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ABSTKACT 

A wave-theoretical interpretation is given of pressure waves generated in shallow 
water by explosions of charges of T.N.T. ranging from 0.5 to 300 lbs., and recorded 
by Ewing and Worzel. (See accompanying paper, Explosion sounds in shallow water.) 
The normal mode theory of propagation of sound in layered media, which was 
developed by the writer in 1941, was extended to cover the case of explosive sound, 
and the predictions of the theory about the shape and variation of amplitude in the 
received pressure pulse were investigated in detail. It was found that the theory 
predicted the existence of a series of readily identifiable new features in the pressure 
wave, each of which is characteristic of the depth of water and the structure of the 
bottom. A study of the original records, some of which are reproduced on Plates 
1-11, revealed the presence of all the predicted phases. The characteristics of these 
phases were then measured, and the data were interpreted in terms of the structure 
of the bottom at the various stations. The deductions about the distribution of 
sound velocity in the bottoms, based on an analysis of the various features of the 
pressure waves, are given in Table A, and it will be seen that they agree among them-
selves. 

The following results were obtained: 
(1) A study was made of the dominant periods in the ground waves which are 

propagated along the various interfaces in the layered bottom, in order to verify the 
theoretical prediction that the deeper the interface (higher sound velocity) the 
longer should be the periods. A verification of this theoretical prediction is well 
illustrated in Figures 1 and 2, and to a lesser extent in Figure 3. 

(2) An extensive investigation, covering an analysis of more than 40 records, was 
made of the dispersion in the water wave (which is illustrated by the third trace from 
the bottom on Plate 11). A technique was developed for determining from the 
records the speed with which each frequency in the water wave is propagated. The 
discovery made empirically by Ewing that this speed is a function of frequency only 
{see accompanying paper, Explosion sounds in shallow water) and is independent of the 
range was confirmed in all the records, as is shown in Figures 6-19. The shape of 
the mean dispersion curve at each station was successfully interpreted by an applica-
tion of the normal mode theory in a layered liquid half-space. Theoretical dispersion 
curves form the background in Figures 6-19, and, with the aid of these, deductions 
were made about the sound-velocity distribution in the top layers of the bottom. 
The conclusions are given in columns 6 and 7 of Table A and in Table 1. 

(3) The theory of normal modes was developed by the writer to a stage which 
enables one to compute the actual curve of pressure variation, as recorded by various 
types of receivers, due to an arbitrary explosion. A sample of such a theoretical 
pressure wave is shown in Figures 24A, 24, and 25. 

(4) The following new features of the pressure waves were predicted by the theory 
of normal modes of a layered liquid half-space and were subsequently discovered 
and analyzed by the writer: 

A) In case of a uniform bottom extending down to a depth many times the depth 
of water, the ground wave should begin with a so-called limiting period which is charac-
teristic of the depth of water and the sound velocity in the bottom. The limiting 
period was identified and measured in the records taken at the Solomons Shoal 
station where the bottom is known to meet the requirement stated above, and the 
results are shown in Table 2. The value of 1.29 for c2,/ci obtained from the average 
observed limiting period, where Ci and c2 denote the sound velocities in the water 
and in the bottom, is slightly higher than the values deduced from the other features 
quoted in Table A, but this small discrepancy can be explained by the effect of the 
deep layers. 
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2 PROPAGATION OF EXPLOSIVE SOUND IN SHALLOW WATER 

B) The water wave should arrive riding on a low-frequency wave called the rider 
wave; the frequency of the rider wave just prior to the arrival of the water wave is 
determined by the depth of water and the distribution of sound velocity in the bottom. 
The rider wave was identified and its period measured on all records taken at Solo-

TABI.E A.—Deductions about the variation of sound velocity with depth in the bottom 
Based on the interpretation of the various phases in the recorded pressure waves from explosions. 

ci = sound velocity in water; a = sound velocity in a top layer of the bottom referred to as the intermediate layer; 
ci — sound velocity in the bottom below the intermediate layer; H = thickness of layer in the bottom for which average 
value of cs/ci holds. 

Station 
Depth 

of water 
H 

in feet 

Refraction Dispersion in 
Water Wave Limit-

ing 
Period 
Ci/C\ 

Rider 
Wave 
alci 

Airy 
Wave 
cz/ci 

Station 
Depth 

of water 
H 

in feet cita 
Thickness 

of interme-
diate layer 

in feet 
cs/ci 

Aver-
age 
Cl/Cl 

H 
in feet 

Limit-
ing 

Period 
Ci/C\ 

Rider 
Wave 
alci 

Airy 
Wave 
cz/ci 

Solomons Shoal 52 1.15 1300 1.79 1.2 25 1.29 1.09 (1 .1 ) . 

Jacksonville 
Shoal 

60 — — — 1.05 
1.1 

30 
80 

— 1.17 1.10 

Jacksonville Deep 115 (1.14) (1200) 2.13 1.2 
1.35 

30 
70 

— — 1.12 

Virgin Islands 
Shoal 

70 (1.05 to 
1.1) 

70 3.02 1.06 
1.2 

30 
45 

— — 1.12 

Virgin Islands 
Deep 

140 (1.05 to 
1.1) 

150 3.02 1.05 
1.3 

55 
65 

— — (1.05) 

nons Shoal, Jacksonville Shoal, and Jacksonville Deep. The results are set out in 
Tables 3-5, and the resulting conclusions about the sound velocity in the bottom are 
quoted in Table A. Some illustrations of the rider waves can be seen in the records 
reproduced on Plates 1-9. 

C) The amplitude of the water wave should increase with time to a maximum value 
and should decrease thereafter, while the period should remain constant after the 
maximum is passed. The value of this period, which will be referred to as the Airy 
period, is again characteristic of the depth of water and the structure of the bottom. 
Values of the Airy period are given in Tables 2, 3, 5, and 6, and the interpretation of 
the average values is given in Table A. 

D) A three-layered medium in which the thickness of the intermediate layer is 
only of the order of the depth of water should possess dispersion characteristics 
similar to those of a medium with a uniform bottom. The existence of the inter-
mediate layer should therefore not be revealed by a secondary arrival. Theory also 
predicts that the amplitude of the rider wave should be relatively low in such a 
medium (by a factor of f to -j^), while the water wave should be of normal intensity. 
The stations of Virgin Islands Shoal and Virgin Islands Deep which, judged by the 
combined evidence from the refraction data and the dispersion data in the water 
wave, have a veneer of mud of a thickness of the order of the depth of water covering 
a high-speed coral base, would be expected to fall into this class. The records taken 
at these stations were found to be lacking in secondary arrivals and to be devoid of 
rider waves, as is illustrated in Plates 8 and 9. The success of the theory in explain-
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ABSTRACT 3 

ing the appearance of the records taken at the Virgin Islands, which were entirely 
different from the records taken at all the other stations, is very encouraging. 

(5) Theoretically the maximum amplitude in the water wave should vary like the 
inverse f-th power of the range, whereas the observations of Ewing and Worzel 
indicate that in some stations the maximum amplitude varies like the inverse square 
of the range. We have, of course, neglected absorption and scattering, but, as I have 
already suggested, it would be interesting to check the experimental determination of 
variation of intensity with range. 

(6) Our study shows that in all stations the speed of sound in the first 30 feet of 
the bottom is no more than about 10 per cent greater than in water. This result 
conforms with Ewing's finding that all bottom samples were muddy. 

(7) A complete theory of propagation of sound, both of single-frequency and of the 
explosive type, in layered media is developed in Part II of this paper. This includes 
a discussion of the "ray theory" and the wave theory. One interesting theoretical 
result is that in case of a density discontinuity at the bottom the normal modes are 
not orthogonal, nor is their amplitude, in case of a point source, correctly given by 
standard theory of normal modes. 

Another of the new results arrived at is that, when the wave length of sound is of 
the order of the depth of water, the amplitude of the pressure should decrease at large 
ranges like the inverse square of the range, as in the Lloyd Mirror Effect. The asymp-
totic expressions given in Eqs. (32) and (33) are strikingly verified in Figure 23, in 
which they are compared with values obtained by numerical integration of the 
integral in the exact solution. 

p t . source 

sur face 

water 

T 
d 
i 

z = 0 

z » d 

bottom z • H 

FIGURE A.—Assumed model for a two-layered liquid half-space 
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FIGURE B.—System of images of a point source situated in shallow water 

FIGURE C.—Illustration of the difference between phase velocity and group velocity 
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TEXT FIGURES 5 

? f » frequency 
FIGURE D.—Variation of group velocity U with frequency f in a two-layered liquid half-sapce 
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. u I , angle of total 
r e f l e c t i o n 
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FIGURE E.—Ray-path in case the charge and receiver are beached on the bottom, 
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FIGURE F.—Assumed model for a two-layered liquid half-space 
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6 PROPAGATION OF EXPLOSIVE SOUND IN SHALLOW WATER 
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PART I: DATA 
1. SOME OBSERVED CHARACTERISTICS OF PRESSURE RECORDS OBTAINED AT 

LARGE RANGES FROM AN EXPLOSION IN SHALLOW WATER 

This investigation was undertaken with the aim of providing a wave-theoretical 
interpretation of some interesting features of pressure records from under-water 
explosions observed in shallow water at large ranges by Ewing and Worzel. (See ac-
companying paper, Explosion sounds in shallow water) In these experiments, charges 
of 0.5, 5, 25, and 300 lbs. of T.N.T. were set off either on the bottom or at mid-depth, 
and the resulting pressure wave was recorded at distances ranging from J mile to 
about 12 miles for a typical station. The depth of water was 10 or 20 fathoms, so 
that the maximum ranges were of the order of a thousand times the depth of water. 

The recording systems admitted five separate frequency bands as shown in Figures 
39-44; in addition, two of these bands were recorded separately with high and low 
amplification. Each record therefore consisted of seven traces as shown in Plates 
1-11. It will be noted that the geophone system admits a frequency band of from 
10 to 100 cps; the Mark I system is sensitive to frequencies less than about 10 cps; 
the Mark II high-frequency system has a flat response up to about 1000 cps, which 
covers practically the whole range of relevant frequencies. This trace should there-
fore give a faithful representation of the actual pressure variation. The Mark II 
rectified system is peaked around 5000 cps and is therefore useful for determining 
the beginning of the water wave. On the other hand, the Mark II low-frequency 
system is a low-pass filter with a cut-off frequency around 150 cps. This system 
has proven particularly useful in the interpretation of the records. 

The function of the various traces as used in the interpretation is as follows. The 
time break determines the instant of detonation of the shot. The geophone portrays 
the vertical component of velocity in the low-frequency range of 10 to 100 cps. The 
Mark II high-frequency trace reproduces the actual pressure variation. The Mark 
11 rectified traces are used especially for determining the time of arrival of the 
"water wave" produced by the original explosion and also of the subsequent "water 
waves" produced by the successive expansions of the oscillating "bubble". The 
Mark II lowT-frequency traces are especially useful for analyzing the dispersion in the 
water wave as well as in the train of waves preceding the waterwave phase. This 
trace also serves to determine the arrival time of the ground wave. 

We shall now discuss some of the principal characteristics of the pressure record, 
which form the subject of our study. Perhaps the simplest record reproduced in 
this paper is the one of shot No. 275 shown in Plate 9. A low-frequency disturbance 
commencing at .882 sec.1 after detonation is seen on the geophone trace and the 
low-frequency Mark II trace (next to the bottom trace; the Mark II trace appearing 
third from the bottom has the same frequency characteristics but is less sensitive). 
At t = 2.768 sec., a new phase arrives and is recorded on all but the very low-fre-
quency Mark I trace. From the Mark II trace one can see that in this phase, which 

1 The time scale on the top of the records does not commence at the instant of detonation, hence the difference between 
that scale and the time marks on the trace Mark II . 
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8 PROPAGATION OF EXPLOSIVE SOUND IN SHALLOW WATER 

will be referred to as the "water wave", the first oscillations are of high frequency,, 
and that subsequently the frequency decreases continuously. At t = 2.914 sec., a 
similar train of waves arrives but is somewhat weaker than the first. This is a water 
wave produced by the first expansion of the "bubble". The second expansion of the 
bubble produces a third water wave which arrives at t = 3.153 sec. The wave 
reaching the station at t = .882 sec. is the "ground wave" which has traveled through 
the bottom where the velocity of sound is about 2.768/.882 = 3.1 times the velocity 
of sound in the water. 

A clearer presentation of the dispersion in the waterwave phase is given on Plates 
10 and 11 by the low-sensitivity Mark II trace. It will be noted that the Mark II 
high-frequency trace, which should faithfully reproduce the actual pressure variation, 
is more complicated and less regular. 

Ewing discovered empirically that the dispersion in the water wave is such that 
each frequency travels with a characteristic velocity. If this velocity be called U(f) 
then the time of arrival of a given frequency / in the water wave T(f) is given by 

r = T(f)U(f), (1) 

where r denotes the range. If T0 now denote the time between the detonation and 
the beginning of the water wave, as read off the Mark II rectified trace, then we have 
r — TqCi , ci denoting the sound velocity in water. It follows that 

T-ir - m ~ 1 " " { 1 ) ( 2 ) 

independently of the range. Hence plots of (T — T0)/T0 vs . / , made from records 
taken at different ranges, should fall on a universal curve characteristic of the depth 
of water and the nature of the bottom. That this is actually the case is shown in 
Figures 6-19. 

The technique of determining the U(/) curves, which was developed by the writer 
in connection with an analysis of more than 40 records, is as folllows. From a trace 
such as the low sensitivity Mark II. on Plate 10, one reads off the times Tn of the 
n-th maximum or minimum, and plots T„ vs. n. Such typical plots are shown in 
Figures 20, 21 and 22. It will be seen that it is possible to draw a continuous curve 
unambiguously through the plotted points. One then reads off Tn values for each n 
from the continuous curve; and the period P corresponding to any Tn is computed 
from 

P(Tn) = «rn+1 - r„_o. (3) 
This procedure involves, of course, a numerical differentiation of an observed curve, 
but it is seen from Figures 20, 21 and 22, which are typical, that the continuous curve 
is well defined by the experimental'points. 

After the P(Tn) values are determined, they are plotted as A points in Figure 9. 
The abscissa in this figure is not the frequency / but the nondimensional quantity 
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PRESSURE RECORDS FROM SHALLOW WATER EXPLOSION 9 

where H denotes the depth of water and A the wave length in water, y, then, denotes 
the depth of water in units of the wave length of sound in water. On Figure 9 are 
plotted dispersion data from two other stations, giving a total range of T0 of from 
4.2 to 7.1 sec., and it will be noted that the three sets of plotted points cluster around 
a well-defined mean curve. Figure 8 shows a similar analysis of dispersion in three 
additional shots taken at the same locality. The six shots from Jacksonville Shoal 
have been plotted on two separate'figures only for clarity. The mean curves through 
the plotted points are about the same in the two figures. The arrival times T0 vary 
from 4.3 to 14.1 sec., while the range varies from 4 to 13 miles, the latter being more 
than 1000 times the depth of water. 

An inspection of the remaining dispersion data plotted in Figures 6-19 reveals 
that: 

1) Shots taken at different ranges in a given locality yield similar dispersion curves. 
2) Though the general trend of the dispersion curves is similar in the various 

localities (for which there is a theoretical reason), distinct differences between 
localities exist. 

3) The dispersion in the waves from the main explosion agrees closely with the 
dispersion in the waves generated by the first bubble expansion (Fig. 17). 

An analysis of the dispersion phenomenon by wave theory produced a rational 
interpretation, which makes it possible to correlate the observed dispersion curve 
with the depth of water and the nature of the bottom. It is thus possible to gain 
information on the characteristics of the bottom from a study of the dispersion data. 
However, as the theory developed, it became clear that the records should exhibit 
additional easily recognizable features which are also characteristic of the bottom. 
These features were subsequently discovered in the water wave, in the phase immedi-
ately preceding it, and in the ground wave, and were studied on all records. A dis-
cussion of these new phenomena, which were suggested by the theory, will be post-
poned until after the presentation of some of the elements of the theory of propagation 
of explosive sound in shallow water. (The reader who wishes to acquaint himself 
immediately with these new phenomena may refer to page 24.) 

2. QUALITATIVE DISCUSSION OF T H E T H E O R Y OF PROPAGATION OF 
EXPLOSIVE SOUND IN SHALLOW W A T E R 

The principal observed features of the records of sound from an explosion in 
shallow water can be explained on the basis of a simple model in which the bottom 
is assumed to be a liquid of density p2 and sound velocity c2 , which differ from the 
density pi and sound velocity c\ in the water, as shown in Figure A. (Later we shall 
also discuss the modification introduced by a layered bottom.) Our problem is to 
determine the pressure field due to an explosion in the water. For the large ranges 
considered the disturbance can be assumed to be produced by a point source, which 
in the absence of the surface and the bottom would generate a spherically symmetrical 
wave whose amplitude would decrease as the inverse power of the range. Actually, 
of course, the initially spherical wave suffers multiple reflections both at the surface 
and the bottom, and at the extremely long ranges in which we are interested (up to 
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10 PROPAGATION OF EXPLOSIVE SOUND IN SHALLOW WATER 

a thousand times the depth of water) the number of such reflections which need be 
considered is very large. 

A useful elementary notion in the analysis of the situation is the reflection of a 
plane wave at a plane surface of discontinuity in p and c. According to Rayleigh 
(1896, p. 78) the reflection coefficient K for the amplitude when the angle of incidence 
is 6 is given by 

In our application we can limit the discussion to the case of a fast bottom (c2 > ci), 
since in all records the wave which traveled through the ground arrived earlier than 
the wave which traveled directly through the water (in one case by as many as 20 
seconds). In the case of a fast bottom, the reflection coefficient starts with a value 
(P2C2 — piCi)/(piC-i + piCi) at normal incidence (0 = 0) and increases to unity at the 
critical angle for total reflection 6\ given by 

For larger angles of incidence the reflection coefficient becomes complex of modulus 
one, so that no power is transmitted into the bottom, but the wave suffers a change 
of phase upon reflection, depending on 6. 

Another useful elementary notion is the system of images by which the action of 
the surface and bottom can be approximated, as shown in Figure B. This system 
consists of dipoles, due to the point source and its image in the surface, strung along 
a vertical through the source at a spacing of 2H, the polarity of each dipole being 
opposed to that of its neighbors. At great distances from the source and under 
certain other conditions which are discussed in Part II, one can assign a definite 
strength to the images, which in the case of an image due to m reflections from the 
surface and n reflections from the bottom is {—)mKn. The reflection coefficient K, 
as given in Eq. (5), is a function of 6, so that the images are directional. 

For angles of incidence greater than the angle of total reflection 6i, the strength 
of all the sources becomes unity, and the system of images then bears a similarity 
to a self-luminous diffraction grating (Slater, 1942, p. 284). There are then certain 
discrete directions 6n in which waves from neighboring dipoles interfere construc-
tively, corresponding to the spectra of various orders in a diffraction grating. As 
illustrated in Figure B, the waves emanating in a direction 0(>0i) from images 
A and B have a path difference Aa = 2H cos 6 as well as a phase difference (—ir—ip), 
where 

Hence, constructive interference will take place between the pair of images if 

(5) 

0i = sin ~x(ci/c£, (6> 

-K = e-«'^). 

2wAa 

X 
4irH cos 9 

— 7r — ^ = - x - ^ = x(2n - 2 ) , n = 1, 2, 3 • (8) 
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11 PROPAGATION OF EXPLOSIVE SOUND IN SHALLOW WATER 

For angles 6n for which this condition is satisfied, there will be constructive inter-
ference also between the pairs of images C and D, E and F, as well as the other such 
pairs of images situated in the bottom. Similarly, the source and the images situated 
above the surface give rise, at the same angle of incidence 6n, to a system of con-
structively interfering pairs of images producing a down-going train of waves. The 
combination of the two systems of up-going and down-going waves gives rise to the 
so-called normal modes. The normal mode of the w-th order can thus be conceived 
as arising from a superposition of two systems of up-going and down-going waves 
traveling at an angle Bn with the vertical, where 6n , a function of the wave length, is 
determined from Eq. (8). 

The physical picture just given for the origin of the normal modes shows that the 
alternative analysis of the pressure field by the so-called "ray theory" cannot avoid 
taking cognizance of the preferred directions 9n for which constructive interference 
is possible. By writing down the expressions for all the rays, which are of course 
approximate, one will inevitably find that a pair of poles such as A, B will show an 
interference pattern of the Lloyd Mirror type. 

The corrugations of the surface and the bottom will, to be sure, impair the precise 
phasing required for constructive interference, but the experience with the interpreta-
tion of the data from transmission of explosive sound by the normal mode theory 
suggests that, at the grazing angles considered, the effect of corrugations is of the 
same order as the blurring of x-ray lines due to temperature agitation of the atoms in 
a crystal. 

One consequence of Eq. (8) is the existence of a cut-off frequency for each mode below 
which constructive interference is impossible. When, namely, the distance Aa in 
Figure B plus the corresponding contribution from in Eq. (7) is less than X/2 for a 
given 6, then constructive interference cannot occur. Now the smallest value of 0 
for which no energy is transmitted into the ground is the 0i of total reflection, for 
which \p = 0. Substituting cos 6i = a / 1 — (A/Ci) into Eq. (8), we find that the 
limiting wave length Xn , above which transmission by the w-th and all the lower 
order modes cannot take place, is given2 by 

X n W i - y ^ ( 9 ) 

{2n — 1) 

3. S U M M A R Y OF T H E SOLUTION OF T H E W A V E EQUATION FOR J H E PROBLEM 
OF PROPAGATION OF SOUND P R O D U C E D B Y A POINT-SOURCE EXPLOSION 

I N SHALLOW W A T E R 

The elementary discussion given in the previous section was of a qualitative nature 
and was furthermore based on the assumption that the reflection coefficient for a 
plane wave is applicable to the reflection of a spherical wave. It is shown in Part II 
that this assumption is valid only in special cases; that it is not valid, for example, 
when the angle of incidence is equal to the angle of total reflection, or for the treat-
ment of the "tail" of a pressure pulse. Since our purpose is to produce a theory 

2 The explanation of the physical origin of the cut-off frequency occurred to several investigators independently; among 
the latest is Dr. C. Herring. 
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which, for a given type and weight of explosive detonated at a given depth where the 
nature of the bottom is known, enables one to compute the pressure variation at large 
ranges, an exact solution of the wave equation is required. This is given in some 
detail in Part II, so that it will suffice here merely to present a summary of the results. 

The mathematical problem is to solve the wave equation for the sound potential <p 

vVi = k, — , 0 < z < H (water), (10) 
c{ dt2 

= ^ —, z>H (bottom), (11) 

where the subscripts 1 and 2 refer to the water and the bottom. The acoustic 
pressure p and the horizontal and vertical components of velocity u and w are derived 
from the potential <p through 

d<p 3 <p d<p 
p = p —, u— , w = — —. U-s.) rHdt dr' dz 

Eqs. (10) and (11) are to be solved subject to the conditions that 
a) the pressure should vanish at the surface; 
b) near the source, <pi should approach f(t — R/ci)/R, where R denotes distance 

from the source and f(t) the time variation of the pressure pulse at the source; 
c) the vertical component of the velocity w and the pressure should be continuous 

across the bottom interface. Conditions (a) and (c) require that 

VI = 0, a = 0, (13) 

9*>i , _ rj c i i i 
— = ——, pivi — P2<P2i z — a. u * ; 
dz oz 

The solution of this problem is obtained in two steps by solving first for the case 
when the point source is periodic of circular frequency co: 

<p = e^ir, z, a), (IS) 

and then generalizing the solution for an arbitrary pressure pulse fit) through a 
Fourier synthesis: 

v{r,z,t) / ^ ^ ( i - , 2 , M ) g ( a , ) d w , (16) 
2 v J - » 

where 

tfst) = C e - ^ f i O d t . (17) 
J—00 

The solution for ^ is derived in Part II as an integral in the complex plane. If d 
denote the depth of the source, then 

. r sin (J3iz) cos ft(g - d) + ibfc sin ft(g - d)~\ 

* = 2J0 L ftcosAH + flftainftff J ' ° 
<z<d, (18) 
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„ f " w , N, „. S i n ( f t^) f f t COS ft(g - + S i n - A S . S V , C10-, 
$ = 2 I Jo(kr)k dk „ , ., „ . „ „ , d<z<H, (.19; 

J0 ft [_ ft cos ftff + i i f t sin ft # J 

* = 26 f A sin g (20) 
Jo ( f t cos ftH + i i f t s i n f t f f ) ' 

where 6 = pi/p2, and 

0» = V(wye») - k < (o>/e„), 

t - \ A 2 - ( « 7 c * ) , k> (a/cn), » = 1 ,2 . ( 2 1 ) 

The integrals in Eqs. (18), (19), and (20) can be evaluated by direct numerical 
integration only when the wave length is greater than a moderate fraction of the 
depth of water, and the range is not large in terms of the depth. This was done 
for a few cases, and the results are shown by the continuous curves in Figure 23. 

