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The momentum of light in a refracting medium

By Sir RuporF PrIERLS, F.R.S.

Department of Physics, University of Washington,
Seattle, Washington, 98195

(Recetved 1 May 1975)

It is shown that neither Minkowski’s result, according to which the ratio
of momentum to energy for a light wave in a medium of refractive index
nis nfc, nor that of Abraham, who found 1/nc, is correct. For a broad wave
in a uniform medium, the correct answer is given by (2.12) with o = 1. For
weak refraction it is approximately equal to the average of the Abraham
and Minkowski results. Abraham’s formula gives correctly the part of the
momentum which residesin the electromagnetic field, but not the mechani-
cal momentum of the medium which travels with the light pulse. Minkow-
ski’s formula gives the pseudo-momentum, a quantity of physical interest.
The momentum change upon reflexion or transmission usually involves
also acoustic transients, these are discussed for some simple cases.

1. INTRODUCTION

There is an extensive literature on the problem of the momentum of light in a
refractive medium, starting with the work of Minkowski (1908, 1910), who found
for the momentum density g of a light wave of energy density U in a medium of
refractive index n

2
g=£—bU=|DxB|=Z—?'§-[ExH], (1.1)
whereas Abraham (1909, 1910) found
1 1
g=-77cU=_c_2lEXH|' (1.2)

Here c is the speed of light ¢n vacuo and E, B, D, H, are the usual Maxwell field
quantities.

Of the many papers published since then, some support the Minkowski result
(1.1), others the Abraham result (1.2). It will be shown in the present paper that
neither of these answers can be claimed to give the total momentum density. Both
relate to physically interesting quantities: the Minkowski espression (1.1) relates
not to momentum, but to pseudo-momentum, in a sense to be discussed in §6,
whereas Abraham’s expression (1.2) gives the part of the momentum residing in the
electromagnetic field, but excludes the part carried by the matter.

One of the sources of confusion is the fact that the passage of an electromagnetic
wave through a material medium in general causes forces on the atoms in the
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476 Sir Rudolf Peierls

medium, and that the momentum imparted to the matter does not always bear a
fixed relation to the electromagnetic momentum, and is not distributed in space in
the same way.

In the present paper we shall consider particularly the case of a plane wave of
practically unlimited width, though of finite length. liven in this relatively simple
case one has to distinguish a number of contributions to the momentum density :

{(a) The electromagnetic momentum, given correctly by (1.2) above.

(b) The ‘accompanying’ momentum. While the wave travels in a uniform
medium there is a mechanical force density proportional to the intensity gradient,
so that the momentum given to the matter at the leading edge of the wave train is
cancelled out at the trailing edge, so that a quantity of momentum travels with the
wave.

(¢} The ‘deposited’ momentum. Near an inhomogeneity in the medium, such
as a reflecting surface, the force density is no longer given by a time derivative,
and some momentum remains after the wave has passed. Thisis spread over a region
on the incident side of an interface, of a thickness of the order of the length of the
wave train. It will then spread with sound velocity.

(d) The interface impulse. If (@), (b) and (¢) do not balance, they will leave an
excess of momentum to be taken up by the interface. According to the macroscopic
equations, thisis given to an infinitely thin layer at the interface; in reality itistaken
up by a layer of a thickness equal to a few atomic spacings. If the change in the
refracting properties of the medium is gradual, there is a force proportional to the
gradient of the refractive index.

It seems natural to treat («) and (b) as constituting the total momentum of the
light wave, but in any experiment involving reflecting surfaces it is essential to take
account of (¢).

The situation is more complex for a wave train of finite width, since then lateral
forces arise at the sides. These affect the whole wave train if its width is less than its
duration times the velocity of sound. The wave can be treated as unlimited in width,
if the width is large compared to this quantity.

The general case, including that of a wave of finite width, is discussed in the recent
article by Robinson (1975). For a narrow pulse the mechanical momentum density
is no longer distributed in space in proportion to the electromagnetic intensity, and
it is therefore impossible to define any simple quantity as the total momentum
density. We conclude that the only simple case in which a definition of the total
momentum is possible is that of a wide wave discussed above. One may, of course,
choose to give no answer to the question of the total momentum of a light wave and
to state the general form of the force density, as is done by Robinson (1975), and by
Skobeltsyn (1973).

Many of the papers in the literature which attempt to find the total momentum
contain errors, and this includes a paper by M. G. Burt and the presentauthor (Burt

& Peierls 19773).
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I propose to take that paper, which is typical of the pro-Abraham arguments,
as my starting point. The argument consisted, in essence, of three steps:

(1) An electromagnetic pulse of finite duration, in a uniform refracting medium,
is a well-defined concept, as long as it can be separated from transients arising
during its emission, refraction, or reflexion. Hence the relation between its momen-
tum and its energy is well defined.

