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When a wave of permanent form is obliquely incident on an inclined plane, the wave
pattern becomes stationary in a frame of reference which moves along the shore. This
enables a simplified mathematical description of the problem which is used herein
as a basis for efficient and accurate numerical simulations. First, a nonlinear and
weakly dispersive set of Boussinesq equations for the downstream evolution of such
stationary patterns is derived. In the hydrostatic approximation, streamline-based
Lagrangian versions of the evolution equations are developed for automatic tracing
of the shoreline. Both equation sets are, in their present form, developed for non-
breaking waves only. Finite difference models for both equation sets are designed.
These methods are then coupled dynamically to obtain a single nonlinear model with
dispersive wave propagation in finite depth and an accurate runup representation.
The models are tested by runup of waves at normal incidence and comparison with
a more general model for the refraction of a solitary wave on a slope. Finally, a
set of runup computations for oblique solitary waves is performed and compared
with estimates of oblique runup heights obtained from a combination of an analytic
solution for normal incidence and optics. We find that the runup heights decrease in
proportion to the square of the angle of incidence for angles up to 45◦, for which the
height is reduced by around 12 % relative to that of normal incidence. In Appendix
A, the validity of the downstream formulation is discussed in the light of solitary
wave optics and wave jumps.
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1. Introduction
Today, runup on sloping beaches is included in standard models for tsunamis and

long waves in coastal waters (Imamura 1996; Titov & Synolakis 1998; Kennedy et al.
2000; Lynett, Wu & Liu 2002; LeVeque & George 2008). Still, there is a considerable
activity linked to benchmarking and analysis of the performance of models for
this crucial, final stage of onshore wave propagation (see, for instance, Liu, Yeh &
Synolakis 2008). Hence, well-controlled runup solutions, obtained under idealized
circumstances, are important both for model validation and for gaining insight into
the dynamics of the runup phenomenon as such. The class of reference solutions
that has received most attention is based on the so-called hodograph transformation
for waves of normal incidence on a plane beach. In essence, this transformation
reduces the nonlinear shallow-water (NLSW) equations to the corresponding linear
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problem. The hodograph tradition goes back to Carrier & Greenspan (1958) and
was revitalized by Synolakis (1987), who found a closed-form asymptotic solution for
the runup of soliton-shaped waves. The technique has been generalized to piecewise
linear topographies and channels of parabolic cross-sections by Kânoǧlu & Synolakis
(1998) and Choi et al. (2008), respectively. Analytical solutions for the runup of bores
on an inclined plane are reported by Keller, Levine & Whitham (1960) and Shen &
Meyer (1963).

Few simple solutions for runup on sloping beaches in two horizontal dimensions
exist. The lowest two modes of nonlinear eigenoscillations in parabolic basins take on
very simple spatial forms (see Thacker 1981). Perturbation solutions for edge waves
have been derived and coupled nonlinearly to periodic incident waves, explaining
beach cusp formation, among others (see, for instance, Guza & Davis 1974). Certain
classes of waves incident on geometries with parallel coastline and isobathymetric
lines produce permanently shaped wave patterns moving along the coast. The time
and the alongshore coordinate may then be merged into a single variable, reducing
the number of dimensions by one. This has been exploited in a few published
articles on wave reflection and runup and will also be employed in the present
study. Using linear shallow-water theory, Carrier & Noiseux (1983) investigated the
reflection of Gaussian-shaped pulses, representing tsunamis, from straight coastlines
and continental shelves. Assuming nearly normal incidence, Ryrie (1983) developed
weakly three-dimensional nonlinear shallow-water equations where the alongshore
flow was decoupled from the motion in the normal direction which was governed by
the standard equation set for plane waves. This formulation was used for runup of
bores. Since there is no coupling back from the alongshore to the normal flow, this
procedure reproduces the runup of normal incidence. Brocchini & Peregrine (1996)
combined the approximation of weak obliquity with the hodograph transformation
for the motion in the direction normal to a plane beach and studied properties of
the alongshore flow for periodic incident waves. Later, Brocchini (1998) applied a
similar approach to incident solitary waves. Again, the runup itself was as for normal
incidence due to the approximation of weak obliqueness. No study of this kind with
strong obliqueness, and hence the variation of the runup heights with the angle of
incidence, is available in the literature.

