been derived for
the mean field of the surface gravity wave and an expression for the mean field attenuation
coefficient has been obtained. Relatively simple analytical results have been obtained in
the shallow-water approximation when the initial system of equations can be reduced to
the simple wave equation. Together with exact equations of hydrodynamics in the theory
of surface gravity waves the Berkhoff approximation is used, especially for calculations
of wave fields over large distances. This approximation is obtained, conceptually, by the
Galerkin procedure for some special cases of the vertical structure of the wave field [14–17].
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The substantiation of the Berkhoff approximation may be obtained in two limiting cases:
shallow water with small bottom inclinations and vertical obstacles in a fluid of arbitrary
but constant depth. This is why the Berkhoff model is called the refraction–diffraction
model. This model does not contain a vertical coordinate: consequently, the analysis of
wave propagation in a basin with varying depth is simplified considerably, especially when
a numerical technique is used.

The Berkhoff model is usually used for deterministic depth profiles. Its substantiation
may not be obtained by asymptotic methods for arbitrary relations between depth of the
basin, wavelength and characteristic length of depth variations, and only very few numerical
three-dimensional solutions, laboratory experiments and natural sea data are used for the
determination of the limits of applicability of the Berkhoff approximation.

We shall evaluate herein the limits of applicability of the Berkhoff model for the case of a
stochastically irregular bottom using the solution of a set of exact linearized equations of the
hydrodynamics of an incompressible fluid as a benchmark case. The problem is solved by
a mean-field method. The mean-field method assumes that the total wave field in a random
medium may be represented as a sum of a coherent part, or a mean field, and an incoherent
part, or a fluctuation field. The wavenumber for the mean field is complex, because the
mean field is continually scattered by the random inhomogeneities and is converted into
the incoherent field. The imaginary part of the wavenumber is the attenuation coefficient
for the mean field in the random medium. The real part of the wavenumber describes the
variation in the phase velocity of the wave.

2. Mean-field analysis in the framework of the Berkhoff approximation

So, we consider the propagation of small amplitude, time-harmonic surface gravity waves
in a homogeneous incompressible dense fluid. The fluid has a free surface and is bounded
from below by an absolutely rigid stochastically irregular bottom. Let thez = 0 plane
of a Cartesian coordinate system coincide with the unperturbed surface of the fluid (the
z-axis direction is opposite to the direction of gravitation). The depth profile is defined by
the functionz = −h(x, y). Deviations in the level of the fluid relative to its undisturbed
horizontal surfacez = 0 due to the propagation of the wave is described in the framework
of the Berkhoff approximation by the following equation (a temporal factor exp(−iωt) is
omitted):

ccg1η +∇(ccg)∇η + k2ccgη = 0. (1)

Here

1 = ∂2

∂x2
+ ∂2

∂y2
∇ = ∂

∂x
ex + ∂

∂y
ey

whereex,y are the unit Cartesian vectors, andk = k(x, y) is the wavenumber of the surface
gravity wave, which is connected with the angular frequency by the dispersion equation

ω2 = gk tanhkh (2)

(g is the acceleration due to gravity),

c = [(g/k) tanhkh
]1/2

(3)

is the phase speed, and

cg = 1

2

(g
k

tanhkh
)1/2

(
1+ kh

sinhkh coshkh

)
(4)
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is the group speed of the wave.
We represent the depth of the basin byh(x, y) = h0+χ(x, y), whereh0 is the constant

mean depth andχ(x, y) are random depth variations which are small in comparison with
h0. We assume that〈χ〉 = 0, where the angular brackets mean an overall average. It is
convenient to write down the coefficientsccg andk2, which appear in equation (1), in the
form

ccg = c0cg0

[
1+ uε(x, y)] k2 = k2

0

[
1+ vε(x, y)]. (5)