(2) The symmetry of the stress tensor requires the momentum density to equal
¢~2 times the energy flux.

(3) The energy flux must on the average be equal to the energy density times
the velocity of propagatlon (the latter being, in the case of dispersion, the group
velocity).

Abraham’s result follows directly from these statements. Of these, (1) requires
no comment at this stage. (2) and (3) are, separately, correct statements, but they
refer to different definitions of energy transport, and it is therefore not permissible
to put them together.

The pointis that,during the passage of the electromagnetic wave, there are forces
acting on the atoms of the medium, which may therefore acquire a non-vanishing
average momentum. This was, of course, meant to be included in our discussion,
which was concerned with fofal momentum. The mechanical momentum yields a
momentum density pv, where p is the mass density, and » the average velocity. By
the symmetry of the tensor, this requires a term pc?v in the energy flux. Indeed,
pc? is the density of rest energy, which has to be included to satisfy statement (2),
which is relativistic. With this definition, (3) is no longer valid since it refers only to
the additional energy carried by the light wave, and not to the rest energy of the
medium, which, in any case, is not carried along with the velocity of light. The
conclusions of the previous paper fail, therefore, whenever the mean velocity »
of the atoms is non-zero.

In view of this finding one might now conjecture that the total momentum was
given correctly by Minkowski’s expression. We shall, see, however, that the usual
derivation of (1.1) is also incorrect, though it yields the correct value of pseudo-
momentum.

All this relates to the ‘pure’ wave specified in (1) above. In any experiment which
attempts to measure the momentum, a change in its state will be involved, and
usually this change causes momentum to be ‘deposited’ in the sense of (¢) above,
and this affects the momentum balance.

This was pointed out in the previous paper (Burt & Peierls 1973), and we should
not have been surprised, therefore, by the finding of Jones & Richards (1954) that
the momentum transferred to a mirror on reflexion did not equal the difference
between the momenta of the incident and the reflected wave. At the time we tried
to look for corrections due to transients caused when the light entered the liquid
from the air, but omitted to look for them in the reflexion process itself.

The methods used in the present paper make it possible to evaluate this momen-
tum deposition, subject to simplifying assumptions which seem to be justified in
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the case of the Jones-Richards experiment, and the result is in agreement with the
experimental result. The argument is only a minor extension of one given by Gordon
(1973).

The plan of the present paper is as follows:

§2 discusses the forces on the atoms of the medium, and substantiates the

criticism of the Abraham result outlined above. The actual value of the momentum
given to the atoms depends on a coefficient, o, which relates the field gradient at a
typical atom to the gradient of the macroscopic field.

§ 3 determines the coefficient o and shows it to be  for a liquid or amorphous solid
containing polarizable atoms, and not 1 as is frequently assumed.

§4 discusses the customary derivation of the Minkowski result.

§5 is concerned with transients, in reflexion and transmission.

§6 discusses pseudo-momentum and a theorem by Gordon.

§7 points out a surprising conclusion in the case of a narrow light pulse in a solid

medium.

2. DISCUSSION OF THE MOMENTUM AND OF THE
FORCE ON THE MEDIUM

On a microscopic scale, we may divide the momentum density into its parts
& = 8em.t Emecn., (2.1)
1
where Bom. = po E,xH,. (2.2)

Here En and Hp, are the microscopic fields, as distinet from the macroscopic fields E
and H, which occur in the macroscopic Maxwell equations. (In principle, there
could be an interaction term in (2.1). However, it is easy to verify from the micro-
scopic Maxwell equations that the sum of (2.2) and of the momentum carried by
atoms is conserved, so that there is no room for an interaction term.)

For the purposes of this paper we are concerned with space and time averages.
The electromagnetic momentum (2.2) is bilinear in the fields, and its average could,
in principle, differ substantially from the product E x B/[u,c? of the macroscopic
fields. However, refracting media are usually non-magnetic, i.e. their magnetic
permeability differs from that of the vacuum by some 10-5, Neglecting the magnetic
polarization of the atoms, we may identify Hy, with its average, B/u,, so that the
only averaging required is that of Ep, and this results in the macroscopic field E.

We conclude that for a non-magnetic medium the electromagnetic momentum
density (2.2) equals, on the average, its macroscopic form

1 1
ge.m.=/~6—o-é-2EXB=?EXH, (23)
which equals the Abraham value (1.2). The device of avoiding complications by
restricting the discussion to non-magnetic media is also used by Gordon (1973).

It remains to consider the mechanical momentum, which is determined by
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the force exerted by the light on the atoms of the medium. If an atom has electric
dipole moment d, the force on it is

F=(d-V)E, +dxB,. (2.4)

Here the ‘effective’ fields Ey, and B, are the microscopic fields at the site of an
atom, but excluding the field due to the atom itself. In (2.4) we have made use of the
fact that the space integral of the current density due to the atom is d.

