Downloaded from memoirs.gsapubs.org on June 30, 2015

The Geological Society of America
Memozr 27

THEORY OF PROPAGATION
OF EXPLOSIVE SOUND
IN SHALLOW WATER

BY
C. L. PEKERIS

Department of Applied Mathematics
The Weizmann Institute, Rehovoth, Israel

October 15, 1948
Reprinted 1963


http://memoirs.gsapubs.org/

Downloaded from memoirs.gsapubs.org on June 30, 2015


http://memoirs.gsapubs.org/

Downloaded from memoirs.gsapubs.org on June 30, 2015

. ACKNOWLEDGMENT
This paper is based on work done in 1944 at Columbia University, Division of
War Research, under contract with the Office of Scientific Research and Develop-
ment.
The writer is indebted to Dr. Columbus O’D. Iselin for the assistance given by
the editorial staff of the Woods Hole Oceanographic Institution in the preparation
of this paper.


http://memoirs.gsapubs.org/

Downloaded from memoirs.gsapubs.org on June 30, 2015


http://memoirs.gsapubs.org/

Downloaded from memoirs.gsapubs.org on June 30, 2015

CONTENTS

Abstract ... . i ieiieieierieaa sesesreanes bereesesensasrenn et eas

Parr I: DATA

. Some Observed Characteristics of Pressure Records Obtained at Large Ranges from an
Explosion in Shallow Water. ..o
. Qualitative Discussion of the Theory of Propagation of Explosive Sound in Shallow Water. .
. Summary of the Solution of the Wave Equation for the Problem of Propagation of Sound
Produced by a Point-Source Explosion in Shallow Water...................ool ..
. Discussion of the Solution for a Periodic Point-Source...........cooviiiii L.
I. Evidence for the Reality of the Branch-Line Integral in the Solution for the Potential,
and its Physical Meaning. . . ... ... . . e
I1. Variation of the Amplitude of the Normal Modes with Depth......................
III. The Phase Velocity of the Normal Modes, and the Angles of Incidence of the Component
Plane Waves of the Normal Modes. .. ..o ian e,
IV. The Question of the Orthogonality and Normalization Factors of the Normal Modes. .
. Propagation of a Pressure Pulse in Shallow Water.....................................
1. Formal Generalization of the Solution for an Exponential Pulse.....................
II. The Group Velocity of the Normal Modes............................. ... .o....
III. The Ground Wave, Water Wave, and Airy Phase in a Two-Layered Liquid Half-Space.
IV. Expressions for the Ground Wave, Water Wave, and Airy Phase..................
V. Relative Excitation of the Various Modes by an Explosion in Shallow Water.........
. Features of the Pressure Wave from an Explosion in Shallow Water which can be Identified
and Measured on the Records and from which Theoretical Deductions can be made about
the Structure of the Bottom. .......... ... ... . . . . e
1. Arrival Times of the Ground Waves and of the Water Waves and their Use in Determin-
ing the Structure of the Bottom by Standard Refraction Methods. . ... .............
II. The Ewing Effect. .. ... ..o o
III. The Rider Wave, Airy Wave, and Limiting Wave Lengths. .. ............. ... ......
IV. Effect of the Structure of Deep Layers in the Bottom on the Character of the Ground
Waveandthe Rider Wave. ... ... ... ... . . . . . .
. Some Remarks on the History of the Development of the Theory of Normal Modes in Elastic
Half-Spaces and of its Applications to Problems of Propagation of Shocks..............
. Preliminary Report on Free Acoustic Waves, prepared in November, 1941 ................

Part II: THEORY

Introduction
A. Theory of Propagation of Sound in Water Underlain by a Uniform Bottom of Different

Density and Sound Velocity.
1. Formal Solution. .. ...t ittt ittt e e e e
2. The Ray Theory . ...t e et it e ettt e iiaaaann
a) Expansion of the potential into a series of integrals each of which represents a “ray”. .
b) Some results on the reflection of spherical waves from plane boundaries............
T. General Considerations. The propagation of a shear pulse in 2 layered medium
I1. Asymptotic expression for the potential of a singly reflected spherical wave at
high frequencies, and the conditions for the validity of the plane wave ap-
PrOXIMAation. .. ...ttt e e e
IIL. Reflection of a spherical sound wave from a plane boundary in case the receiver
is situated on the same vertical with the source. .. ........... .............
IV. Reflection of a spherical pulse of square shape from a bottom characterized by a
discontinuity in density and sound velocity when the receiver is situated on the
same vertical with thesource. ....... ... o i

1
14

14
15

16
17
17
17
18
19
20
22

24

24

27

35

38
40

43
46
46

48

49

49


http://memoirs.gsapubs.org/

Downloaded from memoirs.gsapubs.org on June 30, 2015

vi PROPAGATION OF EXPLOSIVE SOUND IN SHALLOW WATER
3. The Normal Mode Solution......... ... i e 51
a) Evaluation of the integral for the potential in terms of residues and of an integral
alongabranch-line. ......... .. ... ... .. . . . 51
b) The residues of “normal modes” . . ... ... .. ... ... .. .. ... ... 53
¢) The question of the orthogonality and the nermalization factors of the normal modes . 53
d) Asymptotic behavior of the branch-line integral for large horizontal ranges........ 55
e) Phase velocity and group velocity of the normal modes in a two-layered liquid half-
BDACE . © o o et e 56
f) The propagation of explosive sound in a two-layered liquid half-space.............. 59
I. The ground-wave and water-wave phases....................coiviiiin. .. 59
I The Airy phase. .. oot e e e 62
B. Theory of Propagation of Sound in a Three-Layered Liquid Half-Space .................. 64
1. Formal Solution. ... ... . 64
2. The Normal-Mode Solution.. ... .. ... ... e 66
a) Evaluation of the integral for the potential in terms of residues and an integral along
a brarch-line..... .. e 66
b) Phase velocity and group velocity of the normal modes in a three-layered liquid half-
SPACE « .« .ttt e e e e e e e 67
I. Thedispersion equation. .. ........ ... ... it 67
II. The cut-off frequencies. ....... ... . .. i 68
III. Behavior of the dispersion equation when the thickness of the intermediate layer
becomes very large in comparison with the thickness of the upper layer . . .... 68
IV. The group velocity. . .. ... .o .. 69
References cited......... e e 70
Index. .o e e 117
ILLUSTRATIONS
PLATES
Plate
1.—Records at Solomons Shoal. ... ... ... .. ... i
2.—~Records at Solomons Shoal . ........ ... .. i
3.—Records at Solomons Shoal. ............. ... .. e
4.—Records at Jacksonville Shoal............. ... ... ..o ool | Following
S5.—Records at Jacksonville Shoal................ ... ... i 24
6.—Records at Jacksonville Deep.......... ... ... ... p-
7.—Records at Jacksonville Deep......... ... .. ... ... .. i
8.—Records at Virgin Islands Shoal .. ......... ... ... ... ... ... ... ...
9.—Records at Virgin Islands Shoal.............. ... ... ... ... ... ... ...
10.—Dispersion in water wave in Shot No. 91 at Jacksonville Shoal. ... .................. 20
11.—Dispersion in water wave and rider wave in Shot No. 90 at Jacksonville Shoal........ 27
FIGURES
Figure Page
A.—Assumed model for a two-layered liquid half-space..........covverivriiiieennnnn.. 3
B.—System of images of a point source situated in shallow water........................ 4
C.—Illustration of the difference between phase velocity and group velocity............... 4
D.—Variation of group velocity U with frequency f in a two-layered liquid half-space . ... .. 5
E.—Ray-path in case the charge and receiver are beached on the bottom .. ............ ... 5
¥.—Assumed model for a two-layered liquid half-space. . .................... ... ... ..., 5
G.—Cuts are made in the complex k-plane along lines parallel to the negative imaginary axis
and starting on the real axis at the point ¥ = %1 and k = ks respectively............. 6
H.—Assumed model for a three layered liquid half-space.............................. 6
1.—Refraction data in Solomons Shoal.......... ... ... . .. i i n
2.—Refraction data in Jacksonville Shoal. . .......... ... ... .. .. ... i i, 72


http://memoirs.gsapubs.org/

Downloaded from memoirs.gsapubs.org on June 30, 2015

ILLUSTRATIONS vii
3.—Refraction data in Jacksonville Deep. .. ......... .. ... i 73
4 —Refraction data in Virgin Tslands Shoal . ... ........ ... .. ... ... 74
5.—Refraction data in Virgin Islands Deep............ ... 75
6.—Dispersion in the water wave at Solomons Shoal. . ... 76
7.—Dispersion in the water wave at Solomons Shoal. ... 77
8. —Dispersion in the water wave at Jacksonville Shoal. .......... ... 78
9.—Dispersion in the water wave at Jacksonville Shoal. ............ ... 9
10.—Dispersion in the water wave at Jacksonville Deep.............................. 80
11.—Dispersion in the water wave at Jacksonville Deep. . ... 81
12.—Dispersion in the water wave at Virgin Islands Shoal. .. ........................o0. 82
13.—Dispersion in the water wave at Virgin Islands Shoal. . .......... e 83
14.—Dispersion in the water wave at Virgin Islands Shoal.......................... .. 84
15.—Dispersion in the water wave at Virgin Islands Shoal . .....................os 85
16.—Dispersion in the water wave at Virgin Islands Deep. .. .......................oe 86
17.—Dispersion in the water wave at Virgin Islands Deep and comparison of dispersion in the
waves from the main explosion and from the first bubble expansion................ 87
18.—Dispersion in the water wave at Virgin Islands Deep........................oooe 88
19.—Dispersion in the water wave at Virgin Islands Deep......................ooien 89
20.—Analysis of dispersion data in Virgin Islands Deep............................ooon. 90
21.—Analysis of dispersion data in Virgin Islands Shoal.........................ooon 91
22 —Analysis of dispersion data in Jacksonville Shoal. . ........................oooo 92
23.—Variation of pressure with range due to a periodic point-source in shallow water....... 93
24A.—Theoretical contribution of the first mode to the disturbance at a distance from an ex-
plosion in shallew water. .. ... ... .. i 94
24.—Theoretical pressure variation in the ground wave for the case of a uniform bottom.... 95
25.——Continuation of the record shown in Figure 24 into the water wave phase............ 96
26.—Theoretical pressure variation in the “Airy” phases of the first three modes, and the
effect of a low-pass filtering system in suppressing the higher modes. .. ............ 97
27.—Envelope of the Airy phase. . ... i 98
28.—Phase velocity and group velocity of the first mode in a two-layered half-space........ 99
29.-—Phase velocity ¢ and group velocity U for the first mode in a three-layered liquid hali-
SPACE . -+« « e e e e e 100
30.—Group velocity U for the first mode in a three-layered liquid half-space.............. 101
31.—Phase velocity ¢ and group velocity U for the first mode in a three-layered liquid half-
SDACE. .+« + v e e e e e e e e 102
32.—Group velocity U for the first mode in a threc-layered liquid half-space. R {1 X
33.—Theoretical time of arrival and amplitude of the various frequencies in the water wave
for the case of a bottom of uniform sound velocity and density.................... 104
34 —Theoretical time of arrival and amplitude of the various frequencies in the water wave
for the case of a bottom of uniform sound velocity and density................. ... 105
35.—Theoretical time of arrival and amplitude of the various frequencies in the water wave
for the case of a bottom of uniform sound velocity and density.............. ... ... 106
36.—Theoretical time of arrival and amplitude of the various frequencies in the first mode
for uniform bottoms of sound velocity and density........... ... ...l 107
37.—Dispersion characteristics of the first mode in a two-layered liquid half-space . ... ..... 108
38._Cut-off wave length for the first mode in a threc-layered liquid half-space............ 109
39.—Overall frequency characteristic of geophone system..................cc 110
40.—Mark I system. Overall frequency characteristic.. ... 110
41.—Mark II system. Overall frequency characteristic. . ... 110
42.—Mark II system. Overall frequency characteristic. . ... 111
43.—Mark II system. Overall frequency characteristic. .. ...t 111
44.—Mark II system. Overall frequency characteristic. . ............. ..ot 111

45.—Vertical distribution of pressure amplitude in the fundamental mode of the free wave.. 112
46 —Vertical distribution of pressure amplitude in the fundamental mode of the free wave..... 112


http://memoirs.gsapubs.org/

Downloaded from memoirs.gsapubs.org on June 30, 2015

viil PROPAGATION OF EXPLOSIVE SOUND IN SHALLOW WATER

47 —Vertical distribution of pressure amplitude in the fundamental mode of the free wave... 113
48.—Vertical distribution of pressure amplitude in the fundamental mode of the free wave.. 113
49.—Variation of the phase velocity ¢* and group velocity U” of the nth mode with the wave

Clength Ninwater. ... ... . 114
50.—Angle between direction of propagation and the vertical of the component plane waves
of the first three modes in a two-layered liquid half-space......................... 115

51.—Magnitude and phase of reflection coefficient for a spherical wave incident on a bottom
whose density and sound velocity differ from the density and sound velocity in water 116

TABLES
Table Page
A.—Deductions about the variation of sound velocity with depth in the bottom........... 2
1.—Evidence on the structure of the bottom deduced from dispersion data................ 29
2.—~Characteristics of ground waves and water waves in Solomons Shoal.................. 31
3.—Characteristics of ground waves and water waves in Jacksonville Shoal................ 33
4.—Characteristics of ground waves and water waves in Jacksonville Deep................ 34
5.—Characteristics of ground waves and water waves in Virgin Islands Shoal.............. 36

6.—Characteristics of ground waves and water waves in Virgin Islands Deep.............. 37


http://memoirs.gsapubs.org/

Downloaded from memoirs.gsapubs.org on June 30, 2015

ABSTRACT

A wave-theoretical interpretation is given of pressure waves generated in shallow
water by explosions of charges of T.N.T. ranging from 0.5 to 300 lbs., and recorded
by Ewing and Worzel. (See accompanying paper, Explosion sounds in shallow water.)
The normal mode theory of propagation of sound in layered media, which was
developed by the writer in 1941, was extended to cover the case of explosive sound,
and the predictions of the theory about the shape and variation of amplitude in the
received pressure pulse were investigated in detail. It was found that the theory
predicted the existence of a series of readily identifiable new features in the pressure
wave, each of which is characteristic of the depth of water and the structure of the
bottom. A study of the original records, some of which are reproduced on Plates
1-11, revealed the presence of all the predicted phases. The characteristics of these
phases were then measured, and the data were interpreted in terms of the structure
of the bottom at the various stations. The deductions about the distribution of
sound velocity in the bottoms, based on an analysis of the various features of the
pressure waves, are given in Table A, and it will be seen that they agree among them-
selves.

The following results were obtained:

(1) A study was made of the dominant periods in the ground waves which are
propagated along the various interfaces in the layered bottom, in order to verify the
theoretical prediction that the deeper the interface (higher sound velocity) the
longer should be the periods. A verification of this theoretical prediction is well
illustrated in Figures 1 and 2, and to a lesser extent in Figure 3.

(2) An extensive investigation, covering an analysis of more than 40 records, was
made of the dispersion in the water wave (which is illustrated by the third trace from
the bottom on Plate 11). A technique was developed for determining from the
records the speed with which each frequency in the water wave is propagated. The
discovery made empirically by Ewing that this speed is a function of frequency only
(see accompanying paper, Explosion sounds in shallow water) and is independent of the
range was confirmed in all the records, as is shown in Figures 6-19. The shape of
the mean dispersion curve at each station was successfully interpreted by an applica-
tion of the normal mode theory in a layered liquid half-space. Theoretical dispersion
curves form the background in Figures 6-19, and, with the aid of these, deductions
were made about the sound-velocity distribution in the top layers of the bottom.
The conclusions are given in columns 6 and 7 of Table A and in Table 1.

(3) The theory of normal modes was developed by the writer to a stage which
enables one to compute the actual curve of pressure variation, as recorded by various
types of receivers, due to an arbitrary explosion. A sample of such a theoretical
pressure wave is shown in Figures 24A, 24, and 25.

(4) The following new features of the pressure waves were predicted by the theory
of normal modes of a layered liquid half-space and were subsequently discovered
and analyzed by the writer:

A) In'case of a uniform bottom extending down to a depth many times the depth
of water, the ground wave should begin with a so-called limiting period which is charac-
teristic of the depth of water and the sound velocity in the bottom. The limiting
period was identified and measured in the records taken at the Solomons Shoal
station where the bottom is known to meet the requirement stated above, and the
results are shown in Table 2. The value of 1.29 for ¢;/c; obtained from the average
observed limiting period, where ¢; and ¢, denote the sound velocities in the water
and in the bottom, is slightly higher than the values deduced from the other features
quoted in Table A, but this small discrepancy can be explained by the effect of the

deep layers.
1
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B) The water wave should arrive riding on a low-frequency wave called the rider
wave; the frequency of the rider wave just prior to the arrival of the water wave is
determined by the depth of water and the distribution of sound velocity in the bottom.
The rider wave was identified and its period measured on all records taken at Solo-

TaBLE A.—Deductions about the variation of sound velocity with depth in the bottom
Based on the interpretation of the various phases in the recorded pressure waves from explosions.

a = sound velocity in water; ¢z = sound velocity in a top layer of the bottom referred to as the intermediate layer;
2 = sound velocity in the bottom below the intermediate layer; # = thickness of layer in the bottom for which average
value of cz/c1 holds.

Refrction Dipergonin |
o?v?;?;r Ll-’;;ét' Rider Airy
Stati : mE 1w Wi
R - of e aver | g (ool ale | el
ala diiar::ei el:grer e/ar :’f}z’l in feet

Solomons Shoal 52 1.15 1300 1.79 | 1.2 25 | 1.2911.09|(1.1).

Jacksonville 60 — — — 11.05]| 30 — {117 ] 1.10
Shoal 1.1 80

Jacksonville Deep 115 (1.14) (1200) 2.13 | 1.2 30 — — 1.12
1.35| 70

Virgin Islands 70 (1.05 to 70 3.0211.06 | 30 - — 1.12
Shoal 1.1) 1.2 45

Virgin Islands 140 (1.05 to 150 3.02 |1.05| 55 — — 1 (1.05)
Deep 1.1) 1.3 65

nons Shoal, Jacksonville Shoal, and Jacksonville Deep. The results are set out in
Tables 3-5, and the resulting conclusions about the sound velocity in the bottom are
quoted in Table A. Some illustrations of the rider waves can be seen in the records
reproduced on Plates 1-9.

C) The amplitude of the water wave should increase with time to a maximum value
and should decrease thereafter, while the period should remain constant after the
maximum is passed. The value of this period, which will be referred to as the Airy
period, is again characteristic of the depth of water and the structure of the bottom.
Values of the Airy period are given in Tables 2, 3, 5, and 6, and the interpretation of
the average values is given in Table A.

D) A three-layered medium in which the thickness of the intermediate layer is
only of the order of the depth of water should possess dispersion characteristics
similar to those of a medium with a uniform bottom. The existence of the inter-
mediate layer should therefore not be revealed by a secondary arrival. Theory also
predicts that the amplitude of the rider wave should be relatively low in such a
medium (by a factor of £ to &), while the water wave should be of normal intensity.
The stations of Virgin Islands Shoal and Virgin Islands Deep which, judged by the
combined evidence from the refraction data and the dispersion data in the water
wave, have a veneer of mud of a thickness of the order of the depth of water covering
a high-speed coral base, would be expected to fall into this class. The records taken
at these stations were found to be lacking in secondary arrivals and to be devoid of
rider waves, as is illustrated in Plates 8 and 9. The success of the theory in explain-
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ing the appearance of the records taken at the Virgin Islands, which were entirely
different from the records taken at all the other stations, is very encouraging.

(5) Theoretically the maximum amplitude in the water wave should vary like the
inverse §-th power of the range, whereas the observations of Ewing and Worzel
indicate that in some stations the maximum amplitude varies like the inverse square
of the range. We have, of course, neglected absorption and scattering, but, as I have
already suggested, it would be interesting to check the experimental determination of
variation of intensity with range.

(6) Our study shows that in all stations the speed of sound in the first 30 feet of
the bottom is no more than about 10 per cent greater than in water. This result
conforms with Ewing’s finding that all bottom samples were muddy.

(7) A complete theory of propagation of sound, both of single-frequency and of the
explosive type, in layered media is developed in Part IT of this paper. This includes
a discussion of the “ray theory” and the wave theory. One interesting theoretical
result is that in case of a density discontinuity at the bottom the normal modes are
not orthogonal, nor is their amplitude, in case of a point source, correctly given by
standard theory of normal modes.

Another of the new results arrived at is that, when the wave length of sound is of
the order of the depth of water, the amplitude of the pressure should decrease at large
ranges like the inverse square of the range, as in the Lloyd Mirror Effect. The asymp-
totic expressions given in Egs. (32) and (33) are strikingly verified in Figure 23, in
which they are compared with values obtained by numerical integration of the
integral in the exact solution.

surface ‘ ’T z2=0
p‘,o, i
¥ pt. source z=4
water H
botton =1
ParC,

F1GURE A.—Assumed model for a two-layered Viquid half-space
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t. source surface T

bottom

e~

P+

B -X*
+x*

F1GURE B.—System of images of a point source situated in shallow water

r, T,
N TN ya —
A, By~—r A, Ba\__/
t, t.

Ficure C.—Illustration of the difference between phase velocily and group velocity
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—> U= group velocity

— — — - — o

|
I
- le |
| !
- U 1
S | ] . |
1 i 1 1 |
fL fR £ e £ A f'

—> £ = frequency
FicurRe D.—Voriation of group velocity U with frequency f in a two-layered liquid half-sapce

surface
h
3 2
H ( ( °_=) -1 ¢, water
r 3l
PoAY D
> 1
P ) anﬁe g total
h reflection ¢
9\ N4 ‘ 2
l bottom
’ 5 s .
F1curE E.—Ray-path in case the charge and receiver are beached on the bottom
surface
z2=0 7|\ ~
(1)
d
z=d 3 pt. source l’
water PyrC,y H
(2)
=H L—
% bottom
(3)
P,°,

FicurRE F.—Assumed model for o two-layered liquid half-space
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A
A ]\ c > °,
T <e
1 ]
% F % %
° “.%z °0kz Ok-3 Ok
] 3% | x| On %| 3x
l Tl4 41-_5_2_ B T 14 z-—4
B CiDp E|F E|F
CiD
k-plane
(a) (b)

FicURE G.—Cuts are made in the complex k-plane along lines parallel to the negative imaginary axts
and starting on the real oxis at the points k = ki and k = kg respectively

The numbers give the phases of 81= /2 32 and of #; = \/# — #% on the real axis and on either side of the respec-
tive cut.

z2=0 surface

(1) ‘I:
z=qd % pt. source
H

Pyr®,
water 1)
z=H (
P,0, h
2 = pep—bottom (2) L
(3) Psc,

F1cuRE H.—Assumed model for a ihree-layered liquid half-space
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PART I: DATA

1. SOME OBSERVED CHARACTERISTICS OF PRESSURE RECORDS OBTAINED AT
LARGE RANGES FROM AN EXPLOSION IN SHALLOW WATER

This investigation was undertaken with the aim of providing a wave-theoretical
interpretation of some interesting features of pressure records from under-water
explosions observed in shallow water at large ranges by Ewing and Worzel. (See ac-
companying paper, Explosion sounds in shallow water.) In these experiments, charges
of 0.5, 5, 25, and 300 Ibs. of T.N.T. were set off either on the bottom or at mid-depth,
and the resulting pressure wave was recorded at distances ranging from % mile to
about 12 miles for a typical station. The depth of water was 10 or 20 fathoms, so
that the maximum ranges were of the order of a thousand times the depth of water.

