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ABSTRACT

The first-order effects of nonlinearity on the thickness and frictionally driven flux in the Ekman layer are
described for the case of an Ekman layer on a solid, flat plate driven by an overlying geostrophic flow as
well as the Ekman layer on a free surface driven by a wind stress in the presence of a deep geostrophic
current. In both examples, the fluid is homogeneous. Particular attention is paid to the effect of nonlinearity
in determining the thickness of the Ekman layer in both cases. An analytical expression for the Ekman layer
thickness as a function of Rossby number is given when the Rossby number is small. The result is obtained
by insisting that the perturbation expansion of the Ekman problem in powers of the Rossby number remains
uniformly valid. There are two competing physical effects. The relative vorticity of the geostrophic currents
tends to reduce the width of the layer, but the vertical velocity induced in the layer can fatten or thin the
layer depending on the sign of the vertical velocity. The regularized expansion is shown to give, to lowest
order, expressions for the flux in agreement with earlier calculations.

1. Introduction

The theory of the Ekman layer is central to geophysi-
cal fluid dynamics and its applications to both oceanic
and atmospheric phenomena (Pedlosky 1987). The fun-
damental theory is linear and so it is not surprising that
much effort has gone into extending the theory into the
nonlinear domain. Some of the early work is reviewed
by Greenspan (1968). See also Benton et al. (1964).
More recent analysis can be found in the work of Niiler
(1974), Brink (1997), Hart (2000), and Thomas and
Rhines (2002). Illuminating as these studies are, what is
lacking is a clear and simple analytical formulation of
the alteration in the thickness of the Ekman layer as a
consequence of nonzero Rossby numbers, that is, of
nonnegligible nonlinearity. In this note such a predic-
tion is given for the two classical Ekman layer prob-
lems: the frictional layer satisfying the no-slip condition
beneath a geostrophic inviscid interior and the stress-
driven boundary layer on a free surface.

Since in linear theory the boundary layer thickness is
� � (2�/f )1/2, where � is the kinematic viscosity (or its

turbulent equivalent) and f is the planetary vorticity,
one might expect that the first effect of nonlinearity
would be to replace f with the total vorticity, f � �,
where � is the relative vorticity. A positive relative vor-
ticity would tend to make the boundary layer thinner.
However, in the presence of a convergent frictional flux
in the boundary layer due to that relative vorticity and
the consequent vertical velocity, the boundary layer
would be stretched and fattened by the vertical advec-
tion. So, the two effects of the relative vorticity are
competing. What is the result? That is the object of the
present study.

In section 2, the problem for the Ekman layer that
satisfies the no-slip condition on a flat plane beneath a
geostrophic current is formulated. Section 3 discusses
the perturbation expansion and the condition that it
remain uniformly valid in space and derives the correc-
tion to the layer thickness by removing secular terms in
the perturbation expansion. After their removal the
next-order corrections to the Ekman velocities are cal-
culated and the order–Rossby number correction to the
Ekman layer flux and vertical pumping velocity is cal-
culated. Earlier studies, such as Hart (1995, 1996), in
addition to the studies already mentioned earlier, have
generally employed regular asymptotic expansions
without concern about the uniformity of convergence.
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Although this allows an accurate calculation of the in-
tegrated effects of the nonlinearity on, for example, the
pumping, they cannot provide a clear picture of the role
of the nonlinearity on the structure of the layer, in par-
ticular its thickness.

Section 4 describes a similar procedure for the stress-
driven problem. In the first problem it is the vertical
velocity in the Ekman layer that is the dominant factor
in altering the linear Ekman layer thickness. In the
stress-driven problem there is a competition between
the vertical velocity produced by the wind stress curl
and the relative vorticity of the underlying geostrophic
current.