The evaluation of the second term is straightforward, since the medium is non-
magnetic, and therefore B, may be replaced by the macroscopic field, B. (The
correction due to the currents of the oscillating dipoles is proportional to d, and
would contribute to (2.4) a term proportional to (d)?, i.e. to the square of the
frequency, which goes beyond the accuracy aimed at.)

Asregards the first term, one might be tempted to arguet that it should make no
contribution in the case of a transverse wave, since we are interested in the momen-
tum in the direction of propagation, while E is at right angles to it, and one might
expect from symmetry E.; also to be transverse. However, while E, isindeed
transverse at the site of an atom, its gradient need not be.

Assuming for definiteness that we are interested in the force in the z direction,
and that d is in the x direction, we then require (0F,[0x) . The difference between
the microscopic and macroscopic fields is due to the presence of electric dipoles in
the medium, and must therefore be proportional to the dipole density, or polariza-

tion, P = (e,—¢,) K. The most general relation consistent with this, and with sym-

metry, is (f‘)Ez 0B, €—¢,0B, €e—¢,0K,
=247 + 0o =T
0r [ oy, O € O € O

= (2.5)
where o and 7 are numerical coefficients, and the field components on the right
hand side are those of the macroscopic field. The coefficients o- and 7 will be discussed
in §3, and it will be shown that they are both equal to .

Making use of Maxwell’s equation, (2.5) can be written as

GIA _ €—€y |0, €—¢€,0B,
(%)eﬂ. B [1+(U+T) €o ] w7 €9 ot (2.6)
and the force (2.4) becomes for a general geometry
F=[1+(o‘+7)€_€°](d-V)E—-o-.€;€°dxl§+dxB. (2.7)
0 0

The force per unit volume is the sum of contribution (2.7) over all atoms in a unit

volume, which again brings in the polarization of the medium

€—€,
€o

% = [14—(0‘+7‘) ](e—eo)(E-V)E——o'E—_ﬁQEExB+(e—eo)Ex B. (2.8)

€o

1 This view was presented by the author in a talk at the Franco-British Centenary confer-
ence in St Helier, Jersey, in April 1974. It amounts to setting o = 0 in equations of this
section.

31 Vol. 347. A.
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Assume now that the electric vector is everywhere in the x direction, the mag-
netic vector in the y direction. Then the rate of change of the z component of
mechanical momentum density (remembering that e = n2%,, and that e u, = c2,
(n?—1)2

c?

dg n?—1
m(;;h.,z: 62 ExHy“"O'

We now make the further restriction that we are dealing with a unidirectional
wave, travelling, say, in the +z direction. Then, from Maxwell, H = ¢ynck, and

1d

E,H, (2.9)

b, H, = BB, = 53, (B, ). (2.10)
In this case (2.9) takes the form
dgmech.,z _ E n?—1 9 }
dt ‘dt{ s (1= o= D](Ex H),. (2.11)

This result shows, first of all, that if a plane light signal is travelling into a medium
at rest, the medium comes to rest again after the signal has passed. No ‘wake’ is
left in these circumstances. There is, however, a momentum density in the medium
while the light is passing. This has to be added to the electromagnetic part (2.3) to
obtain the total momentum density. The quantity g, ., ,is, as we have seen, just the
Abraham momentum, so that we find for the total momentum density

1+n? o
= [ p) "5(“2' 1)2] J Abrahams
11 o(n?—1)2 (2.12)
=3 %'l'n——‘r Fvac:

For n not too far from unity, the quadratic term is small, and, to a good approxima-
tion, the correct answer is then just the arithmetic mean of the Abraham and
Minkowski results.

Figure 1 shows (2.12) as function of » for various values of o, as well as the
Abraham and Minkowski results. Of these curves, the correct one, according to §3,
is the one labelled o = %. For n exceeding about 2.8, the momentum is negative,
i.e.in a direction opposite the direction of propagation.

3. THE EFFECTIVE FIELD

We assume in this section that the medium is a liquid or amorphous solid con-
taining neutral polarizable atoms. The atoms are in positions with the radius vectors
r,,; they are assumed heavy enough for their displacement during the passage of
the light signal to be negligible. We also assume, as usual, that the light wavelength
is large compared to the interatomic spacings and correlation distances, and keep
only the leading terms in the light wavevector.