Here, ε(x, y) = χ(x, y)/h0, and c0, cg0 and k0 are the values of the velocities and
propagation constant due to the mean depthh0. These quantities are obtained from (2)–(4)
whenh = h0. As bottom irregularities are assumed to be small, expressions foru and v
can easily be found:

u = 3k0h0 (1− k0h0 tanhk0h0) tanhk0h0+ k2
0h

2
0

(k0h0+ sinhk0h0 coshk0h0)
[
(1− k0h0 tanhk0h0) tanhk0h0+ k0h0

] (6)

v = − 2k0h0

k0h0+ sinhk0h0 coshk0h0
. (7)

So, the equation for the amplitude of the surface gravity wave can be written down in the
form

(1+ uε)1η + u∇ε∇η + k2
0η(1+ wε) = 0. (8)

In (8) the notationw = u+ v has been introduced.
We represent the fluid level variations as the sumη = η0+η′, whereη0 is the coherent,

or mean, field andη′ is the incoherent, or fluctuation, field for which the equality〈η′〉 = 0
holds. Taking the overall average of equation (8) we obtain the equation for the mean field:

1η0+ k2
0η0+ u

〈
ε 1η′

〉+ u 〈∇ε∇η′〉+ k2
0w

〈
εη′
〉 = 0. (9)

To obtain an equation for the incoherent field we use a standard procedure [1–3]. We
subtract (9) from (8) and neglect small random terms of order higher than the first (the
Bourret approximation [2]). The result is as follows:

1η′ + k2
0η
′ + uε1η0+ u∇ε∇η0 = 0. (10)

We write down the quantitiesη0 andη′ in the form of Fourier integrals of the type

η0(r) =
+∞∫ ∫
−∞

η̃0(~~~)e
i~~~·r d~~~ (11)

η′(r) =
+∞∫ ∫
−∞

η̃′(~~~)ei~~~·r d~~~ (12)

whereη̃(~~~) and η̃′(~~~) are the Fourier transform of the mean field and the fluctuation field,
respectively, andr = (x, y) and~~~ = (~x, ~y) are the two-dimensional vectors. It follows
from equations (10)–(12) that the Fourier transform of the incoherent field is given by the
expression

η̃′(~~~) = 1

~2+ k2
0

+∞∫ ∫
−∞

(k2
0w − u~~~ · ξ) ε̃(~~~ − ξ) η̃0(ξ) dξ (13)
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where

ε̃(q) = 1

(2π)2

+∞∫ ∫
−∞

ε(r) e−iq·r dr (14)

is the spectrum of the bottom irregularities. Making use of equations (13), (9) we obtain
an equation for the spectrum of the mean field:

(q2− k2
0)η̃0(q) =

+∞∫ ∫ ∫ ∫
−∞

(k2
0w − u~~~ · ξ)(k2

0w − uq · ~~~)
~2− k2

0

η̃0(ξ)

×〈ε̃ (q − ~~~) ε̃ (~~~ − ξ)〉 dξ d~~~. (15)

At this stage we need to introduce the statistical properties of the depth fluctuations.
First, we consider the case when the depth fluctuations are statistically homogeneous and
isotropic, so that

〈ε(r) ε(r′)〉 = 〈ε2〉0(|r − r′|). (16)

where0 is the correlation coefficient of the bottom irregularities and〈ε2〉 is their constant
dispersion. For the Fourier spectrum of the functionη(r) under the condition (16) the
relationship 〈

ε̃ (q − ~~~) ε̃ (~~~ − ξ)〉 = 〈ε2〉 T (|q − ~~~|) δ(q − ξ) (17)

holds. Here,T is the two-dimensional spatial spectrum of the correlation coefficient0. The
quantitiesT (k) and0(r) are connected by means of the reciprocal relations

0(r) =
+∞∫ ∫
−∞

T (k) eik·r dk (18)

T (k) = 1

(2π)2

+∞∫ ∫
−∞

0(r) e−ik·r dr. (19)

After substitution of (17) in (15) we obtain the dispersion equation for surface gravity waves
in the basin with two-dimensional bottom irregularities:

q2 = k2
0 + 〈ε2〉

+∞∫ ∫
−∞

(k2
0w − u~~~ · q)2
~2− k2

0

T
(|q − ~~~|) d~~~. (20)

