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ABSTRACT

The capabilities of dual polarization SAR data to resolve
or improve the wind/current retrieval based on Doppler
measurements are investigated. The idea is that while
the contribution from wind is polarization dependent, the
contribution from a steady current is polarization inde-
pendent. A theoretical framework for using Doppler in-
formation from SAR measurements for wind/current re-
trieval is developed and applied to Envisat ASAR Alter-
nating Polarization Mode data. Theoretically computed
Doppler frequency difference at C-band between HH and
VV polarization as a function of wind speed and sea state
for different incidence angles are presented. For a range
wind of 7 m/s, values around 10 Hz is predicted for an
incidence angle of 30◦. Comparison with Doppler fre-
quency estimates from Envisat Alt-Pol data show good
agreement, both for the absolute Doppler frequency and
the Doppler frequency difference.

1. INTRODUCTION

It has previously been shown that the Doppler frequency
anomaly in Synthetic Aperture Radar data is highly cor-
related to the wind vector component along the radar line
of sight [1], [2].

The anomaly arises because moving targets, such as the
coherent backscattering elements riding on the ocean sur-
face, produce Doppler shifts proportional to their relative
velocities toward the receiving radar antenna. The mo-
tion of the ocean surface can be represented as a wave
motion superimposed on a current U. For coastal areas,
this anomaly may then just as likely be connected to the
coastal current component than to the wind, or a mixture
between wind field and surface current.

In this paper, we investigate the capabilities of dual polar-
ization SAR data to improve the wind retrieval based on

sea surface Doppler frequency measurements. Of partic-
ular importance is to assess the performance of the VV-
HH Doppler frequency difference.

The theoretical derivations are presented in section 2. We
start by describing the SAR formalism, leading to an ex-
pression for the complex SAR image spectrum given in
the end of section 2.1. This equation is the starting point
for the rest of the derivations. The averaged product of
two such complex SAR image spectra is considered in
section 2.2, where the method of moments is used to es-
timate the Doppler shift of this spectrum due to the range
direction motion of the imaged ocean surface.

In section 3, we describe the electromagnetic backscat-
tering model source-function used in the computations,
and use a statistical model for the ocean surface to find
expressions for the Doppler frequency that easily can be
numerically implemented. Section 4.1 shows the Doppler
frequencies predicted by this formalism for different
wind-speeds, angles of incidence and sea states. Compar-
isons with Doppler frequencies estimated from selected
Envisat ASAR-scenes are presented in section 4.2.

2. THEORY

2.1. SAR-formalism

In ground-range coordinates x
′, the complex SAR raw-

data image can be written as a convolution of the com-
plex reflectivity of the imaged surface with the impulse
response of the system [4]:

Iraw(x′) =

∫

dx̃ e−i2kh·x̃ γ(x̃, t = y′

v ) f(x′ − x̃; R).

(1)
Here kh is the horizontal projection of the radar wave
vector kr = (kh, kv), γ is the complex backscatter co-
efficient, v is the radar platform velocity, R is the slant-
range distance of the imaged object, t is the time and f is
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the signal spreading function:

f(x; R) = f0(x; R) Ṽ (y) Ũ(kh

kr
x − ∆R(y; R)) (2)

f0(x; R) = e
−i2kr∆R(y;R)−i α

2
(
kh

kr
x−∆R(y;R))2

. (3)

In (2) and (3), Ṽ is the radar azimuthal ground-pattern
intensity function, Ũ is the envelope of the transmitted
chirp signal, α is the signal chirp-rate and

∆R(y; R) =
√

R2 + y2 − R ≈
y2

2R
(4)

is the radar to target curvature function.

The complex backscatter coefficient at the ground range
reference point (x̃, z̃ = 0, t) for a time dependent dielec-
tric surface can be written as

γ(x̃, t) =

∫

dx′′ δ(x′′ + kh
kv

k2
h

η̃(x′′, t) − x̃) F̃ (x′′, t) .

(5)
Here (x′′, η(x′′, t), t) are the points on the surface with
the same slant-range distance as the ground range point
(x̃, 0, t), related by x̃ = x

′′ + kh η̃(x′′, t)kv/k2
h. Fur-

thermore, F̃ is a source function caused by the electric
surface current, generally non-linearly dependent on the
surface elevation η̃. A model for F̃ was developed in [5]
by use of the Stratton-Chu formalism [6], and will be fur-
ther described later.