Each atom is supposed to have electric polarizability . The dipole moment of the

nth atom is therefore
dn = aEeff.(rn)' (3])
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We assume the exciting field to be a plane wave,
By, = Celkr—ot = E4 B, (3.2)

where E, is the field due to the atomic dipoles. For the latter, we should, in principle,
calculate a scalar and a vector potential, but it is easy to verify that the effect
of the vector potential is negligible, since it depends on the current density, which is

]
T

Abraham Minkowski
N =0
1 e
i 1
- 5
S L 3
S

—9oL

F1cure 1. The ratio of the momentum of a light wave of given energy to the vacuum momen-
tum for the same energy. The curves show the Minkowski and Abraham results, and our
result (2.12) for various o.

related to d, and therefore contains an extra power of the frequency w. For the scalar
potential, neglecting the size of the atom for simplicity,

(V2+%2) o(r) = 21:)%] @, V)o(r—r,) = %C~Vzn‘,é‘(r— r,)elfrn—iot (3 .3)

We need to find the field near a typical atom, which we shall take as the origin of
coordinates. We may then replace the other atoms by their average distribution,
which has density pg(r), where p is the number density of atoms, and g their correla-
tion funection.

(Vz +%) B = (C-V)gr)elr-r. (3-4)

31-2
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The correlation function g equals unity at distances exceeding the atomic scale
(which we assume small compared to the wavelength) and both g and dg/dr tend
to zero at r = 0. We may in (2.4) replace g(r) by 1 — f(r), where

J@) = 1—9(r), (3.5)

which leaves
\ .
( ) (;)2 ) C V() elbr-iot 4 _1_6__0"0 C- b olkr—iot (3.6)

0

The second term vanishes because in a transverse field C+ k must vanish. (A more
careful discussion would be required if there were any macroscopic charges present.)
In the first term we note that f(r) is appreciable only at distances for which k- ris
small, so that we may expand the exponential factor. For the same reason the second
derivative on the left hand side contains a factor of the order of the inverse square of
the atomic dimensions, and w?/c? is negligible in comparison with that. Writing

¢ = —%’fe‘“t(C V) x(r), (3.7)

we have to solve the equation
Vex = f(r) (1 +ik- 1), (3.8)

where terms of second and higher order in k- r have been neglected. y should be regu-
lar at the origin and vanish at infinity. The solution is, taking kin the z direction

1 © ikz (7 ik
X = _;fo dr’7"2f(¢’)—fr dr'r’f(r’)—lé;gfo dr'7"4f(7"’)~l zJ‘ dr'r'f(r").  (3.9)

Remembering that at the origin f= 1, and df/dr = 0, we find for the leading
terms near the origin

x(r) = %r2+f6ikzrz—f (" +ikr") f(r") dr’. (3.10)
0
Henceatr = 0,
2y 1.y .
0a® ~ 30a20z $ik. (3.11)

Hence from (2.7), taking C in the x direction

0 q 1a,
de = (a;b) 32}0 —lwt 3 efEEH"x — %GOP{B' (312)

This is just the familiar relation leading to the Clausius—Mosotti formula.
For the gradient,

0B,\ _ (OB, _ ikop 110P,
( oz ) N (633 )d “Bey Cer ~ Bey 0z’ (3.13)

which, by comparison with (2.5), shows that
c=71=1 (3.14)
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This result seems to be in conflict with the equations given, for example, in the
book by Landau & Lifshitz (1960). Their equation (56.18) can for our purposes be
rewritten by assuming a non-magnetic uniform medium, and by assuming that the
Clausius—Mosotti relation is valid, which requires that
1 (c—¢)?

Qf =€—€y+7
pap_ 0 3

3 e (3.15)

Making use of Maxwell’s equation, their relation takes the form

F = (c—¢,)(E-V) E+—1—(—€—_€—°)2(E-V) E~§wExB+(e—eo)Ex B. (3.16)
3 & 3 €
Comparison with our equation (2.8) shows that Landau & Lifshitz require o = },
7 = 0. Their derivation is clearly restricted to not too high frequencies, since they
neglect dispersion. One would expect, however, that their argument should apply
in the optical region.

For clarification, consider the more general relation obtained by Landau &
Lifshitz for isotropic solids. Substituting in their equation (56.17) from their
expression (16.4) for the electrostriction terms, (34.2) for the magnetic stress, as-
suming g = p,, no macroscopic current or charges, and a uniform medium, one
obtains for the force per unit volume

F=—(3a,+0a,) (E-V)E+(6—6y+a;) Ex B+ (¢—¢) Ex B. (3.17)

(Note that ¢, in Landau & Lifshitz, equation (16.4) is our ¢.) Here a, and a, are
coefficients determining the variation of the dielectric tensor with strain (see their
16.1)):
(16.1)) Oe;p, = “1”%"‘“23%21“11 (8.18)
u;;, being the strain tensor.
One relation between a, and a, follows from the behaviour under a uniform®com-
pression. Then u;, = — 49,,0p/p, and therefore

o
Pa) = — (30, +ay). (3.19)
From Clausius—-Mosotti

e €+2

- (e—6)*
pa = eme) G = emeyt

3¢,

) (3.20)

so that (3.17) now becomes

e
F=[—%a1+(e—eo)+(€—;—°)—](E°V)E
0
—_— 2 . .
—[%a1+£§—€")—]ExB+(e~eo)ExB, (3.21)
)
which is of the same form as our (2.8), with
—)2 —e)? —e)2?