Theoretical studies are generally performed with incident waves that are periodic
or solitary waves. Still, a few investigations have been performed for other shapes
involving skewness, such as in Didenkulova et al. (2007), or N-type shapes that are
more like tsunamis from earthquakes and slides (Tadepalli & Synolakis 1994; Carrier,
Wu & Yeh 2003; Pritchard & Dickinson 2007). Even though they differ from most
waves found in nature, solitary waves are much investigated in laboratories because
they are easy to generate and identify. Normal incidence experiments on solitary wave
runup have been reported by, among others, Hall & Watts (1953), Meyer & Taylor
(1972), Synolakis (1987), Li & Raichlen (2001) and Jensen, Pedersen & Wood (2003).
Experimental and theoretical investigations of solitary wave runup on a conical island
were published by Liu et al. (1995) and Briggs et al. (1995).

The main focus of the present article is oblique runup of solitary waves on an
inclined plane, including full nonlinearity and weak dispersion. In a moving frame of
reference, following the point of maximum runup transversely along the beach, the
wave pattern becomes stationary in this case. Among others, Pedersen (1988) studied
the stationary nonlinear pattern of diverging waves from a supercritical disturbance
by downstream integration of a Boussinesq-type equation. Here, related Boussinesq
and shallow-water equations are developed for downstream integration of stationary
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pattern in variable topography. A major gain, in comparison to solving corresponding
equations in two horizontal dimensions and time, is the reduction of the problem to
involve only one spatial and one time-like independent coordinate. This again allows
for huge computational domains and makes complicated seaward input/radiation
conditions superfluous.

A number of different numerical approaches for runup on sloping beaches have
been published, displaying a large diversity concerning purpose as well as performance
(see Pedersen 2008b). Tentatively, we may divide the methods into two groups. One
with emphasis on ruggedness and simple invocation to real applications and another
where the focus is on high accuracy and detailed investigation of more theoretical
problems. Often, the models of the latter group are based on transformations and
deforming grids for accurate treatment of the moving shoreline, while the former
generally trace the shoreline in a fixed grid. Our strategy is to dynamically couple a
fixed grid method in finite depth to a moving grid method near-shore.

In § 2, we first describe the nature of the stationary wave patterns emerging when
solitary waves are incident on a straight beach. Then, the nonlinear and weakly
dispersive Boussinesq equations are transformed for non-breaking waves, accordingly,
to a new form involving the normal-beach coordinate and a time-like coordinate.
This equation set is the basis for the fixed grid model mentioned above. Next, the
nonlinear shallow-water parts of the transformed equations are re-transformed by the
introduction of Lagrangian-type coordinates which intrinsically trace the shoreline.
Implicit finite-difference models for both sets of equations, as well as the nesting
procedure, are explained briefly in § 2.3, while a more complete description is given
in Appendix B. Readers who are interested in the runup results, while being less
motivated for manipulation of long-wave equation and their numerical solution
procedures, may skip § 2 as well as the appendix.

Testing is imperative since both sets of equations, as well as their numerical solution
procedures, are new. In § 3, both the mathematical description of stationary wave
patterns due to oblique incident waves and the numerical techniques are validated
through comparison with existing results and models from the literature.

In § 4, simple estimates of runup heights for solitary waves of oblique incidence are
suggested. Finally, computed runup heights are presented and discussed in the light
of the estimates.

2. Basic theory, formulation
Our final goal is to compute the runup of solitary waves entering an inclined plane

from a region of uniform depth at oblique angles of incidence. The first step is to
adopt the transformation that Carrier & Noiseux (1983) employed for reflection of
linear pulses, representing tsunamis. However, in our case, the transformation takes
into consideration the nonlinear propagation speed of solitary waves and we wish to
develop equations suitable for simulation of nonlinear and dispersive propagation,
without any systematic degradation or loss of accuracy. For this purpose, the standard
Boussinesq equations, in Eulerian coordinates, are subjected to the transformation
and then further manipulated to enable subsequent computation of the solution in
transects normal to beach, starting with the incident wave profile. However, dispersion
is most pronounced in relatively large depths and the effect may be disregarded near-
shore without noticeable influence on the runup height (see Pedersen 2008b, and § 3.2
herein). Thus, we derive specific equations for the near-shore region and inundation
based on the nonlinear shallow-water theory. To achieve an automatic and accurate
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tracing of the shoreline, we describe these equations in Lagrangian coordinates which
are related to streamlines in the stationary flow patterns.