The recording systems admitted five separate frequency bands as shown in Figures
39-44; in addition, two of these bands were recorded separately with high and low
amplification. Each record therefore consisted of seven traces as shown in Plates
1-11. It will be noted that the geophone system admits a frequency band of from
10 to 100 cps; the Mark I system is sensitive to frequencies less than about 10 cps;
the Mark II high-frequency system has a flat response up to about 1000 cps, which
covers practically the whole range of relevant frequencies. This trace should there-
fore give a faithful representation of the actual pressure variation. The Mark I
rectified system is peaked around 5000 cps and is therefore useful for determining
the beginning of the water wave. On the other hand, the Mark II low-frequency
system is a low-pass filter with a cut-off frequency around 150 cps. This system
has proven particularly useful in the interpretation of the records.

The function of the various traces as used in the interpretation is as follows. The
time break determines the instant of detonation of the shot. The geophone portrays
the vertical component of velocity in the low-frequency range of 10 to 100 cps. The
Mark IT high-frequency trace reproduces the actual pressure variation. The Mark
IT rectified traces are used especially for determining the time of arrival of the
“water wave” produced by the original explosion and also of the subsequent “water
waves” produced by the successive expansions of the oscillating ‘“bubble”. The
Mark II low-frequency traces are especially useful for analyzing the dispersion in the
water wave as well as in the train of waves preceding the waterwave phase. This
trace also serves to determine the arrival time of the ground wave.

We shall now discuss some of the principal characteristics of the pressure record,
which form the subject of our study. Perhaps the simplest record reproduced in
this paper is the one of shot No. 275 shown in Plate 9. A low-frequency disturbance
commencing at .882 sec.! after detonation is seen on the geophone trace and the
low-frequency Mark II trace (next to the bottom trace; the Mark II trace appearing
third from the bottom has the same frequency characteristics but is less sensitive).
At ¢t = 2.768 sec., a new phase arrives and is recorded on all but the very low-fre-
quency Mark I trace. From the Mark II trace one can see that in this phase, which

1 The time scale on the top of the records does not commence at the instant of detonation, hence the difference between
that scale and the time marks on the trace Mark II.
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will be referred to as the “water wave”, the first oscillations are of high frequency,,
and that subsequently the frequency decreases continuously. At ¢ = 2.914 sec, a
similar train of waves arrives but is somewhat weaker than the first. This is a water
wave produced by the first expansion of the “bubble”. The second expansion of the
bubble produces a third water wave which arrives at ¢ = 3.153 sec. The wave
reaching the station at £ = .882 sec. is the “ground wave” which has traveled through
the bottom where the velocity of sound is about 2.768/.882 = 3.1 times the velocity
of sound in the water.

A clearer presentation of the dispersion in the waterwave phase is given on Plates
10 and 11 by the low-sensitivity Mark II trace. It will be noted that the Mark II
high-frequency trace, which should faithfully reproduce the actual pressure variation,
is more complicated and less regular.

Ewing discovered empirically that the dispersion in the water wave is such that
each frequency travels with a characteristic velocity. Tf this velocity be called U(¥)
then the time of arrival of a given frequency f in the water wave T'(f) is given by

r=THU{), e)

where 7 denotes the range. If Ty now denote the time between the detonation and
the beginning of the water wave, as read off the Mark II rectified trace, then we have
r = T, ¢ denoting the sound velocity in water. It follows that
T — T 0 Cy

7 = gy~ 1= F) @)
independently of the range. Hence plots of (I' — T4)/T vs. f, made from records
taken at different ranges, should fall on a universal curve characteristic of the depth
of water and the nature of the bottom. That this is actually the case is shown in
Figures 6-19.

The technique of determining the U(f) curves, which was developed by the writer
in connection with an analysis of more than 40 records, is as folllows. From a trace
such as the low sensitivity Mark II.on Plate 10, one reads off the times T, of the
#-th maximum or minimum, and plots T, vs. #. Such typical plots are shown in
Figures 20, 21 and 22. It will be seen that it is possible to draw a continuous curve
unambiguously through the plotted points. One then reads off T, values for each »
from the continuous curve; and the period P corresponding to any T, is computed
from

P(Th) = $(Tnpr — To-r). 3)

This procedure involves, of course, a numerical differentiation of an observed curve,
but it is seen from Figures 20, 21 and 22, which are typical, that the continuous curve
is well defined by the experimental ‘points.

After the P(T',) values are determined, they are plotted as A points in Figure 9.
The abscissa in this figure is not the frequency f but the nondimensional quantity

=32 @
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where H denotes thedepth of water and A the wave length in water. v, then, denotes
the depth of water in units of the wave length of sound in water. On Figure 9 are
plotted dispersion data from two other stations, giving a total range of T, of from
4.2 to 7.1 sec., and it will be noted that the three sets of plotted points cluster around
a well-defined mean curve. Figure 8 shows a similar analysis of dispersion in three
additional shots taken at the same locality. The six shots from Jacksonville Shoal
have been plotted on two separatefigures only for clarity. The mean curves through
the plotted points are about the same in the two figures. The arrival times T, vary
from 4.3 to 14.1 sec., while the range varies from 4 to 13 miles, the latter being more
than 1000 times the depth of water.
An inspection of the remaining dispersion data plotted in Figures 6-19 reveals
that:
1) Shots taken at different ranges in a given locality yield similar dispersion curves.
2) Though the general trend of the dispersion curves is similar in the various
localities (for which there is a theoretical reason), distinct differences between
localities exist.
3) The dispersion in the waves from the main explosion agrees closely with the
dispersion in the waves generated by the first bubble expansion (Fig. 17).
An analysis of the dispersion phenomenon by wave theory produced a rational
interpretation, which makes it possible to correlate the observed .dispersion curve
with the depth of water and the nature of the bottom. It is thus possible to gain
information on the characteristics of the bottom from a study of the dispersion data.
However, as the theory developed, it became clear that the records should exhibit
additional easily recognizable features which are also characteristic of the bottom,
These features were subsequently discovered in the water wave, in the phase immedi-
ately preceding it, and in the ground wave, and were studied on all records. A dis-
cussion of these new phenomena, which were suggested by the theory, will be post-
poned until after the presentation of some of the elements of the theory of propagation
of explosive sound in shallow water. (The reader who wishes to acquaint himself
immediately with these new phenomena may refer to page 24.)

2. QUALITATIVE DISCUSSION OF THE THEORY OF PROPAGATION OF
EXPILOSIVE SOUND IN SHALLOW WATER

The principal observed features of the records of sound from an explosion in
shallow water can be explained on the basis of a simple model in which the bottom
is assumed to be a liquid of density p» and sound velocity ¢. , which differ from the
density p; and sound velocity ¢; in the water, as shown in Figure A. (Later we shall
also discuss the ‘modification introduced by a layered bottom.) Our problem is to
determine the pressure field due to an explosion in the water. For the large ranges
considered the disturbance can be assumed to be produced by a point source, which
in the absence of the surface and the bottom would generate a spherically symmetrical
wave whose amplitude would decrease as the inverse power of the range. Actually,
of course, the initially spherical wave suffers multiple reflections both at the surface
and the bottom, and at the extremely long ranges in which we are interested (up to
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a thousand times the depth of water) the number of such reflections which need be
considered is very large.

A useful elementary notion in the analysis of the situation is the reflection of a
plane wave at a plane surface of discontinuity in p and ¢. According to Rayleigh
(1896, p. 78) the reflection coefficient X for the amplitude when the angle of incidence

is 6 is given by
¢ 2
222 cos 6 — /‘/1 —-%sinzo
k=22 a (%)

= .
P20 Cy .

— cos 6 + 1 — Zsin?g
pL1CY [

In our application we can limit the discussion to the case of a fast bottom (e2> ),
since in all records the wave which traveled through the ground arrived earlier than
the wave which traveled directly through the water (in one case by as many as 20
seconds). In the case of a fast bottom, the reflection coefficient starts with a value
(psc2 — pic1)/(pacs + prc1) at normal incidence (§ = 0) and increases to unity at the
critical angle for fotal reflection 6, given by

0 = sin 1cy/co), (6)

For larger angles of incidence the reflection coefficient becomes complex of modulus
one, so that no power is transmitted into the bottom, but the wave suffers a change
of phase upon reflection, depending on 8.

Another useful elementary notion is the system of images by which the action of
the surface and bottom can be approximated, as shown in Figure B. This system
consists of dipoles, due to the point source and its image in the surface, strung along
a vertical through the source at a spacing of 2H, the polarity of each dipole being
opposed to that of its neighbors. At great distances from the source and under
certain other conditions which are discussed in Part II, one can assign a definite
strength to the images, which in the case of an image due to m reflections from the
surface and # reflections from the bottom is (—)”K". The reflection coefficient X,
as given in Eq. (5), is a function of 6, so that the images are directional.

For angles of incidence greater than the angle of total reflection 8, , the strength
of all the sources becomes unity, and the system of images then bears a similarity
to a self-luminous diffraction grating (Slater, 1942, p. 284). There are then certain
discrete directions 6, in which waves from neighboring dipoles interfere construc-
tively, corresponding to the spectra of various orders in a diffraction grating. As
illustrated in Figure B, the waves emanating in a direction 6(>6;) from images
4 and B have a path difference Aa = 2H cos § as well as a phase difference (—7 — y),
where

—K = U, (7

Hence, constructive interference will take place between the pair of images if

2rd 4rH cos 0
r)\a—r—1ﬁ=’—>\ci—1r—¢=1r(2n—2), n=1,2,3.. ®)
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For angles 8, for which this condition is satisfied, there will be constructive inter-
ference also between the pairs of images C and D, E and F, as'well as the other such
pairs of images situated in the hottom. Similarly, the source and the images situated
above the surface give rise, at the same angle of incidence 8., to a system of con-
structively interfering pairs of images producing a down-going train of waves. The
combination of the two systems of up-going and down-going waves gives rise to the
so-called normal modes. The normal mode of the #n-th order can thus be conceived
as arising from a superposition of two systems of up-going and down-going waves
traveling at an angle 6, with the vertical, where . , a function of the wave length, is
determined from Eq. (8).

The physical picture just given for the origin of the normal modes shows that the
alternative analysis of the pressure field by the so-called “ray theory” cannot avoid
taking cognizance of the preferred directions 6, for which constructive interference
is possible. By writing down the expressions for all the rays, which are of course
approximate, one will inevitably find that a pair of poles such as 4, B will show an
interference pattern of the Lloyd Mirror type.

The corrugations of the surface and the bottom will, to be sure, impair the precise
phasing required for constructive interference, but the experience with the interpreta-
tion of the data from transmission of explosive sound by the normal mode theory
suggests that, at the grazing angles considered, the effect of corrugations is of the
same order as the blurring of x-ray lines due to temperature agitation of the atoms in
a crystal.

One consequence of Eq. (8) is the existence of a cut-off frequency for each mode below
which constructive interference is impossible. When, namely, the distance Aa in
Figure B plus the corresponding contribution from ¢ in Eq. (7) is less than \/2 for a
given 6, then constructive interference cannot occur. Now the smallest value of 6
for which no energy is transmitted into the ground is the 6; of total reflection, for
which ¢ = 0. Substituting cos 6, = V1= (¢}/cd) into Eq. (8), we find that the
limiting wave length A, , above which transmission by the #-th and all the lower
order modes cannot take place, is given?® by

7V1= (/) ©

Ay = o ST T =123
@n—1) "

8. SUMMARY OF THE SOLUTION OF THE WAVE EQUATION FOR THE PROBLEM
OF PROPAGATION OF SOUND PRODUCED BY A POINT-SOURCE EXPLOSION
IN SHALLOW WATER

The elementary discussion given in the previous section was of a qualitative nature
and was furthermore based on the assumption that the reflection coefficient for a
plane wave is applicable to the reflection of a spherical wave. It is shown in Part II
that this assumption is valid only in special cases; that it is not valid, for example,
when the angle of incidence is equal to the angle of total reflection, or for the treat-
ment of the “tail” of a pressure pulse. Since our purpose is to produce a theory

2 The explanation of the physical origin of the cut-off frequency occurred to severalinvestigators independently; among
the latest is Dr. C. Herring.
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which, for a given type and weight of explosive detonated at a given depth where the
nature of the bottom is known, enables one to compute the pressure variation at large
ranges, an exact solution of the wave equation is required. This is given in some
detail in Part I, so that it will suffice here merely to present a summary of the results.

The mathematical problem is to solve the wave equation for the sound potential ¢

1 92

Vg == -2, 0<z<H (water), (10)
¢ o
1 92

Ve = a—t“:’, z>H (bottom), (11
2

where the subscripts 1 and 2 refer to the water and the bottom. The acoustic
pressure p and the horizontal and vertical components of velocity % and w are derived
from the potential ¢ through

i} ? i}
?=P_<'P’ u = —_":’ w= ——‘P' (12)

ot

Egs. (10) and (11) are to be solved subject to the conditions that

a) the pressure should vanish at the surface;

b) near the source, ¢; should approach f(# — R/c1)/R, where R denotes distance
from the source and f(£) the time variation of the pressure pulse at the source;

c) the vertical component of the velocity w and the pressure should be continuous
across the bottom interface. Conditions (a) and (c) require that

=0 z=0, 13)

b7} 7]
a—? = ai:, pe1 = poge, 2= H. (14}

The solution of this problem is obtained in two steps by solving first for the case
when the point source is periodic of circular frequency w:

¢ = N7, 3, 0), (1%

and then generalizing the solution for an arbitrary pressure pulse f(#) through a
Fourier synthesis:

o2, = - f 5 (r, 2, gle) do, (16)
where

glw) = f Wt (1) dt. 17)

The solution for ¥ is derived in Part IT as an integral in the complex plane. If &
denote the depth of the source, then

sin (8:2) [ﬂx cos B1(H — d) + ibBa sin By(H — d)]’ 0<z<d (8

Bl Cos 131H + 'ibﬁz sin ﬂ]H

1

¥ = Zf Jolkrdk dk
(]
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v j‘ o) dpSm (8:d) [Bl cos Bu(H — 2) + ibBasin Bi(H — 2)
0

:l, d<z<H, 19

Bl cos B]H + ’l‘bﬂz sin BIH
© sin (8;d)¢—Bele—E)
= k
¥ =2 fo Tkt B, 2>, (20)

where b = py/p2, and
= \/(wz/cf.) — k2, k< (w/cn),
= =iV = @R), k> (ofe), n=12. (21

The integrals in Eqgs. (18), (19), and (20) can be evaluated by direct numerical
integration only when the wave length is greater than a moderate fraction of the
depth of water, and the range is not large in terms of the depth. This was done
for a few cases, and the results are shown by the continuous curves in Figure 23.

For smaller wave lengths or larger ranges, the integrands oscillate extremely
rapidly, and the numerical integration becomes well nigh impossible. An alternative
expression for the potential, valid under these conditions, can be obtained by trans-
forming the path of integration in the complex %-plane. The potential ¢ is then
expressed in terms of the residues of the integrands ¢', and an integral along a branch-
line ¢”. The residues thus obtained are the normal modes, while the integral along a
branch line can be shown to decrease in relative importance as the range increases.

The result is as follows:

o=¢ +¢’, (22)

o = ( ;1’”) ot Z B (B ) Fla) sin(xa d/H) sin(waz/H), 0<z<H, (23
n=1

13 o
( an) e‘imt Zﬂéz ’ (kn V)F(xn) sin(xn d/H) sin a, e—iﬁé") (Z_H>y 2> H, (24)
n=1

where

Xn

Flxn) = 25

-« . bl
(%, — sin x, cos x, — b2 sin? x, tan x,)

2 2
Y I S BV A
01 Cy Ce

and the %, are the roots of the equation

tanz 1 - 1
x  bHB: o2 & ot 2 @2n
b B - VA 5 5 — =
H/‘/ Y a & R
kz . d .
o = —2ib H‘()Z)(kr)k b B2 sin(By d) sin(B12) (28)

[82 cos?(6 H) + b28% sin(8 H)]'

— too

For large ranges one may use the asymptotic expression for the Hankel function

& (f_k”r) ’ (29)

@
Hy (k) wknr
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whereby expressions (23) and (24) are transformed into

7 & 1 : *
¢ = (%’ ) 1/ Tﬁr El WZ ¢ (45T p(2) sinCon d/H) sin(w,2/H), 0< z<H, (30)

&= 27b 2 Z ‘(mt—k"r—‘i) F(x,) sin(x, d/H) sin %, —i8E™ (—H) , 2> H. (31)
H TV ne=1 \//8

Similarly one finds that for large ranges and under certain other conditions specified
on page 56.

- (2ibk2)ei(wt—k21‘) Sil’l(kl d”) sin(k1 z”) 1 < C2, (32)
(Byr)2 u? cost(by Hu) ’ z < H,
oo (2bky)e* 4R sh(ky di) sh(kizv) o> a, 33)
¢ (B )2 vtch2(k Hy) z < H,
where
v= V@D -1, w= VI, k=2 (34)
Cn

4. DISCUSSION OF THE SOLUTION FOR A PERIODIC POINT-SOURCE

I. EVIDENCE FOR THE REALITY OF THE BRANCH-LINE INTEGRAL IN THE SOLUTION
FOR THE POTENTIAL, AND ITS PHYSICAL MEANING

The appearance of the branch-line integral term ¢” in the solution (22) for the
potential seems contrary to standard theories on the solution of the wave equation
for a point-source in terms of normal modes. - Some evidence for the reality of the
branch-line integral is furnished by the asymptotic behavior of the solutions com-
puted by numerical integration of (19), which are shown in Figure 23. The dashed
lines in this figure, which show a variation of pressure amplitude as the inverse
square power of the range, were computed from Egs. (32) and (33). It will be seen
that in all cases the exact solutions show an approach to an inverse-square variation
of amplitude with range, and that the numerical agreement with the asymptotic
curves is very good.®? This is most remarkable since the cases treated include both
slow and fast bottoms, and the coefficient N defined in Figure 23 ranges from 0.05
to 8.2.

As to the physical nature of the component of the solution represented by the
branch-line integral, one sees first from the appearance of %» in the exponents of
(32) and (33) that it represents a wave which propagates with the speed of sound in
the bottom. Secondly, for very long wave lengths (k; small) or when » and u are small
(small contrast in velocity), (32) and (33) reduce to the asymptotic form for a point
source and its image in the surface situated in a uniform medium possessing the
properties of the bottom. It would seem, therefore, that the branch-line integral
represents the Lloyd Mirror effect as modified-by the discontinuity at the bottom,

3 Curves F and G have not been plotted solely in order to avoid overcrowding in the figure.
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Another point to notice is that for short wave lengths A K H) and a1 < ez,

shky dv)sh(krzn) _ gy @H——d)

v2ch?(ky Hv) . »2 ! @)

as compared with a corresponding term of %} -d-zin the ordinary Lloyd Mirror theory.
The ratio of (35) to the latter ¢ *” ®*=*™% /,2k1dz is very small unless both the source
and receiver are very close to the bottom.

IL VARIATION OF THE AMPLITUDE OF THE NORMAL MODES WITH DEPTH

Expressions (30) and (31) for the normal-mode component of the solution can be
rewritten in the form

21r) 2 v 1 et—ker—(ain)]
¢ =\= el E ——c n Flxp)on(denlz), 0<z<H (36)
(H 1/; RV e ’

2"”) E = t i[@b—kpr—(x/4)]
¢ =\ Z = gtl@ b= F(2n) en(d)en(2) ¢>H, (@0
( H 1/1rr 'n2=1 \/k,, e

where o, (2) represents the amplitude of the n-th normal mode, and is given by

en(2) = sin (vn2/H), 0<z<H,
— (38)
sin (xp)e™ VET-wi]e} ¢ H)’ z> H.

Here the %, and the k, are roots of Eq. (27):

1 1 2
tanx _ _ , x=H © 2. n
® w? w? W x? e} "
, bH K oH 1

"3 i ¢ m

When ¢; > ¢, which is the case in which we are interested, Eq. (27) possesses
real roots for k, and x, , the latter varying in the range n(n — 3) < #, <#mx. On
the other hand, when ¢s < ¢; , the roots k, are complex numbers with negative imag-
inary parts. In the latter case, therefore, the factor e~%" in (31) and (37) implies
horizontal attenuation, whereas, i the case of a fast bottom, there exist solutions which
suffer no horizonial damping. This condition stems, of course, from the fact that,
for angles of incidence greater than the critical angle, no power is transmitted into
the bottom.

The variation of the amplitude of the first mode with depth is shown for several
cases in Figures 45-48 (computed in Fall of 1941). The quantity ¢ is the so-called
phase velocity of the first mode, which will be discussed in the next section. In
Figures 45 and 46, the amplitude decreases exponentially with depth below the
bottom. The decrement starts from zero at the cut-off frequency of 93.3 cps and
increases with increasing frequency. At frequencies greater than about 1000 cps,
very little energy of the first mode is left in the bottom, and the amplitude distribu-
tion approachs half a sine wave. In the triple-layered medium (Fig. 46) the limiting
form of the amplitude distribution for very high frequencies is half a sine wave
confined between the two internal surfaces of discontinuity. On the other hand,
in the continuous cases shown in Figures 47 and 48, the amplitude of the first mode is
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compressed, with increasing frequency, to an tucreasingly narrow range of depth near
the minimum of sound velocity. The trapping of the energy near the minimum of the
sound velocity, as well as the difference between the limiting form of the amplitude
distribution in the continuous and discontinuous cases, can be explained by well-
known principles of quantum mechanics, which we shall however not discuss here.

The amplitude of the second mode has, in addition to the common node of the
surface, another nodal surface within the water. Similarly, the #-th mode possesses
7 nodal surfaces in the water.

One consequence of weak penetration of the energy of the first mode into the
bottom with increasing frequency is that observations (of dispersion) on high fre-
quencies can yield little information on the nature of the bottom, whereas the lower
frequencies do make an appreciable “sounding” of the bottom.

The factors F(x.)/\/ k. determine the strength of excitation of the n-th mode.
The function F(x,) is plotted for several two-layered media in Figures 28 and 49.
It will be noticed that it vanishes at the cut-off frequency and that it approaches
unity at high frequencies.