Inserting the expression for the complex backscatter co-
efficient into equation (1) then gives:

Iraw(x′) =

∫

dx̃ e
−2ikh·(x̃+kh

kv

k2
h

η̃(x̃, y′

v
))

F̃ (x̃, y′

v )

f(x′ − x̃ − kh
kv

k2
h

η̃(x̃, y′

v ); R) .

(6)

In this work, we let the time-dependent surface be the
air-sea interface. Assume now that the surface elevation
function η̃ at position x̃ can be written on the following
form:

η̃(x̃, t) = η(x, t)

where x is the solution of

x̃ = x + ξ(x, t) ,

and the vector χ = (ξ, η) represents the orbital motion
of a fluid particle measured at the reference point x. This
formulation describes the motion by following the indi-
vidual fluid particles, and is known as the Lagrangian de-
scription of fluid motion [8].

By changing to the reference system following the hori-
zontal displacement ξ of the fluid-particles: x̃ → x+ ξ,
eq.( 6) can be written as

Iraw(x′) =

∫

dx e−2ikh·(x+χp(x, y′

v
)) F (x, y′

v )J(x, y′

v )

f(x′ − x − χp(x, y′

v ); R) ,
(7)

where we have defined

χp = ξ + kh
kv

k2
h

η , J = det

[

1 + ∂ξx

∂x
∂ξy

∂x
∂ξx

∂y 1 +
∂ξy

∂y

]

,

and
F (x, y′

v ) = F̃ (x + ξ, y′

v ) .

We now start by Fourier transforming Iraw(x′) in range
and azimuth, to obtain the 2D-Fourier transformed raw-
data image. By applying the method of stationary phase,
which requires the derivatives of the phase term with re-
spect to x and y to be zero, we find that the Fourier trans-
formed image may be approximated by

Îraw(k) ≈

∫

dx e−i(2kh+k)·(x+χp(x,ts)) F (x, ts)

J(x, ts) f̂0(k; R) Ũ(x′

s) Ṽ (ys) . (8)

Here f̂0 is the 2D-Fourier transform of f0, xs, ys are the
stationary phase values of x and y given by:

xs =
kr

kh
∆R −

1

α

k2
r

k2
h

kx , (9)

ky +

(

2kr +
kr

kh
kx

)
ys

R
+ (2kh + k) · χ̇p(x, ts)

1
v = 0 ,

(10)
x′

s is given by x′

s = kh

kr
xs − ∆R = − 1

α
kr

kh
kx , and ts is

given by ts = (y + ys + ξy)/v . Since ξy/v represents a
small time offset (less than 10−3 s for satellite systems),
the following approximation may be done:

ts ≈
y + ys

v
. (11)

If we make a first order Taylor expansion of χ̇p with
respect to ts around y/v, and assume the system to be
narrow-banded, |k| � kh, we get the following station-
ary phase value:

ys ≈ −
ky + 2kh · χ̇p

1
v

2kr

R + 2kh · χ̈p
1
v2

≈ −
R

2kr
ky −

R

krv

(
kh · χ̇p

)
+

R2

2k2
r v

2

(
kh · χ̈p

)
ky .

(12)

It can be shown that in equation (12), the second term
represents a shift of the profile Ṽ due to the motion of the
surface in range, while the last term represents a defor-
mation of Ṽ . We will in the following concentrate on the
shift of Ṽ , and therefore neglect the last term of eq. (12).

The SAR data-compression, producing the complex SAR
image spectrum, is now done by removing the depen-
dence of f̂0 (multiplying with f̂−1

0 ), yielding:

Îc(k) ≈

∫

dx e−i(2kh+k)·(x+χp(x,ts)) F (x, ts)

J(x, ts) Ũ(x′

s) Ṽ (ys) . (13)
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This equation is the basic starting point for describing the
different aspects of SAR imaging.