For smaller wave lengths or larger ranges, the integrands oscillate extremely 
rapidly, and the numerical integration becomes well nigh impossible. An alternative 
expression for the potential, valid under these conditions, can be obtained by trans-
forming the path of integration in the complex ¿-plane. The potential <p is then 
expressed in terms of the residues of the integrands <p', and an integral along a branch-
line <p". The residues thus obtained are the normal modes, while the integral along a 
branch line can be shown to decrease in relative importance as the range increases. 

The result is as follows: 

<» = (p + <p" i (22) 

= £ H?'(Kr)F(xn) sin(xn d/H) sin(*„z/H), 0 < z < H, (23) 
\ H ) n=l 

= / z M ^ ¿ g « > (kn r)F(xn) sin(s„ d/H) sin iz~H), z> H, (24) 

where 

^ ^n (25) 
" {xn — sin xn cos xn — b2 sin2 xn tan xn) 

Xn S ßl">H = H /j/f^Z ßP = q/f-Ä = j/^-ff (26) 

and the the roots of the equation 

tan x _ t 

x bHßz / 9 Cù2 / 0>2 O)2 ifi ' (27) 
bS]/k%-7i bSVf 4 m 

r r » ) , . v „ ßi sin(ft d) sin(gi z) 
H0 (kr)kdk— . , „ . _._.. (28) = ~2i'& i ,-00 " " KKr'K U"[|85 cosHftff) + «•/>}Sin.(AH)] • 

For large ranges one may use the asymptotic expression for the Hankel function 

A / e ^ - " " ) , (29) 
¥ r 
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14 PROPAGATION OF EXPLOSIVE SOUND IN SHALLOW WATER 

whereby expressions (23) and (24) are transformed into 

^ i / l e i"*-*»'-*) P(Xn) ¿/¡J) sin(Xnz/H), 0 < z < H, (30) 
\ H / X w n = i V i , 

^ = ( ^ j ^ 1 f j c< (»«»HO F(Xn) sin(*n d/II) sin , z> H. (31) 

Similarly one finds that for large ranges and under certain other conditions specified 
on page 56. 

„ (2 ibk i )e i ' - " t - k* r ) sin{kx in) s in fezp) a <c2, 

* (hr)* „ « c o s K h H u ) ' z < H i ( 3 2 ) 

„ ^ m k j e « - " ' - " ^ s h f e iv ) sh (hzv ) Cl > c 2 , 
V (hr? y>ck^hHv) ' Z < H , 

where 

„ - V(cl/4) - 1, M = V l - ( 4 / 4 ) , kn-~. 
Cn 

4. DISCUSSION OP T H E SOLUTION FOR A PERIODIC POINT-SOURCE 

I. EVIDENCE FOR THE REALITY OF T H E BRANCH-LINE INTEGRAL IN THE SOLUTION 
FOR THE POTENTIAL, AND ITS PHYSICAL MEANING 

The appearance of the branch-line integral term <p" in the solution (22) for the 
potential seems contrary to standard theories on the solution of the wave equation 
for a point-source in terms of normal modes. Some evidence for the reality of the 
branch-line integral is furnished by the asymptotic behavior of the solutions com-
puted by numerical integration of (19), which are shown in Figure 23. The dashed 
lines in this figure, which show a variation of pressure amplitude as the inverse 
square power of the range, were computed from Eqs. (32) and (33). It will be seen 
that in all cases the exact solutions show an approach to an inverse-square variation 
of amplitude with range, and that the numerical agreement with the asymptotic 
curves is very good.3 This is most remarkable since the cases treated include both 
slow and fast bottoms, and the coefficient N defined in Figure 23 ranges from 0.05 
to 8.2. 

As to the physical nature of the component of the solution represented by the 
branch-line integral, one sees first from the appearance of ki in the exponents of 
(32) and (33) that it represents a wave which propagates with the speed of sound in 
the bottom. Secondly, for very long wave lengths (k\ small) or when v and n are small 
(small contrast in velocity), (32) and (33) reduce to the asymptotic form for a point 
source and its image in the surface situated in a uniform medium possessing the 
properties of the bottom. It would seem, therefore, that the branch-line integral 
represents the Lloyd Mirror effect as modified by the discontinuity at the bottom. 

1 Curves F and G have not been plotted solely in order to avoid overcrowding in the figure. 
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Another point to notice is that for short wave lengths (X <5C H) and ci < c2. 

sh(ki dv)sh(k\zv) 

v2ch\hHv) 
(35) 

as compared with a corresponding term oik\-d-z'm the ordinary Lloyd Mirror theory. 
The ratio of (35) to the latter e~kl"'n'~z~d)/v2k\dz is very small unless both the source 
and receiver are very close to the bottom. 

II. VARIATION OF THE AMPLITUDE OF T H E NORMAL MODES WITH DEPTH 

Expressions (30) and (31) for the normal-mode component of the solution can be 
rewritten in the form 

= ( A E - 7 = - e < t " i - f c « r - ( * / 4 ) l F(Xn)<Pn(d)<PnU), 0 < z < E, (36) 
\H / y TtT t^l Vkn 

= ( ^ j y / i £ - 1 = , *)] F{xn)«M<Pn{z), Z > H, (37) 

where f>„ (z) represents the amplitude of the n-th normal mode, and is given by 

Vn{z) = sin (xnz/H), 0 <z< E, 

= sin ( * , ) « " z > H . 

Here the xH and the kn are roots of Eq. (27): 
tan x 

x bH 7 ^ " " « / X Z 1 - V i - 4 

y " 4 y 4 4 H2 

(38) 

(27) 

When C2 > c i , which is the case in which we are interested, Eq. (27) possesses 
real roots for kn and x„ , the latter varying in the range ?rin — < xn <nir. On 
the other hand, when c2 < Ci, the roots kn are complex numbers with negative imag-
inary parts. In the latter case, therefore, the factor e~ihnr in (31) and (37) implies 
horizontal attenuation, whereas, in the case of a fast bottom, there exist solutions which 
suffer no horizontal damping. This condition stems, of course, from the fact that, 
for angles of incidence greater than the critical angle, no power is transmitted into 
the bottom. 

The variation of the amplitude of the first mode with depth is shown for several 
cases in Figures 45-48 (computed in Fall of 1941). The quantity c is the so-called 
phase velocity of the first mode, which will be discussed in the next section. In 
Figures 45 and 46, the amplitude decreases exponentially with depth below the 
bottom. The decrement starts from zero at the cut-off frequency of 93.3 cps and 
increases with increasing frequency. At frequencies greater than about 1000 cps, 
very little energy of the first mode is left in the bottom, and the amplitude distribu-
tion approachs half a sine wave. In the triple-layered medium (Fig. 46) the limiting 
form of the amplitude distribution for very high frequencies is half a sine wave 
confined between the two internal surfaces of discontinuity. On the other hand, 
in the continuous cases shown in Figures 47 and 48, the amplitude of the first mode is 
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16 PROPAGATION OF EXPLOSIVE SOUND IN SHALLOW WATER 

compressed, with increasing frequency, to an increasingly narrow range of depth near 
the minimum of sound velocity. The trapping of the energy near the minimum of the 
sound velocity, as well as the difference between the limiting form of the amplitude 
distribution in the continuous and discontinuous cases, can be explained by well-
known principles of quantum mechanics, which we shall however not discuss here. 

The amplitude of the second mode has, in addition to the common node of the 
surface, another nodal surface within the water. Similarly, the n-th mode possesses 
n nodal surfaces in the water. 

One consequence of weak penetration of the energy of the first mode into the 
bottom with increasing frequency is that observations (of dispersion) on high fre-
quencies can yield little information on the nature of the bottom, whereas the lower 
frequencies do make an appreciable "sounding" of the bottom. 

The factors F(xn)/\/kn determine the strength of excitation of the n-th mode. 
The function F(xn) is plotted for several two-layered media in Figures 28 and 49. 
It will be noticed that it vanishes at the cut-off frequency and that it approaches 
unity at high frequencies. 

III. THE PHASE VELOCITY OF T H E NORMAL MODES, A N D THE ANGLES OF INCIDENCE 
OF THE COMPONENT PLANE WAVES OF THE NORMAL MODES 

The factors ¿•(-ai~knT) ¡ n Eqs. (36) and (37) allow of an obvious interpretation of 
kn, namely kn = oi/cn , where c„ denotes the phase velocity of the n-th normal mode. 
The meaning of phase velocity is that, in case of an arbitrary disturbance, the 
amplitude of the Fourier spectrum of the disturbance at a> is propagated with the 
speed of the phase velocity. The phase velocity of the normal modes starts at the 
cut-off frequency with the value of the speed of sound in the bottom, and decreases 
continuously with increasing frequency toward the value of sound velocity in water. 
The variation of phase velocity with frequency is shown for several double-layered 
media in Figure 28 and for several modes in Figure 49. This would suggest that, in 
case of an arbitrary disturbance, the low-frequency components in the spectrum of 
a pressure pulse would get ahead of the high-frequency components, so that at large 
ranges the received pulse would appear in the form of a train of nearly sinusoidal 
waves in which the period decreases toward the rear. The actual situation is more 
complicated, however, because the component waves are not merely separated out 
by their different rates of advance but are also superimposed, thus producing com-
plicated interference patterns. We shall return to this question later. 

The factors 
e.[«t-)fenr-(*/4)] s ; n(XrlZ/H) = l[eil"t-knr+(xne/B)-(Sr/t)] _ f-inr-(xnz/ir)-(3 T/4) ] J (39) 

in Eqs. (36) and (37) show that the normal modes can be analyzed into two plane 
waves traveling obliquely upward and downward, respectively, as indicated in 
Figure B. The angle which these waves make with the vertical 6n is given by 

0„ = sin -1 (knCi/a) = sin _ 1 ( c i / c „ ) = cos "" ' («„ci /ffw). (40) 

An inspection of Figure 49, in which curves of cn/c\ are plotted against frequency 
for n = 1,2, 3, shows that: 
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(a) 6n is always greater than the angle of total reflection of sin-1 (ci/c2), as was 
anticipated in the Qualitative Discussion of the Theory of Propagation. 

(b) In any given mode, Bn starts with the value of the critical angle at the cut-off 
frequency and approaches grazing incidence in the limit of very high fre-
quencies. 

(c) For a given frequency the angle of incidence is smaller, the higher the order 
of the mode. 

Since reflection by a corrugated surface approaches specular reflection at grazing 
incidence, it would follow from item (c) that under practical conditions the first mode 
would tend to persist to greater ranges than the higher-order modes. A similar 
conclusion with regard to the relative persistence of various frequencies in a given 
mode cannot be inferred from item (b) because the higher the frequency the higher 
is the angle of incidence required for the condition of specular reflection to be ar>-
proached. 

IV. THE QUESTION OF T H E ORTHOGONALITY A N D NORMALIZATION FACTORS 
OF THE NORMAL M O D E S 

This question is dealt with in detail in Part II. Suffice it to mention here that 
the expressions for the normal modes given in Eq. (38) are not orthogonal when there 
is a discontinuity of density at the bottom. The reason for this is that in the presence 
of a discontinuity in density, the normal modes (as well as the horizontal components 
of velocity) are discontinuous at the bottom, because the acoustic pressure, which is 
continuous, is equal not to the potential but to the density times the potential. 
Again it is found that unless the densities of the water and bottom are equal, the 
normalization factors as obtained from the residues are not such that the integral 
of the square of the normal mode function from z = 0 to 2 = 00 is unity. 

5. PROPAGATION OF A PRESSURE PULSE IN SHALLOW W A T E R 

I. FORMAL GENERALIZATION OF THE SOLUTION FOR A N EXPONENTIAL PULSE 

In previous sections it was shown that the solution for a periodic point source can 
be expressed in terms of normal modes, as given by Eqs. (36) and (37), and by a 
branch-line integral which was shown in Eqs. (32) and (33) to vary like r~2, as com-
pared with the normal-modes variation of r~!. Except near the beginning of the 
ground wave when the amplitude of the normal modes vanishes (F = 0 in Figs. 28 
and 49), the contribution from the branch-line integral can be neglected for the large 
ranges which we are considering. 

We shall now examine how the normal-mode solution 
00 

71 = 1 

xn sin (xnd/H) sin (x n z/H) 
(Xn — sin xn cos xn — ¿2 sin2 xn tan Xn) 

0 <z<B, (41) 

for a periodic point source can be formally generalized to the case of an arbitrary 
pressure pulse f(t) at the source. For reasons to be explained later we shall assume 
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that 
/(/) = t > 0, 

( 4 2 ) 
= 0 , t < 0 . 

The pressure jumps from zero to unity at / = 0 and thereafter decays exponentially 
with time. We have 

1 r° 
( 4 3 ) , (X + too) ' 

p = Z z> *>> ( 4 4 ) 
n=l 

i[wt—knWr— (t/4)] 

Qnfy, z, a) da 
(X + ia) 

da, ( 4 5 ) 
1 f°° Q»(r,e,») I" . . . x /«\"| 

= - I — , c o s coi — kn\a)r t a n 1 1 - J 

"•Jo V X 2 + « 2 L 4 \ X / _ 

where z, t) represents the contribution to the pressure from the w-th mode. 
II. THE GROUP VELOCITY OF THE NORMAL MODES 

The integral in Eq. (45) represents a superposition of sinusoidal waves traveling 
with different phase velocities cn = oj/kn(u), the amplitude of the v/aves of the 
circular frequency u being about QJr, z, co)/\/\2 -f- a/'. Denoting 

f(o>, r, t) = bit - k{w)r - t t / 4 4 

as the phase, we see that, for such values of co, r, and t for which the phase varies 
with co, the cosine factor in the integral in (45) will tend to be cancellatory. Can-
cellation of the integrand will be minimized however at such points co (called points 
of stationary phase) where /(co) = 0. It is to be noted that, whereas in considering 
the phase velocity we seek the increments Ar and At which are required in order to 
keep the phase at a given frequency co unchanged, in looking for points of stationary 
phase we seek such values of co where, for given values of r and t, the phase is un-
changed by a slight increment Aco. A point of stationary phase is therefore not one 
for which two neighboring frequencies travel with the same phase velocity. Such 
points do not exist in fact. 

At frequencies co for which the phase is stationary, mutual interference will be at 
a minimum, and these frequencies will therefore be dominant at the prescribed values 
of t and r. The values of t and r, for which the phase is stationary for a given fre-
quency, therefore determine the rate of propagation of this frequency in the mutually 
interfering train of sinusoidal waves, or the so-called group velocity U: 

V = t - r — =0 
doj do) ' 

( 4 6 ) 

r da 
~ t~ dk' 

4 The term tan-1 (w A ) in the phase can be considered as a slowly varying quantity such as (?»(«)/-%/X2 -(- u2. 
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We have therefore defined the group velocity as the velocity with which a given frequency 
{or period) is propagated in a train of waves which results from interference of com-
ponent sinusoidal waves traveling with different phase velocities. 

That the group velocity as defined above is different from the phase velocity can 
be seen from the following considerations. In Figure C we have sketched the pulse 
shape at time h when the phase Ai (point of zero pressure) has reached n , and at a 
later time h when it has reached r 2 . It is assumed that the phase velocity increases 
with wave length so that the pulse becomes drawn out as it progresses. If Ar = 
n ~ ri is small, then the phase velocity is Ar/At. This is, however, not equal to the 
group velocity because at h the dominant wave length near A2 has increased, and the 
original wave length is now somewhere to the rear of A2. The distance covered by 
the wave length is therefore less than the distance Ar covered by the phase, and the 
group velocity is less than the phase velocity. 

It can be shown that the group velocity U is always less than the phase velocity 
when the phase velocity decreases with increasing frequency, as in our case. We 
have 

dw d{ck) dc , 
a = ok, U = - = e + k - , ( 4 7 ) 

dk dk dk 

and, since < 0, it follows that U is always less than phase velocity c. 
dk 

Figure 28 shows the variation of group velocity of the first mode with frequency 
for a series of two-layered liquid half-spaces. It will be noted that in all cases the 
group velocity passes through a minimum, and that for values of U < ci two fre-
quencies correspond to a given value of U. It will be shown later that both these 
features of the group-velocity curve have important consequences for the interpreta-
tion of propagation of explosive sound in shallow water. Group-velocity curves for 
three-layered media are shown in Figures 29, 30, 31, and 32. The significance of 
some of the characteristics of these curves in the study of records from explosive 
sound will also be taken up later. 

III. THE GROUND WAVE, WATER WAVE A N D AIRY PHASE IN A TWO-LAYERED 
LIQUID HALF-SPACE 

If a pressure pulse from a point source is initiated in shallow water, and if the 
pulse is not a single frequency ping but covers a moderately broad spectrum, then 
the pressure wave at large ranges due to the first mode would be expected, on the 
basis of the group velocity curve in Figure D, to show the following sequence of 
events. The first arrivals would be nearly sinusoidal waves of frequency fL , where 
fL denotes the limiting frequency for the first mode 

f * ( 4 8 ) 

4H\/1 - {c\/c\) 

These waves would arrive at t = r/c»J As time progresses, the frequency in this 
so-called ground wave would decrease, and the amplitude would increase (for reasons 

t This is not strictly true, but we shall not enter upon a discussion of this point here. (See Pekeris, 1946.) 
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20 PROPAGATION OF EXPLOSIVE SOUND IN SHALLOW WATER 

to be given later). This is because at later epochs the group velocity is less, and 
therefore one proceeds down the left branch of the group velocity curve in Figure D 
in the direction indicated by the arrow. At the time r/c\, a new train of high-
frequency waves due to the right-hand branch of the group-velocity curve would 
suddenly be superimposed on the ground wave. This new high-frequency wave, 
which would arrive with an apparent velocity equal to the velocity of sound in water, 
we shall designate as the water wave. The frequency in the water wave would 
decrease as time progresses, while in the ground wave the frequency would continue 
to increase. At a time t = r/Ui, for example, the first mode would consist of a 
superposition of two frequencies, one/ s due to the ground wave and another fw due 
to the water wave. Still later,/,, and/™ would approach each other until at t = r/Uo, 
where Uo denotes the minimum group velocity, they would coincide. The pressure 
then would consist of a single frequency, fA , and we shall designate this portion of 
the pressure record as the Airy phase, because Airy was the first to treat a mathe-
matically related problem of diffraction of light near a caustic. 

The sequence of these events is illustrated in the theoretical curves drawn in 
Figures 24A, 24, and 25. Figure 24 shows the ground wave up to the time of arrival 
of the water wave. The upper portion of this figure is rather complex, because 
we have here superimposed the contributions from the first three modes. Perhaps a 
clearer illustration of the events described above for the first mode can be obtained 
from the lower portion of the figure, in which the higher modes have been rela-
tively suppressed by low-pass filtering. The ground wave is seen to consist of a 
nearly periodic wave which is gradually modulated both in amplitude and frequency. 
The change in frequency from the first arrival up to the time (=5.542 sec.) of arrival 
of the water wave is small, corresponding to the small difference betweenfL and / « 
in Figure D. fR, the so-called rider frequency, is the frequency of the ground wave 
at t = 5.542 sec., which is seen to be around 50 cps. 

The details of the water wave and of the accompanying ground wave, as well as 
of the Airy phase, are shown in Figure 25, which is a continuation of Figure 24 on a 
different scale. The amplitudes of both the water wave and the ground wave con-
tinue to increase while their periods tend toward equality. The maximum amplitude 
is reached shortly before t — 5.668 sec., which is the arrival time of the Airy fre-
quency Ja(,= 75 cps) corresponding to the minimum group velocity Uo. There-
after we have the Airy phase in which the frequency remains constant at the value 
fA , and the amplitude decreases continuously, ultimately approaching an exponential 
rate. 

IV. EXPRESSIONS FOR THE GROUND WAVE, WATER WAVE, A N D AIRY PHASE 

The contribution Pn{r, z, t) from the w-th mode to the potential is given in Eq. (45): 

P, z,t) = X- j f ^ * - k.Mr - = - t a n - ( j ) ] 

(45) 

0„ = 
xn sin {xnd/E) sin (xnz/E) s F(xn) sin (xn d/E) sin (xnz/E). (49) 

(xn — sin xn cos x„ — b2 sin2 xn tan x„) n 
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As previously explained, the integral in (45) is evaluated by the method of station-
ary phase, the details of the calculation are given in Part II. It will therefore suffice 
to give the final results here. 

To compute Pn at a given point (r, z) and a given time t, in case of an exponential 
pulse <rx<, one first computes the group velocity U = r/i, and then determines from 
the abscissa of a group-velocity curve (Fig. 28), the dominant frequency / at that 
time (y = JH/d). One also determines from the dispersion curves the corresponding 
quantities 

d2k 
k = 2»f/c = u/c, I = —-„, etc. (50) 

doi 

Pn is then computed from 

Pn = Pi, t < r/cu 

Pn = K + Pi, t > r/cu 

where P® denotes the ground wave, and P™ the water wave. 
We have 

4 cos [ u - rk - t an - 1 ^ ^ - j J 
Pi = 1 W , (51) 

Er-s/k-kQ? +C0») 

4 cos - rk - t an - 1 ^ ^ J 
P" = 1 . (52) 

Er y/k | I | (X2 + w2) 

In these expressions the factors other than the arguments of the cosine are slowly 
varying functions of time; Eqs. (51) and (52) therefore represent waves which are 
modulated both in frequency and amplitude. It will be noted that 

— - ( ( 5 3 ) 
dw* \2ircx) U*dy ' 

so that the amplitudes of the ground wave and the water wave vary inversely as the square 
root of the slope of the group-velocity curves in Figure 28. 

Expressions (51) and (52) are approximate and may be used only for large ranges 
and at times removed from the epoch of the minimum group velocity, when k = 0. 
The precise condition to be observed in using (51) and (52) ' is 

j _ r _ 5 ( ¡ ) 2 3^'"| = j _ ( h \ r 5z 2 3 j r 

24r L G ) 3 © 2 J 96tt2 W L z 3 Z ' 2 _ 
< 1, (54) 

where the Z's are the nondimensional quantities: 
_c\d2k dZ . 2tc\ d?k » 4irzc\ d4k 

Z~HdJ' dy~Z~E*dJ' E3 da1 ' 

When condition (54) is not met because of the proximity to the point of the min-
imum group velocity—that is for some time prior to the Airy epoch and for all times 
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thereafter—one can use, instead of the sum of expressions (51) and (52), the single 
expression 

4 cos - hr - tan"1 - ^ J 0„(w0)•£('") 
P n = ^ (56) 

+ <ii%)k o / 2 x 

where the subscript 0 refers to the point of the minimum group velocity, and 

4 \ / t / r \, , tci d 

Eb) = ^U-sW + /j(»)], t<Tr' 
Uo 

= fs[/_5W - /jWl, t > . (57) 
U o 

Again, Eq. (56) is to be used only when 

I ZO G W 

( 2 » ) » V / ( - i ^ E i v ) 
< 1, (58) 

the function G(v) being defined in Eqs. (A114) and (A115) in Part II. 
The Airy phase as represented by Eq. (56) is an amplitude-modulated train of 

waves. Some theoretical curves of the Airy phase alone are shown in Figure 26. 
The curves in Figs. 24A, 24 and 25 were computed from Eqs. (51), (52), and (56). 

V. RELATIVE EXCITATION OF T H E VARIOUS MODES BV A N EXPLOSION IN SHALLOW WATER 

Our discussion thus far has been concerned with the contribution to the pressure 
variations from individual modes, and we have also intimated that the first mode 
would impress its characteristics on the pressure record to a greater extent than the 
higher-order modes. This is an assumption which is usually made in discussions 
of the subject, but in trying to check it qualitatively the writer found that it is not 
of general validity. 