Each of the models is solved by finite-difference techniques, which are described
mainly in the Appendices. An operational model for runup, which is nonlinear
everywhere and dispersive in finite depth, is then constructed by dynamic coupling of
the Eulerian and the Lagrangian models.

A coordinate system with horizontal axes, ox� and oy�, in the undisturbed water
level and the vertical axis, oz�, pointing upwards is introduced. The asterisks indicate
dimensional quantities, the fluid is confined to −h� < z� <η� and the depth-averaged
velocity is denoted by v�. We introduce a characteristic depth d and dimensionless
variables, according to

z� = dz, x� = dx, y� = dy,

t� = d(gd)
−1/2

t, h� = dh(x, y, t), η� = dη,

v� = (gd)1/2v,

⎫⎪⎬
⎪⎭ (2.1)

where g is the acceleration of gravity. The x- and y- components of v will be
referred to as u and v, respectively. The scaling (2.1) is convenient for description of
computational results as well as shallow-water equations. However, in derivation of
long-wave equations, such as the Boussinesq equations, a scaling different from this is
more useful and is even a de facto standard in the recent literature on dispersive long-
wave equations. Introducing ε as a measure of nonlinearity and � as a characteristic
wavelength, dimensionless quantities are then defined as

x� = �x̂, y� = �ŷ, t� = �(gd)
−1/2

t̂ ,

η� = εdη̂, v� = ε(gd)1/2v̂,

}
(2.2)

while the dimensionless z and h are as in (2.1). Also, the non-dimensional wave
celerity is the same in both scalings. It follows from (2.2) that the non-dimensional
quantity µ2 ≡ d2/�2 indicates the importance of dispersion. The scaling (2.2) will be
employed only in § 2.1 (with exception of figure 1) and § B.1, which are concerned with
the derivation of Boussinesq equations and their numerical solution, respectively.

2.1. Boussinesq equations and downstream marching

From Peregrine (1972), we adopt the nonlinear and weakly dispersive Boussinesq
equations on the standard form. Scaled according to (2.2), they read

∂η̂

∂t̂
= −∇̂·((h + εη̂)v̂), (2.3)

∂ v̂

∂t̂
+ εv̂ · ∇̂v̂ = −∇̂η̂ +

µ2

2
h∇̂∇̂ ·

(
h

∂ v̂

∂t̂

)
− µ2

6
h2∇̂∇̂ · ∂ v̂

∂t̂
+ O(µ4, µ2ε). (2.4)

A number of Boussinesq formulations with improved dispersion properties and
additional nonlinearities are available (Wei et al. 1995; Madsen & Schäffer 1999;
Kennedy et al. 2000; Lynett et al. 2002). However, in the present study, we will
combine nonlinear dispersive equations in finite depth with nonlinear shallow-water
equations near the moving shoreline. Therefore, we stick to the standard equations
even though some higher-order effects probably could be included in the following
derivations.

We assume that the equilibrium shoreline and isolines for the depth are parallel to
the x̂-axis, implying that h = h(ŷ), and that a permanent form wave is incident from
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Figure 1. Diagram of the (ξ, y) plane with contours for the surface elevation corresponding to
a stationary runup pattern of a wave incident from a region of constant depth. Depth contours,
which are normal to the y-axis, are shown by dashed lines. In addition to the shoreline, two
other streamlines, corresponding to arbitrarily selected a1 and a2, are shown by thick lines. If
they are close the distance becomes s ≈ (∂y/∂a)(a2 −a1). Since the ξ -component of the velocity
is u − F , the volume flux density (per a) between the streamlines becomes (u − F )H (∂y/∂a).
The diagram is intended as a definition sketch, but is based on the computed runup for a
solitary wave for A =0.08, φ =10.54◦ and θi = 40◦ (see § 4.2). The increase in surface elevation
before the crest enters the slope is due to interference with reflections of the wave front. The
scaling (2.1) is used in this and all subsequent figures.