2.2. Doppler frequency

Based on equation (12), we have stated that the range-
direction motion of the surface will lead to an azimuthal
shift of the complex SAR image spectrum. This is the
Doppler frequency, and it can be estimated by consid-
ering the averaged product 〈Îc(k)Î∗c (k)〉 of two com-
plex image spectra and applying the method of moments.
Here, the superscript ∗ denotes the complex conjugate
value, and 〈〉 is the expectation operator. Assuming
the backscatter to be constant for small variations in k,
we neglect the k-dependence of ts and the exponential
in (13), and define

J (x) = J(x, tc) , F(x) = F (x, tc) ,

ζ(x) = 2kh · χp(x, tc) , and

Υ(x1,x2) = F(x1)F
∗(x2)J (x1)J

∗(x2) .

We have here approximated ts ≈ tc(y) =constant in k.

The averaged product, or spectrum, is now written as:

〈Îc(k)Î∗c (k)〉 =
∫∫

dx1dx2 〈e
−i(2kh·(x1−x2)+ζ(x1)−ζ(x2))Υ(x1,x2)

Ũ(x′

s)Ũ (x′

s)Ṽ (ys(x1))Ṽ (ys(x2))〉 ,
(14)

where we have made use of the fact that Ũ and Ṽ are real
functions.

Estimating the Doppler frequency using the method of
moments

Assume for a moment that we have a function h, where
h(k − µ̃) is symmetric around µ̃. The nth order moment
of this function is given by

mn ≡

∫

dk knh(k − µ̃) =

∫

dk (k + µ̃)nh(k) ,

and the shift µ̃ is given by µ̃ = m1/m0. This technique is
known as the method of moments, and we will here use
it to estimate the Doppler frequency.

For our function 〈Îc(k)Î∗c (k)〉, the 0th and 1st order mo-
ments are defined as:

m0 =

∫

dk 〈Îc(k)Î∗c (k)〉 , (15)

m1 =

∫

dk ky〈Îc(k)Î∗c (k)〉 . (16)

In order to calculate the azimuthal shift, we make the fol-
lowing variable transformation:

ky = k̃y −
1

2v

(

ζ̇(x1) + ζ̇(x2)
)

≡ k̃y − Σk̃y (17)

kx = k̃x , (18)

and define

U(kx) = Ũ

(

−
1

α

kr

kh
kx

)

, V (ky) = Ṽ

(

−
R

2kr
ky

)

.

The 0th and 1st order moments defined in (15)-(16) are
then given by:

m0 =
∫∫

dx1dx2 〈 e−i(2kh·(x1−x2)+ζ(x1)−ζ(x2))Υ(x1,x2)

∫

dk̃U(k̃x)
2V (k̃y+∆k̃y)V (k̃y−∆k̃y)〉 ,

(19)

m1 =
∫∫

dx1dx2 〈 e−i(2kh·(x1−x2)+ζ(x1)−ζ(x2))Υ(x1,x2)

∫

dk̃ (k̃y − Σk̃y)U(k̃x)
2V (k̃y+∆k̃y)V (k̃y−∆k̃y)〉,

(20)

where ∆k̃y ≡ (ζ̇(x1) − ζ̇(x2))/2v.

It is known that the radar ground-pattern intensity func-
tion V is a symmetric function in k̃y, and consequently
the product V (k̃y+∆k̃y)V (k̃y−∆k̃y) is symmetric in k̃y.
Therefore,

∫

dk̃U(k̃x)
2V (k̃y+∆k̃y)V (k̃y−∆k̃y)k̃y = 0 , (21)

and we obtain the following expression for m1:

m1 =

−

∫∫

dx1dx2 〈 e−i(2kh·(x1−x2)+ζ(x1)−ζ(x2))Υ(x1,x2)

Σk̃y

∫

dk̃ U(k̃x)
2V (k̃y+∆k̃y)V (k̃y−∆k̃y)〉 .

(22)

Note that m1 only differs from m0 through the presence
of the shift-factor Σk̃y(x1,x2).