The theory of normal modes developed in previous sections makes definite predic-
tions as to what the relative amplitudes of the various modes should be. If we define 

q" = sin2 fa) (59) 

{xn — sin xn cos x„ — & sin2 x„ tan xn)cy yj¿ j ' 

^n Xn Sin2 (Xn) 
(60) 

2 (x n — sin xn cos xn — If2 sin2 x„ tan x„)ci /£ | \ |' 

then it follows from Eqs. (51) and (52) that, when both the charge and the hydro-
phone are beached on the bottom (d = z — H), we have 

| PS | - (61) 
ffrVX2 + W2 

| PS P = G [ » \ (62) 
fl>VX2 -fa,2 
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for the amplitude of the ground wave and the water wave, respectively. With the 
exception of the factor (X2 + to2)-*, which depends on the particular size of charge 
used (X) and is slowly varying in any case, the relative amplitudes of the various 
modes are given by Gin) and 

Figures 33, 34, 35, and 36 show curves of G, and G2 for the first three modes in the 
case of a two-layered liquid half-space. The abscissae are reduced time scales 
(T — To)/T0, where T denotes the time after the explosion, and Ta the arrival time 
of the water wave ( = r/ci). It will be noted that the various modes are distinguished 
not only by different excitation amplitudes but also by different frequencies arriving 
at a given time, as shown by the 7-curves. The higher the order of the mode, the 
larger are the frequencies arriving at a given time. 

In the ground wave (Gi), the amplitude of the first mode is about three times the 
amplitude of the second mode and about five times the amplitude of the third mode 
(Fig. 24, top). On the other hand, in the water wave the theoretical contrast in the 
amplitudes of the various modes is seen to be very much less. One would therefore expect 
that a receiver which is characterized by a flat spectral response would record a water 
wave composed of several trains of waves of about the same amplitude but of different 
frequencies. Such a record is likely to have a rather complicated appearance. 
However, in the case of a low-pass receiver system, the higher-order modes would be 
relatively suppressed on account of their higher frequencies, and the record would 
exhibit the expected dispersion characteristic of a single (the first) mode. 

This I consider to be one reason for the complicated appearance of the Mark II 
high-frequency traces shown on Plates 1-11, in contrast to the simple dispersion 
pattern shown by the Mark II low-frequency system. The Mark II high-frequency 
system has a flat response up to about 1000 cps, whereas the Mark II low-frequency 
system is a low-pass filter with a cut-off frequency around 150 cps. (See Figures 43, 
44, and 41, 42.) The effect of the Mark II low-frequency system in enhancing the 
first mode in the ground wave and the water wave is illustrated in Figures 24 (bottom) 
and 25 (bottom). A similar effect on the Airy phase is shown in Figure 26. 

Another factor which needs to be considered when comparing the relative strengths 
of excitation of the various modes is the effect of the roughness of boundaries. It is 
known that for a given frequency a condition of nearly specular reflection is ap-
proached, even for a rough surface, as grazing incidence is approached. This condi-
tion is approached earlier, the longer the wavelength. Since the normal modes can 
be analyzed into two plane waves traveling upward and downward at definite angles 
of incidence 9n , it is of interest to inquire how 9„ varies with the order n of the mode. 
If one makes the comparison on the basis of a given frequency, then since 0„ = 
sin-1(ci/c<n>) where c(n) is the phase velocity of the n-th mode, and since (Fig. 49) 
cM/c 1 increases with the order n, it follows that the first mode travels with the 
highest angle of incidence and should therefore suffer least attenuation by scattering 
from rough boundaries. However, this conclusion must be tempered by the fact 
that the comparison should be made not for a given frequency but for equal limes of 
arrival—i.e., we wish to compare the relative amplitudes of the various modes as 
they are superimposed at a given time. Figures 33, 34, 35, and 36 show that the 
higher modes arriving at a given time are of higher frequency and, since the angle 
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of incidence increases with increasing frequency, it is necessary to make a quantita-
tive study of the variation of the angles of incidence with the order of the mode for 
a given arrival time. This is done in Figure 50. It will be seen that in the ground 
wave the difference in 8 is rather small and this difference is in any case not of practi-
cal importance for the low angles of incidence involved. In the water wave the 
difference in angles of incidence between the modes is somewhat larger, and this 
difference is of greater physical consequence because of the rapid change of reflec-
tivity near grazing incidences. Whatever difference exists in the water wave favors 
the higher modes. No conclusions can, however, be drawn from this result with 
regard to relative effects of rough boundaries on the various modes, because the 
higher angles of incidence of the higher-order modes are counterbalanced by the 
closer approach to grazing incidence required to achieve the condition of nearly 
specular reflection at their higher frequencies. 

6. FEATURES OF T H E PRESSURE W A V E F R O M AN EXPLOSION IN SHALLOW W A T E R 
W H I C H CAN B E I D E N T I F I E D A N D M E A S U R E D ON T H E R E C O R D S A N D F R O M 
W H I C H THEORETICAL DEDUCTIONS CAN B E M A D E ABOUT T H E STRUCTURE 
OF T H E B O T T O M 

I. ARRIVAL TIMES OF THE GROUND WAVES A N D OF THE WATER WAVES A N D THEIR USE IN 
DETERMINING THE STRUCTURE OF T H E BOTTOM BY STANDARD REFRACTION M E T H O D S 

One of the simple features to identify on the records is the time of arrival of the 
wave. For the ranges we are considering this is a wave which has traveled in the 
bottom for most of its course, and which therefore arrives ahead of the wave which 
reaches the receiver directly through the water. In Plate 1, for example, the arrival 
time in shot 47 is 1.372 sec.6 after detonation of the charge, and this phase is marked 
by the arrow on the geophone trace. The placing of the arrival time at the position 
of the arrow is based on the judged time of first slanting of the geophone trace. The 
beginning of shot 48 on Plate 1 is placed at 1.685 sec., that of shots 58 and 59 (PI. 2) 
at .791 sec., and .768 sec., respectively, and so on. With a receiver system consisting 
of seven independent channels which are recorded simultaneously on the oscillogram, 
the identification of the beginning of the wave presents little difficulty in most cases. 

In reading the beginning of the wave, one picks the earliest definite indication of a 
disturbance on any of the traces in the record. The position of the judged beginning 
of the wave is marked in Plates 1-9 either by a number giving the arrival time or by 
an arrow on the particular trace which shows the earliest disturbance from quiescence. 
An inspection of the identification of the first arrivals on the records in Plates 1-9 
will reveal that without exception they appear either on the lower (sensitive) Mark II 
low-frequency trace or on the geophone trace, both of which are insensitive to fre-
quencies greater than about 150 cps. On the other hand, the high-pass systems such 
as the Mark II high-frequency and the Mark II rectified (see Figs. 41, 42, and 43) 
respond very weakly and belatedly to the first arrivals. The difference between the 
responses of the high- and low-pass systems to the beginning of the ground wave 
cannot be explained on the supposition that the amplification of the low-pass systems 

* The time marks on the traces include a correction to the beginning of the time scale appearing on top of the records. 
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is higher than in the high-pass systems, because in the case of the arrival of the 
water wave which is visibly rich in high frequencies it is the high-pass systems which 
respond earliest and most strongly. One is therefore driven to the conclusion that the 
ground wave is a low-frequency disturbance which starts gently with a weak ampli-
tude, while the water wave is a high-frequency disturbance which builds up quickly 
to a considerable amplitude. This is precisely what the normal-mode theory predicts, 
and is illustrated in Figs. 24A, 24, 25, 33, 34, 35, and 36. 

Another easily identifiable feature is the arrival time of the water wave. As men-
tioned above, this phase appears first and strongest on the Mark II rectified and the 
Mark II high-frequency traces. In Plate 1 the water wave arrives in shot 47 at 
t = 1.679 sec., in shot 48 at / = 2.407 sec., etc. It is clear from this and the other 
records that the arrival time of the water wave can be read with high precision off 
the Mark II rectified trace as well as off the Mark II high-frequency trace. 

The data of the arrival times of the ground wave and the water wave can be 
utilized, by an application of standard-refraction methods used in geophysical 
prospecting, to gain information on the variation of sound velocity with depth in 
the bottom. Consider the case shown in Figure E in which the charge and receiver 
are beached on the bottom at A and D, respectively, and where the bottom consists 
of a layer of thickness h and sound velocity c2 which is underlain by an infinite half-
space of sound velocity c3. Beyond ranges greater than 2h/V(C i/c ty - 1, the 
receiver will register 

(a) the water wave which travels in the water along AD, 
(b) a ground wave traveling along AD in the bottom with speed c 2 , and 
(c) a ground wave traveling along the path ABCD, where the leg BC is covered 

with the speed c3 of the lower medium. At great ranges the first arrival is the 
ground wave (c), while at intermediate ranges the ground wave (b) is the first to 
arrive. The travel time of the ground wave (b) is simply rjc2, while the travel time 
of ground wave (c) is the time required to cover the legs AB and CD with speed c2 

and the leg BC with speed c 3 : 

UBCD - - + - V t e A * ) 2 - 1 = Ud/cz) + r, (63) 
¿3 C3 

r ^ V ^ M , ( 6 4 ) 

where tw = r/ci denotes the travel time of the water wave. If one now plots the 
arrival times of the ground waves versus the arrival times of the water waves, the 
points line up on two straight lines in the manner shown in Figure 1 for the shots 
made at Solomons Shoal. The first line, which passes close to the origin, shows that 
c2 = 1.15C] . The second line has a slope indicating that c3 = i.79d . From this 
plot one can also determine the thickness of the intermediate layer. According to 
Eq. (64) the intercept r of the second line with the axis of ordinates is equal to 
(2h/ciW(c3/c2y ' 1- In Figure 1, r = .345 sec., (c3/c2) = 1.79/1.15, from which 
one arrives at a value of 1280 feet for the thickness of the intermediate layer h. 
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It will be noted (Fig. 1) that for t„ > 2.6 sec., the arrival times of the ground wave 
indicate the presence of a faster layer than the third at some greater depth. 

From our conclusion that the layer of speed l.lSci is 1280 feet deep, which is more 
than 25 times the depth of water of 52 feet, it follows, in the light of the theory of 
normal modes in a three-layered liquid half-space, that the dispersion in the water 
wave at Solomons Shoal should be very nearly the same as if the intermediate layer 
extended to infinity. This is illustrated in Figures 29 and 31; when the thickness 
of the intermediate layer is 10 times the depth of water (cases 3.8 and 3.9), the dis-
persion due to the water-bottom discontinuity is very nearly the same as when the 
intermediate layer is of infinite thickness (cases VI and V). The above theoretical 
deduction is closely confirmed by the observed dispersion characteristics at Solomons 
Shoal. In fact, it will be shown in the next section that the records taken at Solo-
mons Shoal offer a text-book experimental illustration of the normal-mode theory 
in a two-layered liquid half-space. 

Another consequence of the theory of normal modes in a three-layered liquid half-
space is that the dominant wave length in the ground wave which travels in the 
intermeidate layer along AD should be less than the dominant wave length in the 
ground wave which takes the path ABCD of Figure E. Referring to Figure 31, for 
example, the value of y( = H/\) in the former is about 0.6, while in the latter y = .028. 
This theoretical result is very well confirmed in Figure 1, in which the periods of the 
points marked by A are more than twice the periods of the points marked by © . 
The same characteristics are shown by the data in Figure 2, and to a lesser extent 
in Figure 3. 

A refraction curve which is entirely different from the one obtained at Solomons 
Shoal is shown in Figure 4 for Virgin Islands Shoal. In both Figures 1 and 4, the 
closest refraction points begin at about 0.3 sec. travel time, but in Figure 4 all the 
points seem to line up along a straight line which does not pass through the origin. 
This last feature implies that between the water and the medium in which c = 3.02cj 
there is an intermediate layer of, probably, an intermediate sound velocity. The 
dispersion characteristics at Virgin Islands Shoal, shown in Figures 12, 13, 14, and 
15, suggest, as will be explained later, that the speed of sound in the layer contiguous 
to the water is 1.05cj to l . l t i . With a value of the intercept on the axis of ordinates 
( = r) in Figure 4 of about .029 sec., one derives from Eq. (64) a value for the thick-
ness of the intermediate layer of about 80 feet in either case. On the basis of the 
refraction data and aided by the indications from the dispersion data in the water 
wave, we thus deduce that the bottom at Virgin Islands Shoal is made up of 

(a) a top layer of a thickness of the order of the depth of water ( = 7 0 feet) in 
which the velocity of sound is about 1.05ci to l . lcj , and 

(b) an underlying medium in which the velocity of sound is 3.02ci. The structure 
of the bottom at Virgin Islands Shoal (as well as in Virgin Islands Deep) therefore 
differs from the structure of the bottom in Solomons Shoal, which is characterized by 
a thickness of the intermediate layer of speed 1.15ci of more than 25 times the depth 
of water. The difference in structure of the bottoms in the two stations carries 
with it a very important theoretical consequence which is strikingly confirmed by 
the observations, namely, that the ground wave at Virgin Islands Shoal {as well as 
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at Virgin Islands Deep) should be relatively weak in secondary arrivals and in the so-
called "rider" wave. This will be discussed in a later section. 

To complete the discussion of the refraction data, we find that the observed points 
at Jacksonville Shoal (Fig. 2) are too few during the first second of arrival time to 
allow any conclusions to be drawn about the structure of the top layer in the bottom. 
The refraction data for Jacksonville Deep shown in Figure 3 display a complicated 
array of secondary arrivals, some of which may not be real. However, concentrating 
our attention on the first arrivals only, we may assume that the points during the 
first second of arrival time line up along the (c/ci) = 1.14 line which passes through 
the origin, and that from 1 to 3.5 sees, arrival time the points fall on the (c/Ci) = 2.13 
line. The intercept of the latter line with the axis of ordinates is 0.36 sec. ( = r), 
and from Eq. (64) one infers that at Jacksonville Deep the thickness of the intermediate 
layer in which (c/c\) = 1.15 is about 1200 feet. 

The refraction data for Virgin Islands Deep (Fig. 5) are too meager for any definite 
conclusions. The indicated structure of the bottom is very much like that of Virgin 
Islands Shoal. Taking the value of r as 0.05 sec., one finds that the thickness of an 
intermediate layer in which (c/ci) = 1.05 or 1.1 is from 140 to 150 feet. 

II. THE EWING EFFECT 

The phenomenon of dispersion in the water wave which was discovered by Ewing 
and which is illustrated on Plates 10 and 11 Jias already been discussed. It was 
explained how from a record such as the third trace from the bottom on Plate 10 
one can determine the times of arrival T of the various frequencies, and it was also 
pointed out that when (T - Ta)/Th is plotted against y(= H/\), where T0 denotes 
the arrival time of the water wave, the observed points align themselves along a single 
curve, independently of the range (Figs. 6-19). We shall now take up the question of 
the possible interpretation, in terms of the structure of the bottom, which one can 
give to the mean dispersion curve obtained at a given station. 

Figures 6-19 contain a background of theoretical dispersion curves for various 
assumed uniform bottoms in which the sound velocity ranges from 1.05ci to 3ci , and 
also for three cases in which the bottom is composed of two layers. The maximum 
ordinate on the curves corresponds to the epoch of the Airy phase; the branch of the 
curve to the right of the maximum represents dispersion in the water wave, while the 
branch of the curve to the left of the maximum represents the slight dispersion in 
the ground wave (Fig. 24). It will be noted that the vertical separation of the 
curves in the water-wave branch is greatest between the cases (c2/ci) = 1.05 and 
(ci/ci) = 1.1, and that for high values of (c2/ci) the dispersion curves becomes in-
sensitive to changes in (c2/ci). In case of a bottom consisting of a layer of thickness 
h in which c = l . lci and an underlying infinite layer of c = 3.0ci , the curve 

, in which h = H, is seen to coincide with the (c2/ci) = 1.1 curve for all 
7 > 1.3, showing that, as far as dispersion in the water wave at these frequencies is 
concerned, this composite bottom is indistinguishable from one in which the inter-
mediate layer extends to infinity. On the other hand, the curve 

shows that in case of the thinner intermediate layer (h = 0.1H), the dispersion 
in the water wave deviates significantly both from the (c2/ci) = 1.1 and the (c2/Ci) = 
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3.0 curves in the practically relevant range of 7 = 1 to 7 = 6. The variation of 
group velocity with frequency (7) in the above-mentioned three-layered media is 
shown in Figure 32 by curves 3.7 and 3.3, respectively. 

If the observed dispersion points line up along one of the theoretical curves for a 
two-layered medium, then that furnishes evidence that the layer contiguous to the 
water is of the corresponding sound velocity. From the previous discussion it is 
however clear that this value of sound velocity need not obtain at great depth, 
that the dispersion for high frequencies is controlled by the properties of the bottom 
in a rather thin layer next to the water. The physical reason for this can be seen 
in Figs. 45-48 which show that at high frequencies very little of the energy of the 
first mode is contained inside the bottom. We therefore cannot expect to obtain 
information on the structure of the deep layers from an analysis of dispersion data 
of a wave which hardly penetrates to those layers. As a measure of the depth of 
penetration of the first mode into the bottom, we can take a layer at the top of the 
bottom in which is contained 99 per cent of the total energy in the bottom. The 
significance of the depth of penetration is that no information on the structure of the 
bottom at greater depths can be obtained from dispersion data. Curves of depth of 
penetration are plotted vs. 7 in Figures 6-19. To illustrate the use of these curves, 
let us assume that the observed points fall on the (V2A1) = 1.05 curve for all values 
of 7 > 4.0. The corresponding depth of penetration is 0.32H, implying that the 
evidence that the velocity in the bottom is 1.05ci pertains only to a top layer of about. 
one third of the depth of water at the most. Curve shows that, 
when h = \B, the dispersion for 7 > 4 is practically indistinguishable from the 
(c2/ci) = 1.05 curve, in agreement with the above deduction. 

As a further illustration of the application of the depth-of-penetration curves to 
the interpretation of dispersion data which cross the theoretical curves for uniform 
bottoms, consider the curve. As was pointed out above, the fact that 
this curve hugs the 1.05 curve for 7 > 4 can be interpreted to mean that in a top layer 
of the bottom extending to a depth of not more than about one third of the depth of 
water the sound velocity is 1.05ci. Again, from the fact that the 
curve lies below the 1.1 curve for all 7 > 1.4, we may infer that in a top layer of the 
bottom extending to a depth of not more than 0.72H the mean sound velocity is 
about l . l c j . This is actually true of the mean velocity down to that depth. Simi-
larly the curve indicates that in a top layer of the bottom of about 
nine tenths the depth of water c = l . l c i , which is exactly true. On the other hand, 
the crossing of the and the 1.3 curves at 7 = 2.5 would imply, 
according to the above rule, that the mean velocity in a top layer of the bottom of 
about one quarter the depth of water is less than 1.3, whereas the actual mean 
velocity in such a layer is close to 2. The discrepancy in this case arises from the 
large contrast in sound velocity (1.1 vs. 3) between the intermediate layer and the 
bottom layer plus the fact that the "depth of penetration" is heavily biased by the 
properties of the topmost section of the layer on account of the exponential decrease 
of amplitude with depth in the bottom. 

It appears from the preceding discussion that in the case when the observed disper-
sion curve crosses the theoretical dispersion curves for uniform bottoms, one can infer 
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with fair accuracy from the points of intersection the mean velocity through a top 
layer of a thickness equal to the "depth of penetration", except in cases when the 
velocity varies extremely rapidly with depth. 

In Table 1 are set out the conclusions about the structure of the bottom at the 
various stations, which can be drawn on the basis of the mean dispersion curves alone. 

TABLE 1.—Evidence on the structure of the bottom deduced from, dispersion data 
H = depth of water; D.o.P. = Depth of Penetration (see Figure 6); cs = inferred mean sound velocity in a top layer 

of the bottom of thickness D.o.P. A slanting dispersion curve means one which crosses the theoretical dispersion curves 
for uniform bottoms. 

Place Fig. Cï/Cl D.o.P. C2/C1 D.o.P. Cî/Cl D.o.P. Hin 
feet 

Nature of mean disper-
sion curve 

Solomons Shoal 6 1.2 .53H 52 not slanting 
7 1.2 .53H not slanting 

Jacksonville Shoal 8 1.05 .42H 1.1 1 .2H 60 slanting strongly Jacksonville Shoal 
9 1.05 .56H 1.1 1 .4H slanting strongly 

Jacksonville Deep 10 1.1 . 18H 1.2 • 3H 1 4 • 5H 115 slanting slightly 
11 1.2 .25H 1 3 ,7H slanting slightly 

Virgin Islands 12 1.05 .45H 1.1 .50H 1 2 .63H 70 slanting strongly 
Shoal 13 1.05 .45H 1.1 .63H 1 2 .80H slanting strongly 

14 1.075 .45H 1.1 .48H 1 2 .52H slanting strongly 
15 1.075 .36H 

Virgin Islands 16 1.05 .37H 1.1 .45H 1 3 .45H 140 slanting strongly 
Deep 17 1.05 .45H 1.1 .46H 1 3 .46H slanting strongly Deep 

18 1.05 .37H 1.1 .38H slanting strongly 

The observed dispersion points for Solomons Shoal shown in Figures 6 and 7 are 
confined between the 1.1 and 1.3 theoretical curves, and they show no systematic 
tendency to cross these curves. One can therefore infer from the dispersion data 
that the mean sound velocity in the top 25 feet of the bottom at this station is about 
1.2cj . The fact that the mean dispersion curve shows no tendency toward "cross-
ing" would suggest also that the bottom is uniform down to a greater depth, although 
strictly speaking any inference about the structure of the bottom below the depth 
of penetration is risky. These conclusions agree with the evidence from the refrac-
tion data for this station (Fig. 1)—namely, that in the top 1280 feet of the bottom 
the sound velocity is uniform and equal to 1.15ci. 

The dispersion data for Jacksonville Shoal (Figs. 8, 9) are quite different from the 
data for Solomons Shoal. In the former station there is definite evidence that the 
mean sound velocity in the top 30 feet of the bottom is about 1.05ci and that the 
mean sound velocity in the first 80 feet is about l . l c i . The indicated increase of 
velocity with depth is also evidenced by the "slanting" of the mean dispersion curve. 

The refraction data for Jacksonville Shoal (Fig. 2) (during the first second of travel 
time) are too meager to allow any conclusions to be drawn about the structure of 
the first 100 feet of the bottom. 
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The evidence from the dispersion data for Jacksonville Deep (Figs. 10, 11) is that 
the mean velocity in the first 30 feet is about 1.2ci and that the mean velocity in the 
first 70 feet is about 1.35ci. The slanting tendency is rather slight, suggesting a 
uniform velocity down to considerable depth. These conclusions are in conformity 
with the evidence from refraction data shown in Figure 3—namely, that an inter-
mediate layer in which c/ci is about 1.14 extends down to 1200 feet. The value of 
1.14 for c/ci is not so well determined as in Figure 1 for Solomons Shoal; there is 
indeed an indication of curvature in the observed points, and a mean value of (c/ci) = 
1.35 in the first 70 feet is not only not excluded but is even suggested by the data. 

The dispersion data for Virgin Islands Shoal and Virgin Islands Deep are of a 
similar nature. There is a strong slanting tendency, indicating rapid variation of 
sound velocity with depth. This is also indicated by the slow variation of the 
D.o.P. values (Table 1). As was explained, the inference that an intermediate layer 
of the order of the depth of water in which (c/ci) ~ 1.1 intervenes between the water 
and the high speed base of (c/ci) = 3.02 agrees with the refraction data as well as 
with the general character of the ground wave at these stations. 

m . THE RIDER WAVE, AIRY WAVE, AND LIMITING WAVE LENGTHS 

While the interpretation of the first arrivals by the refraction method and the 
interpretation of the dispersion in the water wave by the theory of group velocity of 
normal modes are known procedures in practical and theoretical Geophysics, the 
discovery of the features of the pressure records to be discussed presently is entirely 
new and was made by the writer during a systematic analysis of all the predictions 
of the theory. 