2. The Ekman layer beneath a geostrophic flow

The boundary layer on a flat plane with a geostrophic
flow in the x direction far from the plate is considered.
The plate is at z � 0. The geostrophic flow is taken to
be a function of y the coordinate across the current but,
for simplicity, all variables are assumed to be indepen-
dent of the x direction. The horizontal scales are non-
dimensionalized with L, the characteristic scale of
variation of the current, and the linear Ekman layer
thickness (2�/f )1/2 is chosen as the vertical scale. The
velocities are scaled with the characteristic value U0 of
the geostrophic current. The vertical coordinate is
�—that is, the vertical coordinate scaled by the Ekman
layer thickness. It is useful to also consider a “slow”
spatial variable related to � to account for the effects of
nonlinearity. That coordinate is defined as Z � ��. All
of the variables in the boundary layer are then consid-
ered to be functions of both � and Z so that the vertical
derivatives transform as

�

��
→

�

��
� �

�

�Z
. �2.1�

The steady equations of motion then become, to first
order in Rossby number,

���uy � Wu�� 	 � �
1
2

�u�� � 2�u�Z � Euyy�, �2.2a�

����y � W��� � u � 	�p��y �
1
2

���� � 2���Z � E�yy�,

�2.2b�

�E��Wy � WW�� � 	�p��� �
1
2

E�W�� � 2�W�Z

� EWyy�, and �2.2c�

�y � W� � �WZ � 0, �2.2d�

where

� � U0 �fL and E � ���L�2.

The vertical velocity has been scaled with (�/L)U;
that is, the relation between dimensional and nondi-
mensional velocities is

�u*, �*, w*� � U0
u, �, ���L�W �. �2.3�

At � � 0, all velocities vanish and for large vertical
coordinate the horizontal velocity smoothly merges
with U(y). Far from the boundary layer, in the interior,
� is O(E), and so far from the boundary the vertical
velocity must be independent of vertical coordinate.

The Rossby number � is assumed to be small, and a
perturbation expansion is sought in the form, for all
variables,

u � u0 � �u1 � · · · . �2.4�

The lowest-order problem is the linear problem
whose solution is

u0 � U 	 A�y, Z�e	� cos� � B�y, Z�e	� sin�,

�0 � A�y, Z�e	� sin� � B�y, Z�e	� cos�. �2.5�

Note that the “constants” A and B in the solution are
functions of both y and Z. On the lower boundary one
has the conditions (suppressing the dependence on y)

A�0� � U and B�0� � 0. �2.6�

The vertical velocity is obtained from (2.2d) at lowest
order in Rossby number, yielding

W0 � C�Z� �
1
2

�A

�y
e	��sin� � cos��

�
1
2

�B

�y
e	��cos� 	 sin��. �2.7�

To satisfy the lower boundary condition on W one must
have

C�0� � 	
1
2

�U

�y
. �2.7a�

However, the condition that the interior vertical veloc-
ity must be independent of vertical coordinate implies
that (2.7) holds for all Z. Thus,

C � 	
1
2

Uy �2.7b�

for all Z and

W0 � 	
1
2

�U

�y
�

1
2

�A

�y
e	��sin� � cos��

�
�B

�y
e	��cos� 	 sin��. �2.8�

To determine the Z structure of the coefficients A and
B, one needs to consider the O(�) problem. That can be
written as
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�1�� 	 2i�1 � Ru � iR�, �2.9a�

�1 � u1 � i�1, �2.9b�

Ru  2��0u0y � W0u0�� 	 2u0�Z, �2.9c�

R�  2��0�0y � W0�0�� 	 2�0�Z. �2.9d�

The right-hand side of (2.9a) contains terms that are
multiples of the solutions of the homogeneous operator

of the left-hand side, that is, of the form exp[	�(1 � i)].
Those terms must be removed or the solutions for u1

and �1 would have the form � exp[	�(1 � i)] and render
the solution disordered when �� is order unity, that is,
when Z is order 1. To eliminate those terms, one can
use the derivatives with respect to Z coming from the
final terms in Ru and R�. This leads to a differential
equation in Z,

vertical advection

relative vorticity

�

�Z
�A 	 iB� 	 �A 	 iB�� C �

�1 � i�

4
Uy�� 0. �2.10�

The term C comes from the vertical advection in the
boundary layer and the remaining term in the brackets
comes from the relative vorticity term in the advection.
By using (2.6) and (2.7b),