III. THE PHASE VELOCITY OF THE NORMAL MODES, AND THE ANGLES OF INCIDENCE
OF THE COMPONENT PLANE WAVES OF THE NORMAL MODES

The factors ¢ in Egs. (36) and (37) allow of an obvious interpretation of

k., namely k, = w/c,, where ¢, denotes the phase velocity of the n-th normal mode.
The meaning of phase velocity is that, in case of an arbitrary disturbance, the
amplitude of the Fourier spectrum of the disturbance at w is propagated with the
speed of the phase velocity. The phase velocity of the normal modes starts at the
cut-off frequency with the value of the speed of sound in the bottom, and decreases
continuously with increasing frequency toward the value of sound velocity in water.
The variation of phase velocity with frequency is shown for several double-layered
media in Figure 28 and for several modes in Figure 49. This would suggest that, in
case of an arbitrary disturbance, the low-frequency components in the spectrum of
a pressure pulse would get ahead of the high-frequency components, so that at large
ranges the received pulse would appear in the form of a train of nearly sinusoidal
waves in which the period decreases toward the rear. The actual situation is more
complicated, however, because the component waves are not merely separated out
by their different rates of advance but are also superimposed, thus producing com-
plicated interference patterns. We shall return to this question later.
The factors

6i[wt—k,.'r—-(‘u'/‘i)] sin ('cnz/H) — %{ei[wt—k,.r-i-(x,.zlﬂ)-(:i1/4)] - e—o‘[wt—k,,r—(z,,z/H)—(31r/4)]} (39)

in Egs. (36) and (37) show that the normal modes can be analyzed into two plane
waves traveling obliquely upward and downward, respectively, as indicated in
Figure B. The angle which these waves make with the vertical 9, is given by

0n = sin™? (Bpc1/w) = sin Ycr/cn) = €08 "Hxpt1/Hw). (40)

An inspection of Figure 49, in which curves of ¢./c1 are plotted against frequency
forn = 1, 2, 3, shows that:
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(a) 6, is always greater than the angle of total reflection of sin™ (c1/c»), as was
anticipated in the Qualitative Discussion of the Theory of Propagation.

(b) In any given mode, 6, starts with the value of the critical angle at the cut-off
frequency and approaches grazing incidence in the limit of very high fre-
quencies.

(c) For a given frequency the angle of incidence is smaller, the higher the order
of the mode.

Since reflection by a corrugated surface approaches specular reflection at grazing
incidence, it would follow from item (c) that under practical conditions the first mode
would tend to persist to greater ranges than the higher-order modes. A similar
conclusion with regard to the relative persistence. of various frequencies in a given
mode cannot be inferred from item (b) because the higher the frequency the higher
is the angle of incidence required for the condition of specular reflection to be ap-
proached.

IV. THE QUESTION OF THE ORTHOGONALITY AND NORMALIZATION FACTORS
OF THE NORMAL MODES

This question is dealt with in detail in Part II. Suffice it to mention here that
the expressions for the normal modes given in Eq. (38) are not orthogonal when there
is a discontinuity of density at the botiom. The reason for this is that in the presence
of a discontinuity in density, the normal modes (as well as the horizontal components
of velocity) are discontinuous at the bottom, because the acoustic pressure, which s
continuous, is equal not to the potential but to the density times the potential.
Again it is found that unless the densities of the water and bottom are equal, the
normalization factors as obtained from the residues are nof such that the integral
of the square of the normal mode function from z = 0 to z = o is unity.

5. PROPAGATION OF A PRESSURE PULSE IN SHALLOW WATER

1. FORMAL GENERALIZATION OF THE SOLUTION FOR AN EXPONENTIAL PULSE

In previous sections it was shown that the solution for a periodic point source can
be expressed in terms of normal modes, as given by Eqgs. (36) and (37), and by a
branch-line integral which was shown in Eqs. (32) and (33) to vary like 7%, as com-
pared with the normal-modes variation of 7. Except near the beginning of the
ground wave when the amplitude of the normal modes vanishes (F = 0 in Figs. 28
and 49), the contribution from the branch-line integral can be neglected for the large
ranges which we are considering.

We shall now examine how the normal-mode solution

o0
¢ = Z ei[wt_k"r—(rl4)]Qn(ry 2, d: ‘*’):
n=1
2 xp sin (x,d/H) sin (xp2/H
1) 2 w s (i d/ED) sin (2n2/H)  o<i<m @
yi4 whnt (%, — sin x, COS &, — b2 sin? &, tan x,)

for a periodic point source can be formally generalized to the case of an arbitrary
pressure pulse f(£) at the source. For reasons to be explained later we shall assume

Qn
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that
f(t) = e-)‘ty t> 07
=0 , t<O0.

4)

The pressure jumps from zero to unity at ¢ = 0 and thereafter decays exponentially
with time. We have

1 % gt
f(¢)=;r[_”m, (43)
= i Pn(’y Z, l)y (44)
=1

Onlr, 2, ©) deo

1 @ ilwi—kn(w)r—(7/4)]
Palr0) = f —_——

Zr - O + iw)

= 3}(;; :_w) 0s [wt — kp(w)r — 4—1 — tan~t ( )]dw, (43)
w2

where Pa(r, 2, £) represents the contribution to the pressure from the #-th mode.

II. THE GROUP VELOCITY OF THE NORMAL MODES

The integral in Eq. (45) represents a superposition of sinusoidal waves traveling
with different phase velocities ¢, = w/k.(w), the amplitude of the waves of the
circular frequency w being about Q.(7, 2, @)/A/A? + w?. Denoting

flo,r, 1) = ot — k(w)r — x/4*

as the phase, we see that, for such values of w, 7, and ¢ for which the phase varies
with w, the cosine factor in the integral in (43) will tend to be cancellatory. Can-
cellation of the integrand will be minimized however at such points w (called points
of stationary phase) where f(w) = 0. It is to be noted that, whereas in considering
the phase velocity we seek the increments Ar and At which are required in order to
keep the phase at e given frequency w unchanged, in looking for points of stationary
phase we seek such values of w where, for given values of 7 and £, the phase is un-
changed by a slight increment Aw. A point of stationary phase is therefore not one
for which two neighboring frequencies travel with the same phase velocity. Such
points do not exist in fact.
At frequencies w for which the phase is stationary, mutual interference will be at
a minimum, and these frequencies will therefore be dominant at the prescribed values
of £ and . The values of / and 7, for which the phase is stationary for a given fre-
quency, therefore determine the rate of propagation of this frequency in the mutually
interfering train of sinusoidal waves, or the so-called group velocity U:
dw dw
(46)

¢ The term tan~! (/M) in the phase can be considered as a slowly varying quantity such as Qn(w)/v/ 3 + w?.
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We have therefore defined the group velocity as the velocity with which a given frequency
(or period) is propagated in a train of waves which results from interference of com-
ponent sinusoidal waves traveling with different phase velocities.

That the group velocity as defined above is different from the phase velocity can
be seen from the following considerations. In Figure C we have sketched the pulse
shape at time #, when the phase 4 (point of zero pressure) has reached 7, , and at a
later time #, when it has reached 7, . It is assumed that the phase velocity increases
with wave length so that the pulse becomes drawn out as it progresses. If Ar =
72 — 71 is small, then the phase velocity is Ar/A¢. This is, however, not equal to the
group velocity because at 7, the dominant wave length near 4, has increased, and the
original wave length is now somewhere to the rear of 4». The distance covered by
the wave length is therefore less than the distance Ar covered by the phase, and the
group velocity is less than the phase velocity.

It can be shown that the group velocity U is always less than the phase velocity
when the phase velocity decreases with increasing frequency, as in our case. We
have

dw  d(ck) de
w = ck, U_gk~—dk —c+kdk, (47)
. de . . .
and, since 7k < 0, it follows that U is always less than phase velocity ¢.

Figure 28 shows the variation of group velocity of the first mode with frequency
for a series of two-layered liquid half-spaces. It will be noted that in all cases the
group velocity passes through a minimum, and that for values of U < ¢ twe fre-
quencies correspond to a given value of U. It will be shown later that both these
features of the group-velocity curve have important consequences for the interpreta-
tion of propagation of explosive sound in shallow water. Group-velocity curves for
three-layered media are shown in Figures 29, 30, 31, and 32. The significance of
some of the characteristics of these curves in the study of records from explosive
sound will also be taken up later.

III. THE GROUND WAVE, WATER WAVE AND AIRY PHASE IN A TWO-LAYERED
LIQUID HALF-SPACE

If a pressure pulse from a point source is initiated in shallow water, and if the
pulse is not a single frequency ping but covers a moderately broad spectrum, then
the pressure wave at large ranges due to the first mode would be expected, on the
basis of the group velocity curve in Figure D, to show the following sequence of
events. The first arrivals would be nearly sinusoidal waves of frequency fr. , where
f1 denotes the limiting frequency for the first mode

a
HN 1= @G/
These waves would arrive at ¢ = 7/c..” As time progresses, the frequency in this
so-called ground wave would decrease, and the amplitude would increase (for reasons

fi (48)

& This is not strictly true, but we shall not enter upon a discussion of this point here. (See Pekeris, 1946.)
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to be given later). This is because at later epochs the group velocity is less, and
therefore one proceeds down the left branch of the group velocity curve in Figure D
in the direction indicated by the arrow. At the time 7/c;, a new train of high-
frequency waves due to the right-hand branch of the group-velocity curve would
suddenly be superimposed on the ground wave. This new high-frequency wave,
which would arrive with an apparent velocity equal to the velocity of sound in water,
we shall designate as the wafer wave. The frequency in the water wave would
decrease as time progresses, while in the ground wave the frequency would continue
to increase.” At a time ¢ = /U, for example, the first mode would consist of a
superposition of two frequencies, one f, due to the ground wave and another f,, due
tothe water wave. Still later, f, and f,, would approach each other until at ¢ = »/U,,
where U, denotes the minimum group velocity, they would coincide. The pressure
then would consist of a single frequency, f4 , and we shall designate this portion of
the pressure record as the Airy phase, because Airy was the first to treat a mathe-
matically related problem of diffraction of light near a caustic.

The sequence of these events is illustrated in the theoretical curves drawn in
Figures 24A, 24, and 25. Figure 24 shows the ground wave up to the time of arrival
of the water wave. The upper portion of this figure is rather complex, because
we have here superimposed the contributions from the first three modes. Perhaps a
clearer illustration of the events described above for the first mode can be obtained
from the lower portion of the figure, in which the higher modes have been rela-
tively suppressed by low-pass filtering. The ground wave is seen to consist of a
nearly periodic wave which is gradually modulated both in amplitude and frequency.
The change in frequency from the first arrival up to the time (=35.542 sec.) of arrival
of the water wave is small, corresponding to the small difference between f, and f»
in Figure D. fg, the so-called rider frequency, is the frequency of the ground wave
at t = 5.542 sec., which is seen to be around 50 cps.

The details of the water wave and of the accompanying ground wave, as well as
of the Airy phase, are shown in Figure 25, which is a continuation of Figure 24 on a
different scale. The amplitudes of both the water wave and the ground wave con-
tinue to increase while their periods tend toward equality. The maximum amplitude
is reached shortly before ¢ = 5.668 sec., which is the arrival time of the Airy fre-
quency fa(= 75 cps) corresponding to the minimum group velocity Uo. There-
after we have the Airy phase in which the frequency remains constant at the value
fa , and the amplitude decreases continuously, ultimately approaching an exponential
rate.

IV. EXPRESSIONS FOR THE GROUND WAVE, WATER WAVE, AND AIRY PHASE
The contribution P,,(r 2, t) from the #-th mode to the potential is given in Eq. (45):

Pplr,z,8) = — f}i\rz :—w) cos [wt — Eplw)r — I — tan™t (;—)] dw,
w
2,

e=(5)
" H Thp?

_ %n sin (xnd/H) sin (xnz/H)
" (g — sin xy, cos 2, — b2 sin? %, tan x,)

(45)

= F(xy) sin (xnd/H) sin (x,2/H). (49)

0n
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As previously explained, the integral in (45) is evaluated by the method of station-
ary phase, the details of the calculation are given in Part IL. It will therefore suffice
to give the final results here.

To compute P, at a given point (r, z) and a given time £, in case of an exponential
pulse e, one first computes the group velocity U = r/t, and then determines from
the abscissa of a group-velocity curve (Fig. 28), the dominant frequency f at that
time (y = fH/c1). One also determines from the dispersion curves the corresponding
quantities

. d%
k= 2xf/c = w/c, ke L etc. (50)
P, is then computed from
Pn=P%, t <r/a,
P, = P}, + P3, t> 1/,

where P% denotes the ground wave, and P, the water wave.

We have
4 cos [wl — rk — tan™! (;i) — gjl O
, (51)

Hr /% 5O + o?)

4 cos [wt — 7k — tan™! (;)] 0n
PR = Z . (52)
Hr A/E| k| (2 + o?) :
In these expressions the factors other than the arguments of the cosine are slowly
varying functions of time; Egs. (51) and (52) therefore represent waves which are
modulated both in frequency and amplitude. It will be noted that

a2k H 1 dU
de® (21rcl> Zﬁdv ! (53)

P =

so that the amplitudes of the ground wave and the water wave vary inversely as the square
root of the slope of the group-velocity curves in Figure 28.

Expressions (51) and (52) are approximate and may be used only for large ranges
and at times removed from the epoch of the minimum group velocity, when kE=0.
The precise condition to be observed in using (51) and (52) is

1 s®  3k] 1 (H sz 37
YR [— L + (7&)2] = 56—”2(7) [— - + 27] <1, (54)

where the Z’s are the nondimensional quantities:

Ad2k iz . 2xc d% s 4ac d'k

=" L= 7 = . 5
Hdw?’ dvy z H2do® ’ B dot 9)

When condition (54) is not met because of the proximity to the point of the min-
imum group velocity—that is for some time prior to the Airy epoch and for all times
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thereafter—one can use, instead of the sum of expressions (51) and (52), the single
expression

4 cos [wol — ko7 — tan™! (%0) - E:, On{w20) E(2) (56)
FHA(—FE) IV (2 + wdko/2n

where the subscript , refers to the point of the minimum group velocity, and

4\/; 4 5 (272 (5}
=3'\/—?.———§ -Z—I- {7 — 7w %, 'r=7—1, Tm="0:;—1,
r

E@) = BAU_40) + Ji@)], t< 7

0

Py =

= MI,0) — L), > —. (57)
) U

Again, Eq. (56) is to be used only when

1 H\' %, G
— (= Tl
(zm(r) CaltEm <0 9
the function G(v) being defined in Egs. (A114) and (A115) in Part II.

The Airy phase as represented by Eq. (56) is an amplitude-modulated train of
waves. Some theoretical curves of the Airy phase alone are shown in Figure 26.
The curves in Figs. 24A, 24 and 25 were computed from Egs. (51), (52), and (56).

V. RELATIVE EXCITATION OF THE VARIOUS MODES BY AN EXPLOSION IN SHALLOW WATER

Our discussion thus far has been concerned with the contribution to the pressure
variations from individual modes, and we have also intimated that the first mode
would impress its characteristics on the pressure record to a greater extent than the
higher-order modes. This is an assumption which is usually made in discussions
of the subject, but in trying to check it qualitatively the writer found that it is not
of general validity.

The theory of normal modes developed in previous sections makes definite predic-
tions as to what the relative amplitudes of the various modes should be. If we define

%y, sin? (x,)
(%, — sin %, cos x, — b2 sin? x, tan x,)c; \/ b

Gy = (59)

%, sin? (x,)
Gy = —_ 60
2 7 (2, — sin %, cos &, — b2 sin %, tanxn)cl\/klki’ (60)

then it follows from Eqs. (51) and (52) that, when both the charge and the hydro-
phone are beached on the bottom (d = z = H), we have
4¢1
H VN + o
4cy

[PR] = ———=——G{"™, (62)
J;AVACE R

A G, (61)
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for the amplitude of the ground wave and the water wave, respectively. With the
exception of the factor (A\? 4- )™} which depends on the particular size of charge
used (A} and is slowly varying in any case, the relative amplitudes of the various
modes are given by G{™ and G5™.

Figures 33, 34, 35, and 36 show curves of G; and G; for the first three modes in the
case of a two-layered liquid half-space. The abscissae are reduced time scales
(T — Ty)/T,, where T denotes the time after the explosion, and Ty the arrival time
of the water wave (= r/cy). It will be noted that the various modes are distinguished
not only by different excitation amplitudes but also by different frequencies arriving
at a given time, as shown by the y-curves. The higher the order of the mode, the
larger are the frequencies arriving at a given time.

In the ground wave (G1), the amplitude of the first mode is about three times the
amplitude of the second mode and about five times the amplitude of the third mode
(Fig. 24, top). On the other hand, in the water wave the theoretical contrast in the
amplitudes of the various modes is seen to be very much less. One would therefore expect
that a receiver which is characterized by a flat spectral response would record a water
wave composed of several trains of waves of about the same amplitude but of different
frequencies. Such a record is likely to have a-rather complicated appearance.
However, in the case of a low-pass receiver system, the higher-order modes would be
relatively suppressed on account of their higher frequencies, and the record would
exhibit the expected dispersion characteristic of a single (the first) mode.

This I consider to be one reason for the complicated appearance of the Mark II
high-frequency traces shown on Plates 1-11, in contrast to the simple dispersion
pattern shown by the Mark II low-frequency system. The Mark IT high-frequency
system has a flat response up to about 1000 cps, whereas the Mark II low-frequency
system is a low-pass filter with a cut-off frequency around 150 cps. (See Figures 43,
44, and 41, 42.) The effect of the Mark II low-frequency system in enhancing the
first mode in the ground wave and the water wave is illustrated in Figures 24 (bottom)
and 25 (bottom). A similar effect on the Airy phase is shown in Figure 26.

Another factor which needs to be considered when comparing the relative strengths
of excitation of the various modes is the effect of the roughness of boundaries. It is
known that for a given frequency a condition of nearly specular reflection is ap-
proached, even for a rough surface, as grazing incidence is approached. This condi-
tion is approached earlier, the longer the wavelength. Since the normal modes can
be analyzed into two plane waves traveling upward and downward at definite angles
of incidence 8, , it is of interest to inquire how 8, varies with the order # of the mode.
If one makes the comparison on the basis of a given frequency, then since 8, =
sin~1(c1/c™) where ¢ is the phase velocity of the #-th mode, and since (Fig. 49)
¢™ /¢, increases with the order #, it follows that the first mode travels with the
highest angle of incidence and should therefore suffer least attenuation by scattering
from rough boundaries. However, this conclusion must be tempered by the fact
that the comparison should be made not for a given frequency but for equal times of
arrival—i.e., we wish to compare the relative amplitudes of the various modes as
they are superimposed at a given time. Figures 33, 34, 35, and 36 show that the
higher modes arriving at a given time are of higher frequency and, since the angle
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of incidence increases with increasing frequency, it is necessary to make a quantita-
tive study of the variation of the angles of incidence with the order of the mode for
a given arrival time. This is done in Figure 50. It will be seen that in the ground
wave the difference in 8 is rather small and this difference is in any case not of practi-
cal importance for the low angles of incidence involved. In the water wave the
difference in angles of incidence between the modes is somewhat larger, and this
difference is of greater physical consequence because of the rapid change of reflec-
tivity near grazing incidences. Whatever difference exists in the water wave favors
the higher modes. No conclusions can, however, be drawn from this result with
regard to relative effects of rough boundaries on the various modes, because the
higher angles of incidence of the higher-order modes are counterbalanced by the
closer approach to grazing incidence required to achieve the condition of nearly
specular reflection at their higher frequencies.

6. FEATURES OF THE PRESSURE WAVE FROM AN EXPLOSION IN SHALLOW WATER
WHICH CAN BE IDENTIFIED AND MEASURED ON THE RECORDS AND FROM
WHICH THEORETICAL DEDUCTIONS CAN BE MADE ABOUT THE STRUCTURE
OF THE BOTTOM

L. ARRIVAL TIMES OF THE GROUND WAVES AND OF THE WATER WAVES AND THEIR USE IN
DETERMINING THE STRUCTURE OF THE BOTTOM BY STANDARD REFRACTION METHODS
One of the simple features to identify on the records is the time of arrival of the
wave. For the ranges we are considering this is a wave which has traveled in the
bottom for most of its course, and which therefore arrives ahead of the wave which
reaches the receiver directly through the water. In Plate 1, for example, the arrival
time in shot 47 is 1.372 sec.® after detonation of the charge, and this phase is marked
by the arrow on the geophone trace. The placing of the arrival time at the position
of the arrow is based on the judged time of first slanting of the geophone trace. The
beginning of shot 48 on Plate 1 is placed at 1.685 sec., that of shots 58 and 59 (Pl. 2)
at .791 sec., and .768 sec., respectively, and so on. With a receiver system consisting
of seven independent channels which are recorded simultaneously on the oscillogram,
the identification of the beginning of the wave presents little difficulty in most cases.

In reading the beginning of the wave, one picks the earliest definite indication of a
disturbance on any of the traces in the record. The position of the judged beginning
of the wave is marked in Plates 1-9 either by a number giving the arrival time or by
an arrow on the particular trace which shows the earliest disturbance from quiescence.
An inspection of the identification of the first arrivals on the records in Plates 1-9
will reveal that without exception they appear either on the lower (sensitive) Mark T1
low-frequency trace or on the geophone trace, both of which are insensitive to fre-
quencies greater than about 150 cps.  On the other hand, the high-pass systems such
as the Mark II high-frequency and the Mark II rectified (see Figs. 41, 42, and 43)
respond very weakly and belatedly to the first arrivals. The difference between the
responses of the high- and low-pass systems to the beginning of the ground wave
cannot be explained on the supposition that the amplification of the low-pass systems

8 The time marks on the traces include a correction to the beginning of the time scale appearing on top of the records.
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is higher than in the high-pass systems, because in the case of the arrival of the
waler wave which is visibly rich in high frequencies it is the high-pass systems which
respond earliest and most strongly. Oneis therefore driven to the conclusion that the
ground wave is a low-frequency disturbance which starts gently with a weak ampli-
tude, while the water wave is a high-frequency disturbance which builds up quickly
to a considerable amplitude. This is precisely what the normal-mode theory predicts,
and is illustrated in Figs. 244, 24, 25, 33, 34, 35, and 36.

Another easily identifiable feature is the arrival time of the water wave. As men-
tioned above, this phase appears first and strongest on the Mark II rectified and the
Mark II high-frequency traces. In Plate 1 the water wave arrives in shot 47 at
t = 1.679 sec., in shot 48 at £ = 2.407 sec., etc. It is clear from this and the other
records that the arrival time of the water wave can be read with high precision off
the Mark IT rectified trace as well as off the Mark IT high-frequency trace.

The data of the arrival times of the ground wave and the water wave can be
utilized, by an application of standard-refraction methods used in geophysical
prospecting, to gain information on the variation of sound velocity with depth in
the bottom. Consider the case shown in Figure E in which the charge and receiver
are beached on the bottom at A and D, respectively, and where the bottom consists
of a layer of thickness 4 and sound velocity ¢, which is underlain by an infinite half-
space of sound velocity ¢s. Beyond ranges greater than 2A/ V4 (cs/¢s)* — 1, the
receiver will register

(a) the water wave which travels in the water along 4D,

(b) a ground wave traveling along 4D in the bottom with speed ¢z , and

(c) a ground wave traveling along the path ABCD, where the leg BC is covered
with the speed ¢s of the lower medium. At great ranges the first arrival is the
ground wave (c), while at intermediate ranges the ground wave (b) is the first to
arrive. The travel time of the ground wave (3) is simply /¢, , while the travel time
of ground wave (c) is the time required to cover the legs AB and CD with speed c.
and the leg BC with speed ¢3 :

2h
apcp = Z— + - (cs/c2)t — 1 = tplar/ea) + 7, (63)
3 3

N Y= (69
3

where 1, = 7/c1 denotes the travel time of the water wave. If one now plots the
arrival times of the ground waves versus the arrival times of the water waves, the
points line up on two straight lines in the manner shown in Figure 1 for the shots
made at Solomons Shoal. The first line, which passes close to the origin, shows that
¢; = 1.15¢;. The second line has a slope indicating that ¢; = 1.79¢; . From this
plot one can also determine the thickness of the intermediate layer. According to
Eq. (64) the intercept 7 of the second line with the axis of ordinates is equal to
(2h/cs)V/ (csf/ca)* — 1. In Figure 1, 7 = .345 sec., (cs/cs) = 1.79/1.15, from which
one arrives at a value of 1280 feet for the thickness of the intermediate layer h.
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It will be noted (Fig. 1) that for #,, > 2.6 sec., the arrival times of the ground wave
indicate the presence of a faster layer than the third at some greater depth.