One consequence of the theory of normal modes is illustrated in Figure D—namely, 
that the high-frequency water wave should be superimposed not on a quiescent 
base line but on the low-frequency ground wave. The water wave should therefore 
appear "riding" on a low-frequency wave in the manner illustrated in Figures 25 
and 24A. While this "rider wave" may be masked by the striking features of the 
water wave, it should be distinct and measurable just prior to the arrival of the water 
wave. Furthermore, it follows from the theory that the frequency f B of the rider wave 
at the instant of arrival of the water wave is determined by the depth of water and 
the structure of the bottom. In Figure 37 the curve y s gives the variation of (H/\R) 
with the sound velocity in the bottom in case of a uniform bottom. 

Another consequence of the theory which is also illustrated in Figure D is thatfor 
a given structure of the bottom the ground wave should begin with a characteristic 
"limiting frequency" fL • The dependence of yL = H/\ L on the structure of the 
bottom in case the latter is uniform is shown in Figure 37. Still a third identifiable 
feature which is predicted by theory is that with time the frequency in the water 
wave should decrease while the frequency in the ground wave should increase until 
the two coincide at the so-called Airy frequency fA which again is characteristic of 
the structure of the bottom. The amplitude of the water wave reaches a maxi-
mum near the time of arrival of the Airy frequency and decreases thereafter while 
the frequency remains constant (Figs. 25, 26). 

The pressure records of all the shots were searched by the writer for the three 
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features mentioned above, and satisfactory results were obtained. The rider wave 
can be seen on most of the records in Plates 1-7. In Plate 1 shot No. 47, for example, 
the rider wave of a period of 0.014 sec. is seen clearly on the Mark II low-frequency 
traces between / = 1.6 sec. (on the time scale appearing at the top of the record) 

TABLE 2.—Character is t ics of ground waves and water waves in Solomons Shoal 
The charge was placed on the bottom in shots 40 to 49 and in shot 63; it was suspended at a depth of 25 feet in shots 56 

to 62. The hydrophone was located on the bottom in all shots. The Airy Period could not be determined in most records 
due to insufficient dispersion at the relatively small ranges. In shot No. 48 the Airy Period was 0.012 sec., and 8/X was 
0.89. The Limiting Period waves are believed to be those of longest period associated with the discontinuity between the 
water and the bottom. 

Water 
depth 
near 

charge 

Water 
depth 
near 

hydro-
phone 

<U Ground Waves Rider Wave Water 
Charge 
Weight Shot No. 

Water 
depth 
near 

charge 

Water 
depth 
near 

hydro-
phone 

«j a. 
4) 4) 

Long-
est 

Period 
H / X Period H/\ 

Limit-
ing 

period 
R/\ Period H/\ 

arrival 
time 

Charge 
Weight 

ft- ft- ft- Sec. Sec. Sec. Sec. Sec. lbs. 

4 0 51 52 5 1 . 5 . 0 7 3 . 1 4 . 0 1 5 . 7 0 . 6 7 2 0 . 5 

41 51 52 5 1 . 5 . 0 2 1 . 5 0 . 0 1 5 5 . 67 . 9 5 4 0 . 5 

42 4 9 52 5 0 . 5 . 0 8 0 . 1 3 . 0 1 4 .73 1 . 2 8 6 0 . 5 

43 4 9 52 5 0 . 5 . 0 7 5 . 1 4 2 . 5 8 0 0 . 5 

4 5 4 8 52 50 . 0 2 5 . 41 . 0 1 4 5 . 7 0 . 6 1 6 5 

4 6 51 52 5 1 . 5 . 0 6 3 . 17 . 0 2 9 . 3 6 1 . 2 0 3 5 

4 7 5 0 52 5 1 . 5 . 0 6 7 . 1 6 . 0 1 4 . 74 1 . 6 7 9 5 

4 8 53 52 5 2 . 5 . 0 8 7 . 1 2 . 0 6 7 . 1 6 . 0 1 5 .71 2 . 4 0 7 5 

4 9 49 52 5 0 . 5 . 0 8 8 . 1 2 2 . 8 7 4 5 

56 53 55 54 . 0 3 5 . 3 1 . 6 0 5 5 

58 53 55 54 . 0 2 4 . 4 6 . 0 1 6 . 69 . 8 9 9 0 . 5 

59 53 55 54 . 0 2 4 . 4 6 . 0 1 5 . 7 3 . 8 7 8 5 

6 0 53 5 5 54 . 0 3 1 . 3 5 . 0 1 5 . 7 3 1 . 2 2 2 5 

61 53 55 54 . 0 2 9 . 3 8 . 0 1 5 .73 1 . 1 9 8 0 . 5 

62 53 55 54 . 0 3 0 . 3 7 . 0 1 3 . 8 4 . 5 9 5 2 5 . 5 

63 53 55 54 . 0 3 6 . 3 0 . 0 1 6 . 6 9 . 6 6 4 2 5 . 5 

A v e r a g e 51 53 52 . 0 8 7 5 . 1 2 . 0 7 1 . 1 5 . 0 2 8 . 3 9 . 0 1 5 .72 

and the arrival of the water wave. In shot No. 48 (PI. 1) the rider wave appears 
clearly after t = 2.35 sec. on the lower (sensitive) Mark II low-frequency trace. 
On Plate 4, shot No. 94, the same traces register the rider wave just prior to the 
arrival of the water wave: and similarly in shot No. 97 and so on. In the last two 
shots one can see that the frequency in the rider wave increases with time,/« being 
determined by the value of the frequency just prior to the arrival of the water wave. 
The rider waves in these shots are preceded by trains of long waves which are charac-
teristic of the deep structure in the bottom. In shots 58, 59, 60, and 61 (Pis. 2, 3) 
however, the rider waves appear to continue all the way back to the beginning of the 
ground wave. Leaving out the first swing or so in the ground wave, one can read 
off these records the frequency in the beginning of the rider wave and identify it 
with the limiting frequency fL . This was done on all the records taken at Solomons 
Shoal, and the results are shown in Table 2. 
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It is seen that the mean value of .72 for y E ( = H/\1{) is determined with little 
scatter. Referring to Figure 37, we find that on the assumption of a uniform bottom, 
the corresponding value of the sound velocity in the bottom is 1.09ci. This com-
pares well with the values of 1.15ci and \.2c\ deduced from the refraction data and 
the dispersion data, respectively. 

The mean value of 0.39 for yL is subject to greater uncertainty. By Figure 37 
this value corresponds to a sound velocity in the bottom equal to 1.29cj . Since the 
limiting frequency is more sensitive to the structure in deep layers than is the rider 
frequency (see Figures 38, 29, and 31), we may consider this value satisfactory. 

On account of the small ranges used at this station, the Airy period could not be 
determined with sufficient accuracy in most of the records. In the one shot (No. 48) 
in which the Airy period was measurable, a value of yA = 0.89 was obtained, and 
this corresponds to a sound velocity of l . lci in the bottom (Fig. 37). 

(It is perhaps appropriate to relate here an incident which occurred during the 
analysis of the records taken at Solomons Shoal and which helped to increase the 
writer's confidence in the theoretical interpretation. Plots of dispersion data from 
shots Nos. 58-62 gave unreasonable dispersion curves, which were out of line with 
the dispersion curves from the other shots. The same discrepancy was shown in 
the values of yL and yR . Since the records exhibited qualitatively all the expected 
features, the anomaly proved disturbing. The only possible explanation appeared 
to be an error in the quoted value of 25 feet for the depth of water. A check with 
Ewing revealed that this value for the depth appearing in the report by him and 
Worzel is wrong; the correct value is 53 feet.) 

Some records taken at Jacksonville Shoal are reproduced on Plates 4 and 5 and the 
results of the analysis of all the records at this station are given in Table 3. On 
account of the larger ranges involved, the ground wave and the other phases are more 
fully developed than at Solomons Shoal. At this station it was possible to measure 
the Airy period as well as the rider period. The mean values yR = .53 and yA = .90 
correspond to sound velocities in a uniform bottom of 1.17ci and l.lOci . Though 
the refraction data at Jacksonville Shoal are insufficient for a determination of the 
sound velocity in the top layers of the bottom, we may assume that the value of 
(c/ci) = 1.15 obtained for the adjacent station of Jacksonville Deep is applicable 
also for the Shoal. The dispersion data for Jacksonville Shoal indicate that the 
mean velocity in the top 30 feet of the bottom is about 1.05ci and that the mean 
velocity in the top 80 feet is about l . lcj . The evidence from the various sources 
about the structure of the top layers of the bottom is therefore in good agreement. 
We shall not take up here the interpretation of the various phases of the ground waves 
because these depend on the detailed structure of the deep layers in the bottom, and, 
as will appear later, their theory is much more involved. 

Some records for Jacksonville Deep are shown on Plates 6 and 7, and the results 
of the analysis of all the records obtained at this station are given in Table 4. The 
depth of water at this station is 115 feet as compared with 60 feet at Jacksonville 
Shoal, and the mean value of the period of the rider wave is found to be .038 sec. 
as compared with the value of .023 at Jacksonville Shoal. Since the dispersion data 
(see Table 1) indicate that the bottoms at the two stations are similar in structure (the 
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TABLE 3.—Characteristics of ground waves and water waves in Jacksonville Shoal 
The charge was placed on the bottom in shots 76 to 101, and was suspended at a depth of 25 feet 

in shots 103 to 117. The hydrophone was located on the bottom in all the shots. 

Water Water 
depth 

ci w Ground Waves Rider Wave Airy Wave Water-
Charge 
weight Shot No. depth 

near near 
5 s f fi/x ß/\ 

wave 
arrival 

Charge 
weight 

charge hydro-
phone 

ed fi) 
<y o 

Period fi/x Period H/\ Period R/\ Period ß/\ time 

Charge 
weight 

St. St. St. Sec. Sec. Sec. Sec. Sec. lbs. 

76 54 62 58 .070 .17 .025 .47 .857 0 .5 
79 61 62 61.5 .078 .16 .0234 .53 .019 65 2.472 0 .5 
80 ? 62 ? .0570 ? .0230 ? .020 ? 2.700 0 .5 
81 52 62 57 .057 .20 .0223 .51 .011 1.0 3.247 0 .5 
82 59 62 60.5 .0230 .53 .012 1.0 1.991 0 .5 
83 59 62 60.5 .070 .17 .022 .55 1.376 0 .5 
84 51 62 56.5 .0225 .51 1.060 0 .5 

85 59 62 60.5 .0556 .218 .022 .55 1.095 5 
86 59 62 60.5 .0570 .213 .023 .53 1.758 5 
87 55 62 58.5 .051 .23 .0235 .50 2.331 5 
88 55 62 58.5 .022 .54 .013 .91 2.829 5 
89 53 62 57.5 .057 .20 .0224 .52 .012 .96 3.404 5 
90 53 62 57.5 .055 .210 .0210 .55 .0123 .94 4.254 5 
91 61 60 60.5 .0554 .220 .024 .51 .014 .87 5.555 5 

92 59 60 59.5 .077 .16 .0580 .206 .013 .92 7.144 25 
93 59 60 59.5 .0235 .51 .015 .80 5.875 25 
94 59 60 59.5 .068 .18 .061 .196 .0233 .51 .015 .80 4.505 25 
95 59 60 59.5 .056 .214 .0250 .48 2.569 25 
96 55 60 57.5 .082 .14 .024 .48 1.407 25 

97 62 60 61 .068 .18 .0245 .50 .017 .72 2.683 300 
98 60 60 60 .0686 .18 .0554 .218 .0135 .89 5.525 300 

101 59 60 59.5 .073 .16 .0125 .96 — 300 
103 53 63 58 .020 .59 .565 0 .5 
105 54 63 58.5 .024 .49 .011 1.1 1.903 0 .5 
106 54 63 58.5 .061 .193 .023 .51 .013 .91 1.716 0 .5 
107 65 63 64 .0530 .243 .012 1.1 3.003 0 .5 
109 65 63 64 .0516 .249 .020 .64 4.849 0 .5 
110 61 63 62 .052 .239 6.253 0 .5 

111 61 63 62 .055 .226 6.493 25 

112 6 4 63 63.5 .0552 . 231 .0238 . 5 4 .016 .80 5.017 5 

113 64 63 63.5 .0658 . 1 9 .0566 . 2 2 5 .0218 .58 .015 .85 3.602 25 

114 67 63 65 .022 .59 .015 .87 2.512 5 

115 67 63 65 .058 . 2 2 5 .022 .59 1 . 1 3 5 5 

117 67 63 60 .057 . 213 .013 . 9 4 5.429 5 

Average 59 62 60 .072 .17 .056 .22 . 023 . 5 3 . 0 1 4 .90 

one in the Deep is only slightly faster), the observed approximate agreement between 
the ratio of the rider wave periods (1.7) and of the depths of water at the two stations (1.9) 
is a striking confirmation of the theory. From the mean value of 0.62 for yA , which 

 on June 30, 2015memoirs.gsapubs.orgDownloaded from 

http://memoirs.gsapubs.org/


3 4 PROPAGATION OF EXPLOSIVE SOUND IN SHALLOW WATER 

TABLE 4/—Characteristics of ground waves and water waves in Jacksonville Deep 
The charge was placed on the bottom in shots 123 to 159 and was suspended at a depth of 50 feet in shots 160 to 174. 

The hydrophone was located on bottom in all shots. The Airy Period could not be determined precisely in most records 
dueto insufficient dispersion at the large depth. In shots 175 and 176 the Airy Periods were .023 and .025 sec., giving values 
of H/\ of 1.0 and .93, respectively. The ground waves were arbitrarily segregated into two groups of about 0.1 sec. and 
•08 sec., respectively. 

Shot N o . 
Water 
depth 

Water 
depth 
near 

hydro-
phone 

" M e a n " 
water 

Ground Waves Rider Wave Water-
wave Charge Shot N o . near 

charge 

Water 
depth 
near 

hydro-
phone 

depth 
B Period H/\ Period n/\ Period S/\ 

arrival 
time 

weight 

St. ft. ft- Sec. Sec. Sec. Sec. lbs. 

1 2 3 1 1 6 119 1 1 7 . 5 . 0 4 2 . 5 6 1 . 1 9 5 0 . 5 
1 2 4 1 1 5 119 117 . 0 8 2 .29 1 . 7 5 2 0 . 5 
1 2 5 1 1 4 119 1 1 6 . 5 . 0 8 0 . 2 9 . 0 4 2 . 5 6 2 2 . 3 3 4 0 . 5 
1 2 6 1 1 4 1 1 9 1 1 6 . 5 . 0 8 2 . 2 9 . 0 4 4 . 5 3 3 . 0 7 4 0 . 5 
127 1 1 2 119 1 1 5 . 5 . 0 8 8 . 2 6 . 0 7 6 . 3 2 . 0 3 6 . 6 5 3 . 8 0 2 0 . 5 
1 3 0 1 1 4 119 1 1 6 . 5 . 0 9 . 2 6 . 0 3 5 . 6 7 7 . 4 8 8 0 . 5 
131 1 1 5 119 117 . 0 9 5 . 2 5 . 0 7 9 . 3 0 . 0 4 1 . 5 7 7 . 6 4 0 4 . 5 

1 3 4 1 1 3 119 1 1 6 . 1 1 5 . 2 0 . 0 3 7 . 6 3 5 . 9 7 4 4 . 5 
1 3 5 1 1 5 119 117 . 1 1 2 . 2 1 . 0 3 8 . 6 3 5 . 4 1 3 4 . 5 
1 4 3 1 1 3 1 1 9 1 1 6 . 0 9 2 . 2 5 . 0 3 7 . 6 3 1 . 8 2 9 4 . 5 
1 4 4 1 1 2 119 1 1 5 . 5 . 0 9 . 2 6 . 0 3 7 . 6 3 2 . 5 5 3 4 . 5 
1 4 6 1 0 6 1 1 9 1 1 2 . 5 . 1 1 3 . 2 0 . 0 8 7 . 2 6 . 0 3 8 . 5 9 2 . 6 2 4 4 . 5 
147 1 0 6 119 1 1 2 . 5 . 0 9 3 . 2 4 . 0 4 1 . 5 5 2 . 0 4 2 4 . 5 
1 4 9 1 0 6 119 1 1 2 . 5 . 0 9 4 . 2 4 5 . 2 8 3 2 5 
1 5 0 113 119 1 1 6 . 1 1 4 . 2 0 . 0 3 6 . 6 4 4 . 2 6 9 2 5 
151 1 1 5 1 1 9 117 . 0 9 8 . 2 4 . 0 3 8 . 6 2 3 . 0 9 6 2 5 

1 5 5 1 1 5 119 117 . 0 8 2 . 2 9 . 0 3 4 . 6 9 3 . 1 6 4 3 0 0 
1 5 6 1 1 2 119 1 1 0 . 5 . 1 0 8 . 2 1 . 0 3 7 . 6 1 6 . 1 7 1 3 0 0 
157 1 1 5 119 117 . 1 0 2 . 2 3 . 0 3 8 . 6 3 9 . 6 3 2 3 0 0 
1 5 8 107 119 1 1 3 . 0 9 3 . 2 5 . 0 8 6 . 2 7 . 0 3 8 . 6 1 1 2 . 4 0 9 3 0 0 
1 5 9 1 1 5 1 1 9 117 . 0 9 3 . 2 5 . 0 8 6 . 2 7 . 0 3 6 . 6 5 1 5 . 6 7 5 3 0 0 
1 6 0 111 119 1 1 5 . 0 9 2 . 2 5 . 0 8 6 . 2 7 . 0 3 9 . 6 0 7 . 6 3 8 0 . 5 
161 111 119 110 . 0 9 1 . 2 4 . 0 3 8 . 5 9 6 . 2 9 4 0 . 5 
162 1 1 2 119 1 1 0 . 5 . 0 9 6 . 2 3 . 0 8 6 . 2 6 . 0 3 7 . 6 1 6 . 3 1 3 0 . 5 
171 111 119 1 1 5 . 1 0 . 2 3 . 0 3 5 . 6 6 4 . 2 9 6 2 5 
1 7 3 107 1 1 9 113 . 0 7 9 . 2 9 . 0 3 6 . 6 3 5 . 4 7 0 4 . 5 
1 7 4 113 119 1 1 6 . 0 9 3 . 2 5 . 0 3 7 . 6 2 6 . 7 0 4 2 5 
1 7 5 * 113 119 1 1 6 . 1 0 . 2 3 . 0 8 9 . 2 6 . 0 3 4 . 6 9 1 0 . 4 4 6 3 0 0 
1 7 6 * 113 119 1 1 6 . 1 0 . 2 3 . 0 8 6 . 2 7 . 0 3 6 5 . 6 4 8 . 8 9 0 3 0 0 

Average 1 1 2 1 1 9 1 1 5 . 0 9 8 . 2 3 5 . 0 8 3 . 2 8 . 0 3 8 . 6 2 

• Charge depth = 75 feet. 

is seen to show little scatter, one deduces a value of 1.12ci for the sound velocity in a 
uniform bottom. This is in agreement with the value of 1.14ci deduced from the 
refraction data and with the value of 1.2ci for the first 30 feet indicated by the dis-
persion data. 

To sum up the results of this section, we may state that the features of the Rider 
wave, the Airy wave, and the Limiting wave lengths which were predicted by theory were 
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identified and measured on most of the records, and the resulting average values for yK , 
yA , and y L yield values for the velocity in the top layer of the bottom which agree with 
the entirely independent evidence obtained from refraction data and dispersion data. 

IV. EFFECT OF THE STRUCTURE OF DEEP LAYERS IN THE BOTTOM ON THE 
CHARACTER OF THE GROUND WAVE AND THE RIDER WAVE 

When we come to discuss the results of the analysis of the records obtained at 
Virgin Islands Shoal and at Virgin Islands Deep (Tables 5, 6) we again find agree-
ment with our previous deductions about the structure of the bottoms at these 
stations made on the basis of dispersion data and refraction data. Thus, the average 
values of 7a = .84 and yA = 1.4 correspond to (c2/ci) = 1.12 and 1.05 for Virgin 
Islands Shoal and Deep, respectively, and these conform with the evidence from 
dispersion data given in Table 1. However, the values of yA for the Deep are too 
few, while those for the Shoal show considerable scatter. 

The distinctive feature of these stations, which puts them in a class by themselves, 
is shown in Plates 8 and 9 where it is seen that the records are devoid of rider waves 
and of secondary arrivals after the first arrivals in the ground wave. Geologically the 
bottom at Virgin Islands is known to be coral, as against the sandy and muddy 
bottoms at Jacksonville and Solomons. We have also found previously that whereas 
in the last two stations the bottoms are uniform and of (c2/ci) 1.15 down to a depth 
of more than 10 times the depth of water, in the Virgin Islands stations an inter-
mediate layer of (c2/ci) 1.15 which is only about as thick as the depth of water 
intervenes between the water and a bottom layer in which (c2/ci) has the high value 
of 3. The theory of group velocity of the normal modes in a three-layered liquid 
half-space shows that when the thickness of the intermediate layer is about 10 times, 
or more, greater than the depth of water, the dispersion arising from each of the two 
interfaces is very nearly independent of the other interface. This is illustrated in 
Figure 31 where the group-velocity curve for case 3.9 exhibits two minima correspond-
ing to the two interfaces. A comparison of curves V and 3.9 shows that the phase 
velocities (c/ci) are indistinguishable between the two cases, and that even the 
group velocities agree up to very nearly the limiting frequency for case V. Simi-
larly, a comparison of curves 3.9 and VIII shows that the dispersion due to the lower 
interface is approximately unaffected by the presence of the upper discontinuity. 
Similar conclusions can be drawn from the dispersion curves shown in Figure 29. 
Referring now to Figure 32 where the dispersion curve for medium 3.9 is replotted, 
the following features of the ground wave for this medium may be predicted. The 
ground wave will commence rather weakly with a characteristic limiting wave length 
corresponding to 7 t = .028. The amplitude of the ground wave will increase 
gradually until the time t = r/1.09ci , when an Airy-phase-in-reverse will commence 
due to the maximum in the group velocity. Between t = r/1.09ci and t = r/ci, the 
ground wave will consist of a superposition of three frequencies corresponding, for 
example, to the points A, B, and C. At t = r/ci , the water wave due to the upper 
interface will be superimposed, giving a total of four component frequencies. This 
water wave will culminate in the Airy phase due to the upper discontinuity at about 
t = r/.98ci. Thereafter, there will remain only the phases due to the water wave 
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TABLE 5.—Characteristics of ground wanes and water waves in Virgin Islands Shoal 
The charge was placed on the bottom in shots 23S to 273 and was suspended at a depth of 25 feet in shots 274 to 280. 

The hydrophone was placed on thé bottom in all shots. The records are characterized by ground waves lacking any secon-
dary arrivals after the first arrivals, by an absence or extreme feebleness of "rider" waves, and by excellent dispersion in 
the water waves. The bottom is sloping. 

Water 
depth 
near 

charge 

Water 
depth 
near 

hydro-
phone 

"Mean" Ground Waves Airy Wave Water-
Charge 
weight Shot No. 

Water 
depth 
near 

charge 

Water 
depth 
near 

hydro-
phone 

water 
depth 

B 
Longest 
Period B/\ Period B/x Period B/\ 

wave 
arrival 

time 

Charge 
weight 

ft. ft- ft. Sec. Sec. Sec. Sec. lbs. 