In order to simplify this equation we neglect terms which contain a small value〈ε2〉 to
the power two and replace the effective propagation constantq on the right-hand side of
(20) by the propagation constantk0, corresponding to the constant mean depth of the basin.
After that the expression for the quantityq can be written in the form

q ' k0+ 〈ε
2〉

2k0

2π∫
0

dϕ

∞∫
0

k2
0 (k0w − u~ cosϕ)2

~2− k2
0

T

(√
k2

0 + ~2− 2k0~ cosϕ

)
~ d~. (21)

In equation (21) we have used a polar coordinate system in~ space.
The integral which appears in expression (21) for the effective propagation constant for

the surface wave is complex. Its real part, which results from the Cauchy principal value
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integration, describes wave-velocity variations due to the bottom roughness. The imaginary
part of the integral (21), which is proportional to the semiresidue in a pole~ = k0, defines
the attenuation coefficient for the mean field of the surface wave. Our prime interest
is in investigation of this coefficient. Carrying out the corresponding calculations in the
framework of the Berkhoff approximation we obtain the following expression for the mean-
field attenuation coefficient:

Im q = γB = π〈ε2〉k3
0

4

2π∫
0

(
2u sin2 ϕ

2
+ v

)2
T
(

2k0 sin
ϕ

2

)
dϕ. (22)

Equation (22) will be analysed in sections 4 and 5.

3. Mean-field analysis in the framework of the potential model

We shall evaluate the limits of applicability of the Berkhoff approximation to the solution of
the problem on surface wave scattering by comparing the approximate attenuation coefficient
γB with the attenuation coefficientγ obtained from the solution of an exact linearized set
of equations of hydrodynamics [7]. This set of equations, written in terms of the velocity
potentialϕ, takes the form

1ϕ + ∂
2ϕ

∂z2
= 0 − h(x, y) < z < 0 (23)

∂ϕ

∂z
= ω2

g
ϕ z = 0 (24)

∂ϕ

∂z
= −∇h∇ϕ z = −h(x, y). (25)

The boundary-value problem (23)–(25) has been solved in [7]. We only note herein that
for its solution it is necessary to transport the boundary condition (25) from the surface
z = −h(x, y) to the planez = −h0 and rewrite it in the form

∂ϕ

∂z
= −∇ [χ(x, y)∇ϕ] z = −h0. (26)

After that, a Fourier transform method must be used. The solution of equations (23)–(25)
yields the following dispersion equation for the surface wave:

ω2− gk tanhkh0

gk − ω2 tanhkh0
= I (27)

where

I = 〈χ2
〉 +∞∫ ∫
−∞

T
(|k − ξ|) (kξ)2

kξ

gξ − ω2 tanhξh0

ω2− gξ tanhξh0
dξ. (28)

It is convenient to represent the solution of (27) in the formk = k0 + ~, wherek0 is the
solution of the dispersion equation (2) subject to the constant mean depthh0 and~ is small
in comparison withk0. Upon solving (27) by expanding it in powers of~ we obtain the
following dispersion equation for the mean field of a surface gravity wave:

~ = δk + iγ = − 2k0

2k0h0+ sinh 2k0h0
I. (29)
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The mean-field attenuation coefficientγ is defined by the semiresidue in the pole~ = k0

of the integrand in (29) and is described by the expression [7]:

γ = π〈ε2〉 k3
0

4

[
4(2k0h0)

2

(2k0h0+ sinh 2k0h0)
2

] 2π∫
0

T
(

2k0 sin
ϕ

2

)
cos2 ϕ dϕ. (30)

4. Comparison of the approximate and the exact attenuation coefficients

In this section we analyse the approximate expression (22) and the exact expression (30)
for the mean-field attenuation coefficient of the surface gravity wave. In the shallow-water
case, whenk0h0 � 1, it follows from (6), (7) thatu = −v = 1. With these equation (22)
takes the form