From our conclusion that the layer of speed 1.15¢; is 1280 feet deep, which is more
than 25 times the depth of water of 52 feet, it follows, in the light of the theory of
normal modes in a three-layered liquid half-space, that the dispersion in the water
wave at Solomons Shoal should be very nearly the same as if the intermediate layer
extended to infinity. This is illustrated in Figures 29 and 31; when the thickness
of the intermediate layer is 10 times the depth of water (cases 3.8 and 3.9), the dis-
persion due to the water-bottom discontinuity is very nearly the same as when the
intermediate layer is of infinite thickness (cases VI and V). The above theoretical
deduction is closely confirmed by the observed dispersion characteristics at Solomons
Shoal. 1In fact, it will be shown in the next section that the records taken at Solo-
mons Shoal offer a text-book experimental illustration of the normal-mode theory
in a two-layered liquid half-space.

Another consequence of the theory of normal modes in a three-layered liquid hal-
space is that the dominant wave length in the ground wave which travels in the
intermeidate layer along 4D should be less than the dominant wave length in the
ground wave which takes the path 4BCD of Figure E. Referring to Figure 31, for
example, the value of y(= H/M) in the former is about 0.6, while in the lattery = .028.
This theoretical result is very well confirmed in Figure 1, in which the periods of the
points marked by A are more than twice the periods of the points marked by @.
The same characteristics are shown by the data in Figure 2, and to a lesser extent
in Figure 3.

A refraction curve which is entirely different from the one obtained at Solomons
Shoal is shown in Figure 4 for Virgin Islands Shoal. In both Figures 1 and 4, the
closest refraction points begin at.about 0.3 sec. travel time, but in Figure 4 all the
points seem to line up along a straight line whick does not pass through the origin.
This last feature implies that between the water and the medium in which ¢ = 3.02¢;
there is an intermediate layer of, probably, an intermediate sound velocity. The
dispersion characteristics at Virgin Islands Shoal, shown in Figures 12, 13, 14, and
13, suggest, as will be explained later, that the speed of sound in the layer contiguous
to the water is 1.05¢; to 1.1¢; . With a value of the intercept on the axis of ordinates
(= ) in Figure 4 of about .029 sec., one derives from Eq. (64) a value for the thick-
ness of the intermediate layer of about 80 feet in either case. On the basis of the
refraction data and aided by the indications from the dispersion data in the water
wave, we thus deduce that the bottom at Virgin Islands Shoal is made up of

(a) a top layer of a thickness of the order of the depth of water (= 70 feet) in
which the velocity of sound is about 1.05¢; to 1.1¢;, and

(b) an underlying medium in which the velocity of sound is 3.02¢; . The structure
of the bottom at Virgin Islands Shoal (as well as in Virgin Islands Deep) therefore
differs from the structure of the bottom in Solomons Shoal, which is characterized by
a thickness of the intermediate layer of speed 1.15¢; of more than 25 times the depth
of water. The difference in structure of the bottoms in the two stations carries
with it a very important theoretical consequence which is strikingly confirmed by
the observations, namely, that the ground wave at Virgin Islands Shoal (as well as
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at Virgin Islands Deep) should be relatively weak in secondary arrivals and in the so-
called “rider” wave. This will be discussed in a later section.

To complete the discussion of the refraction data, we find that the observed points
at Jacksonville Shoal (Fig. 2) are too few during the first second of arrival time to
allow any conclusions to be drawn about the structure of the top layer in the bottom.
The refraction data for Jacksonville Deep shown in Figure 3 display a complicated
array of secondary arrivals, some of which may not be real. However, concentrating
our attention on the first arrivals only, we may assume that the points during the
first second of arrival time line up along the (¢/c;) = 1.14 line which passes through
the origin, and that from 1 to 3.5 secs. arrival time the points fall on the (¢/c1) = 2.13
line. The intercept of the latter line with the axis of ordinates is 0.36 sec. (= 7),
and from Eq. (64) one infers that at Jacksonwille Deep the thickness of the intermediate
lavyer in which (c/c1) = 1.15 is about 1200 feet.

The refraction data for Virgin Islands Deep (Fig. 5) are too meager for any definite
conclusions. The indicated structure of the bottom is very much like that of Virgin
Islands Shoal. Taking the value of = as 0.05 sec., one finds that the thickness of an
intermediate layer in which (¢/c;) = 1.05 or 1.1 is from 140 to 150 feet.

II. THE EWING EFFECT

The phenomenon of dispersion in the water wave which was discovered by Ewing
and which is illustrated on Plates 10 and 11 has already been discussed. It was
explained how from a record such as the third trace from the bottom on Plate 10
one can determine the times of arrival T of the various frequencies, and it was also
pointed out that when (T — Ty)/ T is plotted against v(= H, /\), where T’y denotes
the arrival time of the water wave, the observed points align themselves along a single
curve, independently of the range (Figs. 6-19). We shall now take up the question of
the possible interpretation, in terms of the structure of the bottom, which one can
give to the mean dispersion curve obtained at a given station.

Figures 6-19 contain a background of theoretical dispersion curves for various
assumed uniform bottoms in which the sound velocity ranges from 1.05¢; to 3¢, , and
also for three cases in which the bottom is composed of two layers. The maximum
ordinate on the curves corresponds to the epoch of the Airy phase; the branch of the
curve to the right of the maximum represents dispersion in the water wave, while the
branch of the curve to the left of the maximum represents the slight dispersion in
the ground wave (Fig. 24). It will be noted that the vertical separation of the
curves in the water-wave branch is greatest between the cases (cz/cr) = 1.05 and
(co/¢) = 1.1, and that for high values of (¢s/c;) the dispersion curves becomes in-
sensitive to changes in (ca/c1). In case of a bottom consisting of a layer of thickness
% in which ¢ = 1.1¢; and an underlying infinite layer of ¢ = 3.0c;, the curve
,in which # = H, is seen to coincide with the (c2/c1) = 1.1 curve for all
~ > 1.3, showing that, as far as dispersion in the water wave at these frequencies is
concerned, this composite bottom is indistinguishable from one in which the inter-
mediate layer extends to infinity. On the other hand, the curve
shows that in case of the thinner intermediate layer (4 = 0.1H), the dispersion
in the water wave deviates significantly both from the (cz/¢;1) = 1.1and the (c2/cr) =
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3.0 curves in the practically relevant range of ¥ = 1 toy = 6. The variation of
group velocity with frequency (y) in the above-mentioned three-layered media is
shown in Figure 32 by curves 3.7 and 3.3, respectively.

If the observed dispersion points line up along one of the theoretical curves for a
two-layered medium, then that furnishes evidence that the layer contiguous to the
water is of the corresponding sound velocity. From the previous discussion it is
however clear that this value of sound velocity need not obtain at great depth,
that the dispersion for high frequencies is controlled by the properties of the bottom
in a rather thin layer next to the water. The physical reason for this can be seen
in Figs. 45-48 which show that at high frequencies very little of the energy of the
first mode is contained inside the bottom. We therefore cannot expect to obtain
information on the structure of the deep layers from an analysis of dispersion data
of a wave which hardly penetrates to those layers. As a measure of the depth of
penelration of the first mode into the bottom, we can take a layer at the top of the
bottom in which is contained 99 per cent of the total energy in the bottom. The
significance of the depth of penetration is that no information on the structure of the
bottom at greater depths can be obtained from dispersion data. Curves of depth of
penetration are plotted vs. v in Figures 6-19. To illustrate the use of these curves,
let us assume that the observed points fall on the (cs/c1) = 1.05 curve for all values
of ¥y > 4.0. The corresponding depth of penetration is 0.32H, implying that the
evidence that the velocity in the bottom is 1.05¢; pertains only to a top layer of about.
one third of the depth of water at the most. Curve shows that,
when s = 1H, the dispersion for v > 4 is practically indistinguishable from the
(cs/c1) = 1.05 curve, in agreement with the above deduction.

As a further illustration of the application of the depth-of-penetration curves to
the interpretation of dispersion data which cross the theoretical curves for uniform
bottoms, consider the curve. Aswas pointed out above, the fact that
this curve hugs the 1.05 curve fory > 4 can be interpreted to mean that in a top layer
of the bottom extending to a depth of not more than about one third of the depth of
water the sound velocity is 1.05¢; . Again, from the fact that the
curve lies below the 1.1 curve for ally > 1.4, we may infer that in a top layer of the
bottom extending to a depth of not more than 0.72H the mean sound velocity is
about 1.1¢; . This is actually true of the mean velocity down to that depth. Simi-

larly the . . curve indicates that in a top layer of the bottom of about
nine tenths the depth of water ¢ = 1.1¢1, which is exactly true. On the other hand,
the crossing of the .- .- and the 1.3 curves at ¥ = 2.5 would imply,

according to the above rule, that the mean velocity in a top layer of the bottom of
about one quarter the depth of water is less than 1.3, whereas the actual mean
velocity in such a layer is close to 2. The discrepancy in this case arises from the
large contrast in sound velocity (1.1 vs. 3) between the intermediate layer and the
bottom layer plus the fact that the “depth of penetration’ is heavily biased by the
properties of the topmost section of the layer on account of the exponential decrease
of amplitude with depth in the bottom.

It appears from the preceding discussion that in the case when the observed disper-
sion curve crosses the theoretical dispersion curves for uniform bottoms, one can infer
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with fair accuracy from the points of intersection the mean velocity through a top
layer of a thickness equal to the “depth of penetration”, except in cases when the
velocity varies extremely rapidly with depth.

In Table 1 are set out the conclusions about the structure of the bottom at the
various stations, which can be drawn on the basis of the mean dispersion curves alone.

TaBLE 1.—Evidence on the structure of the bottom deduced from dispersion data

H = depth of water; D.o.P. = Depth of Penetration (see Figure 6); c2 = inferred mean sound velocity in a top layer
of the bottom of thickness D.o.P. A slanting dispersion curve means one which crosses the theoretical dispersion curves
for uniform bottoms.

Hin | Nature of mean disper-

Place Fig. || cz/ct | D.o.P. | c2/ar | Doo.P. || co/ar Do ff Gy Sion curve
Solomons Shoal 6 ||1.2 |.53H 52 | not slanting
711.2 |.53H ‘ not slanting
Jacksonville Shoal } 8 || 1.05 | .42H| 1.1 |1.2H 60 | slanting strongly
9 11.05|.56H| 1.1 |1.4H slanting strongly
Jacksonville Deép 10 || 1.1 | .18H| 1.2 3H || 1.4 | .SH || 115 | slanting slightly
11 1.2 J25H | 1.3 | .7TH slanting slightly
Virgin Islands 12 11.05 | .45SH| 1.1 S0H | 1.2 | .63H | 70 | slanting strongly
Shoal 13 11.05 | .45H| 1.1 L63H | 1.2 |.80H slanting strongly
14 | 1.075 .45H | 1.1 A48H | 1.2 | .52H slanting strongly
15 | 1.075| .36H
Virgin Islands 16 || 1.05{.37H| 1.1 J45H || 1.3 | .45H || 140 | slanting strongly
Deep 17 | 1.05 ] .45H| 1.1 46H | 1.3 | .40H slanting strongly
18 §11.05 | .37H} 1.1 .38H slanting strongly

The observed dispersion points for Solomons Shoal shown in Figures 6 and 7 are
confined between the 1.1 and 1.3 theoretical curves, and they show no systematic
tendency to cross these curves. One can therefore infer from the dispersion data
that the mean sound velocity in the top 25 feet of the bottom at this station is about
1.2¢;. The fact that the mean dispersion curve shows no tendency toward “cross-
ing’”” would suggest also that the bottom is uniform down to a greater depth, although
strictly speaking any inference about the structure of the bottom below the depth
of penetration is risky. These conclusions agree with the evidence from the refrac-
tion data for this station (Fig. 1)—namely, that in the top 1280 feet of the bottom
the sound velocity is uniform and equal to 1.15¢; .

The dispersion data for Jacksonville Shoal (Figs. 8, 9) are quite different from the
data for Solomons Shoal. In the former station there is definite evidence that the
mean sound velocity in the top 30 feet of the bottom is about 1.05¢; and that the
mean sound velocity in the first 80 feet is about 1.1¢;. The indicated increase of
velocity with depth is also evidenced by the “slanting” of the mean dispersion curve.

The refraction data for Jacksonville Shoal (Fig. 2) (during the first second of travel
time) are too meager to allow any conclusions to be drawn about the structure of
the first 100 feet of the bottom.
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The evidence from the dispersion data for Jacksonville Deep (Figs. 10, 11) is that
the mean velocity in the first 30 feet is about 1.2¢; and that the mean velocity in the
first 70 feet is about 1.35¢;. The slanting tendency is rather slight, suggesting a
uniform velocity down to considerable depth. These conclusions are in conformity
with the evidence from refraction data shown in Figure 3—namely, that an inter-
mediate layer in which ¢/c; is about 1.14 extends down to 1200 feet. The value of
1.14 for ¢/c; is not so well determined as in Figure 1 for Solomons Shoal; there is
indeed an indication of curvature in the observed points, and a mean value of (¢/c;) =
1.35 in the first 70 feet is not only not excluded but is even suggested by the data.

The dispersion data for Virgin Islands Shoal and Virgin Islands Deep are of a
similar nature. There is a strong slanting tendency, indicating rapid variation of
sound velocity with depth. This is also indicated by the slow variation of the
D.o.P. values (Table 1). As was explained, the inference that an intermediate layer
of the order of the depth of water in which (¢/¢1) =~ 1.1 intervenes between the water
and the high speed base of (¢/c1) = 3.02 agrees with the refraction data as well as
with the general character of the ground wave at these stations.

HI. THE RIDER WAVE, AIRY WAVE, AND LIMITING WAVE LENGTHS

While the interpretation of the first arrivals by the refraction method and the
interpretation of the dispersion in the water wave by the theory of group velocity of
normal modes are known procedures in practical and theoretical Geophysics, the
discovery of the features of the pressure records to be discussed presently is entirely
new and was made by the writer during a systematic analysis of all the predictions
of the theory.

One consequence of the theory of normal modes is illustrated in Figure D—namely,
that the high-frequency water wave should be superimposed not on a quiescent
base line but on the low-frequency ground wave. The water wave should therefore
appear “riding” on a low-frequency wave in the manner illustrated in Figures 25
and 24A. While this “rider wave’ may be masked by the striking features of the
water wave, it should be distinct and measurable just prior to the arrival of the water
wave. Furthermore, it follows from the theory that the frequency fz of the rider wave
at the instant of arrival of the water wave is determined by the depth of water and
the structure of the bottom. In Figure 37 the curve v, gives the variation of (H/Ag)
with the sound velocity in the bottom in case of a uniform bottom.

Another consequence of the theory which is also illustrated in Figure D is thatfor
a given structure of the bottom the ground wave should begin with a characteristic
“Umiting frequency” fi.. The dependence of vy, = H/A. on the structure of the
bottom in case the latter is uniform is shown in Figure 37. Still a third identifiable
feature which is predicted by theory is that with time the frequency inthewater
wave should decrease while the frequency in the ground wave should increase until
the two coincide at the so-called Airy frequency fa which again is characteristic of
the structure of the bottom. The amplitude of the water wave reaches a maxi-
mum near the time of arrival of the Airy frequency and decreases thereafter while
the frequency remains constant (Figs. 25, 26).

The pressure records of all the shots were searched by the writer for the three
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features mentioned above, and satisfactory results were obtained. The rider wave
can be seen on most of the records in Plates 1-7. In Plate 1 shot No. 47, for example,
the rider wave of a period of 0.014 sec. is seen clearly on the Mark II low-frequency
traces between ! = 1.6 sec. (on the time scale appearing at the top of the record)

TaBLE 2.—Characieristics of ground waves and waler waves in Solomons Shoal

The charge was placed on the bottom in shots 40 to 49 and in shot 63; it was suspended at a depth of 25 feet in shots 56
to62. Thehydrophone waslocated on the bottom in allshots. The Airy Period could not be determined in most records
due to insufficient dispersion at the relatively small ranges. In shot No. 48 the Airy Period was 0.012 sec., and H/\was
0.89. The Limiting Period waves are believed to be those of longest period associated with the discontinuity between the
water and the bottom.

Water % Ground Waves Rider Wave
Shot No. Y‘V:Pt& depth | 2% - &.f'eer Charge
charge | hydro-| §8 Lo | B | Period | A Lli'ﬁ'ét‘ H/N | Period | A/N el | Weight
phone | =9 | period period
ft. ft. It Sec. Sec. Sec. Sec. Sec. 1bs.
40 51 52 |51.5 0731 .14 015§ .70 L6721 0.5
41 51 52 {51.5 .021 | .50 | .0155] .67 .954| 0.5
42 49 52 150.5 .080 | .13 014 | .73 | 1.286| 0.5
43 49 52 {50.5 075 | .14 2.580; 0.5
45 48 52 |50 .025 | .41 | .0145] .70 .616] 5
46 51 52 |51.5 063 | .17 { .029 | .36 1.203| 5
47 50 52 |51.5 .067 | .16 014 | .74 | 1.679] 5
48 53 52 |52.5{.087 121,067 | .16 015 | .71 | 2.407) 5
49 49 52 |50.5.088 .12 2.874) 5
56 53 55 54 035 | .31 .605| 5
58 53 55 154 .024 | .46 | .016 | .69 .8991 0.5
59 53 55 |54 024 | .46 | .015 | .73 878! 5
60 53 55 |54 031 ] .35 015 .73 | 1.222[ 5
61 53 55 154 L0290 | .38 | .015 | .73 | 1.198 0.5
62 53 55 |54 .030 | .37 | .013 | .84 .595) 25.5
63 53 55 54 .036 | .30 | .016 | .69 .664] 25.5
Average| 51 53 |52 |.0875] .12} .071 | .15 | .028 | .39 | .015 | .72

and the arrival of the water wave. In shot No. 48 (PL. 1) the rider wave appears
clearly after ¢ = 2.35 sec. on the lower (sensitive) Mark IT low-frequency trace.
On Plate 4, shot No. 94, the same traces register the rider wave just prior to the
arrival of the water wave: and similarly in shot No. 97 and so on. In the last two
shots one can see that the frequency in the rider wave increases with time, f» being
determined by the value of the frequency just prior to the arrival of the water wave.
The rider waves in these shots are preceded by trains of long waves which are charac-
teristic of the deep structure in the bottom. In shots 58, 59, 60, and 61 (Pls. 2, 3)
however, the rider waves appear to continue all the way back to the beginning of the
ground wave. Leaving out the first swing or so in the ground wave, one can read
off these records the frequency in the beginning of the rider wave and identify it
with the limiting frequency fi, . This was done on all the records taken at Solomons
Shoal, and the results are shown in Table 2.
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It is seen that the mean value of .72 for yz(= H/Ag) is determined with little
scatter. Referring to Figure 37, we find that on the assumption of a uniform bottom,
the corresponding value of the sound velocity in the bottom is 1.09¢; . This com-
pares well with the values of 1.15¢; and 1.2¢; deduced from the refraction data and
the dispersion data, respectively.

The mean value of 0.39 for v, is subject to greater uncertainty. By Figure 37
this value corresponds to a sound velocity in the bottom equal to 1.29¢; . Since the
limiting frequency is more sensitive to the structure in deep layers than is the rider
frequency (see Figures 38, 29, and 31), we may consider this value satisfactory.

On account of the small ranges used at this station, the Airy period could not be
determined with sufficient accuracy in most of the records. In the one shot (No. 48)
in which the Airy period was measurable, a value of vy, = 0.89 was obtained, and
this corresponds to a sound velocity of 1.1¢; in the bottom (Fig. 37).

(It is perhaps appropriate to relate here an incident which occurred during the
analysis of the records taken at Solomons Shoal and which helped to increase the
writer’s confidence in the theoretical interpretation. Plots of dispersion data from
shots Nos. 58-62 gave unreasonable dispersion curves, which were out of line with
the dispersion curves from the other shots. The same discrepancy was shown in
the values of v, and vz . Since the records exhibited qualitatively all the expected
features, the anomaly proved disturbing. The only possible explanation appeared
to be an error in the quoted value of 25 feet for the depth of water. A check with
Ewing revealed that this value for the depth appearing in the report by him and
Worzel is wrong; the correct value is 53 feet.)

Some records taken at Jacksonville Shoal are reproduced on Plates 4 and 5 and the
results of the analysis of all the records at this station are given in Table 3. On
account of the larger ranges involved, the ground wave and the other phases are more
fully developed than at Solomons Shoal. At this station it was possible to measure
the Airy period as well as the rider period. The mean valuesyr = .53 and vy, = .90
correspond to sound velocities in a uniform bottom of 1.17¢; and 1.10¢;. Though
the refraction data at Jacksonville Shoal are insufficient for a determination of the
sound velocity in the top layers of the bottom, we may assume that the value of
(¢/c)) = 1.15 obtained for the adjacent station of Jacksonville Deep is applicable
also for the Shoal. The dispersion data for Jacksonville Shoal indicate that the
mean velocity in the top 30 feet of the bottom is about 1.05¢; and that the mean
velocity in the top 80 feet is about 1.1¢;. The evidence from the various sources
about the structure of the top layers of the bottom is therefore in good agreement.
We shall not take up here the interpretation of the various phases of the ground waves
because these depend on the detailed structure of the deep layers in the bottom, and,
as will appear later, their theory is much more involved.

Some records for Jacksonville Deep are shown on Plates 6 and 7, and the results
of the analysis of all the records obtained at this station are given in Table 4. The
depth of water at this station is 115 feet as compared with 60 feet at Jacksonville
Shoal, and the mean value of the period of the rider wave is found to be .038 sec.
as compared with the value of .023 at Jacksonville Shoal. Since the dispersion date
(see Table 1) indicate that the bottoms at the two stations are similar in structure (the
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TaBLE 3.—Characteristics of ground waves and water waves in Jacksonville Shoal

The charge was placed on the bottom in shots 76 to 101, and was suspended at a depth of 25 feet
in shots 103 to 117. The hydrophone was located on the bottom in all the shots.