a region of constant depth, h = 1 (see figure 1). The wave pattern is then stationary
in a frame of reference moving along the coast with the speed

F = ci/ sin θi, (2.5)

where ci and θi define the wave celerity and the direction of wave advance for the
incident wave, respectively. Small values of θi , implying that we are close to normal
incidence, correspond to high values of F . A new alongshore coordinate is defined
as ξ̂ = x̂ − F t̂ . However, eventually, it is more convenient to work with the time-like
variable τ̂ = t̂ − x̂/F = − ξ̂ /F . Substitution into (2.3) and (2.4) yields

η̂τ̂ − εF −1(ûη̂)τ̂ + ε(v̂η̂)ŷ = −(hv̂)ŷ + F −1hûτ̂ ,

ûτ̂ + ε(−F −1ûûτ̂ + v̂ûŷ) = F −1η̂τ̂ +
µ2

2
h(F −2hûτ̂ τ̂ τ̂ − F −1(hv̂τ̂ τ̂ )ŷ)

− µ2

6
h2(F −2ûτ̂ τ̂ τ̂ − F −1v̂τ̂ τ̂ ŷ) + O(µ4, µ2ε),

v̂τ̂ + ε(−F −1ûv̂τ̂ + v̂v̂ŷ) = −η̂ŷ − µ2

2
h(F −1(hûτ̂ τ̂ )ŷ − (hv̂τ̂ )ŷŷ)

+
µ2

6
h2(F −1ûτ̂ τ̂ ŷ − v̂τ̂ ŷŷ) + O(µ4, µ2ε),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.6)

where the indices correspond to partial differentiation. The number of dimensions
is reduced by one. However, assuming that upstream influence is negligible, we seek
equations that are suitable for forward integration in the time variable τ̂ . To this end,
we must remove the higher-order derivatives with respect to τ̂ in the dispersion terms.

In terms of the depth-averaged velocity components, the requirement of zero vertical
vorticity reads as

ûŷ = v̂x̂ + O(µ2) = −F −1v̂τ̂ + O(µ2). (2.7)

This relation is consistent with the momentum equation given in (2.6). However, the
inclusion of bottom friction or wave breaking may produce vertical, in addition to



Oblique runup of non-breaking solitary waves on an inclined plane 587

horizontal, vorticity, which may be important for the near-shore flow regime (see
Peregrine 1998; Bühler & Jacobson 2001; Brocchini et al. 2004). Hence, the presence
of such effects would violate the relation (2.7) and the subsequent equations would
have to be modified. The x-component of the momentum equation in (2.6) implies

û = F −1η̂ + C(ŷ) + O(µ2, ε). (2.8)

In the applications addressed herein, C may generally be set to zero. This is the case
if, for instance, the medium is initially at equilibrium (û = η̂ = 0). From (2.6), we then
obtain the leading-order (in ε and µ) balance

(1 − hc2
i F

−2)ûτ̂ τ̂ = −F −1c2
i (hv̂τ̂ )ŷ + O(µ2, ε) = c2

i (hûŷ)ŷ + O(µ2, ε). (2.9)

The phase speed, ci =1+O(µ2, ε), of an incident wave in unitary depth is introduced
to assure that the incident wave of permanent form fulfils (2.7) and (2.9) exactly.
This is not strictly necessary, but it is convenient since the wave then remains an
exact solution of our modified Boussinesq equations, regardless of the value of F . In
the x̂-component of the momentum equation, we first remove the ŷ-derivative in the
convective term by means of (2.7). Then, the whole equation may be integrated in τ̂

to yield a Bernoulli equation, from which all remaining τ̂ -derivatives are removed by
(2.7) and (2.9). From the ŷ-component of the momentum equation, we eliminate ûτ̂ τ̂

with the aid of (2.9) and rewrite the convective terms by means of (2.7). Finally, we
arrive at a set of nonlinear equations which appears somewhat complicated, but has
a structure that is similar to that of the standard Boussinesq equations in time and
one space dimension,