A 	 iB � Ue	UyZ�1 	 i��4 �2.11�

so that one obtains for the lowest-order solutions

u0 � U 
1 	 e	��1��Uy�4� cos��1 	 �Uy�4��, �2.12a�

�0 � Ue	��1��Uy�4� sin��1 	 �Uy�4�, and �2.12b�

W0 � 	
Uy

2 �1 	 e	��1��Uy�4�
sin��1 	 �Uy�4�

� cos��1 	 �Uy�4���. �2.12c�

Thus, a positive value of the vorticity (i.e., Uy � 0) leads
to a slower decay of the boundary layer and thus a thicker
boundary layer. The effect of the vertical advection
dominates the effect of the relative vorticity. In our
nondimensional units, the boundary layer thickness is

�� �
�

�1 � �Uy�2�1�2 .

In dimensional units, this is equivalent to a decay scale
for the Ekman layer1

�* � � 2�

f � Uy�2�1�2

. �2.13�

The same result can be obtained heuristically by con-
sidering the asymptotic matching region where the
boundary layer solution blends into the interior. If
(2.2a) and (2.2b) are linearized around the interior
flow, that is, u � U(y) � u�, � � ��, and W � 	1

2
Uy �

W�, where the primed variables are considered to be
small, the resulting linear problem yields the same de-
cay scale for the boundary layer as (2.12a) and (2.12b).

To obtain the correction to the cross-isobar flow at
order Rossby number it is necessary to solve (2.9) after
secular terms have been removed. This, after some al-
gebra and using the result (2.11), yields

�1�� 	 2i�1 � �1 � i�e	2����Z�UUy

	 iUUye	��1	i�e	�Z�1�i� and �2.14a�

�  Uy�4, �2.14b�

whose solution, satisfying the no-slip boundary condi-
tions at the plate, is

�1 � UUy�1 � 3i

10

e	2����Z� 	 e	��1�i��

�
1
4


e	��1	i�	�Z�1�i� 	 e	��1�i���. �2.15�

The total correction to the cross-isobar flow comes
from the imaginary part of �1, and its integral in � is, to
lowest order in �,

��
0

	

�1 d� � �
12
40

UUy. �2.16�

For (2.12b), the total cross-isobar flow, including the
Rossby number dependence of �0, is

�
0

	

��0 � ��1� d� �
U

2 �1 � �
7

20
Uy�, �2.17�

which agrees with the result of Benton et al. (1964) and
Hart (2000). The vertical velocity pumped into the in-
terior from the Ekman layer follows immediately, and,
in agreement with the references cited above,

W�	� � 	
1
2

Uy 	 �
7

40
�Uy

2 � UUyy� �2.18�

so that in the case of a constant shear, the Rossby num-
ber correction to the Ekman pumping velocity is inde-
pendent of the sign of the vorticity.1 The approximation (1��)1/2 � 1 � �/2 has been used.
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3. The stress-driven Ekman layer

The classical problem of the Ekman layer on a free
surface, driven by an applied stress, has often been
studied [see, e.g., Stern (1965) and more recently
Thomas and Rhines (2002)]. As in the example dis-
cussed in section 2, of particular interest is obtaining a
simple analytic prediction for the nonlinear correction
to the Ekman layer thickness. For simplicity, it is again
assumed that the flow is independent of the x direction
and is homogeneous, that is, that the Burger number
based on the horizontal scale of the stress and the depth
of the fluid is negligibly small.