235 70 62 66 .010 1.3 4.168 0 .5 
237 70 62 66 .056 .24 .011 1.2 3.102 0 .5 
238 74 62 68 .065 .21 2.080 0 .5 
239 70 62 66 .068 .19 .033* .40 1.684 0 .5 
240 81 62 71.S .102 .14 .077 .19 1.007 0 .5 
241 83 62 72.5 .099 .15 .061 .24 .847 0 .5 
242 85 62 73.5 .088 .17 .071 .21 .560 0 .5 
244 77 62 69.5 .083 .17 .057 .24 .0285* .49 2.472 300 
245 82 62 72 .090 .16 .060 .24 5.203 300 
246 83 62 72.5 .11 .13 .060 .24 6.469 300 
247 83 62 72.5 .074 .20 8.520 300 
251 76 62 69 .087 .16 .060 .22 .012 1.1 4.790 25 
252 72 62 67 .056 .24 .0246 .55 3.405 25 
253 77 62 69.5 .10 .14 .056 .25 .033* .42 2.242 25 
254 73 62 67.5 .058 .23 .022 .61 1.053 25 
266 80 65 72.5 .12 .12 .069 .21 .023 .63 .811 3 .5 
267 70 65 67.5 .12 .12 .050 .27 .026 .52 1.446 3.5 
268 74 65 69.5 .046 .31 .017 .82 2.068 3 .5 
269 66 65 65.5 .088 .15 .011 1.2 2.971 3 .5 
270 65 65 65 .083 .16 .045 .29 .010 1.3 3.707 3 .5 
271 70 65 67.5 .010 1.4 4.616 3 .5 
272 74 65 69.5 .083 .17 .010 1.4 5.112 3 .5 
273 83 65 74 .092 .16 .06 .25 5.786 3 .5 
274 82 65 73.5 .095 .16 5.802 3 .5 
275 74 65 69.5 .0955 .15 .021* .66 2.768 3 .5 
276 77 65 71 .103 .14 .022 .65 1.102 3 .5 
277 81 65 73 .093 .16 .522 0 .5 
278 79 65 72 .10 .14 .022 .65 1.003 0 .5 
279 69 65 67 .10 .13 .051 .26 ,018 .74 1.638 0 .5 
280 71 65 68 .096 .14 .020 .69 2.209 0 .5 

Average 76 64 70 .0965 .15 .060 .24 .019 .84 

• Well developed Airy period. 

and ground wave arising from the lower discontinuity, which will culminate in 
another Airy phase of t = r/.92ci. Examples of such lively ground waves are shown 
in Plates 4 and 5 by the lower Mark II traces in shots Nos. 94, 95, and 97, and in 
Plates 6 and 7. Also, the records at Jacksonville Deep, and to a lesser extent those 
at Jacksonville Shoal, are rich in trains of waves which arrive after the water wave. 

On the other hand, the three-layered media such as 3.3 and 3.7 shown in Figure 32, 
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in which the thickness of the intermediate layer is only of the order of the depth of 
water, will exhibit a ground-wave and water-wave system whose main features are 
similar to those characteristic of uniform bottoms. The presence of the lower inter-
face will no longer be revealed by a secondary arrival such as the Airy phase-in-

TABLE 6.—Characteristics of ground woes and water waves in Virgin Islands Deep 
The hydrophone was placed on the bottom in all shots. The records are characterized by generally weak ground waves 

(in 25 out of 42 shots the ground wave appears to be completely absent) lacking any secondary arrivals after the first 
arrivals, by an absence or extreme feebleness of rider waves, and by excellent dispersion in the water waves. The bottom 
is sloping. 

Shot No. Charge 
depth 

Water 
depth 
near 

charge 

Water 
depth 
near 

hydro-
phone 

"Mean" 
water 
depth 

5 

ft- ft- ft- fl-

186 169 169 120 us 
188 173 173 120 147 

191 154 154 120 137 

192 165 165 120 143 

201 166 166 120 143 
202 160 160 120 140 

203 (150) (150) 120 (135) 

213 75 170 120 145 

215 75 152 120 136 

216 147 147 120 133 

217 100 (160) 120 (140) 
219 100 (160) 120 (140) 

2 2 0 100 (160) 120 (140) 

A v e r a g e 133 160 120 140 

sec. 

1 1 2 

.16 

.18 

.12 

. 1 3 

Ground Waves 

Period S/\ 

. 1 4 

.22 

. 17 

.16 

. 2 5 

.21 

.21 

Period 

. 1 0 7 

.11 

. 0 9 0 

.10 

.080 

. 0 9 

. 0 9 6 

3/\ 

.26 

. 2 5 
( . 3 0 ) 

. 2 7 

. 3 3 
( . 3 1 ) 

. 2 9 

Airy Wave 

Period B / \ 

. 0 2 3 

.0183 

. 0 2 4 

. 0 1 7 

.021 

1 . 3 

1.6 

(1.2) 
(1.6) 

1 . 4 

Water-
wave 

arrival 
time 

5 . 4 0 8 
7 . 8 9 0 
1 . 3 4 8 
2 . 3 2 3 
1 . 4 9 1 
1 . 1 0 0 

. 5 2 3 
5 . 9 5 1 
1 . 1 0 0 

. 5 9 3 
2 . 4 5 3 
7 . 3 8 5 

1 0 . 0 6 9 

reverse in medium 3.9 which propagates with a speed nearly equal to the sound 
velocity in the intermediate layer. 

Not only will there be no secondary arrival which propagates with the speed of 
the intermediate layer, but theory also predicts that the rider wave in media 3.3 
and 3.7 should be relatively weaker than in a medium such as V or 3.9, while the 
water wave should be of about the same intensity. The amplitude of the ground 
wave is given by Eq. (51) where the factor 0„ is defined in Eq. (49). This expression 
was derived for the case of an exponential pressure pulse e~u, but its form is of more 
general validity. In comparing the amplitudes of the rider waves for different media, 
we need to examine the values of the factor On/Vkk at the points where V = cx. 
Now 

1% (65 ) 

where a = kH is, like 0 „ , a function of defined in Eq. (A76). The relative ampli-
tudes of the rider waves in different media are therefore proportional to the non-
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dimensional quantity 

On / -
V « 

V W ) ' 
(66) 

It turns out that for the rider waves the factor 0 n / y / a does not vary rapidly with 
changes in the structure of the bottom. The principal difference in the amplitude of 

the rider waves for various media arises therefore from the factor 1 j —fL(jJ/C i) t 

where ^-(U/ci) is simply the slope of the curves in Figure 32 evaluated along the 
ay 

line (U/ci) = 1. The slope of the 3.9 curve at the point F is much less than the 
slopes of either the 3.3 curve at E or of the 3.7 curve at D. Numerical values of the 
quantities involved in expression (66) are as follows: 

Medium On/Va iy\a/ S? 

3 . 9 0 . 2 4 - 0 . 3 7 0 . 4 
3 . 7 0 . 2 0 - 1 8 0 . 0 5 
3 . 3 0 . 3 1 - 2 5 0 . 0 6 

It follows that the amplitudes of the rider waves in media 3.7 and 3.3 should be from 7 
to 8 times smaller than in medium 3.9. 

On the other hand, the dispersion in the water wave is determined by the shape 
of the group velocity curve for 7 > 1 (Figs. 12-19), and Figure 32 shows that beyond 
7 = 2 the three curves coalesce. One would therefore expect water waves of com-
parable amplitudes in the three media considered. Both of these theoretical predic-
tions are verified on all the records taken at Virgin Islands Shoal and Virgin Islands 
Deep, some of which are reproduced in Plate 8 and 9. 

The physical basis of the phenomenon discussed in this section is analogous to the 
process of making "invisible glass" and to similar problems in impedance matching. 
(See Slater, 1942, p. 62.) 

7. SOME REMARKS ON THE HISTORY OF THE DEVELOPMENT OF THE THEORY OF 
NORMAL MODES IN ELASTIC HALF-SPACES AND OF ITS APPLICATIONS TO 

PROBLEMS OF PROPAGATION OF SHOCKS 

The first discovery of a free elastic wave which can be propagated over the surface 
of an isotropic elastic half-space was made by Lord Rayleigh (1887, p. 441). These 
waves have subsequently been identified in earthquake records and are known as 
Rayleigh waves. In 1911 Love showed that the Rayleigh waves are the limiting 
form assumed by the normal modes of a homogeneous elastic sphere as the radius 
of the sphere increases indefinitely. In the same memoir Love shows that a free 
shear wave can be transmitted in a layered elastic half-space when the velocity of 
distortional waves in the surface layer is less than in the medium below. These so-
called Love waves closely resemble the normal modes of a layered liquid half-space 
discussed in this report. 
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In 1924 Gutenberg made the first study of dispersion of Love waves in earthquake 
records with a view to determining the thickness of the crust of the earth. In this 
first attempt he wrongly identified the observed speed of propagation of each fre-
quency with the phase velocity instead of the group velocity, but later (1926) he 
rectified the error. The importance of group velocity in the study of dispersion of 
Love waves was first stressed by Stoneley (1925). The subject has since been in-
vestigated extensively by Stoneley, Jeffreys, Gutenberg, and others. 

The possibility that a layered liquid half-space might propagate free compressional 
waves analogous to Love waves occurred to the writer in November 1941. The 
results were first announced at a conference with L. B. Slichter and J. T. Tate, and 
were later communicated to V. O. Knudsen in the preliminary report reproduced 
on pages 40 through 42. The Figures 1-4 referred to there have been included in 
this paper as Figures 45-48, respectively. This study was then interrupted on 
account of other pressing duties, and it was not until the Spring of 1943 that the 
writer could return to the subject. At that time the steady state solution for a 
periodic point source in a layered medium was thoroughly investigated. The tech-
nique of deriving the normal mode solution from the residues of the integral in the 
complex ¿-plane, which was used by the writer on this and other occasions, is due 
originally to H. Lamb who in a classical paper (1904) gave the first exact solution of 
the problem of radiation from a point source in a homogeneous elastic half-space. 
Unfortunately this paper seems to have escaped the attention of recent writers on 
the subject, who have independently rediscovered some of Lamb's results but have, 
in some cases, omitted certain terms of the solution such as branch-line integrals, 
which Lamb was careful to retain. 

The solution for the propagation of sound in a layered liquid half-space derived 
by the writer was communicated in various preliminary memoranda to interested 
members of Division 6 of NDRC. Final publication of a complete report was 
withheld pending an opportunity to test the theory against experimental data. 
This opportunity arose in July, 1944 when Dr. Ewing communicated to the writer 
his discovery of dispersion in the water wave and his finding that each frequency is 
propagated with a characteristic velocity7. The idea of applying the Gutenberg-
Stoneley technique, used in the study of Love waves, which is based on group velocity 
of normal modes, immediately occurred to the author, since it soon became clear 
that, if the dispersion were governed by the phase velocity, the long periods should 
have arrived ahead of the short periods—in complete contradiction to the observa-
tions. 

While the principal features of the mean dispersion curves observed at the various 
stations could be explained on the basis of the shape of the group velocity curve for 
the first mode, there remained three outstanding problems. One was the existence 
of the low-frequency branch of the group-velocity curve (to the left of the minimum 
group velocity), which it was thought at first could be relegated to a footnote. Upon 
closer examination it was discovered that this low-frequency branch of the group-

7 Ewing noted dispersion in the water wave, with high-frequency components arriving ahead of lower ones, in seismic 
prospecting of water-covered areas of Louisiana in 1927, but had not been able to get systematic data on the phenomenon 
before his 1943-1944 work. 
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velocity curve furnishes, for the first time, a theory of the ground wave and that in 
addition it demands the existence on the records of the rider wave and the Airy 
wave. This led to the discovery of the above-mentioned features on the records. 

The second outstanding problem was to produce a justification for basing the 
theory essentially on the first mode alone. Numerical investigation of the expected 
relative amplitudes of the higher modes showed that, whereas in the ground wave 
they should be smaller, in the water wave they should be comparable to the first 
mode (Figs. 33-36). The final resolution of this difficulty was made principally on 
the basis of the suppression of the high-frequency higher modes by the low-pass 
receivers. In support of this hypothesis we have the fact that the receivers with a 
flat response show a very complicated pressure variation. 

The third unsolved problem was to explain the lack of both secondary arrivals and 
rider waves in all the records taken at the stations of Virgin Islands Shoal and Deep. 
This necessitated a study of the theory of propagation in a three-layered liquid half-
space which finally led to the complete clearing up of this question along the lines 
discussed on pages 35-38. 

The steady state theory of normal modes in a liquid half-space has recently been 
studied independently by other investigators. 

8. PRELIMINARY REPORT ON FREE ACOUSTIC WAVES 

(Prepared in November 1941) 
A half-space in which the sound velocity either increases with depth, or first de-

creases and then increases with depth, is capable of propagating free waves. When 
excited by a point source or a vertical line source these free waves have vertical 
wave fronts of cylindrical form, with axis passing through the source. Once estab-
lished, the waves have a two-dimensional attenuation, i.e. the amplitude of the 
pressure decreases with distance r from the source like instead of r~x, as in the 
case of body waves. At great distances these waves are found (in seismology) 
therefore to predominate over the body waves. The amplitude of the waves varies 
with depth in the manner shown for the first mode in Figures 1 to 4.* The velocity 
of propagation varies with frequency, the lowest frequencies traveling with the 
maximum speed of the medium and the high frequencies with the minimum speed 
found in the medium. For conditions that are met in surface sea waters the dis-
persion is, however, slight and the group velocity is essentially the same as the phase 
velocity. 

In order to bring out the analogy with other free acoustic waves, let us consider 
the free waves in a room bounded by rigid walls. There, a pulse started inside the 
room sends out waves which are reflected from the walls, and whenevér the reflected 
wave reinforces the incident wave we have a free mode of vibration of the room. 
In an ideal case no energy is required to maintain these free modes of vibration and 
once excited they can last indefinitely. The original energy of the pulse remains 
confined in the room in the form of standing waves. The origin of these free modes 
is bound up with the existence of reflecting walls. 

* Figures 1-4 have been reproduced in this report as Figures 45-48. 
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Under the conditions postulated above for the half-space there is reflection, abrupt 
or continuous, from horizontal planes, and the situation is similar to that in a room 
without vertical walls, but with an infinitely long ceiling and floor. There being no 
reflection from vertical planes, the energy of a pulse is radiated away, but in a two-
dimensional rather than a three-dimensional manner. Whereas in an enclosed room 
the free modes trap the energy of an originally outgoing wave and convert it into 
standing waves, the free modes in the half-space merely convert an outgoing spherical 
wave into an outgoing cylindrical wave. 

The periods of the low order free modes of an enclosed room are of the order of 
magnitude of the time required for a wave to travel a distance of the dimensions 
of the room. There is no period of the free waves in a half-space, since these waves 
are progressive and not standing ones. (There are no reflecting walls at great dis-
tances to return them). Starting with a minimum frequency, which is characteristic 
of the given medium, all higher frequencies can be propagated as free waves, there 
being only a slight variation of velocity of propagation with frequency. To round 
out the argument, we might add that if we consider the ocean as enveloping the 
earth, then it will have a free period of the order of magnitude of the time required 
for the wave to travel around the world. In the case of gravitational waves, this is 
the so-called free-period of the oceans. The free acoustic waves are indeed similar 
in nature to gravitational waves visible at the surface. The origin of the latter is, 
however, due entirely to the possibility of storing potential energy at the air-water 
interface, there being no gravitational body waves (in non-relationistic mechanics). 

In the applications in view we are interested in the amplitudes of the various modes 
which are excited by a subsurface pulse. This question is being investigated now, 
but some qualitative remarks can be made in advance. The magnitude of the 
amplitude of a given mode which is excited by a given pulse depends on the frequency 
distribution and the location as well as the directional properties of the pulse. As to 
the dependence on the location (depth) of the pulse, one can say that the amplitude 
of any mode will be highest if the source is located at a depth where this mode has 
the maximum amplitude, and that it will be zero if the source is located at a level at 
which the mode has a node (in the fundamental modes shown in Figures 1 to 4 the 
only nodes are at the surface and at great depth, but the modes of higher order have 
additional nodes.) In this respect, the higher frequencies are favored for a shallow 
source in medium 3, while the lower frequencies are favored in the other media. 
In general, the amplitude of the fundamental mode is a maximum near the level of 
minimum velocity, and the relative concentration there is highest for the high 
frequencies. (In the case of certain/ree waves in the atmosphere which were excited 
by the Krakatau eruption of 1883 the fundamental mode predominated, essentially 
because in this mode the amplitude is a maximum at the surface. See a paper by 
the author in Proc. Roy. Soc. 171A pp. 434-449, 1939). More information on this 
question will be available when computations now in progress will have been com-
pleted. 

As to the dependence of the existence of free modes on the medium, the following 
can be said. The low frequencies depend in their amplitude distribution on the 
properties of the medium extending from the surface to great depths. The high 
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frequencies depend essentially only on the structure of the medium near the level of 
minimum velocity. The modes of these high frequencies will not be appreciably 
altered by deviations from the assumed velocity distribution at levels removed from 
the level of minimum velocity. 

We will now add some comments on the free waves in the media shown in Figures 
1 to 4. In a medium of type 1, free waves are possible only if the velocity ci in the 
lower layer is greater than the velocity C\ in the surface layer. The minimum 
frequency/for the fundamental mode is given by 

j _ ClC2 

4 f f V 4 - c\' 

This frequency propagates with a velocity c2 while the velocity of the high frequen-
cies approaches c\. 

In medium 2 let the velocity in the top layer be denoted by Ci, in the middle layer 
by c% and in the bottom layer by C3. Free waves are possible if ci is less than c\ and 
c%. Cz may be less than ci, but must be greater than C2. 

The minimum frequency/ is given by the roots xi and x̂  of the equation 

Xl tan «rtan x2 — —, 

where 

2 r f E \ / c ] - cl 2 x / f f V c l - c\ 
Xi ~ i X% = • 

Cg Ci c% 

The velocity of propagation of this frequency is c3, that of very high frequencies 
being c 2 . 

In medium 3, the lowest frequency is given by 

^ Zuci Ct 

4 i r H y / c l - cl' 

where u is the root of J_j(m) = 0 and is equal to 1.865. The lowest frequency in 
medium 4 is given by 

j 3uci c2 

4 i r H y / c \ - c\ 

where u is the root of the equation J\(u)J^{u) = 7_}(m)/_|(m) and is equal to 0.73082. 
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PART II: THEORY 
INTRODUCTION 

In this section we give a brief account of the theory of propagation of explosive 
sound in shallow water. No detailed exposition of the theory will be attempted, 
however, since that would carry us beyond the scope of this paper which aims 
primarily at a wave theoretical interpretation of a particular set of experimental 
data. A more comprehensive treatment is reserved for a future occasion when an 
attempt will be made to develop systematically the theory of wave propagation in 
layered media as well as in media with continuously varying properties. This will 
include a treatment of the so-called "ray-theory" and the wave theory, and the 
relationship between the two. 

A. THEORY OP PROPAGATION OP SOUND IN WATER UNDERLAIN BY A 
UNIFORM BOTTOM OF DIFFERENT DENSITY AND SOUND VELOCITY 

1. FORMAL SOLUTION. 

The simplest model which exhibits the essential features of the observed dispersion 
in the water wave is one in which the bottom is assumed to be a liquid of density 
p2 and sound velocity c2 , which differ from the density pi and sound velocity c} in 
water, as shown in Figure F. A point source is situated at a depth d below the 
surface, and the depth of water is H. The boundaries of the water are assumed to be 
parallel and flat. For purposes of analysis, it is convenient to divide the water into 
regions (1) and (2) above and below the source, respectively, and to denote the 
bottom by (3). 

Our problem is to determine, at any point in the water, the pressure field due to an 
explosion at the source. To a first approximation the explosion at the source can 
be assumed to be represented by a sudden rise of pressure which decays exponentially 
with time. As is customary, the analysis is made first for a periodic pressure varia-
tion at the source of circular frequency co, and subsequently the solution is Fourier-
synthesized to represent an arbitrary time variation of the pressure pulse. 

The pressure field is determined from the potential <p through 

3 <p d<P s<P /«ii 
P = p 77, f = . » = — , (Al) 

dz dr 

where p denotes the acoustic pressure, w the vertical velocity, and u the velocity in 
the horizontal direction r. The potential <p satisfies the wave equation 

in the water, and 

4 dp 

43 
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in the bottom. To satisfy the boundary conditions at z = .0 and z = H, we seek in 
the first instance solutions of the form 

<p = e^'j0(kr)F(z)G(k), (A4) 

where k is an arbitrary variable of integration with respect to which one eventually 
integrates along a certain path in the complex k plane. If one thinks of a spherical 
wave as made up of a superposition of plane waves, then, as long as k is numerically 
less than the wave number, one can attach to it the physical meaning of k = 2ir sin 
(0/A), where 6 denotes the angle of incidence of the elementary waves.8 Substituting 
expression (A4) into Eqs. (A2) and (A3), we get 

in the water and 

in the bottom, where 

<PF 
— = (A5) 
dz2 

g + rtF-0 (A6) 

- é 
k>7> 

Cl 

- - y r * k>7t' w 

Let F i , Fi and F3 represent F{z) in the regions (1), (2) and (3) of Figure F. Then 

Fi = A sin ft z, (A8) 

Fi — B sin ft 2 - f C cos ^ z , (A9) 

Ft = De-ti**. (A10) 

The choice of the sine function for Fi is made in order to satisfy the condition of 
F = 0 at 2 = 0; the expression (A10) for F3 is adopted in order to make F3 vanish 
exponentially with depth for large k, or rather in order to avoid an exponential 
increase with depth as k becomes large. The arbitrary constants A, B, C, and D 
are determined by the boundary conditions at z = H and z — d, and by the strength 
of the point source. 

At s = E we must have continuity of pressure and of the vertical component of 
velocity w: 

dFz dFz „ 
PiFi = PiFt, — = — at z = H. (All) 

dz dz 

* For a detailed discussion of this point see Pekeris (1946). 
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At z = d, the depth of the point source, we again must have 
F\ = Fi at z = d, (A12) 

because of the required continuity of pressure. The boundary condition for the 
vertical velocity w is, however, more complicated; w is continuous everywhere in the 
plane z = d except at the point source, where the fluid above and below the source 
moves in opposite directions. This condition is met by putting 

d J l _ d l } = 2 k at z - d , (A13) 
dz dz 

for when expression (A4) is integrated with respect to k from 0 to 00, the discontinuity 

in w at z = d becomes proportional to / J0(kr)k dk, which function vanishes every-
Jo 

where except at r = 0, where it becomes infinite in such a manner that its integral 
over the plane z = d is finite. 

It follows from Eqs. (Al l ) , (A12), and (A13) that 

ft |_ ft cos ft ff + ibfc sin ftff J ' 

^ 2k sin Bid f" ft sin ftff - ¿¿ft cos ftff ~j ^ 
ft |_(ft cos ftff + ¿6ft sin ftff) J ' 

_ 2k sin ftrf D _ 2bkeik^2B sin ftd ( 

~~ ft ' ~ ( f t cos ftff + ¿¿ft sin ftff)' 

Hence the formal solution for the sound potential due to a periodic point source is 
v = e™1 <a(r,zfi>), 

(A17) 

(A18) 

= 2 f Ukr)k dk * * r f t c o s f t ( f l - . ) + y ^ f t ( g - ^ ) - | Q 2 

J0 ft |_ ft cos ftff + ¿ 6 f t sin ftff J ' - -

„ f " w , w .„. si" M [ f t cos ft(ff - z) + ¿¿ft sin ft(ff - z)~] 
¥2 = 2 I Jo(kr)k dk —: — , d < z < H, 

J0 ft ft cos ftff + ¿¿ft sin ftff J ' 

f " sin (B\ d)e~^< - '~a '> 
= 26 / dk , , z > ff. (A19) 

J0 ( / 3 c o s f t f f + « 6 f t s m f t f f ) 

It will be noted that ipi and are transformed into each other by interchanging z 
and d, and that the integrands are even functions of /3i, but mixed functions of /32 -
The integrands are of course functions of the frequency co through /3i and ¡32 • 

When the discontinuity in density and sound velocity at z = H is removed, 
6-»l, ft-»ft, 

and 

n - 2e®"' Mkr)k dk 
Jo ft 

»«o ¿ j i , r,—¡(Wci)fli »(Wei)«»*] 
I Ukr) — [*-<hW-> - = <— , 

J0 «ft |_ & J 

Ri = V r 2 + ( < * - z)2, i?2 = V r 2 + W + z ) 2 . (A20) 
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4 6 PROPAGATION OF EXPLOSIVE SOUND IN SHALLOW WATER 

Similarly, it is found that <p2 and <p3 also reduce to the correct solution consisting of 
a point source and its image in the surface. 