(6 6‘0) T:_%a/l(e 60) 0_2(6 60) +%a2' (322)

€ € 3¢,
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A further relation between a, and a, can be obtained from the remark that o and 7
must be equal. This follows from the fact that, as we have seen, the effective field
near an atom is due to the dipoles on atoms at distances much less than the wave-
length, and can therefore be described by a scalar potential. In that case, for

example,
0B, _ 084,

Ox oz

and the equality of o and 7 follows. This determines a, from (3.22), and we then find
thato =7 = 1.

With this additional piece of information, the argument of Landau & Lifshitz for
isotropic solids therefore leads to the answer (3.14).

For liquids, Landau & Lifshitz note that a pure shear cannot affect the state of
the substance, and therefore that in (3.16) @; must vanish. From (3.22) this immedi-
ately leads to o = %, 7 = 0. For our present purpose, when we deal with light in or
near the visible region, one would not expect to find any difference between a liquid
and an amorphous solid, since their configurations at any given time are similar,
and the movement of the atoms during a light period is negligible. Our derivation of
(3.14) was based on the assumption that the atoms can be regarded as stationary.
In that case, the argument of Landau & Lifshitz, which relates the effect of the field
on the stress to the effect of strain on the dielectric properties, should be applied to a
strain in which the instantaneous atomic positions are scaled linearly. This makes
the correlation function anisotropie, and will lead to an anisotropic dielectric tensor.

At lower frequencies, when the motion of the atoms during a cycle is no longer
negligible, the results of this paper cease to apply, and for low enough frequency the
Landau-Lifshitz equations for liquids will be applicable. This paper will not discuss
the precise limits of the frequency range for either regime, nor the nature of the
transition between them.

4. CRITICISM OF THE MINKOWSKI RESULT

One commonly finds in the literature (see, for example, Panofsky & Phillips
1955, andrecently Ginzburg (1973) the following derivation of the Minkowski result:
The Maxwell equations,

—curl E :B, ’
} (4.1)

curl H = D +j,

are multiplied vectorially by D and — B, respectively, and the results added. This

yields .
—Dxcurl E+curl Hx B=DxB+D x B+jx B. (4.2)

From this by elementary transformations

0 . .
&(DxB)+d1vr+pE+]><B—%(VG)E’Z——%(V/A)H“"=O, (4.3)
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where 7 is a tensor in three dimensions, with the components
Typ = 5(D-E+ B-H) 3m/;—DuEﬂ~BuHﬁ; a,f=x,y,z. (4.4)

In a homogeneous medium the last two terms of (4.3) are absent, and (4.3) then
has the form of a conservation law. Itis natural to interpret D x B asthe momentum
density and 7, as the transport of the # component of momentum in the « direction.
The equation then states that the net change in momentum equals the force on the
charges and currents present. Since in the vacuum the equation reduces to the
equation for momentum conservation, this interpretation is very plausible.

However, this conservation law holds only in a uniform medium, because of the
termsin (4.3) containing the permeability gradients. Momentum conservation must
hold even when the medium is not homogeneous, or when interfaces are present.
In that case there will be forces on the medium, or on the interfaces, and in order to
justify the expression for the momentum density one would have to show that the
gradient terms in (4.3) give the correct force, which would have to be found by the
method of §2.

There exists, however, another quantity, similar to momentum, which is con-
served only in a uniform medium, namely the ‘pseudo-momentum’ or wave vector.
This is always equal to the energy, divided by the phase velocity, and therefore equal
to the Minkowski momentum in the refractive medium. The nature of this quantity
will be discussed further in §6.

5. REFLEXION AND TRANSMISSION

Consider a plane light wave in a dielectric, non-magnetic medium of refractive
index 7, incident normally on the plane interface with a conducting medium. We are
interested in a perfect conductor, but to avoid ambiguities will assume a large but
finite conductivity o and then go to the limit.

Take the interface as z = 0. and the electric and magnetic fields in the x and y
directions. Then the solution of Maxwell’s equations is, to the leading power in

the resistivity B, = I[eif1z—i0t _ g=ikiz=iot],
” . 2<0 (5.1)
By — El[eiklz_l‘”t + e—iklz—iwt],
g = U=D20 1 6 ee s
X oc b
2> 0, (5.2)
B — z_nle(i—l)ocz—iwt,
v o ¢

where a? = Ly 00, k, = nowlc.