γB ' π 〈ε2〉 k3
0

4

∞∫
0

T
(

2k0 sin
ϕ

2

)
cos2 ϕ dϕ. (31)

The same expression is derived for the exact value of the mean-field attenuation coefficient
from (30) under the conditionk0h0 � 1. The exact (γ ) and approximate (γB) attenuation
coefficients coincide for arbitrary scales of bottom irregularities, because both the Berkhoff
and potential models in the casek0h0� 1 are reduced to the shallow-water equation

∇η + k2
0η = −∇[ε(x, y)∇η] (32)

the solution of which also leads to the result (31) [17].
In the case of large-scale bottom irregularities, whenk0L � 1 (L is their correlation

length) the spectrumT (k) of the correlation coefficient decreases rapidly while its argument
grows, so a considerable contribution to integrals (22) and (30) is given by the region of
small values of the integration variableϕ. Assuming cosϕ ≈ 1, from (22), (30) we obtain
the following expression forγ andγB:

γ ≈ γB ≈ π〈ε2〉 k3
0

4

[
4(2k0h0)

2

(2k0h0+ sinh 2k0h0)
2

] 2π∫
0

T
(

2k0 sin
ϕ

2

)
dϕ. (33)

Hence, in the case of large-scale bottom irregularities the Berkhoff approximation is valid
for arbitrary basin depth.

In the limiting case of deep water,k0h0� 1, it follows from (6), (7) that

u = −8k2
0h

2
0e−2k0h0 v = −8k0h0e−2k0h0. (34)

In this situation the surface wave attenuation coefficient calculated in the framework of the
Berkhoff approximation is described by the expression

γB ≈ 16π 〈ε2〉 k3
0(k0h0)

2 e−4k0h0

2π∫
0

(
2k0h0 sin2 ϕ

2
+ 1

)2
T
(

2k0 sin
ϕ

2

)
dϕ. (35)

The attenuation coefficient calculated for the casek0h0� 1 in the framework of the potential
model has the form

γ ≈ 16π 〈ε2〉 k3
0(k0h0)

2 e−4k0h0

2π∫
0

T
(

2k0 sin
ϕ

2

)
cos2 ϕ dϕ. (36)
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Analysis of equations (35) and (36) shows that there is a considerable discrepancy in the
values of the integrals appearing in these expressions in the cases of small- and medium-
scale bottom imperfections; where this occurs the Berkhoff approximation is not applicable.

For arbitrary basin depths and correlation lengths of bottom irregularities it is necessary
to carry out numerical investigations of the mean-field attenuation coefficients of surface
gravity waves. To do this we represent the quantitiesγ andγB in the form

γ = 〈ε
2〉
L

γ̃ γB = 〈ε
2〉
L

γ̃B (37)

whereγ̃ andγ̃B are numerical coefficients whose forms are defined by an actual correlation
coefficient of bottom roughness. For example, in the case of an exponential correlation
coefficient,0(r) = exp(−r/L), for which

T (k) = L2

2π (1+ L2k2)3/2
(38)

the quantitiesγ̃ and γ̃B are described by the following expressions:

γ̃ = 1

8
(k0L)

3

[
4(2k0h0)

2

(2k0h0+ sh2k0h0)
2

] 2π∫
0

cos2 ϕ dϕ[
1+ (2k0L sin 1

2ϕ
)2
]3/2 (39)

γ̃B = 1

8
(k0h)

3

2π∫
0

(
2u sin2 1

2ϕ − v
)2

dϕ[
1+ (2k0L sin 1

2ϕ
)2
]3/2 . (40)

The results of numerical calculations from equations (39), (40) are shown in figure 1.
Here we have used the ratio of the correlation length of the bottom irregularities to the depth
of the basin,µ = L/h0, as a parameter. The quantitiesγ̃ and γ̃B reach their maximum
values in the regionk0h0 > 1, and the locations of these maxima are practically independent
of the parameterµ. In shallow-water cases,k0h0 � 1, the curves forγ̃ and γ̃B merge.
They also merge whenk0L� 1.