Expressions (A17), (A18), and (A19) give the steady-state solution for a periodic 
point source. The solution for the case of a pressure pulse at the source of the form 
f(t) is obtained by first computing the Fourier transform 

fa) = f r*"f(f) dt, 
J—oo 

(A21) 

so that 

and then evaluating 

/ « = % - [ ^ ' g M d œ , (A22) 
^ J L o o 

v(r, z, t) =• £ £ e^'tir, z, a)g(w) da. (A23) 

This completes the formal solution of our problem, but for most practical applica-
tions the theory at its present stage is useless because neither the integrals for 

z, w) nor the integral in (A23) can be carried out without immense labor and 
with sufficient accuracy to yield useful results. The integrals for SI> can be evaluated 
by numerical integration only when the wave length is a fraction of the depth of 
water and the range r is a small multiple of the depth, as was done in computing the 
solid curves of Figure 23. For smaller wave lengths and greater ranges the integrands 
are rapidly oscillatory functions of k, and it soon becomes impracticable to evaluate ^ 
by straightforward numerical integration. Even if ^ were known, the computation 
of tp(r, z, t) from (A23) would be practically impossible for such important applica-
tions as the first-arrival time, as has been shown by the writer (1940). For this 
reason it is necessary first to transform the integrals for the transformation used 
depending on the particular application in view. Thus, for the purpose of determin-
ing the beginning of the record at a distant point or for determining the steady-state 
solution up to moderate ranges (in terms of the depth of water), a transformation of 
the integrals which yields the so-called "ray-theory" is useful. On the other hand, 
if one is interested in the steady-state solution at large ranges, where many rays 
need to be considered, or in the later phases of the received pressure pulse at large 
ranges, another transformation is useful which yields the normal mode solution. 

2. THE RAY THEORY. 

a) Expansion of the potential into a series of integrals each of which represents a 
"ray"—In this section we shall indicate how the ray theory can be derived-from our 
formal solution given in Equations (A17), (A18), and (A19). The account will be 
limited mostly to a statement of results because the ray theory is not used in the 
applications of this paper. Rayleigh (1896) showed that, when a plane sound 
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wave is reflected at a discontinuity in density p and sound velocity c, the reflection 
coefficient K is given by 

l i c o s e - i / i - i ^ e 
PlCl V Cj 

K _ * * y ; (A24) 
P2C2 - , 

cos 8 + 
Pi Ci 

where 6 denotes the angle of incidence. If we recall that k in (A7) is given by 

it follows that 

k = 2* sin 9/\ = ( ^ j sin 0, (A25) 

ft = Q cos 8; ^ = / j / l - ^ sitf (A26) 

= (A27) 
ft + 6ft 

The solution in terms of rays for a point source is obtained by expanding the ex-
pression in brackets in (A18) as follows 

[ f t cos ft(g - z) + a f t sin ft(g - 2 ) 1 = f i + 

|_ ft cos ft g + i i f t s i n f t g J 6 L 1 + K e - ^ " J ( A 2 8 ) 

= e-ifc«[l + - Ke-WlH + KU-W iH H ], 

= f" Mkr) ^ - e-»i(*W>] 

Jo 
+ _ e-ifiL(*+d+2B-2z) _ e-0l(z-d+2H) 

Jo 

( A 2 9 ) 

+ e-#iC*-W+2»>] + X H ] + • • • ( . 

The two terms in the first bracket give the direct ray and the ray reflected from the 
surface, as was shown explicitly in Eq. (A20). The four terms in the second bracket 
which are multiplied by K represent the four rays which suffer only a single reflection 
from the bottom. The next four terms which, are multiplied by K2 represent the 
four rays which suffer two reflections from the bottom, and so on. The reason for 
identifying the integrals having a factor Kn in the integrand with rays which suffer 
n reflections from the bottom is suggested by the formal analogy with the theory of 
reflection of plane waves, but actually goes deeper than that. In the first place, 
when one solves the problem of the reflection of a spherical-sound wave from a single-
plane boundary, one obtains precisely an integral of type K, where the factor multi-
plying & in the exponent is the sum of the elevations of the source and receiver above 
the reflecting surface. The principal reason for the identification of the integrals 
with the rays is, however, that, in case of a pressure pulse which begins at a definite 
time, the integrals representing the rays vanish until the corresponding arrival-time 
of the rays. However, while the beginning of the received pulse will conform in 
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shape to the pulse at the source, the later phases will be different, due to the modifi-
cations introduced by the fact that the initial wave is not plane but spherical. The 
pressure recorded at a distance, as given by the integral, will therefore, strictly 
speaking, not be the original pulse weakened by a 1 /R factor; indeed, in the case of 
a pressure pulse which starts at t = 0 and ends at t = T, the integral representing 
a ray (other than the direct and first surface-reflected) will begin after an appropriate 
travel time ¿0 and will continue beyond t = k + r to t = oo. This phenomenon is 
the well-known "tail" characteristic of two-dimensional wave propagation which is 
imposed on the initially spherical wave by the plane boundaries. 

In the sequel we shall understand by a "ray" not the customary meaning of the 
term but the integral corresponding to it in the expansion (A29). 

b) Some results on the reflection of spherical waves from plane boundaries. 

I. General Considerations. The propagation of a shear pulse in a layered medium 
The first complete analysis of the reflection of spherical waves from plane boundaries 

—i.e., the evaluation of integrals of the type 

<0) - f u k r ) (A30) 

where /3, and /32 are defined in (A7) and z„ represents the vertical distance of the 
receiver from the n-th image, has been given by the writer (1941). The crux of the 
problem in the case of a pulse which begins at a definite time is to transform the 
integral in (A30) into the form 

= J F(r, 2, x)e-<aM(r-'-x) dx, (A31) 

where neither F nor M depends on co, in order to allow for an easy Fourier synthesis. 
When this is accomplished, the solution for the potential of the n-th reflected wave 
<pn is 

' j F(r, z, x)e-iaM<r-*-*> dx 

in case of a periodic pulse at the source, and this allows one to write down immediately 
the solution for a pulse of a general shape/(f), namely 

*n = J F(r, z, x)f[t - M{r, z, x)] dx. (A32) 

The transformation in (A31) is equivalent to seeking an equivalent system of con-
tinuously distributed sources. We shall not give here the explicit expressions for 
F and M in case of reflection from a (p, c) discontinuity but shall merely state that 
in this case F and M are obtained as functions of r, z, and of two variables of integra-
tion x and y, and the integration is double. In this way it has been possible to give 
a wave-theoretical proof for the existence of the so-called "refracted wave" and 
to compute and exhibit graphically the actual shape of this type of wave from its 
first arrival out to / = oo. 
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II. Asymptotic expression for the potential of a singly reflected spherical wave at 
high frequencies, and the conditions for the validity of the plane wave approximation 

It is possible to treat the integral (A30) by the method of stationary phase and to 
obtain asymptotic expressions valid for high frequencies. One finds, for example, 
for a wave reflected once from the bottom 

Jo »A \A + 
-ifozi — - j } 

\P1 T up2/ R 

[cos0 — bS icibv2 , , 
< - ; sm2 9 cos2 6 + 252(1 + b5 cos 9) + 3bh sin2 0 cos 0 
[cos 6 + bb coRHCOS 6 + bS)s 

+ 0(cl/ia2R2) + • • •} , (A33) 

where 

¿1 
cos 0 = — 

R 

The first term in the braces is the reflection coefficient K for plane waves incident 
at an angle 0, which was given in (A24); the second term gives the conditions under 

Ci X 
which the plane-wave approximation is valid, namely when = is small. 

It follows that in the case of a very low-speed bottom ^ > , the plane-wave 

approximation for a singly reflected wave is valid at distances from the source 
greater than about one wave length. This is not true when C\ ~ c2 and for grazing 
angles of incidence 6. In case of a high-speed bottom (cj < c2), the plane-wave 
approximation breaks down completely as 6 approaches the angle di of total reflection 
given by 0i = sin-1 (ci/cz), because d vanishes at 6 = 6i. 

Even under conditions when the expression SI'i for the steady-state potential can 
be approximated by the leading term in (A33), this is not true for a pressure pulse 

K ( 
of arbitrary time variation/(i). Whereas the leading term in (A33) yields — / i / — —J, 

the second term is proportional to z ; [ fix — — ] dx on account of the (1/w) factor. 
-K Jr/ci \ C\f 

In the case of a pressure pulse of finite duration r,f[t J vanishes after t = — + r, 
\ C\/ Ci 

while J f^x — —^ dx approaches a constant limit. During the "tail" phase of the 

record, the leading term may therefore become small in comparison with the second 
term. 

III. Reflection of a spherical sound wave from a plane boundary in case the receiver 
is situated on the same vertical with the source 

An interesting case, which is also of some practical importance, is when the receiver 
is situated on the same vertical with the source (r — 0). The reflection coefficient 
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varies with the height of the source above the boundary when the height is less than 
about a wave length (the result applies of course also for any position of the receiver 
as long as the distance of the image from the receiver is less than the wave length). 
The reason for this is that within a distance of only a fraction of a wave length from 
the source the energy in the field is predominantly kinetic, and the flow proceeds 
as if the medium were incompressible. In the limit of very long wave lengths the 
reflectivity of the bottom becomes independent of its compressibility and the com-
pressibility of the water, and approaches a value of ( P i P l ) for normal incidence, 

\P2 + P l / 
instead of the acoustic value of {pzCz — p i C ] ) / ( p 2 £ 2 + P i C i ) . We shall designate the 
field in the immediate vicinity of the source as potential flow, in contrast to the 
acoustic flow which prevails at distances greater than about a wave length from the 
source. The transition from, acoustic flow to potential flow takes place for a point 
below the projector in the range 0 < z/\ < 0.5, where z denotes the height of the 
projector above the bottom, and X the wave length. 

We have for the wave reflected n times from the bottom 

( A 3 4 ) 

dx 

r-kdk/h - y 
= Jo O U + W 

_ i ífpi^iiY+/ !*>) e<M r e-iM* [ 7 * - b _ ( i ^ i Y " 
Z„]\P2 + P1/ \Cl/ Jj [\X + + „2/ \l+bj _ 

ZJI \P2C2 + PlCl/ ( WÍ„(.P2C2 -f- PICTI\P3FA — PLC\) \A> 2n / J 

Here Eq. (A34) is exact, Eq. (A35) is an approximation useful for small values of 
uz-n/ci (potential flow), while Eq. (A36) gives an asymptotic expansion valid for 
large values of a)Zn/ci (acoustic flow). Figure 51 shows how the reflection coefficient 
for a singly reflected wave varies at normal incidence from the value (p2 — Pi)/ 
( p 2 + P i ) for very long wave lengths to the value (p2c2 — P i c i ) / ( P 2 C 2 + P i C i ) valid in 
the limit of short wave lengths. 

IV. Reflection of a spherical pulse of square shape from a bottom characterized by 
a discontinuity in density and sound velocity when the receiver is situated 

on the same vertical with the source 

Let the shape of the pulse be a square wave | <— R —> | of duration T seconds 
and of unit strength. Let t — time reckoned from the beginning of the pulse at 
source, 
p™ = pressure amplitude of the wave which has suffered m reflections from the surface and n reflec-
tions from the bottom, 
z = z™ total vertical component of path traversed by wave from source to receiver, 

cl . t , [cit-bVclt* +> = Ycjt - b V c l t 2 

~ Lcj + bVci? + x V - ! ' 
b - H / * , m = \ ' . , , . A = = . (A37) 
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then 

Pn = 0, t < -
Cl 

p™ = (_)» - [/(;)]", - < t < - + r (A38) 
Z Cl Cl 

Pn = (•~)m - f t / M l " - I/O ~ r)]»J, t > - + r. (A39) 
Z Cl 

When the pulse is zero for negative t and unity for positive t, P« is given by (A38) 

for all t > — . From this expression one can, of course, compute P™ for any form 
Cl 

of the pulse. A simple and useful pulse shape which has been analyzed in this way 
is the exponential one, but we shall not give the results here. 

Eq. (A37) gives a simple illustration of the transition from acoustic flow to poten-
tial flow. (See III.) The beginning of the pulse is controlled by the high-frequency 

z 
components and, at I = ~>/(0 = (P& ~ Pici)/(P2C2 + PiCi): at late epochs the pulse 

is controlled by the low-frequency components, and f(t) —> (p2 — pi)/(p2 + Pi). 
We have here also an explicit illustration of the "tail" which is characteristic of 
two-dimensional wave propagation. 

All the results of the "ray theory" given above can be generalized to apply to the 
case of a bottom which is characterized by a normal impedance Z — piCif by the 
simple expedient of letting in each expression ¿1 —> 0, c\/ci > <*>, bd = bv —» 1 / f . 

3. THE NORMAL M O D E SOLUTION. 

a) Evaluation of the integral for the potential in terms of residues and of an integral 
along a branch line.—The normal-mode solution represents another transformation 
of the original expression for the potential, say, 

* 2 - 2 f ° Ukr)k dk ^ P - 1 C° 5 ~ + F SIN ^ ~ < , < G, (A18) 
J0 ft [ ft cos ftff + ibPi sin 0iH J ~ ~ 

which is useful at large ranges and for wave lengths which are of the order of a 
fraction of the depth of water or greater. When the range is great for a large number 
of images to be required, the radiation from the images is mutually reinforced in 
certain particular directions as in the case of a diffraction grating (Slater, 1942, 
p. 284). The waves traveling in these directions, together with their reflections at 
the surface and the bottom, constitute the normal modes. The analogy with the 
diffraction grating is not complete because the strength of the n-th image is not 
unity but Kn, where K denotes the reflection coefficient. One also needs to take 
into account the fact that the waves emanating from the point images are not plane 
but spherical. 

Both these factors of divergence are automatically taken into account by our 
method of derivation of the normal-mode solution from the exact integral (A18). 
By this method the normal-mode solution is obtained from the residues of the inte-
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grand in the ¿-plane (Lamb, 1904). In doing so, one must observe the circumstance 
that, by (A7), /3i and fa are multiple-valued functions of k with branch points at 

k = ki = <o/ci and k = kz = a/c2 
respectively. We therefore cut up the ¿-plane as is shown in Figure G. 

The poles of the integrand in (A18) lie either on the real axis between ¿2 and k\ 
(ci < e2) or in the fourth quadrant. Let 

F ( B l «J = ^ J~ft cos ft(ff — z) + ibfo sin ftCST — z)"j 
' ft |_ ftcosftff 4 - iJ f ts inf t f f J ' 

this being a function which is even in fii but mixed in 02. Then 

¥2 = 2 [ Jo(kr)k dkF((3i, ft) = f [H^ \kr)+Hlr\kr)}F(flufo)kdk. (A41) 
Jo Jo 

/»OO «too «00 

/ H[l\kr)F{^,^)kdk= / H"\kr)F(h,fc)kdk = - I H^iiu^Fih, ft)« 
Jo Jo Jo 

2» r'0 

= -/ K0(ur)F(Pi, ¿k, (A42) 
Jo 

•'0 

2i 

Jo 
because the integral along the real axis can be transformed into an integral along 
the positive imaginary axis, and 

/ / ¿ " ( « i ) = - - K M = -Hf(-iu). (A43) 
T 

The integral with the H^{kr) function can be transformed into one along the paths 
/ J + ( C + Z ) ) + (-E+-P) + the contribution from the residues in the fourth quadrant: 

»00 r~ /»—»00 T /• T /• "1 
/ Hf){kr)F(Pufo)kdk= / + C / /> + £ F \B?)(kr)F(l3i,l31)kdk + Residues. (A44) 

Jo L^o J I J 1 J 

Now 

/ H l 2 ) ( k r ) F ( ^ , ^ ) k d k = - H [ 2 \ - i u r ) F ( ^ u ^ ) u d H 
Jo Jo 

2i r"0 f°° 
/ Ki(iif)f(Pi,i,)«i«=- HlU{kr)F{pufc)kdk, (A4S) 

Jo Jo 

so that this term just cancels the integral with the Ho\kr) function. Also, in the 

term E J F, F(J3i, fit) has the same value on either side of the ¿-cut because it is 

one-valued there with respect to the argument fa , and Pi merely changes sign, which 
leaves F(J3] , fa) unaffected. Hence the integral along F exactly cancels the integral 

along E and E J F vanishes. 

The remaining integral does not vanish: 

C J DH^\kr)F{0u^)kdk ~ C J Hl2V)[F(ft,ft) - Fifr, - dk 

= f 2 B^(kr)[F(0!, ft) - F(ft , - ft)]£ dk. (A46) 
J— too 

 on June 30, 2015memoirs.gsapubs.orgDownloaded from 

http://memoirs.gsapubs.org/


SOUND EST WATER OE UNIFORM BOTTOM 53 

We have thus accomplished a transformation of the integral (A18) into an integral 
along a branch line and a sum of residues 

r 
* 2 = / g ^ ' O W l F i f t . f t ) - F(fr,-fa)]kdk + S Residues. (A47) 

J—100 

b) The residues or "normal modes".—The last term in (A47) can be written as 

3 2 Res = 2 Res I S^ O ) F(ft , ft) * dk >r 
Jo 

„ . v ^ (2) / , sin ft 4 f t cos ft(ff - z) + ibPi sin ft(ff - z)] 
= —2jri ^ # 0 U n O ^ n . 

" ft — [ft cos ft H + ibfa sin ft E] 
dk 

, = _ 2 « y , g " ' ( f t » r ) ( f t g ) sin (ftrf) sin (ftz) 0 < z < H (A48) 
8 g V [ f t g - sin ( f t g ) cos ( f t g ) - i2 sin2 ( f t g ) tan ( f t g ) ] ' 

In deriving (A48), use was made of the fact that the terms appearing there are to 
be evaluated at the roots k = kn of the equation 

(A49) 
b tan ( f t g ) ' 

If instead of (A18) we had used (A17), we would have obtained precisely the identical 
expression for the residues. This expression therefore holds for the whole range of 
0 <z < H. For z > H we find similarly by operating on (A19) that the residues 
are given by 

, _ 2 vib ^ ul2\knr) ( f t g ) sin (ftd) sin ( f t g ) e - i ^ b ~ g ) z > 3 ( A S Q ) 

3 V K f t g ) - sin ( f t g ) cos ( f t g ) - ft2 sin2 ( f t H ) tan ( f t g ) ] ' 

c) The question of the orthogonality and the normalization factors of the normal 
modes.—The appearance of the branch-line integral in the solution for a point source 
given in (A47) would seem to be in contradiction to standard theory of normal modes. 
According to this theory, if Fn{z) are a set of solutions of the equation 

(ASD 
c{z¥ " J " ' 

which satisfy the boundary conditions, then the solution for a point source situated 
at depth d is 

= - t x £ H™ (kn M M i ) / C l , (A52) 
n 

Ci = [hFl(z)dz, (AS3) 
Jo 

where h denotes the lower boundary of the medium. In deriving this result one 
makes use of the orthogonality of Fn , which can be proved by multiplying (A51) by 
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Fm , and the differential equation for Fm by Fn, and subtracting, which yields 

7 (Fn Fm - Fn Fm) = (kl - ¿ ) F , Fm, (AS4) dz 
(FnFm - FnFm)lZo = (kl - kl) f FnFmdz. (A55) 

Jo 

Here the left-hand side vanishes because of the boundary conditions, showing that 
the integral on the right vanishes when n ^ m. 

In our case h = <x>, and we may take 

F„(z) = sin ft(n)z z < g 

= sin (fi(»'fl)«-*«"^»-*) z > H, (A56) 

which ensures continuity at a = 27. 
Now, first with regard to the question of orthogonality we find, on using (A49), 
that 

l"!fa « . . „ „ . * . , <m 

» , t a i" to. • < a ® 

i ' „ . „ , « 0 - 1) sin ( g . ^ ' g ) sin 
Fn(z)Fm(z) dz = (g("> + • l-A;'9) 

Eq. (A57) shows that when the integral is extended only over the depth of water, 
as it should not be, the F's are not orthogonal. Even when the integration includes 
the bottom, Eq. (A59) shows that the F's are not orthogonal except in case b = 1, when 
the densities in the water and the bottom are equal. 

As for the normalization factors C* defined in (A53), we get 
p 00 

sin2 ft (z) dz + sin2 ft H / e-2m°-a) dz 
rH r 

= / sin2 ft (z) dz + sin2 ft g 
Jo JH 

=Gft) [ft g - sin ft H cos ft g - b sin2 ft g tan ft g ] , (A60) 

When this is substituted into (A52), we get an expression which is identical with 
(A48) except for the b in (A60) which appears in place of b% in the bracket of (A48). 
Hence, we find again that the expansion (^452) holds only in the case b = 1. 

The reason for the disagreement between our results and the standard theory of 
normal modes is that the latter is based on certain assumed continuity conditions 
which do not obtain in our case, due to the discontinuity at the bottom. These 
assumed conditions are those which are implicit in going from Eq. (A54) to (A55), 
namely that the function (FnFm — FnFm) should be continuous throughout the 
region of integration. In the case of a sound problem, this condition is violated at 
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a surface of discontinuity of density because the boundary conditions of equality 
of vertical velocity and pressure require that F and pF, not F, should be continuous. 
The vertical component of velocity and the pressure are continuous, but the hori-
zontal component of velocity is discontinuous. In case of a discontinuity in density 
at the boundary between medium 1 and medium 2, Eq. (A55) becomes 

¡.h 

(*» - *£) / PnFm dz = {FnFm - F„Fm)IZo + (FnFm - FnFm)i - {FnFm - FnFm)2 

Jo 

(b - l)(FnFm - FnFm)V, (b = P 1 /P 2). (A61) 

Hence, even in the case of a continuous sound velocity c(z), the peculiar boundary condi-
tions imposed by the sound problem make the normal functions nonorthogonal in the 
presence of a density discontinuity. 

When the densities in the bottom and the water are equal, but not the sound 
velocities, the normal functions are orthogonal, and the normalization factors agree 
with (A53). Still, even in this case, the branch-line integral in (A47) does not vanish. 

Possibly the theorem upon which expansion (A52) is based does not apply to our 
case where, although the F's and their first derivatives are continuous, the second 
and all higher derivatives are discontinuous on account of the velocity discontinuity. 
It is also possible that in the section of the ¿-plane cut out in Figure G are not in-
cluded all the poles of the integrand (the set of normal functions in (A47) is not 
complete) and that the branch-line integral is equivalent to the contribution from 
the omitted normal modes. We reserve the elucidation of this point for another 
occasion but merely point out here that the integral for the potential of a point source 
in a uniform medium given in (A20) does not possess any poles, and therefore possesses 
no associated normal modes. It can be transformed into a branch-line integral 
which coincides with the limit approached by the branch-line integral in (A47) as 
P2 - P i and d —> Ci. 

It will be shown in the next section that the branch-line integral in (A47) behaves 
asymptotically for large horizontal ranges r like a dipole, modified by the presence 
of the bottom (or rather of the water), due to the interference between the source 
and its image. 

d) Asymptotic behavior of the branch line integral for large horizontal ranges.— 
The integral under discussion is 

*2" = P H^WMPi, 02) -F<J3h - (¡2)] k dk 
J—»00 

f 2 „ ( 1 ) / , \ 1 „ ft™ (61 d) sin (fag) 
= -2ib / El (kr)k dk r-5 , . , . t . , (A62) 

J - i » c o s + sm2 ( fa f f ) ] 

with 
= s i n (fr <*) p i cos f t (g - 2) + ibfaSin fa(ff - z)l 
~~ fa [ facos (faH) + i J f a s i n (faH) J ' 

01 = V * ! - k2, 02 = \/k\ —k2, h = a/ch h = 01/ 

(A40) 

 on June 30, 2015memoirs.gsapubs.orgDownloaded from 

http://memoirs.gsapubs.org/


5 6 PROPAGATION OF EXPLOSIVE SOUND IN SHALLOW WATER 

We shall state here without proof that under certain conditions Sf'" has the following 
asymptotic behavior for large r 

(2ibk<I) sin (kidn) sin {kizn)e~ikir C\ < , . 

O^O2 M2COSHHNRI 5 Z < H > 

(2ibk2) shjk 1 dv)sk(kizv)ir<Jc*r ci > c2 

(Air)2 v-chKhEv) ' z < E ' 
(A64) 

„ (2ibk2) sin (ki dn)[h(z — E)n cos (¿1En) + b sin (¿iff/t)] ci < c2 

* * " C M 2 m2 cos2 ; z > E ' 

„ (2^2) ^(¿l «Wife ~ E)vch(kiEv) + bsUkjEv)} cx > c2 

* 2 ' A / % ! ¿7,) ; < > E ' { ^ 

where 

(A67) 

The conditions for the validity of these asymptotic forms are that (faHfi) should be 
removed from a zero of the cosine in the denominators of (A63) and (A65), and that 
¿11/(3 — H) or ¿uu(z — H) should not be large. 