The governing equations again are (2.2a)–(2.2d).
One can imagine a wind stress in the x direction with a
characteristic magnitude �0. The upper surface is at z �
0 and, scaling the depth with the linear Ekman layer
thickness, the dimensional depth variable lies in the
range 	� 
 � 
 0. One can choose to scale the hori-
zontal velocities with

Uscale �
2�0

�f0�
, where � � �2

f �1�2

. �3.1�

It is also assumed that beneath the Ekman layer, at
large negative �, there is a geostrophic current in the
direction of the stress. It is in cases in which the geo-
strophic flow is strong enough to affect the Ekman
layer structure directly that alignment between the
stress and the geostrophic velocity is most common.
See, for example, the aforementioned example of
Thomas and Rhines (2002). The boundary conditions
are now

u� � ��y�, �� � 0, and W � 0 for � � 0 �3.2a�

and

u → ug�y�, � → 0, and W → W	�y� for � → 		,

�3.2b�

where W� must be determined.
A similar expansion in powers of � yields, for the

lowest-order problem,

�0�� 	 2i�0 � 0, �3.3a�

�0 � u0 � i�0, �3.3b�

�0 � A�Z�e��1�i�, �3.3c�

leading to

u0 � ug�y� � e��Ar cos� 	 Ai sin��, �3.3d�

�0 � e��Ai sin� � Ar cos��, �3.3e�

where Ar and Ai are the real and imaginary parts of
A(Z). The boundary conditions on � � Z � 0 imply
that

Ar�0� � ��2, �3.4a�

Ai�0� � 	��2. �3.4b�

The vertical velocity can be found from (2.2d), and,
with the condition that the interior vertical velocity is
independent of Z, one obtains

W0 � 	
�y

2
	

e�

2
�

�y

�Ai 	 Ar� cos� � �Ai � Ar� sin��.

�3.5�

The order-� problem again has the structure of (2.9).
Carrying out the indicated calculations yields

1
2

�1�� 	 i� � 	e��1�i�
�

�Z

�Ar 	 Ai� � i�Ar � Ai�� � e��1�i��	

�y

2

�Ar 	 Ai� � i�Ar � Ai�� �

ugy

2i
�Ar � iAi��

� e��1	i�
ugy

2i
�	Ar � iAi� � e2�

�1 � i�

2

Ai�Ary � Aiy� � Ar�Ary 	 Aiy��. �3.6�

The first and second terms on the right-hand side both
have the form in � of the homogeneous operator on the
left-hand side. To keep the expansion in � uniformly
valid those terms must vanish. This leads to a simple
differential equation for the Z structure of the coeffi-
cients Ar and Ai whose solution is

Ar �
�

21�2 e	Z��y�2�ugy�4� cos�Zugy�4 � ��4� and

Ai � 	
�

21�2 e	Z��y�2�ugy�4� sin�Zugy�4 � ��4�. �3.7�

The order-1 velocity fields can then be written as

u0 � ug �
�

21�2 e
��1	���y

2
�

ugy

4
��

cos
��1 	 �ugy�4�

	 ��4� and �3.8a�

�0 �
�

21�2 e
��1	���y

2
�

ugy

4
��

sin
��1 	 �ugy�4� 	 ��4�.

�3.8b�

Note that the geostrophic vorticity affects both the de-
cay scale and the oscillatory variation in the Ekman
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layer. The wind stress curl affects only the thickness of
the layer since it enters the dynamics solely in the ver-
tical advection of the momentum. The vorticity of the
geostrophic flow does not contribute to the vertical ad-
vection. This would require a strongly stratified flow
whose geostrophic shear is large enough to produce a
viscous stress of the same order as the applied stress.

The Ekman layer thickness—that is, the characteris-
tic decay scale—is now

�� �
�


1 	 ���y � ugy�2��1�2 �3.9�

or, in dimensional units,

�* � �
2

f 	
2�*y*

�f�
	

u*gy*

2
	

1�2

. �3.10�

If �y is negative, that is, if the wind stress curl is positive,
the vertical velocity will be positive and the vertical
momentum advection will upward and this will make
the boundary layer thinner. If the geostrophic vorticity
is positive, that is, if ugy � 0, the boundary layer is again
thinner although this time it is due to the enhanced
total vorticity and not the vertical advection effect.
Note that the relative size of the two correction terms in
the denominator of (3.10) depends on the horizontal
scales of the wind stress and the geostrophic current,
and these need not be the same.