Because the EM-width is small, the lag between x1 and
x2 in (19)-(22) is small. Here, χ̇p is effectively the or-
bital velocity of the long waves, and this will not change
much due to small variations in x. Hence, we may
neglect the difference ζ̇(x1) − ζ̇(x2) and approximate
V (k̃y + ∆k̃y)V (k̃y −∆k̃y) ≈ V (k̃y)

2, so that the k̃-
integral may be put outside the expectation-operator in
equations (19) and (22).
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Assuming statistical stationarity with respect to x, the
Doppler frequency (in the unit of Hertz) is now given by:

µ = −
1

4π

∫
dx e−2ikh·x〈 eΛ(x)Υ(x,0)(ζ̇(x) + ζ̇(0))〉

∫
dx e−2ikh·x〈 eΛ(x)Υ(x,0)〉

(23)
where we have defined Λ(x) = i(ζ(0)−ζ(x)).

3. COMPUTATION

In order to compute the theoretical Doppler fre-
quency given in eq. (23), the Fourier kernels
〈 eΛ(x)Υ(x,0)(ζ̇(x) + ζ̇(0))〉 and 〈 eΛ(x)Υ(x,0)〉
need to be computed. To do this, expressions for F
and J in Υ, and a statistical model for the sea surface
represented by ζ, are needed.

3.1. The electromagnetic scattering model

In [5], a scattering model is developed that enables us
to calculate F(x) for a given surface, scattering geome-
try and global polarization vectors Ĥi (incident) and Ĥs

(scattered). The model source functionF(x) is here writ-
ten as a sum

F(x) = F0 + F1(x) , (24)

where the lower indexes refers to the order of dependence
on (ξ, η).

Explicitly, the 0th order source function is

F0 = Ĥs ·
{

B(0)
vv v̂

(0)
v̂

(0) + B(0)
wwŵ

(0)
ŵ

(0)
}

· Ĥi , (25)

where B(0)
vv = B

(0)
ww = 2(ν−1)/(nz(ν+1)) are the Kirch-

hoff reflection coefficients for specular reflection [7], ν
is the complex reflection index between the two media
(here air and water), nz is the z-component of the unit
surface normal, and v̂

(0) = [0, 1, 0], ŵ(0) = −k̂r × v̂
(0)

are the local vertical and horizontal magnetic polarization
vectors, respectively. F0 is thus the tangent plane approx-
imation of the source function.

The first order source function describes the effect of first
order generalized (surface) curvature on the backscat-
tered signal with no approximation in slope. It may be
expressed by an integral over a transfer function,

F1(x) =

∫

dk eik·xTF (k) η̂(k) , where (26)

TF = 2ikvF0

+ Ĥs ·
{

B(1)
vv v̂

(1)
v̂

(1) + B(1)
wwŵ

(1)
ŵ

(1)
}

· Ĥi .

(27)

Here,

B(1)
ww = 4ikr

(ν2 − 1)
(
sin2 θi + cos2 θt

)

(ν cos θi + cos θt)
2 cos2 θi , (28)

B(1)
vv = 4ikr

(ν2 − 1)

(cos θi + ν cos θt)
2 cos2 θi (29)

are equivalent to the SPM-1 coefficients of Valenzuela
[9] computed at the local incident and transmitted an-
gles. Specifically, θi is the local incident angle, com-
puted at the slope s = (2ki

h − k)/2ki
z, θt is the lo-

cal transmitted angle, related to θi by Snell’s law, and
ŵ

(1)(k) = −(k × kr)/|k × kr|, v̂
(1)(k) = k̂r × ŵ

(1)

are the first order local horizontal and vertical magnetic
polarization vectors, respectively. Note that it is this sur-
face curvature dependent term that leads to polarization
differences in the backscattered signal.

Finally, the Jacobi determinant J that occurs in Υ may
be approximated by:

J (x) ≈ 1 + ∇ · ξ = 1 + J1(x) .