The explanation of these facts is as follows. Within the framework of the Berkhoff model
the vertical structure of the wave field is assumed to be constant. In the case of shallow
water, as well as in the case where the correlation length of the bottom irregularities is large,
the vertical structure of the wave field being calculated from the more explicit potential
model also practically does not vary. That is why expressions (22) and (30) coincide for
shallow water (see equation (31)) and for large-scale irregularities (see equation (33)).

5. Surface waves scattering due to one-dimensional depth fluctuations

Let us now turn to consideration of the effect of one-dimensional depth fluctuations on
the propagation of surface gravity waves. Let the surface of the bottom be defined by the
function z = −h(x). For simplicity, we consider a two-dimensional problem and assume
that the surface wave propagates along thex axis. We also assume that the depth fluctuations
are statistically homogeneous; hence the following equality holds:〈

ε(x) ε(x ′)
〉 = 〈ε2〉01

(|x − x ′|). (41)
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Figure 1. Dimensionless damping coefficientsγ̃ (solid
line) and γ̃B (dashed line) versus productk0h0 for
various values ofµ = L/h0 (two-dimensional bottom
irregularities).



Berkhoff approximation in surface gravity wave propagation 263

Here, 01 is the correlation coefficient of the one-dimensional irregularities. Its spatial
Fourier spectrum is given by the expression

T1(k) = 1

2π

+∞∫
−∞

01(x) e−ikx dx. (42)

It can be shown that in the case of one-dimensional bottom imperfections equation (17)
must be replaced by the formula〈
ε̃ (q − ~~~) ε̃ (~~~ − ξ)〉 = 〈ε2〉 T1

(|qx − ~x |) δ(q − ξ)δ(qy − ~y) δ(~y − ξy). (43)

Substitution of equation (43) in (15) leads to the dispersion equation for surface waves
propagating in the basin with one-dimensional depth fluctuations. The solution of this
equation is

q ' k0+ 〈ε
2〉

2k0

∞∫
0

k2
0 (k0w − u~)2
~2− k2

0

T1
(|k0− ~|

)
d~. (44)

The imaginary part of the integral, which appears in (44), is defined by semi-residues in the
poles~ = ±k0. After some algebra we obtain the expression for the mean-field attenuation
coefficient due to surface wave scattering by an uneven bottom:

γ
(1)
B =

π〈ε2〉 k2
0

4

[
v2T (0)+ (4u2+ 4u v + v2)T (2k0)

]
. (45)

The solution of the boundary-value problem (23)–(25) for the case of one-dimensional depth
fluctuations leads to a dispersion equation of the type (27) in which

I = I1 =
〈
χ2
〉
k

+∞∫
−∞

T1
(|k − ξ |) gξ − ω2 tanhξh0

ω2− gξ tanhξh0
ξ dξ. (46)

It follows from the solution of the dispersion equation that the ‘exact’ value of the mean-field
attenuation coefficient is given by the expression

γ (1) = π〈ε2〉
(

2k2
0h0

2k0h0+ sinh 2k0h0

)2 [
T1(0)+ T1(2k0)

]
. (47)

For some given correlation coefficients of bottom roughness relatively simple analytical
expressions for quantitiesγ (1)B and γ (1) can be derived from equations (45), (47). For
example, in the case of an exponential correlation coefficient,01(x) = exp(−x/L), for
which the corresponding spectrum is

T1(k) = L

π(1+ L2k2)
(48)

the expressions for the ‘exact’ and the approximate mean-field attenuation coefficients of
the surface wave take the form

γ (1) = 8〈ε2〉k4
0h

2
0L(2k

2
0L

2+ 1)

(4k2
0L

2+ 1)(2k0h0+ sinh 2k0h0)2
(49)

γ
(1)
B =

〈ε2〉
4
k2

0 L

[
v2 + 4u2+ 4u v + v2

4k2
0 L

2 + 1

]
. (50)