If (3.6) is integrated after potentially resonant terms
have been removed and the stress condition on � � 0 is
used,

�1�
� �0Z � 0, � � Z � 0, �3.11�

one obtains

	i�
0

	

�u1 � i�1� d� � �1 � i�
��y

8
�

iugy

23�2�1 	 i�
ei��4

�
1
2

�0Z, �3.12�

from which one obtains

�
		

0

��1 d� � 	
3
8

��ugy. �3.13�

When this is added to the vertical integral of �0, using
(3.8b) and keeping terms to order �, one obtains for the
total Ekman flux perpendicular to the applied stress

�
		

0

��0 � ��1� d� � 	
�

2
	����y

8
�

ugy

2 �. �3.14�

It is noteworthy that this important result for the flux
can be obtained directly by integrating (2.2a) with the
nonlinear terms written in flux form, and using only the
naïve linear solution (i.e., without including the varia-
tion in Z) to evaluate the nonlinear terms while using
the boundary conditions to evaluate the stress term at
the surface and the vertical advection at the base of the
Ekman layer.

The vertical velocity at the base of the Ekman layer,
to order �, is obtained from

W�		� �
�

�y��		

0

�0 � ��1� d� �3.15�

and is

W�		� � 	
1
2

�

�y � �

1 	 ��ugy � �y�4��, �3.16�

and these results for the Ekman flux and pumping ve-
locity agree with Thomas and Rhines (2002).

4. Discussion

The effects of nonlinearity on the Ekman layer’s
thickness have been studied in the weakly nonlinear
limit—that is, small Rossby number. Although one
might be simply tempted to replace the planetary vor-
ticity by the total, absolute vorticity to estimate the
thickness, this neglects the relatively powerful effect of
the vertical advection on the boundary layer thickness.
For the boundary layer that allows a geostrophic flow
to satisfy the no-slip condition on a solid boundary, the
vertical advection dominates the vortex force effect in
determining the thickness. A positive relative vorticity,
although it augments the total vorticity, leads to a thick-
ening of the boundary layer.

For a boundary layer driven by stress on a free sur-
face the situation is even more extreme. In the absence
of a strong geostrophic current beneath the layer, the
only effect of nonlinearity is either to thicken or to thin
the layer depending on the sign of the vertical advec-
tion produced by the wind stress curl. A strong geo-
strophic flow, that is, with velocity as large as boundary
layer flow driven directly by the stress, does not affect
the vertical advection and only contributes a vortex
force such that positive vorticity makes the layer thin-
ner as would be intuited by the naïve replacement of f
by the total vorticity including the geostrophic flow.

As a check to the calculation, the fluxes in the Ek-
man layer and the vertical velocity pumped into or out
of the layer have been calculated within the formalism
described above, and the results agree with the more
naïve (and straightforward) calculations that ignore the
role of nonlinearity on the layer thickness.
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It is important to note the important simplification
employed in this study. The geostrophic flow is recti-
linear and is an exact solution of the inviscid quasigeo-
strophic equations. As such there is no advection of
relative vorticity by the geostrophic flow and the effect
of the geostrophic flow on the layer thickness and the
pumping remains local. If the geostrophic flow is more
complex, that is, two dimensional and a function of
both lateral coordinates, this will no longer be the case.
One expects then the effects of the flow to be nonlocal
and a shift between the local vorticity and the pumping
to occur. Some results that employ a regular iteration
expansion are reported in Hart (1995). An approach
similar to the present paper for such cases would lead to
a partial differential equation for the alteration of layer
thickness, and the results of that study are not yet con-
cluded.
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