3.2. Statistical expressions

Up to order two in surface elevation, we can now write

Υ(x,0) = f(x)f∗(0) , (30)

where

f(x) = F0
︸︷︷︸

f0

+ (F0J1(x) + F1(x))
︸ ︷︷ ︸

f1

, (31)

and the lower indexes of f again refers to the order of
dependence on (ξ, η). Assuming Gaussian statistics, this
now yields:

〈eΛΥ〉 = eϕζζ(x)−ϕζζ(0)

{

ϕf1f1
(x) +

(

f0 + i (ϕf1ζ(x) − ϕf1ζ(0))
)

(

f∗

0 − i (ϕζf1
(x) − ϕζf1

(0))
)}

(32)
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and

〈eΛΥ(ζ̇(x) + ζ̇(0))〉 = eϕζζ(x)−ϕζζ(0)

{

if0ϕζ̇ζ(x)
(

f∗

0 − i (ϕζf1
(x) − ϕζf1

(0))
)

− if∗

0 ϕζζ̇(x)
(

f0 + i (ϕf1ζ(x) − ϕf1ζ(0))
)

− f0ϕζζ̇(x)
(

ϕζf1
(x) − ϕζf1

(0)
)

− f∗

0 ϕζ̇ζ(x)
(

ϕf1ζ(x) − ϕf1ζ(0)
)

+ f∗

0

(

ϕf1 ζ̇(x) + ϕf1 ζ̇(0)
)

+ f0

(

ϕζ̇f1
(x) + ϕζ̇f1

(0)
)

− i
(

ϕf1 ζ̇(x) + ϕf1 ζ̇(0)
)(

ϕζf1
(x) − ϕζf1

(0)
)

+ i
(

ϕζ̇f1
(x) + ϕζ̇f1

(0)
)(

ϕf1ζ(x) − ϕf1ζ(0)
)

+ iϕf1f1
(x)

(

ϕζ̇ζ(x) − ϕζζ̇(x)
)

+ i
(

ϕζ̇ζ(x) − ϕζζ̇(x)
) (

ϕf1ζ(x) − ϕf1ζ(0)
)

(

ϕζf1
(x) − ϕζf1

(0)
)}

.

(33)

Here, it is made use of the fact that ϕζ̇ζ(0) = ϕζζ̇(0) =
0. Furthermore, the needed transfer functions are:

Tζ(k) = 2ikh · k̂ + 2kv (34)

Tf1
(k) = −kF0 + TF (35)

Tζ̇(k) = −i (gk)
1/2

Tζ(k) , (36)

and the source terms F0 and F1 are given in the previous
subsection.

4. RESULTS

4.1. Predicted Doppler frequencies

As noted in section 2, the Doppler frequency µ of the
spectrum 〈Îc(k)Î∗c (k)〉 is due to the range direction mo-
tion of the coherent backscattering elements on the ocean
surface during the integration time. Using the model
spectrum of Elfouhaily et al [3] as the input wave-number
spectrum S(k) (needed in the computations of the co-
variances in equations (32), (33)), the Doppler frequency
is now estimated for different angles of incidence, wind
speeds, wind directions and polarizations.

Figure 1 shows µ plotted as a function of incidence angle
for two different wind-speeds (7m/s and 15m/s), both for
HH- and VV-polarization (the vertical dotted lines indi-
cate the Envisat range of incidence angles). It is clear
that the predicted Doppler frequency varies with inci-
dence angle and increases with increasing wind-speed,

and that the two polarizations give different values of the
frequency. Here, the wind direction φ is taken to be the
negative range direction (i.e. wind blowing toward the
radar). At an incidence angle of 23◦ and a wind speed
of 7 m/s, the VV curve of Figure 1 gives a Doppler fre-
quency value of around 30 Hz, which is in good agree-
ment with the values obtained globally from the ASAR
wave mode VV data [1].

Fig. 1. The Doppler frequency as a function of incidence
angle for HH (−·−) and VV (—) polarization. Unmarked
lines correspond to 7 m/s wind, and lines marked with �
to 15 m/s wind.

The motion of the ocean surface can be represented as a
wave motion superimposed on a current U. The predicted
Doppler frequency may thus be connected to wind waves,
surface currents, or a mixture between the two. Here,
we are interested in separating the wave motion from the
total motion of the surface (i.e. removing U), in order to
better estimate the wind. This is achieved by combining
the VV and HH Doppler frequencies.

Figure 1 shows that the Doppler frequency µ as a func-
tion of incidence angle and wind-speed is different for
HH- and VV-polarization. The Doppler frequency due
to U will however be the same for the two polarizations,
and so the difference µHH − µV V will depend on the in-
trinsic wave velocity, and hence on the wind speed, but
not on the surface current. This may be used to estimate
the wind speed from the radar image.