The force on the conductor per unit volume is o/, B, and, remembering that we
have to use in this bilinear relation the real parts of the fields in (5.2), the integral
over z gives for the force per unit area

n2ey 1. (5.3)
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Since for the wave (5.1) the energy flux is
8 = }e,cn2l? (5.4)

we see that the momentum transmitted to the conductor per unit time and unit
area is 2nS/c. This is just what one would have predicted from Minkowski’s result,
since from (1.1) the momentum density is #2S/c?, and, with the speed of propagation
¢/n, the momentum flux would be #n8/c. An equal and opposite amount is of course
taken away by the reflected wave. This prediction of the Minkowski theory is in
agreement with the result of Jones & Richards (1954).

However, this is greater than the sum of the actual momenta of the incident and
reflected wave, since we have seen in §2 that the total momentum is less than the
Minkowski value. The difference must therefore appear in the form of mechanical
momentum. This can be verified by considering the forces on the atomic dipoles in
the refractive medium due to the field (5.1). In order to remove ambiguity, we con-
sider a wave train of finite duration, so that we may impose the condition that the
medium was at rest before the arrival of the light signal. We therefore replace the
fields (5.1) and (5.2) by a superposition of waves for a range of frequencies, taking the
distribution as Gaussian, for simplicity. We may assume the spread small enough
for the variation in refractive index to be negligible. Then, for z < 0,

B, =Iy[exp{}f(z—c,t)>+iky(z—c; 1)} —exp{— L f(z + ¢ t)2 —iky (2 + ¢, 1)},

=

)

5
B, = Z“@Io [exp { —$f(z—c1t)2 +iky(z — ¢, 8)} +exp{— §B(z + ;1) —iky (2 +c )},

where £ is a measure of the spectral width of the wave train, and ¢, = ¢/n.
The energy carried by this wave train per unit area is

- J (;E),) n2e, I2. (5.6)

The force on the medium is given by (2.9). We had seen in §2 that for a uni-
directional wave this reduces to (2.12), i.e. the time derivative of a quantity which
vanishes before and after the passage of the wave. This still applies to the contribu-
tion, to the quadratic expression (2.9), of the terms containing only the incident, or
only the reflected wave. These terms do not contribute to the momentum remaining
in the medium.

We do, however, obtain such a contribution from the cross terms between incident
and reflected wave. The contributions of the real parts of these cross terms to (2.9)
amount, on the average over a cycle, to

21
7;0 = e~ A+t (282¢, cos 2k 2+ 2 w sin 2k, 2) [1 4+ o (02~ 1)]. (5.7)
The momentum density given to the medium is the time integral from —co to oo,
whichis nt—1 -
o N/(_é) (202 cos akyz + 2k, sin 2k, z) e~ F** [1 + o(n2— 1)] (5.8)
0
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and integrating over all negative z we find the total mechanical momentum per unit
area deposited in the medium

—le,(n2—1) J (g—,) I 2-7’[1 +om2—1)]. (5.9)

By comparison with (5.6) we see that the ratio of residual momentum to incident
energyis
n2—1
n

[1+0(n2—1)]. (5.10)

This is just the amount required to restore the momentum balance, which is the
difference between the momentum transferred to the reflector, i.e. twice the Min-
kowski momentum of the incident wave, and the change in the total momentum
of the light wave, which is twice the quantity (2.13).

This situation was in essence already discussed by Gordon (1973). For the agree-
ment between the Minkowski result and the experiment of Jones & Richards (1954)
it is essential that the (backward) momentum deposited in the medium is carried
away and not imparted to the mirror.

Next consider the transmission of a wave from a medium of refractive index »,
to one with n,, assuming normal incidence, and choosing the axes and polarizations
as in the preceding example. Then, in the first medium

B, = Iexp{—{p(z—ct)*+iky(z—c, 1)}
+Rexp{—}B(z+c t)2—iky(z+cyt)},

B, =~ Texp{~flz—ci*+iky(z— 0} @<0 (A1)
1
1 .
- Rexp{—3}p(z+c t)2—iky(z+c 1)}
1
and in the second medium
B, = Texp{—§fy(z—cat)? +iky(z—cot)},
1 . z2>0 (5.12)
B, = P Texp{—}pa(z—cat)? +iks(z —cyt)},
where Lo = B(ngfn,)?,  kicy = kycy = 0. (5.13)
Continuity at z = 0 requires, as usual,
R=TazMay p__2" (5.14)
Ny + 7Ny Ny + Ny

We may again determine from (2.9) the momentum left in the media after the
passage of the light pulse. However, we can restrict ourselves to the first medium,
since we saw that momentum is deposited only by virtue of the cross term between
incident and reflected wave. In the second medium there is no reflected wave, and
hence no cross term.
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In the first medium a calculation similar to that of the preceding example gives
the remaining momentum per unit volume

2 —
w% J(E) 6, 13T A= D (M=) by | i 4y102 (28008 20,2 + 2, sin fy2) (5.15)

14 c Ty + N
and the integral over all negative z is
¢ 1
G, =CPTIMm= e e gy (5.16)

res. = Ny g+
where we have again used the expression (5.6) for the incident energy per unit

area.
From (2.13) and (5.14) we see that the change of the momentum carried by the

light wave is, per unit area,

& n—

cm{nz 1——0‘[7&%+2n%%%—-2n%_2]}_ (5_17)
1

Gin. - Greﬁ. - Gtra,ns =

The difference between this and the momentum deposited in the first medium,

(5.16),
o8 n;—

4n24+1—2 2 5.18
¢ n1(”1+”2)( ¥ nin3) ( )

AG =
is the impulse, per unit area, given to the interface.