Water Water gﬁ: Ground Waves Rider Wave Airy Wave Water-
Shot No. | depth d:gat:: % o wave | Charge
near |y 5. | 8% . . _ . o arrival | weight
charge phone § g Period | /N | Period | H/\ | Period | H/A | Period | A/» | time
ft. ft. fe. | Sec. Sec. Sec. Sec. Sec. 1bs.
76 54 62 |58 070 | .17 .025 | .47 .857] 0.5
79 61 62 |61.5| .078 | .16 .0234| .53 ] .019 |65 2.472| 0.5
80 ? 62 ? .0570] ? .0230| ¢ L0201 ? |2.700| 0.5
81 52 62 |57 .057 | .20 | .0223| .51 | .011 | 1.0 | 3.247} 0.5
82 59 62 160.5 .0230! .53 | .012 | 1.0 | 1.9917 0.5
83 59 62 160.5| .070 | .17 .022 | .35 1.376] 0.5
84 51 62 |56.5 © ] .0225) .51 1.060{ 0.5
85 59 62 |60.5 .0556{ .218| .022 | .55 1.095( 35
86 59 62 [60.5 .0570| .213] .023 | .53 1.758{ 5
87 55 62 |58.5 .051 | .23 | .0235 .50 2.331 5
88 55 62 |58.5 L0221 .54 | .013 ] .91 | 2.829f 5
89 53 62 |[57.5 .057 | .20 | .0224} .52 | .012 | .96 | 3.404] 5
90 53 62 {57.5 .055 | .210| .0210] .55 | .0123] .94 | 4.254] 5
91 61 60 [60.5 .0554] .220| .024 | .51 | .014 | .87 | 5.555| S
92 59 60 |59.5( .077 | .16 | .0580] .206 L013 | .92 | 7.144] 25
93 59 60 [59.5 .0235) .51 | .015 [ .80 | 5.875| 25
94 59 60 |59.5{ .068 | .18 | .061 | .196| .0233; .51 | .015 | .80 | 4.505| 25
95 59 60 |[59.5 .056 | .214| .0250| .48 2.569| 25
96 55 60 |57.5 .082 | .14 .024 | .48 1.407| 25
97 62 60 (61 .068 | .18 0245 .50 | .017 | .72 | 2.683| 300
98 60 60 |60 .0686| .18 | .0554| .218 .0135) .89 | 5.525{ 300
101 59 60 [59.5| .073 | .16 .0125; .96 — 300
103 53 63 |58 L0207 .59 .565 0.5
105 54 63 [58.5 .024 | .49 | .011 (1.1 1.903 0.5
106 54 63 (58.5 .061 | .193) .023 | .51 ] .013 | .91} 1.716 0.5
107 635 63 64 .0530] .243 .012 |1.1 | 3.003] 0.5
109 65 63 164 .0516( .249| .020 | .64 4.849 0.5
110 61 63 162 .052 | .239 6.253| 0.5
111 61 63 |62 .055 | .226 6.493 25
112 64 63 [63.5 .0552{ .231| .0238; .54 | .016 | .80 | 5.017} 5
113 64 63 [63.5 .0658| .19 | .0566| .225| .0218| .58 | .015 | .85 | 3.602| 25
114 67 63 165 .022 ] .59 | .015 | .87 | 2.512 5
115 67 63 |65 .058 | .225 .022 | .59 1.135 5
117 67 63 |60 .057 | .213 013 | .94 | 5.429] 5
Average | 59 62 60 | - 072 .17 | .056 | .22 | .023 | .53 | .014 | .90

one in the Deep is only slightly faster), the observed approximate agreement between
the ratio of the rider wave periods (1.7) and of the depths of water at the two stations (1.9)
is a striking confirmation of the theory. From the mean value of 0.62 for v, which
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Tasre 4—Characteristics of ground woves and waler waves in Jacksonville Deep

The charge was placed on the bottom in shots 123 to 159 and was suspended at a depth of 50 feet in shots 160 to 174.
The hydrophone was located on bottom in all shots. The Airy Period could not be determined precisely in most records
duetoinsufficient dispersion at thelarge depth. Inshots175and 176 the Airy Periods were .023 and .025 sec., giving values
of H/\ of 1.0 and .93, respectively. The ground waves were arbitrarily segregated into two groups of about 0.1 sec. and
08 sec.,respectively.

Water Yi’;;‘fﬁ “Mean”’ Ground Waves Rider Wave Water-
ot | S | SEP | e s, | oo
charge | Y40 | Th | Period | H/\ | Period | A/n | Period | B/n | time
Jt. St ft. Sec. Sec. Sec. Sec. 1bs.
123 116 119 117.5 042 | .56 | 1.195 0.5
124 115 119 | 117 .082 | .29 1.752 0.5
125 114 119 116.5 080 | .29 | 042} .562| 2.334 0.5
126 114 119 | 116.5 082 | .29 | .044 | .53 | 3.074 0.5
127 112 119 | 115.5 | .088 | .26 | .076 | .32 | .036 | .65 | 3.802 0.5
130 114 119 116.5 | .09 .26 035 | .67 | 7.488 0.5
131 115 119 | 117 095 | .25 | .079 | .30 | .041 | .57 | 7.640 4.5
134 113 119 | 116 15 .20 .037 | .63 | 5.974 4.5
135 115 119 | 117 112 .21 .038 | .63 | 5.413 4.5
143 113 119 | 116 092 | .25 .037 .63 | 1.829 4.5
144 112 119 | 115.5 | .09 .26 .037 | .63 { 2.553 4.5
146 106 119 | 112.5 | 113 | .20 | .087 | .26 | .038 [ .59 | 2.624 4.5
147 106 119 | 112.5 | .093 | .24 .041 | .55 | 2.042 4.5
149 106 119 112.5( .094 | .24 5.283 | 25
150 113 119 | 116 114 | .20 .036 | .64 | 4.269 | 25
151 115 119 | 117 098 | .24 .038 | .62 | 3.096 | 25
155 115 119 117 082 | .29 | .034| .69 3.164 | 300
156 112 119 | 110.5 | .108 | .21 .037 { .61 6.171 | 300
157 115 119 | 117 .102 ] .23 .038 | .63 9.632 | 300
158 107 119 | 113 093 1 .25 .086 | .27 | .038 | .61 | 12.409 | 300
159 115 119 | 117 093 | .25 .086 | .27 | .036 | .65 | 15.675 | 300
160 111 119 | 115 .092 | .25 .086 | .27 | .039 { .60 7.638 0.5
161 111 119 110 091 .24 .038 | .59 6.294 0.5
162 112 119 | 110.5} .096 | .23 .086 | .26 | .037 | .61 6.313 0.5
171 111 119 | 115 .10 .23 0351 .66 4,296 | 25
173 107 119 | 113 079 | .29 | .036 | .63 5.470 4.5
174 113 | 119 | 116 093 | .25 .037 | .62 6.704 | 25
175* 113 119 | 116 .10 .23 .089 | .26 | .034 | .69 | 10.446 | 300
176* 113 119 | 116 .10 .23 .086 | .27 | .0365 .64 8.890 | 300
Average | 112 119 | 115 .098 1 .235 | .083 | .28 | .038 | .62

* Charge depth = 75 feet.

is seen to show little scatter, one deduces a value of 1.12¢; for the sound velocity in a
uniform bottom. This is in agreement with the value of 1.14¢;, deduced from the
refraction data and with the value of 1.2¢; for the first 30 feet indicated by the dis-
persion data.

To sum up the results of this section, we may state that the features of the Rider
wave, the Airy wave, and the Limiting wave lengths which were predicted by theory were
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identified and measured on most of the records, and the resulting average values for vx ,
Ya, and vy yield values for the velocity in the top layer of the bottom which agree with
the entirely independent evidence obtained from refraction data and dispersion data.

1V. EFFECT OF THE STRUCTURE OF DEEP LAYERS IN THE BOTTOM ON THE
CHARACTER OF THE GROUND WAVE AND THE RIDER WAVE

When we come to discuss the results of the analysis of the records obtained at
Virgin Islands Shoal and at Virgin Islands Deep (Tables 5, 6) we again find agree-
ment with our previous deductions about the structure of the bottoms at these
stations made on the basis of dispersion data and refraction data. Thus, the average
values of v4 = .84 and v4 = 1.4 correspond to (c2/c1) = 1.12 and 1.05 for Virgin
Islands Shoal and Deep, respectively, and these conform with the evidence from
dispersion data given in Table 1. However, the values of v, for the Deep are too
few, while those for the Shoal show considerable scatter.

The distinctive feature of these stations, which puts them in a class by themselves,
is shown in Plates 8 and 9 where it is seen that the records are devoid of rider waves
and of secondary arrivals after the first arrivals in the ground wave. Geologically the
bottom at Virgin Islands is known to be coral, as against the sandy and muddy
bottoms at Jacksonville and Solomons. We have also found previously that whereas
in the last two stations the bottoms are uniform and of (c2/¢1) ~ 1.15 down to a depth
of more than 10 times the depth of water, in the Virgin Islands stations an inter-
mediate layer of (ca/c1) =~ 1.15 which is only about as thick as the depth of water
intervenes between the water and a bottom layer in which (ce/¢;) has the high value
of 3. The theory of group velocity of the normal modes in a three-layered liquid
half-space shows that when the thickness of the intermediate layer is about 10 times,
or more, greater than the depth of water, the dispersion arising from each of the two
interfaces is very nearly independent of the other interface. This is illustrated in
Figure 31 where the group-velocity curve for case 3.9 exhibits fwo minima correspond-
ing to the two interfaces. A comparison of curves V and 3.9 shows that the phase
velocities (¢/c;) are indistinguishable between the two cases, and that even the
group velocities agree up to very nearly the limiting frequency for case V. Simi-
larly, a comparison of curves 3.9 and VIII shows that the dispersion due to the lower
interface is approximately unaffected by the presence of the upper discontinuity.
Similar conclusions can be drawn from the dispersion curves shown in Figure 29.
Referring now to Figure 32 where the dispersion curve for medium 3.9 is replotted,
the following features of the ground wave for this medium may be predicted. The
ground wave will commence rather weakly with a characteristic limiting wave length
corresponding to v, = .028. The amplitude of the ground wave will increase
gradually until the time ¢ = r/1.09¢; , when an Airy-phase-in-reverse will commence
due to the maximum in the group velocity. Between ¢ = #/1.09¢; and ¢ = 7/c; , the
ground wave will consist of a superposition of tkree frequencies corresponding, for
example, to the points 4, B, and C. At f = 7r/¢;, the water wave due to the upper
interface will be superimposed, giving a total of four component frequencies. This
water wave will culminate in the Airy phase due to the upper discontinuity at about
¢t = r/98¢;. Thereafter, there will remain only the phases due to the water wave
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TABLE S.~—Characteristics of ground waves and water waves in Virgin Islands Shoal

The charge was placed on the bottom in shots 235 to 273 and was suspended at a depth of 25 feet in shots 274 to 280,
Thehydrophone was placed on the bottom in all shots. Therecords are characterized by ground waveslacking any secon-
dary arrivals after the first arrivals, by an absence or extreme feebleness of “rider’’ waves, and by excellent dispersion in
the water waves. The bottom is sloping.

Water Xg;tg “Mean” Ground Waves Airy Wave Water-
Shot No. depth near water wave Charge
near hydro- depth Longest i . arrival weight
charge | Vine J:4 Period B/\ |Period | A/\ | Period | A/A time
Jt. Jt. Ji. Sec. Sec. Sec. Sec. 1bs.
235 70 62 66 .010 1.3 4.168 0.5
237 70 62 66 .056 | .24 1.011 | 1.2 3.102 0.5
238 74 62 68 .065 | .21 2.080 0.5
239 70 62 66 .068 | .19 |[.033* .40 | 1.684 0.5
240 81 62 71.5 1 .102 | .14 | 077 | .19 1.007 0.5
241 83 62 72.5 | .099 | .15 | .061 | .24 .847 0.5
242 85 62 73.5 1 .088 | .17 | .071 | .21 .560 0.5
244 77 62 69.5 | .083 | .17 | .057 | .24 |.0285* .49 | 2.472 | 300
245 82 62 72 090 | .16 | .060 | .24 5.203 | 300
246 83 62 72.5 | .11 .13 | .060 | .24 6.469 | 300
247 83 62 72.5 074 | .20 8.520 | 300
251 76 62 69 087 | .16 | .060 | .22 |.012 1.1 4.790 25
252 72 62 67 .056 | .24 |.0246 | .55 3.405 25
253 77 62 69.5 | .10° | .14 | .056 | .25 |.033* 42| 2.242 25
254 73 62 67.5 .058 | .23 ].022 .61 | 1.053 25
266 80 65 72.5 | .12 12 1,069 | .21 (.023 .63 811 3.5
267 70 65 67.5 | .12 .12 | .050 | .27 |.026 .52 | 1.446 3.5
268 74 65 69.5 .046 | .31 |.017 .82 | 2.068 3.5
269 66 65 65.5 | .088 | .15 .01 1.2 2.971 3.5
270 65 65 65 083 | .16 | .045 | .29 |.010 | 1.3 3.707 3.5
271 70 65 67.5 .010 | 1.4 4.616 3.5
272 74 65 69.5 | .083 | .17 010 | 1.4 5.112 3.5
273 83 65 74 L0921 .16 | .06 .25 5.786 3.5
274 82 65 73.5 | .095 | .16 5.802 3.5
275 74 65 69.5 | .0955] .15 .021* .66 | 2.768 3.5
276 77 65 71 103 | .14 .022 .65 | 1.102 3.5
217 81 65 73 .093 | .16 .522 0.5
278 79 65 72 .10 .14 .022 .65 | 1.003 0.5
279 69 65 67 .10 .13 .051 .26 |.018 .74 1 1.638 0.5
280 71 65 68 .09 | .14 .020 .69 | 2.209 0.5
Average 76 64 70 L0965 .15 | .060 | .24 |.019 .84

* Well developed Airy period.

and ground wave arising from the lower discontinuity, which will culminate in
another Airy phase of ¢ = 7/.92¢; .  Examples of such lively ground waves are shown
in Plates 4 and 5 by the lower Mark IT traces in shots Nos. 94, 95, and 97, and in
Plates 6 and 7.  Also, the records at Jacksonville Deep, and to a lesser extent those
at Jacksonville Shoal, are rich in trains of waves which arrive after the water wave.

On the other hand, the three-layered media such as 3.3 and 3.7 shown in Figure 32,
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in which the thickness of the intermediate layer is only of the order of the depth of
water, will exhibit a ground-wave and water-wave system whose main features are
similar to those characteristic of uniform bottoms. The presence of the lower inter-
face will no longer be revealed by a secondary arrival such as the Airy phase-in-

TABLE 6.—Characteristics of ground waes and waler waves in Virgin Islands Deep
The hydrophone was placed on the bottom in allshots. Therecords are characterized by generally weak ground waves
(in 25 out of 42 shots the ground wave appears to be completely absent) lacking any secondary arrivals after the first
arrivals, by an absence or extreme feebleness of rider waves, and by excellent dispersion in the water waves. Thebottom
is sloping.

Water Yi?pt:l: «Mean® Ground Waves Airy Wave . Water-
Shot No. Charge | depth near | water wave | Charge
depth | near hydro- depth i . . arrival weight
charge phone J:4 Period | B/\ | Period | H/M | Period | A/M time
St fi. i St sec. sec. sec. sec. 1bs.
186 169 | 169 | 120 | 145 | 112 { .22 5.408 | 300
188 173 173 120 147 .023 1 1.3 | 7.890 | 300
191 154 154 120 137 .16 A7 1 .107 .26 1.348 25
192 165 | 165 | 120 | 143 .18 | .16 2.323 | 25
201 166 166 120 143 .12 .25 1.491 4.5
202 160 160 120 140 | 11 .25 1.100 4.5
203 (150 § (150) | 120 | (135) .090 | (.30) 523 4.5
213 75 | 170 | 120 | 145 .0183] 1.6 | 5.951 4.5
215 75 | 152 | 120 | 136 .13 | .21 .10 .27 1.100 4.5
216 147 | 147 | 120 | 133 .080 | .33 .593 0.5
217 100 | (160) | 120 {(140) .09 | (.31) 2.453 | 300
219 100 | (160) { 120 | (140) .024 | (1.2) | 7.385 | 300
220 100 | (160) | 120 | (140) .017 | (1.6) |10.069 | 300
Average| 133 | 160 | 120 | 140 J14 | 211 .096 .29 | .021 ] 1.4

reverse in medium 3.9 which propagates with a speed nearly equal to the sound
velocity in the intermediate layer.

Not only will there be no secondary arrival which propagates with the speed of
the intermediate layer, but theory also predicts that the rider wave in media 3.3
and 3.7 should be relatively weaker than in a medium such as V or 3.9, while the
water wave should be of about the same intensity. The amplitude of the ground
wave is given by Eq. (51) where the factor 0, is defined in Eq. (49). This expression
was derived for the case of an exponential pressure pulse ¢ but its form is of more
generalvalidity. In comparing the amplitudes of the rider waves for different media,

we need to examine the values of the factor 0,/V kk at the points where U = ¢c1.

Now
e — (H) , (65

where @ = EH is, like O, , a function of x, defined in Eq. (A76). The relative ampli-
tudes of the rider waves in different media are therefore proportional to the non-
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dimensional quantity

SR=.1"____L._' .
" Ve _g(g) (66)
d‘y a

It turns out that for the rider waves the factor 0,/4/« does not vary rapidly with
changes in the structure of the bottom. The principal difference in the amplitude of

the rider waves for various media arises therefore from the factor 1 / 1 / — di (U/cy),
Y

where (—z—y( U/¢y) is simply the slope of the curves in Figure 32 evaluated along the

line (U/c;) = 1. The slope of the 3.9 curve at the point F is much less than the
slopes of either the 3.3 curve at E or of the 3.7 curve at D. Numerical values of the
quantities involved in expression (66) are as follows:

Medium On/Aa }7 (%) s§
3.9 0.24 —-0.37 0.4
3.7 0.20 —18 0.05
3.3 0.3t -25 0.06

It follows that the amplitudes of the rider waves in media 3.7 and 3.3 should be from 7
to & times smaller than in medium 3.9.

On the other hand, the dispersion in the water wave is determined by the shape
of the group velocity curve fory > 1 (Figs. 12-19), and Figure 32 shows that beyond
¢ = 2 the three curves coalesce. One would therefore expect water waves of com-
parable amplitudes in the three media considered. Both of these theoretical predic-
tions are verified on all the records taken at Virgin Islands Shoal and Virgin Islands
Deep, some of which are reproduced in Plate 8 and. 9.

The physical basis of the phenomenon discussed in this section is analogous to the
process of making “invisible glass” and to similar problems in impedance matching.
(See Slater, 1942, p. 62.)

7. SOME REMARKS ON THE HISTORY OF THE DEVELOPMENT OF THE THEORY OF
NORMAL MODES IN ELASTIC HALF-SPACES AND OF ITS APPLICATIONS TO
PROBLEMS OF PROPAGATION OF SHOCKS

The first discovery of a free elastic wave which can be propagated over the surface
of an isotropic elastic half-space was made by Lord Rayleigh (1887, p. 441). These
waves have subsequently been identified in earthquake records and are known as
Rayleigh waves. In 1911 Love showed that the Rayleigh waves are the limiting
form assumed by the normal modes of a homogeneous elastic sphere as the radius
of the sphere increases indefinitely. In the same memoir Love shows that a free
shear wave can be transmitted in a layered elastic half-space when the velocity of
distortional waves in the surface layer is less than in the medium below. These so-
called Love waves closely resemble the normal modes of a layered liquid half-space
discussed in this report.
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Tn 1924 Gutenberg made the first study of dispersion of Love waves in earthquake
records with a view to determining the thickness of the crust of the earth. In this
first attempt he wrongly identified the observed speed of propagation of each fre-
quency with the phase velocity instead of the group velocity, but later (1926) he
rectified the error. The importance of group velocity in the study of dispersion of
Love waves was first stressed by Stoneley (1925). The subject has since been in-
vestigated extensively by Stoneley, Jeffreys, Gutenberg, and others.

The possibility that a layered liquid half-space might propagate free compressional
waves analogous to Love waves occurred to the writer in November 1941. The
results were first announced at a conference with L. B. Slichter and J. T. Tate, and
were later communicated to V. O. Knudsen in the preliminary report reproduced
on pages 40 through 42. The Figures 1-4 referred to there have been included in
this paper as Figures 45-48, respectively. This study was then interrupted on
account of other pressing duties, and it was not until the Spring of 1943 that the
writer could return to the subject. At that time the steady state solution for a
periodic point source in a layered medium was thoroughly investigated. The tech-
nique of deriving the normal mode solution from the residues of the integral in the
complex k-plane, which was used by the writer on this and other occasions, is due
originally to H. Lamb who in a classical paper (1904) gave the first exact solution of
the problem of radiation from a point source in a homogeneous elastic half-space.
Unfortunately this paper seems to have escaped the attention of recent writers on
the subject, who have independently rediscovered some of Lamb’s results but have,
in some cases, omitted certain terms of the solution such as branch-line integrals,
which Lamb was careful to retain.

The solution for the propagation of sound in a layered liquid half-space derived
by the writer was communicated in various preliminary memoranda to interested
members of Division 6 of NDRC. Final publication of a complete report was
withheld pending an opportunity to test the theory against experimental data.
This opportunity arose in July, 1944 when Dr. Ewing communicated to the writer
his discovery of dispersion in the water wave and his finding that each frequency is
propagated with a characteristic velocity’. The idea of applying the Gutenberg-
Stoneley technique, used in the study of Love waves, which is based on group velocity
of normal modes, immediately occurred to the author, since it soon became clear
that, if the dispersion were governed by the phase velocity, the long periods should
have arrived ahead of the short periods—in complete contradiction to the observa-
tions.

While the principal features of the mean dispersion curves observed at the various
stations could be explained on the basis of the shape of the group velocity curve for
the first mode, there remained three outstanding problems. One was the existence
of the low-frequency branch of the group-velocity curve (to the left of the minimum
group velocity), which it was thought at first could be relegated to a footnote. Upon
closer examination it was discovered that this low-frequency branch of the group-

7 Ewing noted dispersion in the water wave, with high-frequency components arriving ahead of lower ones, in seismic
prospecting of water-covered areas of Louisiana in 1927, but had not been able to get systematic data on the phenonienon
before his 1943-1944 work.
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velocity curve furnishes, for the first time, a theory of the ground wave and that in
addition it demands the existence on the records of the rider wave and the Airy
wave. This led to the discovery of the above-mentioned features on the records.

The second outstanding problem was to produce a justification for basing the
theory essentially on the first mode alone. Numerical investigation of the expected
relative amplitudes of the higher modes showed that, whereas in the ground wave
they should be smaller, in the water wave they should be comparable to the first
mode (Figs. 33-36). The final resolution of this difficulty was made principally on
the basis of the suppression of the high-frequency higher modes by the low-pass
receivers. In support of this hypothesis we have the fact that the receivers with a
flat response show a very complicated pressure variation.

The third unsolved problem was to explain the lack of both secondary arrivals and
rider waves in all the records taken at the stations of Virgin Islands Shoal and Deep.
This necessitated a study of the theory of propagation in a three-layered liquid half-
space which finally led to the complete clearing up of this question along the lines
discussed on pages 35-38.

The steady state theory of normal modes in a liquid half-space has recently been
studied independently by other investigators.

8. PRELIMINARY REPORT ON FREE ACOUSTIC WAVES
(Prepared in November 1941)

A half-space in which the sound velocity either increases with depth, or first de-
creases and then increases with depth, is capable of propagating freec waves. When
excited by a point source or a vertical line source these free waves have vertical
wave fronts of cylindrical form, with axis passing through the source. Once estab-
lished, the waves have a two-dimensionial attenuation, i.e. the amplitude of the
pressure decreases with distance 7 from the source like 7 instead of 7%, as in the
case of body waves. At great distances these waves are found (in seismology)
therefore to predominate over the body waves. The amplitude of the waves varies
with depth in the manner shown for the first mode in Figures 1 to 4.* The velocity
of propagation varies with frequency, the lowest frequencies traveling with the
maximum speed of the medium and the high frequencies with the minimum speed
found in the medium. For conditions that are met in surface sea waters the dis-
persion is, however, slight and the group velocity is essentially the same as the phase
velocity.