From Figure 1 it is clear that the Doppler frequency dif-
ference is insignificant for small angles of incidence. In
the remaining part of the paper, the incidence angle is
fixed at 30◦ (chosen to make the Doppler difference sig-
nificant).

Sea-state sensitivity, wind direction and wind speed de-
pendency

The idea now is to analyze the Doppler frequency and
accompanying frequency difference as functions of wind
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speed and direction. But first, it is necessary to investigate
whether they are more dependent on swell or on shorter
wind-waves, in order to assess their abilities to serve as
indicators of wind speed.

Fig. 2. The curvature spectrum for a wind speed of 7
m/s and different inverse wave ages: — corresponds to
Ω = 0.84, − · − to Ω = 0.42, and −− to Ω = 1.68.

The curvature spectrum in [3] depends on the dimension-
less inverse wave-age parameter Ω, which is equal to 0.84
for fully developed seas. In Figure 2, this spectrum is
plotted for 7 m/s wind and Ω = {0.42, 0.84, 1.68}. We
here observe that decreasing/increasing the value of Ω
simply increases/decreases the amount of energy asso-
ciated with the longest gravity waves (swell), while the
short-wave part of the spectrum remains the same. By
calculating the Doppler frequency and the frequency dif-
ference for different values of Ω, their sea-state depen-
dency may then be investigated.

Fig. 3. Sigma (VV) as a function of direction φ. Here,
the error bounds correspond to an 25% change in inverse
wave age Ω. The wind-speed is 7 m/s (—), and 15 m/s
(−−).

Figures 3- 5 show how the backscatter coefficient σV V

(included for comparison), the Doppler frequency µV V

and the Doppler frequency difference µHH − µV V all
vary as a function of wind direction φ, where φ = 0◦

is the range direction (i.e. along the radar line of sight).
Here, the inverse wave age is Ω = 0.84, and the error
bounds correspond to an 25% change in Ω. We observe
that both the Doppler frequency and the frequency dif-
ference varies periodically as a function of φ, with twice
the period of σ, and that the variation with inverse wave
age is less for the Doppler difference than for the ab-
solute Doppler. Spesifically, the Doppler difference has
a maximum relative error of approximately 13%, while
the absolute Doppler has a maximum relative error of ap-
proximately 25% (15 m/s, 0◦). Therefore, the Doppler
frequency difference µHH−µV V is more suitable for de-
termination of the wind direction.

Fig. 4. Doppler frequency (VV) as a function of direction
φ. Here, the error bounds correspond to an 25% change
in inverse wave age Ω. The wind-speed is 7 m/s (—), and
15 m/s (−−).

Fig. 5. Doppler frequency difference as a function of di-
rection φ. Here, the error bounds correspond to an 25%
change in inverse wave age Ω. The wind-speed is 7 m/s
(—), and 15 m/s (−−).

Estimating the wind speed is also necessary. Figures 6- 7
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now shows the Doppler frequency and the frequency dif-
ference as functions of wind speed, again for an inverse
wave-age of Ω = 0.84 and error bounds corresponding
to an 25% change in Ω. First we observe that both the
Doppler frequency and the frequency difference increases
with increasing wind speed. Also, the variation with Ω is
again less for the Doppler difference than for the Doppler
itself (with relative errors of approximately 14% vs 25%).

Fig. 6. The Doppler frequency as a function of wind-
speed (upwind) for different values of the inverse wave-
age and for VV (left) and HH (right) polarization. The
angle of incidence is 30◦, and the wind direction is 180◦.

Fig. 7. The Doppler frequency difference µHH −µV V as
a function of wind-speed (upwind) for different values of
the inverse wave-age. The angle of incidence is 30◦, and
the wind direction is 180◦.

From figures 4-7, we therefore conclude that while the
Doppler frequency difference still is sensitive to the sea
state, it is less dependent on inverse wave-age than the
absolute Doppler frequency is. This implies that the fre-
quency difference is less dependent on swell than the ab-
solute Doppler frequency is, and it is therefore a better
indicator on wind-speed and -direction. Nevertheless, the

dependency on sea state in the Doppler frequency (and
Doppler difference) addresses the need for proper esti-
mation of inverse wave age from SAR data.