We see that the momentum given up by the light wave, (5.17), is transferred to
the matter. Immediately after the passage of the light the quantity (5.16) is left
in a layer of a thickness comparable to the length of the light pulse; the rest, (5.18),
gives a force on the surface dividing the media. In the phenomenological description,
this force acts on a mathematical plane, but in reality it will act on a layer a few
atoms thick on either side of the interface.

Whether an experiment would respond to one or the other quantity depends of
course on the nature of the measurement. The situation is particularly simple if the
first medium is the vacuum. so that n; = 1. In that case (5.16) vanishes.

It is immediately evident that this must be the case, because we had seen that
momentum is deposited in the medium after the passage of the light only because
of the cross terms between the incident and the reflected wave. In the vacuum
there are no atoms on which the wave could exert a force, and in the second medium
there is no cross term. In that case of a light pulse incident from vacuum (or in prac-
tice from air) on a surface the impulsive force on the surface is directly related to the
momentum change of the light.

Forn, = 1 and not too large n,, (5.18) is negative, i.e. there is a loss of momentum
in the direction of the incident wave, and the force on the surface is inward. For
7, greater than about 2.6, the expression changes sign, and there should be an out-
ward force on the surface. However, such large indices of refraction can be found
only when there is strong dispersion, and in that case one should examine the
arguments carefully in case there are important corrections due to the dispersion.

It should be stressed, however, that our result assumes a wave of infinite width.
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It should be valid provided the width of the pulse is large compared to its length,
times the ratio of sound to light velocity. Our result is therefore, not in contradiction
with the experiment of Ashkin & Dziedzic (19%73), since they were using a narrow
light pulse. A discussion of the effect of lateral forces was given by Gordon (1973),
who found that the experiment agreed with the theory of the lateral forces.

6. SOME REMARKS ABOUT PSEUDO-MOMENTUM

Several authors, including Gordon (19%73) and Blount (unpublished memorandum)
have pointed out that the Minkowski quantity (1.1) gives the density of pseudo-
momentum. Since the concept of pseudo-momentum is much less familiar than
actual momentum, a few comments may be helpful.

Momentum conservation is associated with the invariance of the laws of physics
under a displacement of the origin of the coordinates. The operator for total momen-
tum, P, therefore has in quantum theory the property that, for any operator, 4,

., 04
[P,A] = _lﬁa-x’ (6.1)
where the derivative on the right hand side implies an infinitesimal change of all
coordinates. If the Hamiltonian H, is independent of the origin of the coordinates,

[Pa::H] =0, (62)

which, as usual, implies the constancy in time of P,. In classical theory the same
argument applies, with the commutators replaced by Poisson brackets.

The conservation of pseudo-momentum, or wave vector, is associated with
the invariance of the laws against a displacement of all physical parameters from
one point of the medium to another. Thus, under the pseudo-momentum operation
Ka, where K is the vector of pseudo-momentum, and a a small distance, we do not
move the atoms by an amount a, but only replace the displacement, or the dielectric
moment, or any other relevant quantity of an atom, by that of an atom a distance
a away.

For this transformation to leave the physical laws unchanged, all the properties
of the medium must be uniform. Because of the atomic structure of the medium, ¢
cannot be made smaller than the lattice spacing, and this is related to the possi-
bility of Umklapp processes in crystals, which, however, are of no importance for
problems which, like the present, involve only long waves.

In liquids, or amorphous solids, @ has to be kept rather larger than the atomic
spacing, so that it is sufficient to consider averages of the electric and mechanical
parameters over regions containing many atoms. If the light wavelength is too short
to justify this, the fluctuations in the medium will give rise to dissipative effects.