In order to bring out the analogy with other free acoustic waves, let us consider
the free waves in a room bounded by rigid walls. There, a pulse started inside the
room sends out waves which are reflected from the walls, and whenevér the reflected
wave reinforces the incident wave we have a free mode of vibration of the room.
In an ideal case no energy is required to maintain these free modes of vibration and
once excited they can last indefinitely. The original energy of the pulse remains
confined in the room in the form of standing waves. The origin of these free modes
is bound up with the existence of reflecting walls.

* Figures 14 have been reproduced in this report as Figures 45-48.


http://memoirs.gsapubs.org/

Downloaded from memoirs.gsapubs.org on June 30, 2015

PRELIMINARY REPORT ON FREE ACOUSTIC WAVES 41

Under the conditions postulated above for the half-space there js reflection, abrupt
or continuous, from horizontal planes, and the situation is similar to that in a room
without vertical walls, but with an infinitely long ceiling and floor. There being no
reflection from vertical planes, the energy of a pulse is radiated away, but in a two-
dimensional rather than a three-dimensional manner. Whereas in an enclosed room
the free modes trap the energy of an originally outgoing wave and convert it into
standing waves, the free modes in the half-space merely convert an outgoing spherical
wave into an outgoing cylindrical wave.

The periods of the low order free modes of an enclosed room are of the order of
magnitude of the time required for a wave to travel a distance of the dimensions
of the room. There is no period of the free waves in a half-space, since these waves
are progressive and not standing ones. (There are no reflecting walls at great dis-
tances to return them). Starting with a minimum frequency, which is characteristic
of the given medium, all higher frequencies can be propagated as free waves, there
being only a slight variation of velocity of propagation with frequency. To round
out the argument, we might add that if we consider the ocean as enveloping the
earth, then it will have a free period of the order of magnitude of the time required
for the wave to travel around the world. In the case of gravitational waves, this is
the so-called free-period of the oceans. The free acoustic waves are indeed similar
in nature to gravitational waves visible at the surface. The origin of the latter is,
however, due entirely to the possibility of storing potential energy at the air-water
interface, there being no gravitational body waves (in non-relationistic mechanics).

In the applications in view we are interested in the amplitudes of the various modes
which are excited by a subsurface pulse. This question is being investigated now,
but some qualitative remarks can be made in advance. The magnitude of the
amplitude of a given mode which is excited by a given pulse depends on the frequency
distribution and the location as well as the directional properties of the pulse. Asto
the dependence on the location (depth) of the pulse, one can say that the amplitude
of any mode will be highest if the source is located at a depth where this mode has
the maximum amplitude, and that it will be zero if the source is located at a level at
which the mode has a node (in the fundamental modes shown in Figures 1 to 4 the
only nodes are at the surface and at great depth, but the modes of higher order have
additional nodes.) In this respect, the higher frequencies are favored for a shallow
source in medium 3, while the lower frequencies are favored in the other media.
In general, the amplitude of the fundamental mode is a maximum near the level of
minimum velocity, and the relative concentration there is highest for the high
frequencies. (In the case of certain free waves in the atmosphere which were excited
by the Krakatau eruption of 1883 the fundamental mode predominated, essentially
because in this mode the amplitude is a maximum at the surface. See a paper by
the author in Proc. Roy. Soc. 171A pp. 434-449, 1939). More information on this
question will be available when computations now in progress will have been com-
pleted.

As to the dependence of the existence of free modes on the medium, the following
can be said. The low frequencies depend in their amplitude distribution on the
properties of the medium extending from the surface to great depths. The high
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frequencies depend essentially only on the structure of the medium near the level of
minimum velocity. The modes of these high frequencies will not be appreciably
altered by deviations from the assumed velocity distribution at levels removed from
the level of minimum velocity.

We will now add some comments on the free waves in the media shown in Figures
1to 4. Ina medium of type 1, free waves are possible only if the velocity ¢, in the
lower layer is greater than the velocity ¢; in the surface layer. The minimum
frequency f for the fundamental mode is given by

f= a6
N AVERr
This frequency propagates with a velocity ¢, while the velocity of the high frequen-
cies approaches ¢; .

In medium 2 let the velocity in the top layer be denoted by ¢; , in the middle layer
by ¢z and in the bottom layer by ¢s.  Free waves are possible if ¢; is less than ¢; and
¢3. c3 may be less than ¢;, but must be greater than ¢, .

The minimum frequency f is given by the roots x; and . of the equation

%
tan % -tan x, = —,
X2

where

wfHN G — ¢ n wfBN G — ¢
= ————————, = ————

CsC1 C3 L2

X1

The velocity of propagation of this frequency is ¢s, that of very high frequencies
being ¢; .
In medium 3, the lowest frequency is given by

3’1462 [~]

f=——F

ANV G - &
where % is the root of J34(#) = 0 and is equal to 1.865. The lowest frequency in
medium 4 is given by
3uc, o
T wEVE - &

where # is the root of the equation J3(#)J3() = J_4(u)J _3(u) and is equal to 0.73082.

f
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PART II: THEORY

INTRODUCTION

In this section we give a brief account of the theory of propagation of explosive
sound in shallow water. No detailed exposition of the theory will be attempted,
however, since that would carry us beyond the scope of this paper which aims
primarily at a wave theoretical interpretation of a particular set of experimental
data. A more comprehensive treatment is reserved for a future occasion when an
attempt will be made to develop systematically the theory of wave propagation in
layered media as well as in media with continuously varying properties. This will
include a treatment of the so-called “ray-theory” and the wave theory, and the
relationship between the two.

A. THEORY OF PROPAGATION OF SOUND IN WATER UNDERLAIN BY A
UNIFORM BOTTOM OF DIFFERENT DENSITY AND SOUND VELOCITY

1. FORMAL SOLUTION.

The simplest model which exhibits the essential features of the observed dispersion
in the water wave is one in which the bottom is assumed to be a liquid of density
02 and sound velocity ¢z, which differ from the density p1 and sound velocity ¢; in
water, as shown in Figure F. A point source is situated at a depth & below the
surface, and the depth of wateris H. The boundaries of the water are assumed to be
parallel and flat. For purposes of analysis, it is convenient to divide the water into
regions (1) and (2) above and below the source, respectively, and to denote the
bottom by (3).

Our problem is to determine, at any point in the water, the pressure field due to an
explosion at the source. To a first approximation the explosion at the source can
be assumed to be represented by a sudden rise of pressure which decays exponentially
with time. As is customary, the analysis is made first for a periodic pressure varia-
tion at the source of circular frequency w, and subsequently the soltition is Fourier-
synthesized to represent an arbitrary time variation of the pressure pulse.

The pressure field is determined from the potential ¢ through

) 2 )
p=p, w=-2, u=-% (A1)

at’ 3z or’

- where p denotes the acoustic pressure, w the vertical velocity, and # the velocity in
the horizontal direction 7. The potential ¢ satisfies the wave equation

92

e

4
V2 = o ——
¢ o o (a2)
in the water, and
1 8%
Vi = = —b
¢ cs o (43)
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in the bottom. To satisfy the boundary conditions at 2 = 0 and 2 = H, we seek in
the first instance solutions of the form

e = &t Ty(kOF(2)G(R), (A4)

where k is an arbitrary variable of integration with respect to which one eventually
integrates along a certain path in the complex % plane. If one thinks of a spherical
wave as made up of a superposition of plane waves, then, as long as % is numerically
less than the wave number, one can attach to it the physical meaning of 2 = 27 sin
(8/)), where 6 denotes the angle of incidence of the elementary waves.® Substituting
expression (A4) into Eqgs. (A2) and (A3), we get

a*F
Friu BIF =0, (A5)
in the water and
d*F
r +BiF=0 (A6)
in the bottom, where
- w? @
51 - c_f — k2’ k < 61’

w? w
= bl k<=
SRV TE R

=—ig/ <, k> (A7)

Let Fy, Fzand F; represent F(z) in the regions (1), (2) and (3) of Figure F. Then

Fy = A sin f12, (A8)
Fy = Bsin 1z 4 C cos 812, (A9
Fy = De—ib22, (A10)

The choice of the sine function for F; is made in order to satisfy the condition of
F = 0 at z = 0; the expression (A10) for F; is adopted in order to make F3 vanish
exponentially with depth for large %, or rather in order to avoid an exponential
increase with depth as k becomes large. The arbitrary constants 4, B, C, and D
are determined by the boundary conditions at z = H and z = d, and by the strength
of the point source.

At z = H we must have continuity of pressure and of the vertical component of
velocity w:

dF, dF;

= —_— = =H, All
p Fe p Fy, 7 Z at z ( )

8 For a detailed discussion of this point see Pekeris (1946).
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At z = d, the depth of the point source, we again must have

F1 = F2 at z= d, (A12)
because of the required continuity of pressure. The boundary condition for the .
vertical velocity w is, however, more complicated; w is continuous everywhere in the
plane 3 = d except at the point source, where the fluid above and below the source
moves in opposite directions. This condition is met by putting

dF, 4P
T =% et z=d, (A13)

for when expression (A4) is integrated with respect to k£ from 0 to e, the discontinuity
in w at 2 = d becomes proportional to f Jo(kr)k dk, which function vanishes every-
o

where except at » = 0, where it becomes infinite in such a manner that its integral
over the plane z = d is finite.
It follows from Egs. (A11), (A12), and (A13) that

2k Bl Cos ﬂl(H - d) + 'I:bﬁz sin ﬁl(H - d)
= — b=
475 [ B1.cos B H + ibga sin 1 ] /ey (a19
B= 2k sin Bﬂi ﬂl sin ﬂ]_H _ i.bﬁz C(‘)S ﬁ]H , (Als)
B1 (B1 cos BLH + ibB; sin 81 H)
‘ 2bkeHBeE
C= 2k sin ﬂ;d’ bke sin 8;d (A16)

A = (81 cos B H + bz sin B H)
Hence the formal solution for the sound potential due to a periodic point source is
e = ¢ w(rzw),
sin B2 [ﬁl cos Bi(H —~ d) + bB: sin Bi(H — d)

B By cos B1H + ibB; sin B1 H

sin B1d [ B cos Bi(H — 2) -+ b sin B(H — 2)
By cos B1H + 2bB, sin B1H

=2 f JolEr)k dk ] 0<z<d, (AID
0

1

(-]
T =2 f Tolkr)k dk :| d<z<H, (Al8)
(]

i d)e—B2(e—H)
sin (61 d)s > m. (A19)

=2 b
b bfo Tk dk o T + ipsnp) O3

It will be noted that ¥; and . are transformed into each other by interchanging z
and d, and that the integrands are even functions of 81, but mixed functions of g, .
The integrands are of course functions of the frequency w through 8 and 8, .
When the discontinuity in density and sound velocity at 5 = H is removed,
b1, B h,
and

w .
o1 — 26 f Jo(kn)E dk s—l%m e
0 1

8—11(«:/01)121 8—i(wlcl)R2
‘R Ry ’

@0
= gt f Tltr) B (1) _ iBratar) = giot _
0 'iﬁl

R=V7+@—2°, R=\V7r+@+ze (A20)
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Similarly, it is found that ¢, and o3 also reduce to the correct solution consisting of
a point source and its image in the surface.

Expressions (A17), (A18), and (A19) give the steady-state solution for a periodic
point source. The solution for the case of a pressure pulse at the source of the form
f(®) is obtained by first computing the Fourier transform

o) = f St5() i, (A21)
so that
=21 [ £ 4(u) do, (a22)
20 J_ o
and then evaluating
olr,z,0) = 1 [ €1 (r, 2, w)g(w) dw. (A23)
2w J o

This completes the formal solution of our problem, but for most practical applica-
tions the theory at its present stage is useless because neither the integrals for
¥(r, 2, w) nor the integral in (A23) can be carried out without immense labor and
with sufficient accuracy to yield useful results. The integrals for ¥ can be evaluated
by numerical integration only when the wave length is a fraction of the depth of
water and the range r is a small multiple of the depth, as was done in computing the
solid curves of Figure 23. For smaller wave lengths and greater ranges the integrands
are rapidly oscillatory functions of &, and it soon becomes impracticable to evaluate ¥
by straightforward numerical integration. Even if ¥ were known, the computation
of (7, 2, t) from (A23) would be practically impossible for such important applica-
tions as the first-arrival time, as has been shown by the writer (1940). For this
reason it is necessary first to transform the integrals for ¥, the transformation used
depending on the particular application in view. Thus, for the purpose of determin-
ing the beginning of the record at a distant point or for determining the steady-state
solution up to moderate ranges (in terms of the depth of water), a transformation of
the integrals which yields the so-called “ray-theory” is useful. On the other hand,
if one is interested in the steady-state solution at large ranges, where many rays
need to be considered, or in the later phases of the received pressure pulse at large
ranges, another transformation is useful which yields the normal mode solution.

2. THE RAY THEORY,

a) Expansion of the potential into a series of integrals each of which represents a
“ray”—1In this section we shall indicate how the ray theory can be derived from our
formal solution given in Equations (A17), (A18), and (A19). The account will be
limited mostly to a statement of results because the ray theory is not used in the
applications of this paper. Rayleigh (1896) showed that, when a plane sound
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wave is reflected at a discontinuity in density p and sound velocity ¢, the reflection

coefficient K is given by
p2C2 0: .
— cos 6 - 1-— e sin? §
k=09 : , (A29)
/ ¢
p—z—c-?cose+ 1——;sin20
G a

where 6 denotes the angle of incidence. If we recall that k in (A7) is given by

k= 2rsing/ = (‘Ci) sin 6, (A25)
1
it follows that
_

f= (2) cosf; Ba= (2) ,‘/1 - Z—; sin? 4, (A26)

B — BB,

= . A2

B1 + b8 (A27)

The solution in terms of rays for a point source is obtained by expanding the ex-
pression in brackets in (A18) as follows

[51 cos B1(H — 2) + b8, sin Bi(H — z):l - [1 + Ke—izmx—z)]

Bi cos fr H + ibBs sin 1 H 1 4 KeithH (A28)
= ¢fie[] 4 Kemi1E|] — ReiBH 4 R2URE Ll
a kdk . .
¥y = f Jo(kr) — {[e—-ﬁx(z—d) — gmibletd)]
0 61
—if1(e—d+28—22) _ ,—~iBi(e+d+2H~22) _ ,—iB1(e—d+2H)
-+ Kle € ¢ (A29)

F gBrdtan] 4 g2 ] 4 ..-},

The two terms in the first bracket give the direct ray and the ray reflected from the
surface, as was shown explicitly in Eq. (A20). The four terms in the second bracket
which are multiplied by K represent the four rays which suffer only a single reflection
from the bottom. The next four terms which are multiplied by K* represent the
four rays which suffer two reflections from the bottom, and so on. The reason for
identifying the integrals having a factor K* in the integrand with rays which suffer
n reflections from the bottom is suggested by the formal analogy with the theory of
reflection of plane waves, but actually goes deeper than that. In the first place,
when one solves the problem of the reflection of a spherical-sound wave from a single-
plane boundary, one obtains precisely an integral of type K, where the factor multi-
plying 8. in the exponent is the sum of the elevations of the source and receiver above
the reflecting surface. The principal reason for the identification of the integrals
with the rays is, however, that, in case of a pressure pulse which begins at a definite
time, the integrals representing the rays vanish until the corresponding arrival-time
of the rays. However, while the beginning of the received pulse will conform in
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shape to the pulse at the source, the later phases will be different, due to the modifi-
cations introduced by the fact that the initial wave is not plane but spherical. The
pressure recorded at a distance, as given by the integral, will therefore, strictly
speaking, not be the original pulse weakened by a 1/R factor; indeed, in the case of
a pressure pulse which starts at £ = 0 and ends at ¢ = 7, the integral representing
aray (otherthan the direct and first surface-reflected) will begin after an appropriate
travel time #y and will continue beyond # = ¢ + 7 to ¢ = . This phenomenon is
the well-known “tail” characteristic of two-dimensional wave propagation which is
imposed on the initially spherical wave by the plane boundaries.

In the sequel we shall understand by a “ray’” not the customary meaning of the
term but the integral corresponding to it in the expansion (A29).

b) Some results on the reflection of spherical waves from plane boundaries.

L. General Considerations. The propagation of a shear pulse in a layered medium

The first complete analysis of the reflection of spherical waves from plane boundaries
—i.e., the evaluation of integrals of the type

« kdk (B — 0B \" _,
Uo7, 2, ) = Jolbr) —{ =——— ) e~F12n, A30
¢y ) ‘/; o(er) 61 (131 + bﬂz) ¢ (A30)

where 8; and B8, are defined in (A7) and 2, represents the vertical distance of the
receiver from the n-th image, has been given by the writer (1941). The crux of the
problem in the case of a pulse which begins at a definite time is to transform the
integral in (A30) into the form

¥, = / F(r, 2, x)e~ M Te0) gy (A31)

where neither F nor M depends on w, in order to allow for an easy Fourier synthesis.
‘When this is accomplished, the solution for the potential of the n-th reflected wave

@n s

Pl f F(r, 2, x)e Mte2) gy

in case of a periodic pulse at the source, and this allows one to write down immediately
the solution for a pulse of a general shape f(¢), namely

Py = f F(r, z, )t — M(r, 2, x)] dx. (A32)

The transformation in (A31) is equivalent to seeking an equivalent system of con-
tinuously distributed sources. We shall not give here the explicit expressions for
F and M in case of reflection from a (p, ¢) discontinuity but shall merely state that
in this case F and M are obtained as functions of 7, 2, and of two variables of integra-
tion x and v, and the integration is double. In this way it has been possible to give
a wave-theoretical proof for the existence of the so-called ‘“‘refracted wave’ and
to compute and exhibit graphically the actual shape of this type of wave from its
first arrival out to ¢ = o,
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II. Asymptotic expression for the potential of a singly reflected spherical wave at
high frequencies, and the conditions for the validity of the plane wave approximation

It is possible to treat the integral (A30) by the method of stationary phase and to
obtain asymptotic expressions valid for high frequencies. One finds, for example,
for a wave reflected once from the bottom

® k - . ~i(w/c1)R
¥ = f To(kr) k__‘.i_. (B‘_b_ﬂz)e—zﬁul =€ ! {1
o 81 \Br + 882 R

) = cos § — b z¢1 by?
T leos 0 + b5 wRs(cos 8 + bo)?

{ [sin?6 cos? @ + 282(1 4 5 cos §) - 354 sin? 8 cos 8]

+ 0(}/w*RY) + }, (A33)

where

) 2 2
- /T3 a _ ¢ ==
R—\/r2+z§, 8= -5 — sin%8, v = —;—1, cosb = —.
17 17 R

The first term in the braces is the reflection coefficient K for plane waves incident

at an angle 0, which was given in (A24); the second term gives the conditions undér
C1 A

wR$ ~ 2xR6®

which the plane-wave approximation is valid, namely when is small.

2
It follows that in the case of a very low-speed bottom (g, > 2) , the plane-wave
2

approximation for a singly reflected wave is valid at distances from the source
greater than about one wave length. This is not true when ¢, o ¢, and for grazing
angles of incidence 6. In case of a high-speed bottom (¢, < ¢z), the plane-wave
approximation breaks down completely as 6 approaches the angle 8; of total reflection
given by 6; = sin~*(c1/cs), because & vanishes at § = 6, .

Even under conditions when the expression ¥, for the steady-state potential can
be approximated by the leading term in (A33), this is not true for a pressure pulse

1

of arbitrary time variation f(f). Whereas theleading term in (A33) yields % f (t — ?)’

1 t
the second term is proportional to I f , f<x - i_i) dx on account of the (1/w) factor.
Riey 1

. . R .
In the case of a pressure pulse of finite duration 7, f{ ¢ — c_> vanishes after z = Z-R—}- T,
1 1

t
while [ , I (x - ij) dz approachesa constant limit. During the “tail” phase of the
Rley 1

record, the leading term may therefore become small in comparison with the second
term.

ITI. Reflection of a spherical sound wave from a plane boundary in case the receiver
is situated on the same vertical with the source

An interesting case, which is also of some practical importance, is when the receiver
is situated on the same vertical with the source (r = 0). The reflection coefficient
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varies with the height of the source above the boundary when the height is less than
about a wave length (the result applies of course also for any position of the receiver
as long as the distance of the image from the receiver is less than the wave length).
The reason for this is that within a distance of only a fraction of a-wave length from
the source the energy in the field is predominantly kinetic, and the flow proceeds
as if the medium were incompressible. In the limit of very long wave lengths the
reflectivity of the bottom becomes independent of its compressibility and the com-

pressibility of the water, and approaches a value of <ul> for normal incidence,
P2 P1

instead of the acoustic value of {paca — pic1)/(pac2 + pi1c;). We shall designate the
field in the immediate vicinity of the source as potential flow, in contrast to the
acoustic flow which prevails at distances greater than about a wave length from the
source. The transition from. acoustic flow to potential flow takes place for a point
below the projector in the range 0 < z/A < 0.5, where z denotes the height of the
projector above the bottom, and X the wave length.

We have for the wave reflected » times from the bottom

“kdk (B _,,B2>,. .,3
- oty L e-z 12n
Y = ‘[ i8 \Bi+ 5B

o L{(Bm Y () somed [ o] (22 2V AV (BB,
zn (\Pz 7+ A1 a 1 PR e 1+
1 {po = Pl » ﬂby2 f wzn i("’zn/cl)fw Kommor)a dx wzzf.

= — - T - " —_ 0 .
2n <P2 + P1> {1 + (2 — 1) ¢ a ¢ L € %2 + a s (A35)

1 pocs — pic1\* 2 in »¥c3p109 i

ﬁz—n(pzcz + p161> {1 + wzn(pacy + prcd)lpace — prcy) +0 <wa~’3. >} (A30)
Here Eq. (A34) is exact, Eq. (A35) is an approximation useful for small values of
wz,/c; (potential flow), while Eq. (A36) gives an asymptotic expansien valid for
large values of wz,/c1 (acoustic flow). Figure 51 shows how the reflection coefficient
for a singly reflected wave varies at normal incidence from the value (ps — p1)/
(p2 -+ p1) for very long wave lengths to the value (pace — pic1)/(paca + picy) valid in
the limit of short wave lengths.

(A34)

IV. Reflection of a spherical pulse of square shape from a bottom characterized by
a discontinuity in density and sound velocity when the receiver is situated
on the same vertical with the source

Let the shape of the pulse be a square wave __|«—r—|__ of duration 7 seconds
and of unit strength. Let ¢ = time reckoned from the beginning of the pulse at
source,

P} = pressure amplitude of the wave which has suffered m reflections from the surface and # reflec-

tions from the bottom,
z = 27 total vertical component of path traversed by wave from source to receiver,

2 ct—b\/c"'t2+ 252
=21, b=p/m, )= [ : |, (A37)
c at + bV EE + 22
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then

PR =0, 1<
a

Py =(=)m} rer, Z<i<iin (A38)
z o a
P = (0 or - ye— o, 1> 24 (439)

When the pulse is zero for negative ¢ and unity for positive ¢, Py is given by (A38)
e .
for all ¢ > = From this expression one can, of course, compute Py for any form
1

of the pulse. A simple and useful pulse shape which has been analyzed in this way
is the exponential one, but we shall not give the results here.