The most important reason for using the Doppler differ-
ence rather than the absolute Doppler frequency is how-
ever that the Doppler frequency due to the surface cur-
rent, as well as any errors arising from variations in the
pointing direction of the instrument, are the same for both
polarization channels. Hence, these effects may be elim-
inated by using the Doppler difference as a measure of
surface wave motion.

4.2. Measured Doppler frequencies

In order to compare the theoretically predicted Doppler
frequencies with Doppler frequencies measured from En-
visat ASAR Alt-Pol data, a SAR scene showing the
coast of Denmark (ASA_APC_0PNTSS20031009, taken
09. Oct. 2003, 09:55:16-09:55:58) is selected. The in-
cidence angle is 28.9◦ (IS 3), so a significant Doppler
frequency difference is expected. Figure 8 shows the in-
tensity image σHH+V V for a section of this scene.

The corresponding single-look complex image is pro-
cessed from the ASAR_APC product using an inhouse
processing software. From this SLC-Data, azimuth
Fourier spectra are calculated for both polarization chan-
nels, and Doppler frequencies are estimated. Figure 9
now shows the Doppler frequencies for VV polarization,
with 2 km× 2 km resolution. Observe that one can easily
separate between land and ocean in this figure, and that
the largest of the lakes can be identified.

Fig. 8. The intensity image σHH+V V for a selected SAR
scene, showing the coast of Denmark

According to the simulations presented in the previous
section, the Doppler frequency difference over ocean
is typically in the order of 10 Hz. We are presently
not able to measure such a small Doppler difference
with 2 km×2 km resolution. Figure 10 therefore shows
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Fig. 9. The Doppler frequency µV V for a selected SAR
scene, showing the coast of Denmark, 2 km×2 km reso-
lution.

µHH −µV V with 8 km×8 km resolution. Although there
is some noise in the image, it is still possible to separate
land and ocean in Figure 10.

Fig. 10. The Doppler frequency difference µHH − µV V

for a selected SAR scene, showing the coast of Denmark,
8 km×8 km resolution.

Finally, Figure 11 shows an azimuthally averaged profile
of the Doppler difference as a function of range. We ob-
serve that at the coastline, the Doppler difference abruptly
increases with approximately 7 Hz. On the date of these
measurements, an oil platform (Sleipner) in the North sea
measured a 7.7 m/s wind, with direction (wind coming
from) 207◦ measured clockwise from north. According
to the simulations above (Fig. 7), a 7 m/s wind in negative
range direction will give a Doppler difference of about
10 Hz. Since the wind probably forms an angle with the
(negative) range direction, the jump of 7 Hz in the mea-
sured Doppler difference is in good agreement with the
model predictions.

In Fig. 10, the mismatch between the polarization chan-
nels has been compensated for using an average range

Fig. 11. The (azimuthally averaged) Doppler frequency
difference as a function of range.

profile estimated from a pure land scene in the same
swath (IS 3).

5. CONCLUSION

The Doppler frequency anomaly in SAR data has recently
been shown to be highly correlated to the range direction
wind field component. Here, the capabilities of dual po-
larization SAR data to improve the wind/current retrieval
based on Doppler measurements have been investigated.

The theoretical model and simulations presented in this
paper shows that the difference between the Doppler fre-
quencies for HH and VV polarization is an even better
indicator on wind speed and direction than the Doppler
frequency itself is. The reasons for this is that the Doppler
difference:

(i) is less dependent on the sea state than the Doppler
frequency itself is,

(ii) remove the possible contribution from a steady sur-
face current, and

(iii) remove any errors arising from variations in the
pointing direction of the instrument, except effects
arising from a mismatch between the polarization
channels.

Comparison with Doppler frequency estimates from En-
visat ASAR Alt-Pol data show a good agreement be-
tween predicted and measured Doppler frequency dif-
ferences. In the future, it is necessary to establish a
large SAR data-set, with co-located wind estimates from
platforms, to statistically verify the agreement between
Doppler frequency difference and wind conditions. Also,
it is clear that to improve the differential Doppler esti-
mates, a method for estimating the inverse wave-age pa-
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rameter from SAR data is needed. This will be the topic
for future work
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