As in the case of two-dimensional bottom irregularities the ‘exact’ and approximate
mean-field attenuation coefficients coincide when the depth of the basin is small in
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comparison with the wavelength. For the exponential correlation coefficient the quantities
γ
(1)
B andγ (1) (providedk0h0� 1) are described by the formula

γ
(1)
B ≈ γ (1) ≈

〈ε2〉
2
k2

0 L
1 + 2k2

0 L
2

4k2
0 L

2 + 1
. (51)

If the depth fluctuations are large scale,k0L� 1, thenT (2k0)� T (0) and

γ
(1)
B ≈ γ (1) ≈ π〈ε2〉

(
2k2

0h0

2k0h0+ sinh 2k0h0

)2

T1(0). (52)

In the case of an exponential correlation coefficient it follows from equation (52) that

γ
(1)
B ≈ γ (1) ≈ 〈ε2〉L

(
2k2

0h0

2k0h0+ sinh 2k0h0

)2

. (53)

For the deep water case in the framework of the Berkhoff model we obtain the following
expression for the mean-field attenuation coefficient:

γ
(1)
B = 64〈ε2〉 k4

0 h
2
0L e−4k0h0

k2
0 h

2
0+ k2

0 L
2

4k2
0 L

2 + 1
. (54)

Within the framework of the potential model the mean-field attenuation coefficient is
described by the formula

γ (1) = 32〈ε2〉 e−4k0h0
k4

0 Lh
2
0 (2k

2
0 L

2 + 1)

4k2
0 L

2 + 1
. (55)

Expressions (54) and (55) coincide only in the case of large-scale bottom irregularities
(provided the inequalityk0L� k0h0 � 1 holds), and they diverge considerably for small-
scale imperfections. It is necessary, however, to keep in mind that in the case of deep
water, as expected, the effect of bottom roughness on the propagation of surface waves is
exponentially small.

The results of numerical investigations of the dimensionless coefficientsγ̃ (1) and γ̃ (1)B ,
which have been introduced similarly to equations (37), are presented in figure 2 for different
values ofµ. It can be seen that in the vicinity of extrema of quantitiesγ̃ (1) and γ̃ (1)B the
Berkhoff approximation only produces correct results when the bottom irregularities are
relatively smooth. This fact is explained by the above-mentioned effect of the conservation
of the vertical structure of the wave field. In the case of small-scale irregularities calculations
based on the Berkhoff model lead to significant errors. So, in those cases where the vertical
structure of the wave field varies, the Berkhoff approximation is of limited use.

6. Effects of bottom roughness on the propagation velocity of surface waves

Together with mean-field attenuation bottom irregularities cause propagation velocity
variations of surface waves. Alternation of the real part of the effective propagation constant
is obtained using Cauchy principal value integration in (21), (28) for the case of two-
dimensional imperfections and in (44), (46) for the case of one-dimensional imperfections.
However, such calculations are rather complicated. It is worth noting that for waves of
different physical nature the approach, which uses the Fourier transform method for a
solution of a set of equations for a mean field and a fluctuation field, makes it possible to
obtain the mean-field attenuation coefficient relatively easily. As this takes place, in order
to obtain the real part of the propagation constant it is necessary to calculate the principal
values of the integrals appearing in the dispersion equation. Such calculations usually
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Figure 2. Dimensionless damping coefficients̃γ (1)

(solid line) andγ̃ (1)B (dashed line) versus productk0h0

for various values ofµ = L/h0 (one-dimensional
bottom irregularities).
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involve difficulties. The approach which applies the Green function method (the fluctuation
field is expressed in terms of the mean field via a Green function and is inserted in the
mean-field equation, which therefore becomes an integro-differential one) requires a larger
amount of calculation. However, this approach makes it possible to obtain an expression for
the real part of the effective propagation constant and the mean-field attenuation coefficient
relatively easily. We shall herein apply the Green function method to investigate variations
of the surface wave propagation velocity in a basin with one-dimensional depth fluctuations
in the framework of the Berkhoff model. We omit description of the rather cumbersome
calculations and give only the final expression for the effective propagation constant (this
expression amounts to the solution of (44)):

q ' k0+ δkB + iγ (1)B . (56)