Eq. (A37) gives a simple illustration of the transition from acoustic low to poten-
tial flow. (See III.) The beginning of the pulse is controlled by the high-frequency

components and, at { = f, F&) = (p2c2 — p161)/(p2c2 + p1c1): at late epochs the pulse

is controlled by the low-frequency components, and f(t) — (p2 — p1)/(p2 + p1).
We have here also an explicit illustration of the “tail” which is characteristic of
two-dimensional wave propagation.

All the results of the “ray theory” given above can be generalized to apply to the
case of a bottom which is characterized by a normal impedance Z = pici{ by the
simple expedient of letting in each expression & — 0, ¢1/cy — ®, b6 = by — 1/¢.

3. THE NORMAL MODE SOLUTION.

a) Evaluation of the integral for the potential in terms of residues and of an integral
along @ branch line—The normal-mode solution represents another transformation
of the original expression for the potential, say,

9, =2 f Tk dh smﬂﬂxd[ﬁl cos Bu(H — 2) +ibB. sin u(H — 2)
0

d
B1 cos BLH + ibBy sin B1 H :| Se<H, (A18)

1

which is useful at large ranges and for wave lengths which are of the order of a
fraction of the depth of water or greater. When the range is great for a large number
of images to be required, the radiation from the images is mutually reinforced in
certain particular directions as in the case of a diffraction grating (Slater, 1942,
p. 284). The waves traveling in these directions, together with their reflections at
the surface and the bottom, constitute the normal modes. The analogy with the
diffraction grating is not complete because the strength of the n-th image is not
unity but K*, where K denotes the reflection coefficient. One also needs to take
into account the fact that the waves emanating from the point images are not plane
but spherical.

Both these factors of divergence are automatically taken into account by our
method of derivation of the normal-mode solution from the exact integral (A18).
By this method the normal-mode solution is obtained from the residues of the inte-
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grand in the k-plane (Lamb, 1904). In doing so, one must observe the circumstance
that, by (A7), 8. and 8. are multiple-valued functions of & with branch points at
k=k1=w/61 and k=k2=w/62 .
respectively. We therefore cut up the k-plane as is shown in Figure G.
The poles of the integrand in (A18) lie either on the real axis between k; and &,
(¢c1 < ¢3) orin the fourth quadrant. Let

F(By, B) = sin B1d [ B1 cos Bi(H — 2) + t"bﬁg s%n Bu(H — 2) , (Ad0)
B Brcos BLH -} ibBy sin 1 H
this being a function which is eves in 8; but mixed in 82 . Then
¥, =2 f Jolkr)k dEF(By, B2) = f B (k) + B r)IF By, Bk db. (A41)
o )
f HO P, Bk d = f H (br)F 8y, Bk dk = — f B Gur) F(B,, 62)u du
) 0 )
= ?zf Ko(m‘)F(ﬁl, 52)14 d%, ‘ (A42)
T Jo

because the integral along the real axis can be transformed into an integral along
the positive imaginary axis, and

%
HP ) = == Ko(w) = —HP (). (As3)
™

The integral with the H (7) function can be transformed into one along the paths
B+ (C4+D)+(E+F)+ the contribution from the residues in the fourth quadrant:

—100 1

o 1
f HE ) F(By, B dk = [ +C f D+E f f] H"(k)F(By, Bk dk+ Residues.  (A44)
0 0

Now

f B k)P, Bk db = — f B (—iur)P(By, Be)ue du
0 0

=——f{ f Kolur)F (B, Boudu = — f B () Py, gk dk,  (A4S)
0 0

so that this term just cancels the integral with the H$P (kr) function. Also, in the
T
term E f F, F(B1, B2) has the same value on either side of the k-cut because it is
l

one-valued there with respect to the argument 8, , and 3, merely changes sign, which
leaves F (B, B2) unaffected. Hence the integral along F exactly cancels the integral

1
along E and E f F vanishes.
1

The remaining integral does not vanish:

T T
c f ?Hf,”(kr)F(Bn,ﬁa)k dk = C f H® )Py, B2) — FlBr, — Bk dk

k.
- B k) [F (B, B2) — F(B1, — B2)1k dk; (A46)

— 10
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We have thus accomplished a transformation of the integral (A18) into an integral
along a branch line and a sum of residues

ko
Vo= | HPEFB,8) — F@r, — Bk dk + = Residues. (A47)

— t00

b) The residues or “normal modes”” —The last term in (A47) can be written as
X
¥] = ZRes = Z Res f H (br)F(B1, Bo) R dk
o

- —-Zm'ZH.(,“(knr)kn sin B, diB; cos B1(H — z) + 36P; sin B1(H —2)]’

B Y [8: cos B H + ibB: sin §1 H)

(o Ty HyY (kar) (8 H) sin (81d) sin (B12)
H < [8H~

¥ = sin (81 H) cos (8. H) — b2 sin? (81 H) tan (B H)!’

0<z<H. (A48)

In deriving (A48), use was made of the fact that the terms appearing there are to
be evaluated at the roots k& = k&, of the equation

1

" bten () (4

B2
If instead of (A18) we had used (A17), we would have obtained precisely the identical
expression for the residues. This expression therefore holds for the whole range of
0 <z< H. Forz> H we find similarly by operating on (A19) that the residues
are given by

2xid H? (knr) (8. H) sin (81d) sin (8 H)e~ 265

T (G = vin Gl cos G E) — Bsit G wm D) 0 A0

v, = —

) The question of the orthogonality and the normalization factors of the normal
modes—The appearance of the branch-line integral in the solution for a point source
given in (A47) would seem to be in contradiction to standard theory of normal modes.
According to this theory, if F.(z) are a set of solutions of the equation

2F, [ &

which satisfy the boundary conditions, then the solution for a point source situated
at depth d is

¥, = —in 3 H (ka7) Fa(®)Fa(d) /Ch (A52)

13
¢ = f () dz, (A53)
0

where % denotes the lower boundary of the medium. In deriving this result one
makes use of the orthogonality of F., , which can be proved by multiplying (AS1) by
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Fn , and the differential equation for F., by F, , and subtracting, which yields

d . .
= (Fn P — FaFp) = (K — En)FnFm, (A54)
. . h h
(FpFm — FpBp)ich = (&5 — km) f Fn Fn dz. (A55)
0

Here the left-hand side vanishes because of the boundary conditions, showing that
the integral on the right vanishes when » # m.
In our case 4 = «, and we may take

Foe) = sin ™z 2<H
o (n)
= sin BM@eBi" D > H, (A56)

which ensures continuity at z = H.
Now, first with regard to the question of orthogonality we find, on using (A49),
that

3 o ib sin (8{™ H) sin (8{™ H)
[ s @12 sin i) e = = CT (s
: n . " PN % SN S —isin (8{"H) sin (8™ H)
sin (8{™H) sin (B )H)L B BBy = (35") M) 1 ,  (AS58)
i i(6 — 1) sin (B H) sin (8™ H) L
j; Fa(2)Fn(2) dz = (ﬁé")l-i- ) : (A59)

Eq. (AS57) shows that when the integral is extended only over the depth of water,
as it should not be, the F’s are not orthogonal. Even when the integration includes
the bottom, Eq. (AS9) shows that the F’s are not orthogonal except in case b = 1, when
the densities in the water and the bottom are equal.

As for the normalization factors C% defined in (A53), we get

u o
ci = f sin? By (2) dz -+ sin? g1 H f ¢~ 2B (e-H) g,
) u

= (ﬁ) (81 H — sin 81 H cos 81 H ~— b sin? 81 H tan 8 H]. (A60)
When this is substituted into (A52), we get an expression which is identical with
(A48) except for the b in (A60) which appears in place of % in the bracket of (A48).
Hence, we find again that the expansion (A52) holds only in the case b = 1.

The reason for the disagreement between our results and the standard theory of
normal modes is that the latter is based on certain assumed continuity conditions
which do not obtain in our case, due to the discontinuity at the bottom. These
assumed conditions are those which are implicit in going from Eq. (A54) to (AS5),
namely that the function (¥.Fm — F.F.) should be continuous throughout the
region of integration. In the case of a sound problem, this condition is violated at
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a surface of discontinuity of density because the boundary conditions of equality
of vertical velocity and pressure require that F and oF, not F, should be continuous.
The vertical component of velocity and the pressure are continuous, but the hori-
zontal component of velocity is discontinuous. In case of a discontinuity in density
at the boundary between medium 1 and medium 2, Eq. (A55) becomes

h
(k%, - k?,.)‘[ FnFm dz = (FnFm - FnFm):::)L + (FnFm - FnFm)l - (FnFm - FnFm)2
0

= —(b — 1)(FnFm ~ Fulm)y; (b = p1/pa). (a61)

Hence, even in the case of @ continuous sound velocity c(z), the peculiar boundary condi-
tions imposed by the sound problem make the normal functions nonorthogonal in the
presence of a density discontinuity.

When the densities in the bottom and the water are equal, but not the sound
velocities, the normal functions are orthogonal, and the normalization factors agree
with (A53). Stil}, even in this case, the branch-line integral in (A47) does not vanish.

Possibly the theorem upon which expansion (A52) is based does not apply to our
case where, although the F’s and their first derivatives are continuous, the second
and all higher derivatives are discontinuous on account of the velocity discontinuity.
It is also possible that in the section of the k-plane cut out in Figure G are not in-
cluded all the poles of the integrand (the set of normal functions in (A47) is not
complete) and that the branch-line integral is equivalent to the contribution from
the omitted normal modes. We reserve the elucidation of this point for another
occasion but merely point out here that the integral for the potential of a point source
in a uniform medium given in (A20) does not possess any poles, and therefore possesses
no associated normal modes. It can be transformed into a branch-line integral
which coincides with the limit approached by the branch-line integral in (A47) as
ps—>prand ¢z — ¢y

It will be shown in the next section that the branch-line integral in (A47) behaves
asymptotically for large horizontal ranges r like a dipole, modified by the presence
of the bottom (or rather of the water), due to the interference between the source
and its image.

d) Asymptotic behavior of the branch line integral for large horizontal ranges.—
The integral under discussion is

kg
v = | BPG)FE, ) —F By, — B2 kdk

ks . .
— o (2) Basin (81 d) sin (812)
= | B ki om + rg et Gl
with
__sin (B1d) | By cos Bi(H — 2) + ibBasin B1(H — 2)
Flow, bo) = 1)1 [ Brcos (B1H) -+ ibBs sin (B1H) ]’ (a40)

Bi=E -1, B=+E-r h=oa k=
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We shall state here without proof that under certain conditions ¥,  has the following
asymptotic behavior for large »

rrt . (2ibky) sin (k1 dp) sin (kg zu)e~2m a< e (A63)
ik (B1r)? 2 cos?(k Hy) ! < H’
(24bky) sh(ky dv)slz(klz'v)e“ikz" > ¢
!t = . A64
? (kﬂ’)2 v56h2(k1HV) ’ 2< H'’ ( )
! — (2ibks) sin (k1 dp)lkalz — H)p cos (kHy) + b sin (k1Hp)] a < ¢ (A65)
? (k17)2 [42 cos? (k1 Hy) ’ z> H?
’ (24bks) sh(ky dv)lk1(z — H)vch(ky Hy) + bsh(ki Hv)} . > ¢ (A66)
2 (Byr)? v2ch?(ky Hy) ’ z>H’
where

i

y 1/0_3_1, ,,51/1_%. (A67)
P 3
The conditions for the validity of these asymptotic forms are that (k3Hp) should be
removed from a zero of the cosine in the denominators of (A63) and (A65), and that
kw(z — H) or kwu(z — H) should not be large.
The above expressions bear an analogy to the asymptotic form assumed for large
r by the solution for a point source in a uniform medium:

feRL kR % (kzd) an . 2kad
. —_ — — gi phitind —tkR _y T ikr
¥ ( R Ry ) R¥™\R/° R (A68)

The last limit is the one approached by Egs. (A63) to (A66) as ¢ — ¢; and ps — py .
e) Phase velocity and group velocity of the normal modes in o two-layered liquid

half-space—Let

o? » «? . >
xnsai”)H=H4/;—k:, (§’=1/§—ki=—z1/k?.—%>, (469)
1 2 2

then the normal-mode component of the solution for the potential can be written as

, (—m) 2 B (k) 2y sin (x,d/H sin (x,2/H)

v, = - - ,
z H 1 (% — sin x, cos ¥, — b? sin® 2, tan *n)

0<z<H, (A48)

u=(= z>H,  (A50)

(%)
, —2mib\ © Hé”(knr)xn sin (xnd/H) sin x, ¢ 62 ¢~
a=t (xp.— sin x, coS &, — b?sin? x, tan x,)

where the a, are roots of the equation

tan x 7 1 1

v 0 g% @ o 2 (as9)
[

For large » the Hankel function may be approximated by its asymptotic form

B (k) 1 / : - it (A70)
TRn
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and the normal-mode component of the sound potential p; = €¢™*¥; becomes
2 2w _1

o) = (—) ,‘/: Z = gilwt=knr—TIDF(y,) sin (x,d/H) sin (x,2z/H), 0<z<H, (A7)
H it V'Ea

2xb 2 = 1 . L n)
‘P; = ('E‘) /‘/: Z _———e‘(“’t_k"’_'“)F(x,,) sin (x,d/H) sin xpe P2 (’_H),
T ne=l kn

z> H, (A72)

¥n

Flxg) = (A73)

(%, — sin %, cos %, — b2 sin? &, tan x,)

The physical meaning of %, is now apparent from the term

ei(wt—knr—rltl)’ namely, b =2,
Cn

where ¢, is the phase vdocity of the n-th mode. The factor F(x.)/\ ., gives the
relative strength of each mode, while the factor sin (x,d/H) sin (x.2/H) gives the
variation of the amplitude of the mode with depth of source and depth of receiver.
Let

2
an = an, & = (poz/p;Cl), e = - 1. (A74)
Then, upon omitting the subscript # in the sequel, Eq. (A49) can be written as

tne 8 o (A75)

o= b \/1 - 82 cotan? x, (A76)
¢

- 2
c=oq \/1 + a2/a? = ¢ ,‘/ S S (A7T)

1+ (1 + 8 cotanz %)’

We shall be interested primarily in the case of a high-speed bottom (¢cz > ¢,
where Eq. (A49) or (A75) possesses an infinite set of real roots , in the range
w(n — %) < %, < nr for the n-th mede. Inthat case &, and the phase velocity are
real, and the propagation of the modes proceeds without damping. The physical
reason for the undamped propagation, which is discussed elsewhere in this paper,
is briefly that the normal modes are made up of mutually reinforcing elementary
waves (emanating from the various images) which are fotally reflected by the bottom.

It is seen from Eq. (A49) that x, is a function of the circular frequency w, and
therefore, from Eq. (A77), that the phase velocity ¢ is a function of frequency. The
frequency corresponding to any given value of x, can be obtained from

wH H ac k2

T 27 Ta 2arcy T 2me

\/1 -+ ¢ -1 §2 cotan? x - (A78)

v denotes the ratio of the depth of water H to the wave length of sound in water A.
When «., is near its upper limit of s, v is very large by (A78), and by (A77) ¢~ ¢; .
Hence, in the limis of very high frequencies the phase velocity of all the modes approaches
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the sound velocity cy in the water. On the other hand, when x, is near its lower limit
of (n — %), v does not become zero but approaches the limit.

B _=1yDaVite _ —1/2)
= 27e n 2
2 1___:.

c2

=25 - )y, (A79)

This means that for each mode there is a limiting frequency below which undamped
propagation is impossible. The physical reason for the limiting frequency, which
is bound up with the inception of total reflection at the critical angle of incidence,
is discussed elsewhere in the report. From (A77) it follows that at the critical
frequency (x = nw — w/2),¢ —> c:\/1 + € = ¢;. The phase velocity therefore
varies from the value ¢; at the critical frequency down to ¢; in the limit of very high
frequencies. The variation is monotone and is shown for several media in Figure 28.

In a medium in which the phase velocity varies with frequency, the energy in an
arbitrary disturbance embracing a band of frequencies is known to propagate with
the so-called group-velocity (Lamb, 1932, p. 380-398; Jeffreys, 1931, p. 84-94).
This is an important consideration in our study of propagation of explosive sound
in shallow water. In the next section we shall show how the notion of group velocity
appears in the analysis of the mutual interference of a band of frequencies advancing
with different phase velocities. Here we shall merely define the group velocity U as

dw dc de
U= dk (kc) c+kd—k = c+ada, (A80)

¢ denoting the phase velocity, and derive an expression for it in the case of the normal
modes in a two-layered liquid half-space. We have from (A77)

(&-3)

Lde_"N\da"a (A81)
‘\/ o? - %2

and from (A76)

(A82)

_d_x_l/doz e\/1+62c0tan2x
da

dx (1 + & cotan® # — 8z cos x/sindx) "

Substituting' (A82) into (A81) and using the latter in (A80), we get

U_ (01) 12 . e T L8 (
a ( ) (1 + & cotan? x)] ) [ + ;@] . A83)

o(2) = [1 + 8(cotan? x — % cos x/sin? x)]. - (as4)
For the purpose of computing the amplitude of o wave packet we shall need in the

d’k . .
next section the function — I This we now proceed to derive:

(A85)
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One finds that
de 352 cos x )
dx sin® x sint x

i ay _ 82 x% cos x

dx\c¢/) e sind (a2 + 2232
@k Hod | 2*cosxle + o(x)} o2 é(x 4+ 2x cos? x — 3 sin x cos %)
de? P |sin? xp(x)(a® + 22)302 %p(x)3 sint x Vo + a2 )

(A86)

Egs. (A77), (A78), (A83), and {A86) now provide a convenient scheme for deter-

mining corresponding values of the phase velocity, frequency, group velocity, and
2

d'F respectively, by computing the functions in the wholerange of (. — ) < x, < nr

dw?
for the #-th mode. Otherwise one has to resort to time-wasting trial and error
calculations.

f) The propagation of explosive sound in a two-layered liguid half-space.

I. The ground-wave and water-wave phases

In previous sections we discussed the solution for the potential (which is propor-
tional to the acoustic pressure) due to a periodic point source of circular frequency w.
It was shown that at large ranges r the potential ¢s in the water is given by a series
of normal modes,

00
= Z ei(wt—knr—1r/4)Qn(w),

na=l

(2= / 2 %y sin (x, ¢/H) sin (x,2/H)
Onlw) = (H) ;kn—, I:(x,, — sin %, cOS xp — 82 sin? x, tan x,) |’ 0<z<H (A7)

and by a branch-line integral ¢, = ¢™'¥; which, as was shown in Eq. (A63), de-
creases with range like 72, Since we shall be interested primarily in propagation
to large ranges, we shall disregard the contribution from the branch-line integral.
" This term is relatively important at the very onset of the ground wave, because the
amplitude of the normal modes is zero at that instant, but during the major span
of the received record it fades into insignificance on account of its 72 variation, as
compared with the 7~} (or 1 for a wave packet) of the normal modes.
If the time variation of the pressure pulse at the source is not periodic but an
arbitrary function f(¢) represented by its Fourier transform

@ = 2—1; [ ¢ g(w) do, (A22)
then the pressure is given by
1 -] 00
Plr,z,8) = P [ gw)ei@) do = 3 Palr, 2, 1), (A87)
0 Nexl

1 ®
Pulr,z, 1) = ” f lot—knl@)r =M o(,)0, (0, 7, 2) dw (A88)
o
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The term P.(r, z, t) represents the contribution to the pressure from the n-th
mode.

We shall be interested in the case when

flt) = e >0 (A89)
=0 t <0,
where
1 = gt 1
KA Ie=~H e 0
Pulr,2,1) = 1 M glot—kn(@)r—=/4] 7., (A91)

2o ] o O\ + iw)

In treating the integral (A91), we take cognizance of the fact that the term Qn(w)/
(\ + iw) is a slowly varying function of w, whereas the exponential factor is rapidly
oscillatory. The principal contribution to the integral arises from small ranges of w
in the vicinity of the points of stationary phase—i.e., at the points at which f(w) = 0,
where

f (@) = of = kplw)r — x/4, f (w) =t — 7 % = 0, (A92)

In the vicinity of a point of stationary phase wp we write

w = w + u, flw) = flews) — rk(;O) u? — 7i:0)-u3 — e, (A93)

® ifwo) .
17 0) ey g, o 100 U0 L2 miwpitreioieoute ] g,
27 J_ o O\ +iw) 2 (A + )

'— 0

IR e T s | & 1
—i[(r/Dkul +(r/Qdkud+--+1 g A 2r  kinly 1 4 . i — ol - A4
[ awep) e { S by o B CR

where the - sign in e"™*is to be taken if E< 0,and the — sign when k> 0. Hence

1 [° Qnlw) 0alon)  gruei 2 1
P, = — O @) g, = 2 $lwot—rk{wg)] gl ,E<O0 AOS
2] Ot 2aln + o) © 7| kwo) | \ o9

-1 —Q"("’j’) gloot—rbao=sia) [ 2 | B E> 0, (A96)
2 (A + o) rE(wo)

{ SO PPV
{} B {1 * -’[_ 2y T 8(7%)2] + °<,2>}- (A97)

At this stage we must consider the location of the points of stationary phase wp in
the complex w-plane. The phase f(w) = [wt — kn(w)r — w/4] was arrived at by
assuming a factor e+t for the steady-state potential and then adding the phase of
the —iH$” (knr) given in (A70). Had we assumed instead a time factor e~%, the
term —iHS? (B.r) would have been replaced by its conjugate +iH (Ear), and the
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phase would have changed sign. It follows that, whereas Q.(w) is an even function
of w, (because x defined in (A69) is even in w), f(w) is an odd function of w; and for
every positive value of wy where f(wo) vanishes there is another stationary point at
@ = —wy. Wehave therefore toadd to the expressions (A95) and (A96) their com-
plex conjugates:

<0, (A98)

Palrz, 1) = 2Qnle) cos lant = rh(un) — tan7wo/M)] {}

(277 | % (wo) | 02 + wp)lt

20 (wo) cos [wot — 7k(w) — tant (wo/A) — /2] [
B (277 (w) OF + )1 1

el [ =styr E 1
{ } - {1 Ty [ 24(k)3 + 8(%)2] +o (ﬂ)}’ (A100)
where tan[ ] denotes the tangent of the respective arguments of the cosines in
(A98) and (A99).
The factor { } is used only for purposes of estimating the range of validity of the

approximation made in applying the method of stationary phase. Expressions
(A98) and (A99) are to be used only when

stk k-
r [ 2400 T 8(7&)2] <1 (A101)

This condition is violated for small ranges and near the point of the minimum group
velocity, where £ = 0. In the vicinity of that point the integral (A91) requires
special treatment which was devised by Airy.

It is convenient to express the correction term given in (A101) in terms of the
nondimensional quantities

}, E>0, (A99)

H  oH gk dZ &k B2 4nicidk

N 2ra’ “Hid 4y B de®  d | HE det’

~ =

of which Z(y) can be computed directly from Eq. (86), and Z and Z can then be
computed by numerical differentiation from the tabulated values of Z as a function
of v. Substituting into (A101), we find that

A s sk _ L (E\[_52* 3%
247[“ G +(7é)2]_96«2(r)[ ZS+Z*]<<1 (4102

is the condition to be observed when applying (A98) and (A99).