The above expressions bear an analogy to the asymptotic form assumed for large 
r by the solution for a point source in a uniform medium: 

\ Ri R2 J R \R J r2 

The last limit is the one approached by Eqs. (A63) to (A66) as c2 —> Ci and p2—*pi. 
e) Phase velocity and group velocity of the normal modes in a two-layered liquid 

half-space.—Let 

= = ( A 6 9 ) 

then the normal-mode component of the solution for the potential can be written as 

_ / - M \ f sin (xnd/E sin M E ) > 0 < z < E, (A48) 
2 \ fl ) ZZ1 fei — s i n xn cos xn — b2 sin2 xn tan xn) 

, / - 2 « A y ff" W ) * t t S i n ( * „ d / f f ) sin x n e - ^ 2 " ) ( 2 - g ) g > B 

2 \ E J 71—1 (xn — sin xn cos x„ — ft2 sin2 xn tan xn) ' ' 

where the xn are roots of the equation 
tan x i 1 1 

(A50) 

b m w d * - ? - m d * - * - * ( A 4 9 ) 

y *» 4 y a 4 E* 
For large r the Hankel function may be approximated by its asymptotic form 

2 
E\knr) - » A / - i - « « » ' « - » - H (A70) 
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and the normal-mode component of the sound potential <pi = becomes 

V* = ( f ) ? ! a T T eii!"~knr^'4)F(xn) sin (xnd/E) sin (x„z/H), 0 < z < H, (A71) 

/ i2*b\ /J ^ 1 <») 
<Pt = J A/ —2s eill"~knr~r'i)F(xn) sin (xnd/H) sin xne~^ ( z~H ) , 

z > B , (A72) 

F W - ; : M • , » i • ( A 7 3 ) 

(*n — sin x„ cos xn — o* sin2 xn tan x„) 

The physical meaning of kn is now apparent from the term 
gi(ut—h„r—Trli)^ namely) kn = - , 

CN 

where cn is the phase velocity of the n-th mode. The factor F(xn)/y/kn gives the 
relative strength of each mode, while the factor sin (xnd/H) sin (xnz/H) gives the 
variation of the amplitude of the mode with depth of source and depth of receiver. 
Let 

an — knH, S = (P2c2/pici), i2 = -f - 1. (A74) 

Then, upon omitting the subscript n in the sequel, Eq. (A49) can be written as 

tan* S 
— or (A75) 

V (a2 - Xs + a2«2 

= - \/l + 82 cotan2 x, (A76) 

x 

1 + * » / « » - ft j / 

We shall be interested primarily in the case of a high-speed bottom (c2 > Ci), 
where Eq. (A49) or (A75) possesses an infinite set of real roots xn in the range 
7r(w — < xn < w for the w-th mode. In that case kn and the phase velocity are 
real, and the propagation of the modes proceeds without damping. The physical 
reason for the undamped propagation, which is discussed elsewhere in this paper, 
is briefly that the normal modes are made up of mutually reinforcing elementary 
waves (emanating from the various images) which are totally reflected by the bottom. 

It is seen from Eq. (A49) that xn is a function of the circular frequency co, and 
therefore, from Eq. (A77), that the phase velocity c is a function of frequency. The 
frequency corresponding to any given value of Xn can be obtained from 

oiH H ac x / , 
7 = — = - = ; — = — V l + e 2 + 5 2 c o t a n 2 a : - (A78) 

2irC\ A 2irCi 2-jre 

y denotes the ratio of the depth of water H to the wave length of sound in water A. 
When xn is near its upper limit of nir, y is very large by (A78), and by (A77) c —» C\ . 
Hence, in the limit of very high frequencies the phase velocity of all the modes approaches 
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5 8 PROPAGATION OF EXPLOSIVE SOUND IN SHALLOW WATER 

the sound velocity Ci in the water. On the other hand, when xn is near its lower limit 
of (n — y does not become zero but approaches the limit. 

H (n- l/2)>VT + 7 (n - 1/2) 
Yn = ~ * 7» = = , 7n = (2» - 1)YI. (A79) 

A n ¿TTi 

This means that for each mode there is a limiting frequency below which undamped 
propagation is impossible. The physical reason for the limiting frequency, which 
is bound up with the inception of total reflection at the critical angle of incidence, 
is discussed elsewhere in the report. From (A77) it follows that at the critical 
frequency (x = nir — ir/2), c —> C\\/1 -f- e2 = Cz. The phase velocity therefore 
varies from the value c2 at the critical frequency down to C\ in the limit of very high 
frequencies. The variation is monotone and is shown for several media in Figure 28. 

In a medium in which 1he phase velocity varies with frequency, the energy in an 
arbitrary disturbance embracing a band of frequencies is known to propagate with 
the so-called group-velocity (Lamb, 1932, p. 380-398; Jeffreys, 1931, p. 84-94). 
This is an important consideration in our study of propagation of explosive sound 
in shallow water. In the next section we shall show how the notion of group velocity 
appears in the analysis of the mutual interference of a band of frequencies advancing 
with different phase velocities. Here we shall merely define the group velocity U as 

dw d , dc dc , „» 
= c + k7r. = c + a7-> <A80> 

a/t alt ak da 

c denoting the phase velocity, and derive an expression for it in the case of the normal 
modes in a two-layered liquid half-space. We have from (A77) 

(dx 
da a / 

de \da a) (A81) 

V « 2 + x' 

and from (A76) 

dx , / da + a2 cotan2 s 
: / dx da I dx (1 + S2 cotan2 x — S2x cos »/sin3 x)' 

Substituting'(A82) into (A81) and using the latter in (A80), we get 

(A82) 

U 
Cl = ( ! ) I 1 + = f 1 + (7 + / c o t a n * J - f 1 + ¿ j ] • ( A 8 3 ) 

<p(x) = [1 + S2(cotan2 s — * cos x/sva? x)]. (A84) 

For the purpose of computing the amplitude of a wave packet we shall need in the 
ik 

next section the function — . This we now proceed to derive: 
dia1 
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One finds that 

dtp 3a2 cos * x&2 , 
"T = r r — + — (1 + 2 cos2 x). 
dx sin3 x sin4 x 

d ( Ci\ IPic* cos x ~(cA = 
dx\c } dx\c / a«2 sin3 x(a2 + x2)3'2 ' 

HciS2 I x? cos x[e2 + <p{x)\ a2 t*{x + 2x cos2 a - 3 sin a: cos x)\ 
dofl ~ U3 [sin3 x?(x)2{cfi + a;2)3'2 x<p(x)3 sin4 * \ / a 2 + *2 J ' 

Eqs. (A77), (A78), (A83), and (A86) now provide a convenient scheme for deter-
mining corresponding values of the phase velocity, frequency, group velocity, and 
d2k 

respectively, by computing the functions in the whole range of ir(n — <xn<nir 

for the n-th mode. Otherwise one has to resort to time-wasting trial and error 
calculations. 

f) The propagation of explosive sound in a two-layered liquid half-space. 

I. The ground-wave and water-wave phases 
In previous sections we discussed the solution for the potential (which is propor-

tional to the acoustic pressure) due to a periodic point source of circular frequency w. 
It was shown that at large ranges r the potential <p2 in the water is given by a series 
of normal modes, 

ft = £ 

, -w n _ / 2 7 r \ . Hi r *n s i n (Xnd/H) sin (xnz/H) ~] Qn(o>) = I -z I A/ — ; : —: \ > o <z < b, (A7i) 
\H) 'y Trknt _(** — sin xn cos xn — J2 sin2 x„ tan xn)J 

and by a branch-line integral = ¿W><S>" which, as was shown in Eq. (A63), de-
creases with range like r~2. Since we shall be interested primarily in propagation 
to large ranges, we shall disregard the contribution from the branch-line integral. 
This term is relatively important at the very onset of the ground wave, because the 
amplitude of the normal modes is zero at that instant, but during the major span 
of the received record it fades into insignificance on account of its variation, as 
compared with the (or r~l for a wave packet) of the normal modes. 

If the time variation of the pressure pulse at the source is not periodic but an 
arbitrary function f(t) represented by its Fourier transform 

f ( i ) = t L (A22) 

then the pressure is given by 
J . 0 0 00 

Hr, z, 0 = - / = 2 Pn(r, z, t), (A87) 
* T J - 00 B - l 

Pnif, z, t) = £ p e^'-^^hMQJco, r, z) do, (A88) 
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The term P„(r, 2, t) represents the contribution to the pressure from the w-th 
mode. 

We shall be interested in the case when 
/ ( / ) = e ~ u t > 0 (A89) 

= 0 t < 0, 

where 

= ^ ' k h v ( A 9 0 ) 

Pn(r, t) = - f Q;(a' r' f ¿ M - M * W 4 ] fa. 
2TT J_W (X + ÎCO) 

(A91) 

In treating the integral (A91), we take cognizance of the fact that the term Qn(co)/ 
(X + iu>) is a slowly varying function of <0, whereas the exponential factor is rapidly 
oscillatory. The principal contribution to the integral arises from small ranges of ai 
in the vicinity of the points of stationary phase—i.e., at the points at which/(to) = 0, 
where 

. dk , » 
/ («) S (Of - kn(o>)r - t / 4 , / ( « ) = < - r • — = 0. (A92) aio 

In the vicinity of a point of stationary phase «0 we write 

« - co„ + u, / ( » ) = / ( « . ) - ^ rf _ «» - . . . . (A93) 
2 6 

i e < / ( M ) & ) = 1 Qn(coo) pe_ i [ (r/2)MW0)U2+(r/6)i'(a,0)u'+"-] ¿„ 
2rJ_a(\+i*>) 2tt (X + icoo) J_„ 

^ + ; : [ - g g + a - , ] + o ( ^ , ( A 9 4 ) 

where the + sign in e+w '4 is to be taken if ft < 0, and the — sign when ft > 0. Hence 

1 r Q M _ e i f M d a Q n M , t [ . , M K . , ) l . / 2r A > i < 0 (A95) 
2R 1« , (X + ¿0) 2TT(\ + ¿COO) y r | fe(Mo) | \ J 

= 1 _ & U ) _ e < [ „ 0 , - r t ( « „ ) - T / 2 ] ¡ > 0 ) ( A % ) 
2tt (X + y rk(^) \ j 

At this stage we must consider the location of the points of stationary phase too in 
the complex co-plane. The phase /(co) = [a>i — ft„(co)r — jr/4] was arrived at by 
assuming a factor e+iui for the steady-state potential and then adding the phase of 
the —iHa2)(knr) given in (A70). Had we assumed instead a time factor e~iat, the 
term —iBo^iKr) would have been replaced by its conjugate +iH(01)(knr), and the 
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phase would have changed sign. It follows that, whereas QJoi) is an even function 
of 10, (because x defined in (A69) is even in co),/(«) is an odd function of co; and for 
every positive value of co0 where /(«o) vanishes there is another stationary point at 
co = — coo. We have therefore to add to the expressions (A95) and (A96) their com-
plex conjugates: 

2Qn(<do) cos [top t — rkjao) — tan-'Ccop/X)] f ) 
Pn{r'z't ) - M * w > I (x*+ *>*)]* {}' 

2Qn(ao) cos [apt — rk(a0) — tan"1 (top/X) — x/2] f 

[2«-AU)(X 2+<o?)]* \ 

k < 0, (A98) 

A > 0, (A99) 

__ _ tan [ I f - S W 
r ^ + ^ r l + o f 1 - ) ! , (A100) 

24(A)3 8(A)2 J W y 

where tan [ ] denotes the tangent of the respective arguments of the cosines in 
(A98) and (A99). 

The factor { } is used only for purposes of estimating the range of validity of the 
approximation made in applying the method of stationary phase. Expressions 
(A98) and (A99) are to be used only when 

i T ^ + J ^ ] « ! . (A101) 
r 24(A)3 8(A)2 J 

This condition is violated for small ranges and near the point of the minimum group 
velocity, where k = 0. In the vicinity of that point the integral (A91) requires 
special treatment which was devised by Airy. 

It is convenient to express the correction term given in (A101) in terms of the 
nondimensional quantities 

H _ oiH _c\d2k dZ _ 2x£? <Pk £Z _ 4 d t k 
7 = X = 2vci Z ~ Hd^2' ~dy~ ff2 ¿co3' dy2 ~ Hs dw*' 

of which Z(y) can be computed directly from Eq. (86), and Z and Z can then be 
computed by numerical differentiation from the tabulated values of Z as a function 
of y. Substituting into (A101), we find that 

j l r j m + j n = a ( r + 3 i ] « i (A102) 
24r [_ (A)3 (A)2J 96**\r J \_ Z3 ^ J 

is the condition to be observed when applying (A98) and (A99). 
We now summarize the results of this section. In order to compute the contribu-

tion from the w-th mode P„ at a given time t and point (r, z) in case of an exponential 
pulse, one first finds the points oi0 on the dispersion curve ¿„(to), characteristic of the 
medium, such that 
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P „ is then computed from 

4 cos [ant — rk — tan-1(<>>o/X)] X n sin (xnd/H) sin (xnz/H) 1 .. „ 
r*. = / ,.. . — . : ———: r I, k < 0, (A104) 

Hry/kn\kn\ (Xs + o>D |_ (*« — sm x„ cos x„ — b2 sm2 xn tan xn) J 

4 cos at I — rk — tan~1(a<>/\) — - r -i 
pn = L ±J sin \xnd/E) sin (xnz/H) 

Br \/kn-kn(\2 + a20) L (*» - sin xn cos xn - & sin2 xn tan xn) J ' 

k > 0, (A105) 

provided that the range is large enough and the time is sufficiently removed from 
the value tm = r/L\ ,where Uo denotes the minimum group velocity at which k = 0, 
so that condition (A102) is satisfied. For reasons explained elsewhere in the paper, 
(A104) represents the so-called water wave, and (A105) the ground wave. 

The cosine factors in the above expressions represent periodic functions of circular 
frequency coo, but &>o itself as well as the other factors are slowly varying functions 
of time on account of (A103). Expressions (A104) and (A105) therefore represent 
trains of waves which are modulated both in frequency and amplitude. 

II. The Airy phase 

Near the point of the minimum group velocity, where k(a)0) = 0, we set in the 
integral 

(API) 

a = uo + u, f{a) — at — k(a)r — - = /(uo) + au + bu1 + cu* + • • •, (A106) 

a = t - rk0 = t - r/Ut, b = ^ > 0, e = (A107) 
6 24 

The subscript o in the derivatives of k signifies that they are to be evaluated at the 
fixed point «o where k(u) vanishes. In contrast to the situation in the preceding 
section, these derivatives are therefore constants independent of t and r. We shall 
retain in the expansion (A106) powers of u up to the fourth and shall use the last 
power only as a correction term. 

In view of the fact that/(to) is an odd function of to and Qn(u) is even in w, we have 
from (A91) 

* Jo 
: cos [/(u) — tan-1 (w/X)] da 

V x ! + u ! 

Îcos [A + au + bu* + eu*} du, 
00 

, 1 Qn(<* o) 
' ~ / I W0 lil "T~ VM "T" V»' ~T~ (K*. 

(A108) 
A = [woi — k(u>(, )r — tan"1 (o>0/X)]. 
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I cos [A + au + bu3 + eu*] du 
J— oo 

= 2 cos A f cos (au + bu3) cos (eu4) du —2 sin A f cos (au + bu3) sin (eu4) du 
Jo Jo 

02 J" 
'• 2 cos A T(a, b) + 2 sin Ac ——, (A109) 

da So 

where 
f™ 

T(a, b) = J cos (au + bus) du = ^ ^ E(v), 

E(v) = »*[/-!« +/}(»)], ' < 7T. (AHO) 
Un' 

- - /»(»)], (Al i i ) 
Co 

and 

2 |a|? 4 V ^ 
!) = 

3 V 3 I 6 I* 3 V 

One finds that 

tCi , Ci 
•• 1, T m = — - 1. 

r U o 

^ = (Al 13) 
oaoft J3 

3» 
C(„) = i - j [/_,(„) _ /,(„)] + „̂B [/_jW + / j W l l , t < - , (All4) 

GW = ^ j - h » [ / - j W - /§(«)] + U - i W « > ~ • (AUS) 

Hence 

cos [ / W + a« + W + cu*\ du « - ^ j j T E(v) + G(v), (A116) 

of which the second term is to be considered a correction term. The use of the 
leading term only in (A116) is justified when 

2 scG(v) (k')G(v) 
tfb''E(v) rH-'k^Fiv) 

_ i / g V ( a 1 1 7 ) 

( 2 t ) * \ r j (-Z)iE(v) 

Summarizing our results for the Airy phase, we have as the contribution Pn from 
the M-th mode, in case of an exponential pulse, near the time tm corresponding to the 
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minimum group velocity 

4 cos coo/ — k{io0)r — tan -1(wo/X) — ^ E{v) 
pn(j. s i) — t= -I 

[ xn sin (xn d/H) sin jxnz/H) "j (A118) 

xn — sin xn cos xn — i2 sin2 xn tan xn L ' 
with d defined in (A112), provided the range is large enough and the time not far 
removed from tm for condition (All7) to be satisfied. In contrast to expressions 
(A104) and (A105) which represent waves which are both frequency-modulated and 
amplitude-modulated, expression (A118) represents an amplitude-modulated wave 
of constant circular frequency wu. The amplitude modulation is contained in the 
factor E(v), v depending on time in the manner described in (A112). 

Expression (A118) allows the computation of Pn for all t > tm as well as for a certain 
period prior to tm . For still earlier epochs (A118) cannot be used because condition 
(A117) is violated (a is too large); but then it is usually found that condition 
(A102) is met, so that Pn can be computed from (A104) and (A10S). 

B. T H E O R Y OF PROPAGATION OF SOUND IN A T H R E E - L A Y E R E D LIQUID 
HALF-SPACE 

1. FORMAL SOLUTION 

The medium considered consists of three liquids characterized by densities pj , p 2 ' 
p3 and sound velocities Ci, c 2 , c 3 , (Fig. H). A point source, which in the first 
instance will be assumed to be periodic of circular frequency co, is situated in the first 
layer at a depth d. (The solution for any other location of the point source can be 
readily obtained by the method used in this section.) The problem is to determine 
the pressure field at any point in the half-space. Later the steady-state solution 
for the frequency ca is generalized to yield a solution for the case of a pressure pulse 
at the source of arbitrary time variation. 

The pressure field is determined by the sound potential <p through 

dip dip dip 
P = p -r, w = - r-, u = - —, (A l ) 

dt dz dr 

where p denotes the acoustic pressure, w the vertical component of velocity, and « 
the horizontal component of velocity. The potential ip satisfies the wave equation 

1 3 V , , 

where c takes on the three values C\, c2 and c3 in the three media respectively. In 
order to satisfy the boundary conditions at z = 0, z = H and z = H + h, we seek, 

the first instance, solutions for <p of the form 

ip = eiatJo(kr)F{z)G(k), (A4) 
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where k is an arbitrary parameter with respect to which one eventually integrates 
along a certain path in the complex ¿-plane. (For a more detailed discussion of this 
point see Pekeris, 1946.) It is convenient to label quantities referring to the middle 
and lower layers by the subscripts 2 and 3 respectively, while quantities referring to 
the section of the upper layer above the source are labelled i', and those referring 
to the section of the upper layer below the source are labelled by the subscript i . 

Substituting (A4) in (A2), we get 

+ P«Fn(z) = °> « = 1, 2, 3, (A119) 

¡fit * < r 
Cfl 

(A120) 

k > - , cn 

Solutions of (A119) have to be chosen which vanish at s = 0, have continuous vertical 
components of velocity and pressure at z = H and z = H + h, and which do not 
become infinite at great depths as k becomes large. These conditions are met by 
putting 

f j = A sin frz, (A121) 

Ft — B sin 0,z + C cos ftz, (A122) 

f 2 = D sin 02z + E cos ftz, (A123) 

Fz = (A124) 

where the arbitrary constants A, B, C, and D (functions of k and « ) are determined 
by the boundary conditions and the slrength of the source. The boundary condi-
tions require that 

F s ! = h , PZFZ = P2F2, z = H + h, (A12S) 

F2 — Fi, P2F2 = PIFI , z = H, (A126) 

Fi^Fh z = d, (A127) 
dz dz 

with the understanding that the elementary solution (A4) is to be integrated with 
respect to k from 0 to <». When this is done, the difference of the vertical com-
ponent of velocity w at the two sides of the plane z = d becomes proportional to 

I Jo(kr)kdk, a function which is zero everywhere except r = 0, where it becomes 
Jo 
infinite in such a way that its integral over the plane z = d is finite. 

Let 
x = /3iH, b = pi/p2, g = P2/PS, (A128) 

= p f e t a n ( M ) - F = ( f t 5 c o s ^ s i n ^ ( A 1 2 9 ) 

|_gft + «ft tan (02h) J 
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<Pl 

<P2 

then on solving Eqs. (A12S) to (A127) for A, B, C, and D, substituting the results 
into Eqs. (A121) to (A124) and performing the integration with respect to k, we get 

<p'i = 26*»'^ Ja(kr) kdk ^Sf t cos ft (E - d) + ¿ft sin ft(ff - d) J , 0 <z<d, (A130) 

= jf J0(kr)kdk |"sft cos ft(ff - z) + ¿ft sin ft(H - z) J , d<z< E, (A131) 

= 2 beM jf J0(kr)kdk cos ft(z - ff) - sin ft(z - # ) J , B<z<E + h, (A132) 

w = 2bgeiat jf Mkr)kdk — c o s ft A — « « ft A J e-^-u-h) , z> E + h- (A133) 

As in the case of a two-layered medium, goes over into pi by interchanging % 
and d and vice versa. It will be noted also that the integrands in Eqs. (A130) to 
(A133) are even functions of ft and fc , but mixed functions of /33. 

2. T H E N O R M A L - M O D E S O L U T I O N 

(a) Evaluation of the integral for the potential in terms of residues and an integral 
along a branch line.—We shall dispense here with a discussion of the "ray theory" 
for a three-layered medium, since it can be developed along the lines used in the 
two-layered medium. In seeking the normal-mode solution of, say, 

<n = le™1 f Mk^kdkFifa, ft, /S3), d<z<H, (A131) Jo 
sin ft d r , . , "1 

F(Bi, ft, ft) — 5 f t cos ft (if - z) + ¿ft sin ft (¿7 - z) , (A134) 

where the /3's and the other quantities are defined in Eqs. (A120), (A128), and (A129), 
we first cut up the ¿-plane in the manner shown in Figure G, adding a third 
cut which begins on the real axis of k at k = k3 = u/c3 and extends to k3 — i<x> 
in a direction parallel to the negative imaginary axis. The integral (A131) is now 
treated like the integral (A18). It is found that on account of the fact that 
F(@i , ¡32, ,83) is even in /3i and in /32, the branch-line integrals around the kj and k2 

cuts vanish. There remains the branch-line integral around the k3 cut and the 
residues: 

n = e™> f ' H(02)(ir)[F(fr, ft, ft) - i?(ft, ft, - ft)] kdk + , (A135) 
«'—too 

<p[ = Residues = e^'S Res f H^\kr)F{^, ft, .3 3) kdk 
Jo 

-m. t^ft cosft(fl - z) + 6ft sin ¡3,(3 - z)] 
(A136) 

ft (dV/dk)„ 
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One finds that at the zeros of V 

1 dv 
* = ft B, k dk ß\ ft cos x ' 

[6(182 — ß\) sin 3; cos x — bß\ x — Aft cos2 x{ß\ + b2ß\ tan2 x) 

igßitß» ~ ß!) cos2 x(ß\ + 6s ßl tan2 x) + • 
ßz(.ß\g*-ß\) 

(A137) 

[Sft cos ft(ff - z) + 6ft sin ft(ff - « ) ] = - b ß l S m ß l Z ( A 1 3 g) 

Hence 

= ^ V H ^ ( k n r ) x"ß% s ' n (Xnd/B) sin (xnz/B) ^ 

\ 3 / » I I » 

¿ft ißi 
When A —»0, 5 - » - — , t a n * - > — , 

gft g6ft 

{ ) -»6ß 2 [—* + sin scosx + 62g2 sin2 x tan »], and (Al39) reduces to (A48). 

(b) Phase velocity and group velocity of the normal modes in a three-layered liquid 
half-space 

I. The dispersion equation 
We confine the discussion to the case when c% > cj, which is of interest in our 

applications. In that case total reflection takes place for angles of incidence ex-
ceeding a certain critical value, and this implies the existence of unadmped normal 
modes for frequencies exceeding the critical frequency. The sound velocity c2 in 
the intermediate layer will be assumed to be confined between ci and c 3, although 
the case ci < ci < c% is of some interest also. Under the above assumptions 
(¿1 < C2 < c3) the phase velocity c of any mode starts with the value c% at the respec-
tive critical frequency and approaches c 1 in the limit of very high frequencies. 