The classical example is that of a lattice wave (phonon) in an harmonic crystal,
which has pseudo-momentum K = %k per phonon, but real momentum zero. The
momentum of the crystal is carried by the degree of freedom with & = 0, correspond-
ing to a uniform displacement of all atoms, for which there is no restoring force in
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a free erystal, and the phonon concept fails. This statement is sometimes regarded
with surprise in view of the fact that phonons often behave as if they had momentum
fik. Consider, for example, the generation of a phonon by the scattering of a neutron,
a common enough experiment today. In this process momentum is conserved, and
the crystal must acquire (or if it is supported, transmit to its support) a momentum
equal to that lost by the neutron. In addition, pseudo-momentum is also conserved,
because the process may be thought of as taking place far enough from any bound-
ary or other inhomogeneity. Therefore, the pseudo-momentum lost by the neutron
equals that acquired by the phonon, i.e. k. The neutron propagates through the
solid practically as a free particle, and its momentum and pseudo-momentum are
equal. Putting both conservation laws together, we have therefore shown that the
crystal receives a momentum equal to the pseudo-momentum of the phonon which
is produced. This is carried by the centre-of-mass degree of freedom of the crystal,
or, if the neutron was originally localized, in a long-wave acoustic disturbance.

Returning to the problem of light in a refractive medium, the result that the
momentum given to a mirror in reflexion equals the change of pseudo-momentum
of the light, with the balance made up by an acoustic disturbance, makes one look
for a reason why in this case also pseudo-momentum should be conserved.

Gordon (1973) proves a theorem that, in certain circumstances, the right answer
can be obtained by assuming conservation of pseudo-momentum. The require-
ment is that there exists a surface surrounding the object on which the force is to be
found, such that outside of that surface one is dealing with a homogeneous medium,
and on the surface the force density vanishes.

This, however, would seem to be just the condition for X to satisfy a conserva-
tion law of the type (6.2). The operation Ka can be thought of in two steps: first,
all excitations (atomic motions, polarization, ete.) are displaced in the space outside
the excluded volume. Secondly, the bounding surface is displaced by a. The first
step causes no change in the Hamiltonian, because the medium is assumed uniform,
and the effect of the second is proportional to the appropriate component of the
force density, integrated over the surface.

The argument sketched in the last few paragraphs is, of course, just a reformula-
tion of Gordon’s theorem, and would not have been obvious without his paper.
It is given here because it fits in well with the presentation of this paper.

7. THE CASE OF A SOLID

In this paper the light wave has been assumed unlimited laterally. Gordon
(1973) has discussed the case of a light beam of finite width in a gas or liquid. What
happensifa pulse of finite width and finite duration passes through a large refracting
solid? In the first place, each atom receives a small forward velocity as the wave
front passes, and an equal and opposite acceleration in the tail. In a gas, the net result
would be a small displacement of all the atoms over which the pulse has passed.

In a solid, this clearly is not a stationary situation, because shear forces between
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the displaced and the other atoms will be involved. In order to solve this problem
we have to consider the equations of elasticity, with the rapid displacement of the
atoms as a source term.

But the structure of these equations is precisely that of the equations for the
Cherenkov effect, with the light pulse playing the part of the charged particle, and
sound waves appearing in place of Cherenkov electromagnetic radiation. Since
the mechanical pulse caused by the light travels with a velocity vastly greater than
that of sound, the Cherenkov angle is practically .

No quantitative estimate of the intensity of this ‘Cherenkov sound’ is yet avail-
able, and it can be expected to be very small. Nevertheless, the conclusion that a
light pulse of finite dimensions in a large uniform solid must continuously emit
sound waves, seems unexpected.

The work reported in this paper was started in the Department of Theoretical
Physics at Oxford, and continued while the author was Visiting Professor in the
Department of Theoretical Physics of the University of Sydney. I should like to
acknowledge the hospitality of Professor S.T. Butler and his colleagues.

I have also profited from helpful discussions or correspondence with M. G. Burt,
R. P. Feynman, M. MecIntyre, N. F. Ramsey, F. N. H. Robinson and R. B.
Stinchcombe.

REFERENCES

Abraham, M. 1909 Rc. Circ. Mat. Palermo 28, 1.

Abraham, M. 1910 Re. Circ. Mat. Palermo 30, 33.

Ashkin, A. & Dziedzic, M. 1973 Phys. Rev. Lett. 30, 139.

Burt, M. G. & Peierls, R. 1973 Proc. R. Soc. Lond. A 333, 149.

Ginzburg, V. L. 1973 Sov. Phys. (Uspekhi) 16, 434.

Gordon, J. 1973 Phys. Rev. A 8, 14.

Jones, R. V. & Richards, J. C. 8. 1954 Proc. R. Soc. Lond. A 221, 480.

Landau, L. D. & Lifshitz, E. M. 1960 Hlectrodynamics of continuous media, §56. London:
Pergamon.

Minkowski, H. 1908 Nachr. Ges. Wiss. Gottingen, p. 53.

Minkowski, H. 1910 Math. Annaln 68, 472.

Panofsky, W. K. H. & Phillips, M. 1955 Classical electricity and magnetism,§10.6. Cambridge,
Mass. : Addison-Wesley.

Robinson, F. N. H. 1975 Phys. Rep. 16C, 314.

Skobel’tsyn, D. V. 1973 Sov. Phys. (Uspekhi) 16, 381.