We now summarize the results of this section. In order to compute the contribu-
tion from the #-th mode P, at a given time ¢ and point (7, 2) in case of an exponential
pulse, one first finds the points wo on the dispersion curve k. (w), characteristic of the
medium, such that

(A103)

L

1
U
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P, is then computed from
_ 4 cos [wot — 1k ~ tan"(wo/)\)][ %n sin (x,d/H) sin (xnz/H)
Hr \/kn I kn, (a2 + 0’:)

Py

(xn, — sin 2, cos x, — b2 sin? x,, tan x,)

]; 5 <0, (A104)

k.3
4 t — rk — tan Y we/N) — -
. cos [wo k — tan(wo/N) 2][ 2 sin (and/ ) sin (znz/H)

Hr\ by BaO\? + o) (%n — sin %, cos x, — b2 sin? x, tan x,) |’

>0, (A105)

provided that the range is large enough and the time is sufficiently removed from
the value ¢, = r/Uy ,where Up denotes the minimum group velocity at which & = 0,
so that condition (A102) is satisfied. For reasons explained elsewhere in the paper,
(A104) represents the so-called water wave, and (A105) the ground wave.

The cosine factors in the above expressions represent periodic functions of circular
frequency wo, but w, itself as well as the other factors are slowly varying functions
of time on account of (A103). Expressions (A104) and (A105) therefore represent
trains of waves which are modulated both in frequency and amplitude.

II. The Airy phase

Near the point of the minimum group velocity, where (w) = 0, we set in the
integral
1 % Qn(w)e/@

n\Ty <y = N 3 1
Pu(r,z,t) ). Otiw dw (A91)

w=w+u flo =wt—k(w)r-—:-;=f(wo)+au+bu’+cu4+---, (A106)

r

g 1
7 ko (A107)

a=t—rléo=t—r/Uo, b=%r}$:>0, c= —
The subscript ¢ in the derivatives of % signifies that they are to be evaluated at the
fixed point wy where k(w) vanishes. In contrast to the situation in the preceding
section, these derivatives are therefore constants independent of t and r. We shall
retain in the expansion (A106) powers of # up to the fourth and shall use the last
power only as a correction term.
In view of the fact that f(w) is an odd function of w and Q,(w) is even in w, we have
from (A91)

Pn = ! ”&(w)— cos [f(w) — tan? (w/\)] dew
T Jo

'\/x2+w2

o~ 1 Qn(wo)
VN ol

4
‘[wcos[A + au + bu® -+ cut] du, (A108)

A = [wt — k(wo)f — tan-! (wo/)\)].
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o0
f cos{A + au + b + cudl du
—x

-] 0
= 2cos 4 f cos (au -+ bu?) cos (cut) du — 2sin 4 f cos (an + bu?) sin (cut) du
0 0

. 0T
=~2cos AT(a,b) +2sin ¢ ——, (A109)
da dd
where
7(a, b) = fo cos (an - ) du = 3(21’)% E@),
E@) = AlJ_3(v) + 1)}, < 5, (A110)
0
= M40 — LG, > -, (Al11)
Uy
and
_ 2 Jef_ 4w 1) g
v = 3'\/3”)1* 3\/ Z( |+ m %, (A112)
_a_ I
T = 1, Tm U 1
One finds that
T
9290 = B ( 2 G(), {A113)
1
60 =5 (~WU40) — HO1+ I ULE + 16N, <z, (G
3
G() =3Z (=3 [1400) — ;)] + P46 — LG, > 50 (A115)
Hence
iwcos [flw) + au + bt + cut] du &’27;(;(;5);4 E(@) + 2%%‘—[;;:0(?), (A116)

of which the second term is to be considered a correction term. The use of the
leading term only in (A116) is justified when

<1, (A117)

B60) (B  _ b (E)* Z6()
FHEW ARG ()} (=2} EG)

Summarizing our results for the Airy phase, we have as the contribution Py from
the #-th mode, in case of an exponential pulse, near the time ¢, corresponding to the
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minimum group velocity

4 cos [wot — klwo)r — tanLew/A) — Z] E(@)

P‘n(r) Sy l) = NN .o s
H3E A/ O+ wdby/20(—Fp)t o

. %, Sin (2, d/H) sin (xnz/H)
Tn ,

— sin %y, €os x, — b2 sin? %, tan x,

(A118)

with v defined in (A112), provided the range is large enough and the time not far
removed from #, for condition (A117) to be satisfied. In contrast to expressions
(A104) and (A105) which represent waves which are both frequency-modulated and
amplitude-modulated, expression (A118) represents an amplitude-modulated wave
of constant circular frequency wy. The amplitude modulation is contained in the
factor E(v), v depending on time in the manner described in (A112).

Expression (A118) allows the computation of P, forall ¢ > /. as well as for a certain
period prior to 4» . For still earlier epochs (A118) cannot be used because condition
(A117) is violated (v is too large); but then it is usually found that condition
(A102) is met, so that P, can be computed from (A104) and (A105).

B. THEORY OF PROPAGATION OF SOUND IN A THREE-LAYERED LIQUID
HALF-SPACE

1. FORMAL SOLUTION

The medium considered consists of three liquids characterized by densities p; , p2’
ps and sound velocities ¢y, ¢z, ¢s, (Fig. H). A point source, which in the first
instance will be assumed to be periodic of circular frequency w, is situated in the first
layer at a depth d. (The solution for any other location of the point source can be
readily obtained by the method used in this section.) The problem is to determine
the pressure field at any point in the half-space. Later the steady-state solution
for the frequency w is generalized to yield a solution for the case of a pressure pulse
at the source of arbitrary time variation.

The pressure field is determined by the sound potential ¢ through

p=p, w=-~_"

e 2% d¢
= - — Al
at dz’ * ar’ an

where p denotes the acoustic pressure, w the vertical component of velocity, and #
the horizontal component of velocity. The potential ¢ satisfies the wave equation

1 3%

¢ or’

Vip = (A2)

where ¢ takes on the three values ¢, ¢; and ¢; in the three media respectively. In
order to satisfy the boundary conditions at z = 0, 2 = H and 2 = H 4 £, we seek,
in the first instance, solutions for ¢ of the form

o = 9T (k) F(2)G(E), (A4)
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where k is an arbitrary parameter with respect to which one eventually integrates

along a certain path in the complex k-plane. (For a more detailed discussion of this

point see Pekeris, 1946.) 1t is convenient to label quantities referring to the middle

and lower layers by the subscripts » 4nd 5 respectively, while quantities referring to

the section of the upper layer above the source are labelled ;/, and those referring

to the section of the upper layer below the source are labelled by the subscript ; .
Substituting (A4) in (A2), we get

&?Fy

2 8% Fal2) = 0, n=1,2,3, (A119)

(A120)

Solutions of (A119) have to be chosen which vanish at 5 = 0, have continuous vertical
components of velocity and pressure at s = H and s = H + k%, and which do not
become infinite at great depths as £ becomes large. These conditions are met by
putting

Fyq = A sin Bz, (A121)
Fy = Bsin Bz -+ C cos 812, (A122)
Fs = DsinBsz + E cos Bz, (A123)
Fy = Eoife, (A124)

where the arbitrary constants 4, B, C, and D (functions of £ and w) are determined
by the boundary conditions and the strength of the source. The boundary condi-
tions require that

Ff=Fs, psFs=pFs, z=H-+h (A125)
Fe=Fi, poFe=pF1, z=H, (A126)
dF, dF

721 - Ez'l = 2k, Fy = R, z =d, (a127)

with the understanding that the elementary solution (A4) is to be integrated with
respect to k from O to «. When this is done, the difference of the vertical com-
ponent of velocity w at the two sides of the plane = d becomes proportional to

f Jo(kr)kdE, a function which is zero everywhere except » = 0, where it becomes
o

infinite in such a way that its integral over the plane z = d is finite.
Let

x=p8H, b=p/pa, = p2/ps, (A128)

gBa tan (8:h) — i '
" LeBs + is tan (8h) = b , A129
S I:gﬁa + 18, tan (Bsh) ] ’ V = (&S cos x + BB sin ) ( )
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then on solving Eqgs. (A125) to (A127) for 4, B, C, and D, substituting the results
into Egs. (A121) to (A124) and performing the integration with respect to k, we get

o = zemf Tolkr)kdk Sl;f; [5,3, cos B1(H — d) + b8, sin By(H — d)], 0<z<d, (A130)
0

= 2¢Mt f Jo(kr)kdk Xz [sm cos f{H — 2) + b, sin gy(H — z)] d<z<H, (A131)
(4

o=
Tt Sin ﬂld .
e = 2be f Jo = Scos oz — H) —sinpe(e — H) |, H<z<H-+E(A132)
(]
— 91 it sin gid : B3 (z—H—R)
e = 2bge Jo(kr)kdk = S cos Boh— sinBl | e tFs , z>H4 k- (A133)
0

As in the case of a two-layered medium, ¢; goes over into ¢; by interchanging z
and d and vice versa. It will be noted also that the integrands in Eqgs. (A130) to
(A133) are even functions of 8; and 8, but mixed functions of 8; .

2. THE NORMAL-MODE SOLUTION

(a) Evaluation of the integral for the potential in terms of residues and am integral
along.a branch line—We shall dispense here with a discussion of the “ray theory”
for a three-layered medium, since it can be developed along the lines used in the
two-layered medium. In seeking the normal-mode solution of, say,

1 = 28'.“" f Jo(kf)kdkF(Bl, ﬁz, ﬁa), d<z < H, (A131)
0
sin 431
F(Bi, B, Bs) = X% [5131 cos Bi(H — 2z) + bB;sin Bi(H — z):l (A134)

where the 8’s and the other quantities are defined in Egs. (A120), (A128), and (A129),
we first cut up the k-plane in the manner shown in Figure G, adding a third
cut which begins on the real axis of k at £ = k3 = w/c3 and extends to k3 — i
in a direction parallel to the negative imaginary axis. The integral (A131) is now
treated like the integral (A18). It is found that on account of the fact that
F(B1,B2,8s) iseven in B; and in B, the branch-line integrals around the £y and %,
cuts vanish. There remains the branch-lineintegral around the %; cut and the
residues:

k3
o=t | BE RAF@B, 8 8:) — FBy, By — B)] kdk + o, (A135)

— 160

<0
o1 = €'2 Residues = 9! Res f B (k) F(By, By, 85) kdk
(A136)
= 27769 2y H{® (kpr) ke

sin 81 & [SB: cos Bi(H — 2) + bB: sin B1(H — 2)]
B 8V /0k), :
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One finds that at the zeros of V

oy ()

Edk B B cosx’ v = H,

b(8; — B?) sin x cos x — bB2x — kB cos? x(8? + b2 B3 tan? x)

{ 1= + g1 (8% — B2) cos? (8% + b2 tan2x) s (A137)
Bs(838* — B2) J
(581 cos B — 2) -+ b sin By(H — 2)] = — L2RBZ, (A138)
cos x
Hence
. 2 . . '
%, _ (2_:%17) it Z H;z)(knr) x,,@ sin (x,,le/H}) sin (x,2/H) (A139)

When 2— 0, S——*—@, tanx—*ﬁl—,
£8s £b6s

{ } 0B ~x +sinxcosx + B2g2sin? x tan 4], and (A139) reduces to (A48).

(b) Phase velocity and group velocity of the normal modes in o three-layered liquid
half-space

I. The dispersion equation

We confine the discussion to the case when ¢3 > ¢;, which is of interest in our
applications. In that case total reflection takes place for angles of incidence ex-
ceeding a certain critical value, and this implies the existence of unadmped normal
modes for frequencies exceeding the critical frequency. The sound velocity ¢, in
the intermediate layer will be assumed to be confined between ¢; and ¢;, although
the case ¢2 < ¢1 < c3 is of some interest also. Under the above assumptions
(c1 < ¢2 < c¢3) the phase velocity ¢ of any mode starts with the value ¢; at the respec-
tive critical frequency and approaches ¢; in the limit of very high frequencies.

Let
c? c? c? c2
sl:l‘/c_f_l; sz=1/;§-—1 or 1/1—0—2; 5= 1_5_2’ (A140)

then, with 2 = w/e,
B1 = ksi; Bs = ~iksy; B: = ksy when ¢> ¢, B2 = —itkss; when c¢<e, (A141)

S= 28s tan (B2h) — i _| & tan ok + (Bo/k)
| 85 + 8, tan (B2h) )

gss — (Be/F) tan (Boh) (A142)

The dependence of the phase velocity ¢ on frequency w is determined from

V=0 o tanx= —glﬂ'—s, x=BH = knH, (A143)
2
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which becomes

[~ Szh
51 [ gss tanh(s2 k%) + 52 5t g5 tanh (an ) t
tang = ——| Zr——t—— | = —— (A144)
bse| gss + s tanh(s3%h) bsy ( szkh>
gss + sptanh | & —
B SxH
when ¢ < ¢z, and
s [ gss tan (s22R) + 557
f = —— | —————— hy . 1
tan x o [gsa oy tan kh)_ when ¢> ¢ (A145)
I1. The cut-off frequencies
At the cut-off frequency ¢ = ¢, ss = 0, and Eq. (A145) reduces to
bs;
tanx-tany=;—, (A146)
t 92
2 h 2
k= w/e, x=kslll=w—-H 1—6—;, y = ks =% 1—%.
157 (23 (2] C3
h
When T 0, Eq. (A146) becomes
tan x = &&) (22 2) - (2 (S_E e
T \Hs, cotan x.ﬁ,H Hs, Y. !
H 2 H H (2n ot 1)
= =Pr=22 g 10, =TS = A
a H 2ma An 1
4 1—=
C
3
Similarly when g% Eq. (A146) yields
H
i : (0~ 1 (c}) (;)
“n G = — B (A148)

= — Af1—2=—Pr, va= —
‘2 3 2
ap/1-2
C3

showing that, the cut-off frequencies become very small. However, it will be shown
in the next section that even in this case the cut-off frequency given in (A147) is
of importance.

III. Behavior of the dispersion equation when the thickness of the intermediate
layer becomes very large in comparison with the thickness of the upper layer

Sah
When (B/H) > 1 and c is not very close to ¢z, the term tanh (x s—zH) in (A144)
]
approaches unity, and (A144) reduces to

ta.nx=—ﬁ, a<c¢<e, (A149)
sz
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which is the dispersion equation for a two-layered liquid consisting of the upper and
intermediate layers. Under the same conditions we may write Eq. (A145) as

s1| gsstany + 52 sH s H
—— ] =————— | = tan - = )2 y—===0, = ks;h, A150
bsg [ gss — sz tan y] 2 (y Sa b 4 So b 4 52 ( )

and therefore
gssetany + 52 = 0, c2 < ¢ < ¢, (A151)

which is the dispersion equation for a two-layered medium consisting of the inter-
mediate layer and the bottom layer. It follows that when the thickness & of the
intermediate layer is much greater than the thickness H of the upper layer, the dis-
persion in the range ¢1 < ¢ < ¢g is almost unaffected by the bottom layer, while in
the range ¢z < ¢ < ¢; the dispersion is nearly independent of the top layer. The
separation of the dispersion into two nearly independent regimes controlled by the
two surfaces of discontinuity respectively reflects itself also in the variation of group
velocity with frequency, with the result that the group velocity has two minima in the
manner illustrated in Figures 29, 30, 31, and 32.

IV. The group velocity

The group velocity of the normal modes for a three-layered medium can be com-
puted in the following manner. Write the dispersion equation in the form

Flc, k) = —bsalgss + sotanh(sokl) tan(sikH) — silgsstanh(sakh) + so = 0, ¢ < c2, (A152)
= —bsolgss — setan(ski)tan(sikH) — silgsstan(sekh) + s2) =0, ¢ > ca, (A153)
then the group velocity U is given by
2 oF(c, k)
vootr®ooo 2 (A159)
T T T BF R
¢
or in the nondimensional form
JOF
U 2 ok 2 aF(c, k
_—=<C_l> <E>"_ . o=0%ed. (A155)
a c c Q ¢ O
Let
/ \2 2
u=(c—l), v=(€l), x = s1 kH, ¥y = sy kh,
C2 €3
then for ¢ < ¢y we have
oF bass b tan x-sz Yy gsiS3y
k— = — tanh 5) — -
ak cos? x (52 tanhy + g50) cosh?y coshzy ’ (A156)
ta; tanh:
b(s. tanhy + gs3) pEn®y_ 2329‘ + bs; tan x o y+_;4y_+g
Sg 5, cos?x Sz s; cosh?zy s
0= , (A157)

s: S: 51 5 s2 .S
—g 2 tanhy-{—g—l—ytanhy—!- ———fl 9B AR
51 $3 ‘53 cosh?y 5 Se


http://memoirs.gsapubs.org/

Downloaded from memoirs.gsapubs.org on June 30, 2015

70 PROPAGATION OF EXPLOSIVE SOUND IN SHALLOW WATER

andfore > ¢ :

oF bas: b3y tan x 51 S:
— = (s2 tan y —gs) + atR4 _ funy 3 (A158)
ok  cos?x cos? y cos? y
tan x Sex tan
(bs;tany—gs;)[" 2 2 ]+bsgtanx[”——y+“—y+g]
Sa s; cos? x Sy S2c08%y 53
0= (A159)
S, s: s s
_g(ﬁ)mﬂ(u)my_i&_zgy _ %
$1 S3 §y COS* ¥y S1 S2
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FIGURE 6.—Dispersion in the waler wave at Solomons Shoal
H = Depth of Water. Ci1 = Sound Velocity in Water. C2 = Sound Velocity in Bottom. Density of Bottom as-
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FicurE 7.—Dispersion in the water wave al Solomons Shoal
H = Depth of Water. C1 = Sound Velocity in Water. C: = Sound Velocity in Bottom. Density of Bottom as-
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Ficure 8.—Dispersion in the water wave at Jacksonville Shoal
4 = Depth of Water. Ci = Sound Velocity in Water. Ci1 = Sound Velocity in Bottom. Density of Bottom as-
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FIGURE 9.—Dispersion in the water wave at Jacksonville Shoal
H = Depth of Water. Ci = Sound Velocity in Water. Cs = Sound Velocity in Bottom. Density of Bottom as-
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FiGURE 10.—Dispersion inthe waler wave at Jacksonville Deep

H = Depth of Water. C: = Sound Velocity in Water. Cs: = Sound Velocity in Bottom. Density of Bottom as-
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F16URE 11.—Dispersion in the waler wave at Jacksonville Deep
H = Depth of Water. C1 = Sound Velocity in Water. C: = Sound Velocity in Bottom. Density of Bottom as-
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F16URE 12.—Dispersion in the waler wave at Virgin Islands Shoal
H = Depth of Water. C1 = Sound Velocity in Water. C: = Sound Velocity in Bottom. Density of Bottom as-
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Fi1GURE 13.—Dispersion in the waler wave at Virgin Islonds Shoal
H = Depth of Water. Ci = Sound Velocity in Water. Cz = Sound Velocity in Bottom. Density of Bottom as-
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FIGURE 14.—Dispersion in the water wave in Virgin Islands Shoal

H = Depth of Water. Ci = Sound Velocity in Water. C: = Sound Velocity in Bottom. Density of Bottom as-
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FIGURE 15.—Dispersion in the water wave at Virgin Islands Shoal
H =§Depth of Water. C1 = Sound Velocity in Water. Ca = Sound Velocity in Bottom. Density of Bottom as-
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FiGURE 16.—Dispersion in the water wave at Virgin Islands Deep
H = Depth of Water. €1 = Sound Velocity in Water. C: = Sound Velocity in Bottom. Density of Bottom as-
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FicurE 17.—Dispersion in the water wave at Virgin Islands Deep and comparison of dispersion in
the waves from the main explosion and from the first bubble expansion
HI={Depth of Water. Ci = Sound Velocity in Water. Cs = Sound Velocity in Bottom. Density of Bottom as-
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FIGURE 18.—Dispersion in the water wave at Virgin Islands Deep
H = Depth of Water. Ci = Sound Velocity in Water. C2 = Sound Velocity in Bottom. Density of Bottom as-
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F1GURE 19.—Dispersion in the water wave at Virgin Islands Deep
H = Depth of Water. Ci = Sound Velocity in Water. Ci = Sound Velocity in Bottom. Density of Bottom as-
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1} 1

C
9 = 1.1 underlain by layer of o,
G &%
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F1GURE 23.-—Variation of pressure with range due to EAR
6 periodic point source in shallow water N YN
\
—--—— Asymptotic values given by equations (32) and MR
(33) = N f(kr) RN
A VAND
p1 = Density of water A
p2 = Density of bottom VAP
a = Sound velocity in water A K \\
¢z = Sound velocity in bottom \\ W\
d = Depth of point source \\ W\ \
g = Depth of receiver B\
H = Depth of water =000 A
k = 27/AN\ = wavelength in water) NI BN
@ = Sound potential (proportional to pressure amplitude) \\ A
r = Horizontal distance from source %
© = Computed points from equation (19) 9

S| Els
Graph | afe2 | ;/o2 | kH |d/H |z/E| ¥ | BT 87
gl g
A 0.6 | 0.50 |1.7952| .30 | 0.6 |8.2500] 5.000f 8.0
B 2.0 | 0.50 | .84 .25 | 1.0 (0.0492] 0.053 . 00001
C | 2.00.75) .84 [.25]1.0o.0738] 0.075
D 2.0 [ 1,00 | .84 .25 | 1.0 (0.0984| 0.109
E | 2.0{1.5 .84 | .25/ 1.0 [0.1476] 0.151
F | 1.2 0.5 .8 |.25] 1.0 |0.0832| 0.086| not
plotted
G | 0.6 0.5 .84 |.25] 1.0 |0.0797] 0.08| not
plotted
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FIGURE 27.-—Envelope of the Airy phase

For definition of v, E(v) and G(v) se¢ Eqs. (A112, A110, At11, A114 and A115)
Im = r/Uo, Us = minimum group velocity
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F1GurE 28.—Phase velocity and group velocity of the first mode in at wo-layered liquid half-space
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F1GURE 29.—Phase velocity ¢ and group velocity U for the first mode in a three-layered liguid half-space
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FicUrE 30.—Group velocity U for the first mode in a three-layered liquid half-space
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F16URE 31.—Phase velocity ¢ and group velocity U for the first mode in a three-layered liquid half-space
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FI1GURE 32.—Group velocity U for the first mode in a three-layered liquid half-space
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F1GURE 45.—~Vertical distribution of pressure amplitude in the fundamental mode of the free wave
f = frequency, in cyc/sec
¢ = velocity of propagation of free wave, in ft/sec
minimum frequency = 93.3 cyc/sec
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FicURE 46.—Vertical distribution of pressure amplitude in the fundamental mode of the free wave
f = frequency, in cyc/sec
¢ = velocity of propagation of free wave, in ft/sec
minimum frequency = 103.5 cyc/sec
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f= fréquency, in cyc/sec
¢ = velocity of propagation of free wave, in ft/sec
minimum frequency = 498 cyc/sec
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FIGURE 48.—Vertical distribution of pressure amplitude in the fundamental mode of the free wave

f = frequency, in cyc/sec
¢ = velocity of propagation of free wave, in ft/sec
minimum frequency = 138 cyc/sec
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