Here

δkB = 1

2
〈ε2〉k0 u

2− 〈ε2〉k2
0

(
u2+ u v + v

2

4

) ∞∫
0

0(z) sin 2k0z dz (57)

γ
(1)
B =

〈ε2〉
4
k2

0

[
v2

∞∫
0

0(z) dz+ (4u2+ 4u v + v2)

∫ ∞
0
0(z) cos 2k0z dz

]
. (58)

It is evident that as the quantities01(x) andT1(k) are connected by the relationship (42),
equations (45) and (58) coincide.

Let us analyse equation (57). In the case of shallow water and an exponential correlation
coefficient the expression forδkB takes the form

δkB = k0 〈ε2〉 σ (59)

where

σ = 3k2
0 L

2+ 1

2(4k2
0L

2+ 1)
. (60)

The quantityσ is always positive and decreases monotonically fromσ = 0.5 (this value
corresponds to the case of small-scale irregularities,k0L� 1) to σ = 0.375 in the opposite
limiting case of large-scale imperfections,k0L � 1. This fact means that in the shallow-
water case the surface waves propagate in a basin with a rough bottom on average more
slowly than in a basin with an even bottom.

The same result follows from the shallow-water equations without use of the Berkhoff
approximation. This result is important in explaining the increase in the travel time of a
tsunami compared with the calculated travel time. The accuracy of tsunami travel time
calculations and measurements are discussed in [18, 19].

In the case of deep water and an exponential correlation coefficient the quantityσ is
described by the expression

σ ≈ 32k2
0h

2
0e−4k0h0

k2
0h

2
0− 4k3

0h0L
2− k2

0L
2

4k2
0L

2+ 1
. (61)

If the bottom irregularities are large,k0L� k0h0� 1, then the quantityσ is negative:

σ ≈ −32k3
0 h

3
0 e−4k0h0 (62)

and the surface wave propagates on average faster than in a basin with an even bottom.
The results of calculations of the quantitiesσph = c/c0− 1 andσg = cg/c0g− 1, which

characterize the variations in the phase and group velocities of a surface gravity wave are
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Figure 3. Wave speed variations due to bottom
roughness forµ = 5 and〈ε2〉 = 10−3. The solid line
is σph, and the dashed line isσg.

shown in figure 3 for〈ε2〉 = 10−3 andµ = L/h0 = 5. It can be seen that the effect of
bottom roughness on surface wave velocity is very modest. The velocity variations are of
the order of 10−5, and, therefore, travel time variations do not exceed 1 or 2 s even for
transoceanic paths. Thus we shall not discuss this effect in detail.

7. Conclusion

Results of analytical and numerical investigations of surface waves propagation in a basin
with one- or two-dimensional random bottom irregularities have been presented. Two
different approaches to the solution of the problem have been used. One of them is based on
the refraction–diffraction Berkhoff model. The other uses a linearized set of equations of the
hydrodynamics of an incompressible fluid, and, consequently, is more precise. Conditions
have been established under which the Berkhoff approximation is applicable by comparing
the exact and approximate solutions. It has been ascertained that the Berkhoff approximation
is valid in situations where the vertical structure of the wave field practically does not vary.
These are the cases of shallow water and arbitrary correlation length of bottom irregularities
and that of large-scale imperfections and arbitrary depth of the basin. It has been shown
that the mean-field attenuation coefficient of surface waves reaches its maximum value
in the depth rangek0h0 > 1. The location of this maximum is practically independent
of the correlation length of bottom roughness. Variations in the propagation velocity of
surface waves have been investigated. It has been shown that in shallow water surface
waves propagate in a basin with a rough bottom on average more slowly than in a basin
with an even bottom. In deep water with large-scale bottom irregularities surface waves
propagate on average faster than in a basin with a perfect bottom. However, for small
bottom irregularities the effect of surface wave velocity variations is very modest.
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