Let 

(A140) 

then, with k = co/c, 

ft = ksi; ft = —iks)] ft = ks2 when c > c2, ft = —iks% when c < o2, (A141) 

[~gft tan (ft/Q - ¿ f t I = I" gSi tan ft A + (ft/A) "I 

~ (_gft + ¿ft tan (ftA) J [_gi3 - (ft /£) tan (ftA) J ' 

The dependence of the phase velocity c on frequency w is determined from 
o o 

V = 0, or tanx = -7^—, a; = ftff = ksLB, (A143) 
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68 PROPAGATION OF EXPLOSIVE SOUND IN SHALLOW WATER 

which becomes 

_ |"gS3 tanh(s2kh) 4- s2~l _ 

bs21^3 + ¡2 tanh (.12 kh) J bs2 

gs3tanh 

gss + tanh ( s2kh\ 

when c < c2, and 

tan x -
si tan (sikh) + i 2 l 

- — — 7 - ~ - when c > cs. 
bss I gss — S2 tan Us kh) J 

II. The cut-off frequencies 

At the cut-off frequency c = cz, Ss = 0, and Eq. (A145) reduces to 

bs\ 
tan x • tan y = 

k — a/cz, 
uB / c? u>h , / 

: = ks^B = — \ 1 - 4, y = ks2h = - \ 1 - • 
ci V 4 V 

* 
When — —> 0, Eq. (A146) becomes 

M 
(bx\ ( S2 h\ ( b \(s1B\ 

tan x 

xn = (n — J)ir = 
<*nB / _c\ __ _ g ^ 

Y cl' " 2irCi Xn 

(2« - 1) 

V h T 
n 

Similarly when ~ —>• oo, Eq. (A146) yields 
H 

oinh f 
(2» 

1 — — = ( n — J)tt, 7 n = 
ej 

d S ) , 
V ' - l 

(A144) 

(A145) 

(A146) 

(A147) 

(A148) 

showing that, the cut-off frequencies become very small. However, it will be shown 
in the next section that even in this case the cut-off frequency given in (A147) is 
of importance. 

III. Behavior of the dispersion equation when the thickness of the intermediate 
layer becomes very large in comparison with the thickness of the upper layer 

/ s2h\ 

When (h/H) » 1 and c is not very close to c 2 , the term tanh ( x — ) in (A144) 

approaches unity, and (A144) reduces to 
tan x = — ; Ci < c < Ci, (A149) 
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which is the dispersion equation for a two-layered liquid consisting of the upper and 
intermediate layers. Under the same conditions we may write Eq. (A145) as 

^ l - g . t a n y + V l / 
bs-21 gsi — S2 tan y J \ s2 h / 

y~ o> 
i2 n 

y = ksih, (A150) 

and therefore 
• tan y + i2 = 0, c2 < c < cs, (A1S1) 

which is the dispersion equation for a two-layered medium consisting of the inter-
mediate layer and the bottom layer. It follows that when the thickness h of the 
intermediate layer is much greater than the thickness H of the upper layer, the dis-
persion in the range Ci < c < c2 is almost unaffected by the bottom layer, while in 
the range c2 < c < c3 the dispersion is nearly independent of the top layer. The 
separation of the dispersion into two nearly independent regimes controlled by the 
two surfaces of discontinuity respectively reflects itself also in the variation of group 
velocity with frequency, with the result that the group velocity has two minima in the 
manner illustrated in Figures 29, 30, 31, and 32. 

IV. The group velocity 

The group velocity of the normal modes for a three-layered medium can be com-
puted in the following manner. Write the dispersion equation in the form 
¿r(Cj ¿) = -bs2lgs3 + s2tanh(j2/Wi)]tan(si£ff) — ii[gistanh(isfc&) + is] = 0, c < c%, 

= -bstlgsz - i2tan(i2£/;)]tan(ii£ff) — ii[gi3tan(i2fcfc) + is] = 0, c > c 2 , 

then the group velocity U is given by 

(A152) 

(A1S3) 

dc 
U = c + k — = c -

dk 

or in the nondimensional form 

Let 

( ) ! ( ) 
dF 

' dk 

> dF(c, k) 
' dk 
dF(c, k) ' 

dc 

= c\ dF(c, k) 
® = c dc 

x = si kH, y — Si kit, 

(A154) 

(A1SS) 

then for c < c2 we have 
dF bxs2 , . J t a n * - i 2 y gsi s, y 

k — — (st tanhy + gs3) — — , . 
dk cos2 x cosh2y cosh2 y 

Q = 
b(s2 tanhy + gss) 

f y. tan x i2 x 1 
j + fas tan x\ -

I i2 sx cos2xJ [_ 

tanhy ¡xy 

tanhy + tanhy + 
Sz 

i2 i2 cosh2 y 

gsi is y/" 

+ l i " ! 
is J 

i 2 . Silt 
2 , . 1 

i2 cosh2 y îi i2 

(Al 56) 

(Al 57) 
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70 PROPAGATION OF EXPLOSIVE SOUND IN SHALLOW WATER 

and for c > c2 : 

3Ì? BXSJ . , y tail X GSISIY 

k a l - C ^ y - + - b f • ( A 1 5 8 ) 

G = 

fe tan , - g„) + 1 + ^ tan * f ^ + + 
L i 2 si c o s * J [_ S2 Si cos2 y s, J 

gsiSipy s2 ii u 
tan y ^ 

s2 cos2 y ii s2 

(Al 59) 
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7 6 P R O P A G A T I O N OF E X P L O S I V E S O U N D I N S H A L L O W W A T E R 

1.0-, 
.9- i — r I I 

Shot 
No. 

Mean 
Water 
Depth 

f t . 
To 

s e c . 

Hydro-
phone 
Depth 

f t . 

Charge 
Depth 

f t . 

Charge 
Weight 

l b s . 

49 51 0 2 . 8 7 4 52 49 5 
44 50 A 3 . 2 0 2 52 47 0 . 5 
¿4 51 • 3 . 3 0 4 55 47 2 5 . 5 

FIGURE 6 . — D i s p e r s i o n in the water wave at Solomons Shoal 

• Depth of Water. Ci = Sound Velocity in Water. C2 = Sound Velocity in Bottom. Density of Bottom as-
C 2 C 3 

sumed = 2. Layer of thickness and— = 1.05 underlain by infinite layer of — —l.c 
CI CI 

— • — Layer of thickness 3 and — = 1.1 underlain by layer of — = 3. — • - — - • — 
CI CI 

C2 Ci 
0.1 H and — = 1.1 underlain by layer of —• = 3. 

Ci Ci 

-Layer of thickness 
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FIGURES 77 

1.0-1 
.9-
.6-
.7-
.6-
. 5 - Shot 

Ko. 
Mean 
Water 
Depth 

f t . 
To 
s e c . 

Hydro-
phone 
Depth 

f t . 

Charge 
Depth 

f t . 

Charge 
Weight 

l b s . 

42 51 o 1 . 2 8 6 52 49 0 . 5 
48 53 a 2.407 52 53 5 
43 51 • 2 .580 52 49 0 . 5 

• 8 

- 6 

FIGURE 7.—Dispersion in the water wane at Solomons Shod 
H = Depth of Water. C, = Sound Velocity in Water. C, = Sound Velocity in Bottom. Density of Bottom as-

sumed : 

F CJ 
, J. Layer of thickness iE and - 1.05 underlain by infinite layer of - = 1.3. 

Layer of thickness B and ^ = underlain by layer of 3. — • 

Ct 
underlain by layer of — — 3. 

Ci 

Ci 
• —Layer of thickness O.lffand— =1.1 
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7 8 P R O P A G A T I O N O F E X P L O S I V E S O U N D I N S H A L L O W W A T E R 

S h o t 
N o . 

M e a n 
W a t e r 
D e p t h 

f t . 
To 

s e c . 

H y d r o -
p h o n e 
D e p t h 

f t . 

C h a r g e 
D e p t h 

f t . 

C h a r g e 
./eight 

l b s . 

1 1 7 6 0 o 5 . 4 2 9 6 3 25 5 
1 0 0 5 7 A 7 . 8 3 1 6 0 53 3 0 0 
1 0 2 5 9 a 1 4 . 1 0 3 6 0 5 7 3 0 0 

FIGURE 8 . — Dispersion in the water wave at Jacksonville Shoal 

U = Depth of Water. Ci = Sound Velocity in Water. Ci = Sound Velocity in Bottom. Density of Bottom as-

- Layer of thickness iff and —' = 1.05 underlain by infinite layer of — = 1.3. 
Ci c i 

sumed = 2. 

. Ci 
Layer of thickness B and — = 1.1 underlain by layer ol 

C. 

c, ' 

C1 

1.1 underlain by layer of 

- Layer of thickness O.lff and 
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FIGURES 7 9 

FIGURE 9.—Dispersion in the water wave at Jacksonville Shoal 
E = Depth of Water. Ci = Sound Velocity in Water. C% = Sound Velocity in Bottom. Density of Bottom as-

Cs Cz 
sumed « 2 . 0 . Layer of thickness \ H and — = 1.05 underlain by infinite layer of — = 1 

Ci Ci 
Ct CI 

— • —Layer of thickness H and — = 1.1 underlain by layer of —- * 
Ci Ci 

Ci c% 
and — = 1.1 underlain by layer of —• « 3. 

CI CI 

- Layer of thickness 0.127 
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8 0 PROPAGATION OF EXPLOSIVE SOUND I N SHALLOW W A T E R 

Shot 
No. 

I.iean 
Water 
Depth 

f t . 
To 
sec . 

Hydro-
phone 
Depth 

f t . 

Charge 
Depth 

f t . . 

Charge 
.»eight 

l b s . 
160 115 o 7 .638 119 50 0 . 5 
157 117 A 9 .632 119 115 300 
175 116 • 10.446 119 75 300 

0 1 2 3 4 5 6 7 

FIGURE 10 .— D i s p e r s i o n in the water wave at Jacksmvilte Deep 

H = Depth of Water. Ci = Sound Velocity in Water. Ci = Sound Velocity in Bottom. Density of Bottom as-

sumed = 2. Layer of thickness iH and — = 1.05 underlain by infinite layer of — = 1.; 
Ca Cz 

- Layer of thickness iH and — = 1.05 underlain by infinite layer of — = 
Ci Ci 

C2 
Layer of thickness H and — = 

Ci 

Cj 
1.1 underlain by layer of — = 3. 

Ci 
- Layer of thickness 0.13 and 

Ci Ci 
— = 1.1 underlain by layer of — = 
Ci Ci 
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FIGURES 81 

FIGURE 11.—Dispersion in the water wave at Jacksonville Deep 
E = Depth of Water. Ci = Sound Velocity in Water. C2 — Sound Velocity in Bottom. Density of Bottom as-

. C2 Ct 
sumed = 2. - Layer of thickness \E and — = 1.05 underlain by infinite layer of —- = 1 

CI C1 

Layer of thickness E and 
C j 

1.1 underlain by layer of — = 3 . 
C1 

- Layer of thickness 0.15 and 

Ct . CA 
—- = 1.1 underlain by layer of — * 
Ci CX 
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8 2 PROPAGATION OF EXPLOSIVE SOUND I N SHALLOW W A T E R 

Shot 
N o . 

liean 
'.Vater 
D e p t h 

f t . 
T o 
s e c . 

Hydro-
p h o n e 
D e p t h 
f t . 

C h a r g e 
D e p t h 
f t . 

C h a r g e 
W e i g h t 
l b s . 

275 70 o 2 . 7 6 8 65 25 3 . 5 
253 70 A 2 . 2 4 2 62 77 25 

• 

-ilO 

- 8 

FIGURE 12.—Dispersion in the water wave at Virgin Islands Shoal 

B = Depth of Water. Ci = Sound Velocity in Water. Cs = Sound Velocity in Bottom. Density of Bottom as-
CI CI 

sumed = 2. Layer of thickness i B and — — 1.05 underlain by infinite layer of — = 1.3. — — • — • — 
C I CI 

Layer of thickness E and 
C2 

CI 
CI 

CI 
1.1 underlain by layer of — • 

CI 
CJ 

= 3. —•• — ••—•• — Layer of thickness0.1/7 and — 
C I 

1.1 underlain by layer of — = 3 . 
CI 
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I I I 

Shot 
No. 

Mean 
Water 
Depth 
ft. 

To 
sec. 

Hydro-
phone 
Depth 

ft. 

Charge 
Depth 

ft. 

Charge 
Weight 

lbs. 

239 66 o 1.684 62 70 0.5 
2LU 70 A 2.472 62 77 300 
253 67 • 3.405 62 72 25 

-.10 

- 8 

FIGURE 13.—Dispersion in the water wave at Virgin Islands Shoal 
•• Depth of Water. Ci — Sound Velocity in Water. Ci " Sound Velocity in Bottom. Density of Bottom as-

sumed = 2. Layer of thickness i B and ~ = 1.05 underlain by infinite layer of = 1.3. 
Ci Ci 

Layer of thickness B and ~ — 1.1 underlain by layer of — • 
CI CI 
Ct 

1.1 underlain by layer of —- •• 3 t Ci 

Cs 
- Layer of thickness 0.1H and — 

Ci 
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Shot 
No. 

¿lean 
Water 
Depth 

f t . 
To 

s e c . 

Hydro' 
phone 
Depth 

f t . 

Chargf 
Depth 

f t . 

Charge 
Weight 

l b s . 

251 69 0 4 . 7 9 0 62 76 25 
2 8 2 69 A 5 . 0 3 6 65 25 0 . 5 
272 70 • 5 . 1 1 2 65 74 3 . 5 

FIGURE 14 .—Dispers ion in the water wave in Virgin Islands Shoal 

H = Depth of Water. Cx = Sound Velocity in Water. Ci = Sound Velocity in Bottom. Density of Bottom as-

sumed = 2. - — Layer of thickness i B and 77 = 1.05 underlain by infinite layerof — = 1.; 
Ci - CI 

Ca Ct 
Layer of thickness E and — = 1.1 underlain by layer of —• = 3. 

CI 01 
Ct C, 
— = 1.1 underlain by layerof — =» 3. 
Ci C1 

- Layer of thickness 0.1 H and 
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F I G U R E S 8 5 

FIGURE 1 5 . — D i s p e r s i o n in the water wave at Virgin Islands Shoal 

S - ¡Depth of Water. Ci = Sound Velocity in Water. Cj = Sound Velocity in Bottom. Density of Bottom as-

sumed = 2 Layer of thickness ill and ^ = 1.05 underlain by infinite layer of —' = 1.3. 

•I" C I 
c, 

underlain by layer of — = 3. 
CI 

Layer of thickness H and ^ = 1.1 underlain by layer of Layerof thicknessO.lEand ^ "=1 .1 
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8 6 PROPAGATION OF EXPLOSIVE SOUND I N SHALLOW W A T E R 

I I I I I 

S h o t 
B o . 

M e a n 
W a t e r 
D e p t h 
f t . 

T o 
s e c . 

H y d r o -
p h o n e 
D e p t h 
f t . 

C h a r g e 
D e p t h 
f t . 

C h a r g e 
'./eight 
l b s . 

2 1 3 145 0 5 . 9 5 1 1 2 0 75 4 . 5 
1 8 8 1 4 7 A 7 . 8 9 0 1 2 0 1 7 3 3 0 0 
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FIGURE 16.—Dispersion in the water wave at Virgin Islands Deep 

•• Depth of Water. Ci = Sound Velocity in Water. G = Sound Velocity in Bottom. Density of Bottom as-

s u m e d - 2 . Layer of thickness iff and — . 
CI 

Ci C 
Layer of thickness H and — - 1.1 underlain by layer of — 

CI CI 
CI CI 
— = 1.1 underlain by layer of — = 3. 
Ci CI 

1 .OS underlain by infinite layer of — • 
CI 

- Layer of thickness 0.1 ff and 
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F I G U R E S 8 7 

FIGURE 1 7 . — D i s p e r s i o n in the water wave at Virgin Islands Deep and comparison of dispersion in 

the waves from the main explosion and from the first bubble expansion 

ff]=*Depth oi Water. Ci = Sound Velocity in Water. Ci = Sound Velocity in Bottom. Density of Bottom as-

sumed = 2, Layer of thickness \E and — = 1.05 underlain by infinite layer of — = 1.3. 
CI CI 

Layer of thickness B and — = 1.1 underlain by layer of ^ = 3. Layer of thickness 0.1 B and 
CI CI 

— = 1.1 underlain by layer of — = 3. A—Layer of thickness E and —' = 0.98 underlain by a layer of —' = 3.0. B— 
CI Ci CI M 

Layer of thickness B and — = 0.98 underlain by a layer of — = 1.1. 
CI CI 
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Depth 
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l b s . 

213 145 0 5 . 9 5 1 120 75 4 . 5 
219 (140) A 7 . 3 8 5 120 100 300 
188 147 • 7 . 8 9 0 100 17? 300 

• " ' 0 I 2 3 4 5 6 7 

FIGURE 1 8 . — D i s p e r s i o n in the water wave at Virgin Islands Deep 

H = Depth of Water. Ci = Sound Velocity in Water. C2 = Sound Velocity in Bottom. Density of Bottom as-

sumed = 2. Layer of thickness $H and — 1.05 underlain by infinite layer of —- = 1.3. — — • — • — • — 
C1 Ci 

Layer of thickness B and 
Ci 

1.1 underlain by layer of 
C i ' 

- Layer of thickness 0.!//_and 

Cj , Ci 
— = 1.1 underlain by layer of —- = 3. 
Ci C1 
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FIGURES 8 9 

O I 2 

FIGURE 19.—Dispersion in the water wave at Virgin Islands Deep 

E - Depth of Water. Cj = Sound Velocity in Water. Cj - Sound Velocity in Bottom. Density of Bottom as-
Ci C, 

sumed = 2. Layer of thickness and — - 1.05 underlain by infinite layer of — •= 1.3. 
CI Ci 

Layer of thickness H and 1.1 underlain by layer of — > 
CI 

3. - Layer of thickness 0.1J7 and 

Ci Ci 
— — 1.1 underlain by layer of — • 
Ci Ci 
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FIGURE 23.—Variation of pressure with range due to 
a periodic point source in shallow water 

Asymptotic values given by equations (32) and 
(33) - N /(krf 

pi = Density of water 
pi — Density of bottom 
ci «= Sound velocity in water 
cs — Sound velocity in bottom 
d » Depth of point source 
r = Depth of receiver 
E = Depth of water 
k — 27T/X(X = wavelength in water) 
tp = Sound potential (proportional to pressure amplitude) 
f — Horizontal distance from source 
O = Computed points from equation (19) 

o 
Graph a/ci n/in kH i/E z/B N a x r 

S © 

^ 

A 0.6 0.50 1.7952 .30 0.6 8.2500 5.000 8.0 
B 2.0 0.50 .84 .25 1.0 0.0492 0.053 
C 2.0 0.75 .84 .25 1.0 0.0738 0.075 
D 2.0 1.00 .84 .25 1.0 0.0984 0.109 
E 2.0 1.50 .84 .25 1.0 0.1476 0.151 
F 1.2 0.50 .84 .25 1.0 0.0832 0.086 not 

plotted 
G 0.6 0.50 .84 .25 1.0 0.0797 0.086 not 

plotted 

\ \ \ \ 
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FIGURES 9 5 
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9 8 PROPAGATION OF EXPLOSIVE SOUND IN SHALLOW WATER 

FIGURE 27.—Envelope of the Airy phase 
For definition of v, E(v) and G(o) see Eqs. (A112, AUO, AH1, A114 and A115) 

lm = r/Uo , Ut = minimum group velocity 
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FIGURES 9 9 

20 JO 40 60 SO MO 

FIGURE 28.—Phase velocity and group velocity of the first mode in at wo-layered liquid half-space 
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1 0 0 PROPAGATION OF EXPLOSIVE SOUND IN SHALLOW WATER 

FIGURE 29.—Phase velocity c and group velocity U for the first mode in a three-layered liquid half-space 
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FIGURES 195 

c, SOUND VELOCITY IN WATER 

C2 SOUND VELOCITY IN MIDDLE LAYER 
c, sou® VELOCITY IN BOTTOM LAYER 

f> DENSITY; / ? = / ? = 2/> 

H DEPTH OF WATER 
h DEPTH OF MIDDLE LAYER 
X WIWELENSTH IN WATER 

CASE 
NUMBER 

OF 
LAYERS 

JC* c, c, 
h 
IT 

VI 2 1.05 

36 3 105 130 .5 

3.8® 3 1.05 130 10 

b 
v-jf 

• 0/ .OZ .03 .04 .06 .OB ./ .2 3 4 5.6 .8 

FIGURE 3 0 . — G r o u p velocity U for the first mode in a 

/ 2 3 4 5 (o 3/0 

three-layered liquid half-space 

 on June 30, 2015memoirs.gsapubs.orgDownloaded from 

http://memoirs.gsapubs.org/


102 PROPAGATION OF EXPLOSIVE SOUND IN SHALLOW WATER 

.0/ OZ .03 .04 06 .03 •/ 

FIGURE 31.—Phase velocity c and group velocity U for the first 

/ z 3 4 5 6 8 ¿0 

in a three-layered liquid half-space 
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FIGURES 1 0 3 

c, = SOUND VELOCITY IN WATER 

<j, = SOUND VELOCITY IN MIDDLE LAYER 

c3 = SOUND VELOCITY IN BOTTOM LAYE 

p - DENSITY; P3--Pi'ZP, 
H = DEPTH OF WATER 
h = DEPTH OF MIDDLE LAYER 

X = WAVELENGTH IN WATER 

CASE 
NUMBER 

OF 
LAYERS 

c, «» c, 
h 
H 

3.3 3 UO 3.0 Ql 

37 3 1.10 3.0 1.0 

39 3 1.10 3.0 10 

\A 

a 
A •33 

' A 

01 •OZ .03 .04 .06 

FIGURE 32.—Group 

.OS .1 .2 .3 H .5 .6 .7.83/. 2 3 4 5 6 7 3 9/0 

velocity U for the first moie in a three-layered liquid half-space 
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FIGURE 39.—Overall frequency characteristic geophone system 
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FIGURE 40.—JFAR^ / system. Overall frequency characteristic 
Calibration of Jan. 1, 1944. 
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FIGURE 41 .—Mark II system. Overall frequency characteristic 
High-frequency galvanometer. Records previous to 136. Calibration of Dec. 1,1943 
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Calibration of Dec. 7,1943. High-frequency galvanometer. Record 142 and following 
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Calibration of Dec. 1, 1943. Records previous to 136 

FIGURE 44 .—Mark II system. Overall frequency characteristic 

Calibration of Dec. 7, 1943. Record 142 and following 
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1 1 2 PROPAGATION OF EXPLOSIVE SOUND IN SHALLOW WATER 
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FIGURE 45.—Vertical distribution of pressure amplitude in the fundamental mode of the free wave 
j = frequency, in cyc /sec 
c = velocity of propagation of free wave, in f t / s e c 
minimum frequency = 93.3 cyc /sec 
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FIGURE 46.—Vertical distribution of pressure amplitude in the fundamental mode of the free wave 
f = frequency, in cyc /sec 

c — velocity of propagation of free wave, in f t / s e c 
minimum frequency = 103.5 cyc /sec 
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FIGURE 47 Vertical distribution of pressure amplitude in the fundamental mode of the free wave 
j = frequency, in cyc/sec 
c = velocity of propagation of free wave, in ft/sec 
minimum frequency = 498 cyc/sec 
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FIGURE 48—Vertical distribution of pressure amplitude in the fundamental mode of the free wave 
/ = frequency, in cyc/sec 
c = velocity of propagation of free wave, in ft/sec 
minimum frequency = 138 cyc/sec 
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FIGURES 1 1 5 
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FIGURE SO.—Angle 8 between direction of propagation and the vertical of the component plane waves of the 
first three modes in a two-layered liquid kalj-space in which c2 = 1.5cu 9 = sivr^ci/c), where c is the 

phase velocity 
T = time after explosion 

Tt = time of arrival of water wave ( = r/ci) 
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