η̂τ̂ − εF −1(ûη̂)τ̂ + ε(v̂η̂)ŷ = −(hv̂)ŷ + F −1hûτ̂ , (2.10)

û − ε

2
F −1(v̂2 + û2) = F −1η̂ + µ2h

{
1

3
h(F 2c−2

i − h)−1 +
1

2

}
(hûŷ)ŷ

− 1

6
µ2h2ûŷŷ + C(ŷ) + O(µ4, µ2ε), (2.11)

v̂τ̂ +
ε

2
(û2 + v̂2)ŷ = −η̂ŷ +

1

2
µ2h(hv̂τ̂ )ŷŷ − 1

6
µ2h2v̂τ̂ ŷŷ

+
1

3
µ2h2

{(
F 2c−2

i − h
)−1

(hv̂τ̂ )ŷ
}

ŷ
,

+
1

2
µ2hhŷ

((
F 2c−2

i − h
)−1

(hv̂τ̂ )ŷ + O(µ4, µ2ε), (2.12)

where C is a temporal constant of integration that generally equals zero. The set is
now in a form suitable for forward integration in τ̂ and will be used for simulation of
the wave propagation in finite depth. During runup the equations may be used quite
some distance onshore. There the dispersion terms are set to zero (see Appendix B.3).

When θi → 0, implying that F → ∞, (2.11) gives û = 0 while the other two equations
are reduced to the ordinary Boussinesq equations in ŷ and t̂ . Moreover, for
large F (2.11) points to û =O(F −1) while the other field variables behave like
η̂(ŷ, τ̂ , F ) = η̂(ŷ, τ̂ , 0) + O(F −2), v̂(ŷ, τ̂ , F ) = v̂(ŷ, τ̂ , 0) + O(F −2). Hence, to leading
order the alongshore current may be obtained by first solving the equations for normal
incidence, namely (2.10) and (2.12) without the terms containing û or reciprocals
of F . Then û is found by substituting η̂ and v̂ into (2.11). A similar approach
was used by Brocchini & Peregrine (1996) and Brocchini (1998), who obtained the



588 G. K. Pedersen

normal incidence solution by applying the hodograph transformation to the NLSW
(µ2 → 0) counterparts to (2.10) and (2.12). In this approximation, (2.11) takes on the
explicit form û= F −1(η̂+(1/2)εv̂2) (see Brocchini & Peregrine 1996, (2.19) and (2.15c)
therein). In the study of weakly oblique bores, Ryrie (1983) employed a corresponding
decoupling, by first solving for normal incidence and then obtaining the alongshore
flow from the x̂-component of the momentum equation, which was written in non-
integrated form. Hence, no assumption of irrotational flow was required. However,
to obtain a correction to the runup height, we must keep the coupling between v̂,
η̂ and û in (2.10) through (2.12). Hence, in the numerical simulations, we retain all
reciprocal orders of F , while the dispersion (O(µ2)) terms will be omitted near-shore
(see § 2.2).

In Appendix A, limitations on the transformed equations are discussed in the light
of so-called ‘wave–waves’ (described by, for instance, Miles 1977b). It is indicated
in the appendix that the downstream-marching procedure is applicable for angles of
incidence up to 60◦, and even beyond this for small amplitudes.

2.2. Use of Lagrangian streamline coordinates

From this point, we employ the scaling (2.1). The Eulerian (y, τ ) plane may be
replaced by a pseudo-Lagrangian (a, τ ) plane. The flow is stationary in the (ξ, y)
plane, where ξ = x − F t , and the Lagrangian coordinate, a, marks streamlines in this
plane, rather than individual particles. In the Lagrangian equations, we will delete all
dispersion terms (order µ2 in the Boussinesq equations), but keep all nonlinearities
in the hydrostatic parts of the equations.

It is convenient to first describe the streamline, or Lagrangian, coordinates in the
(ξ, y) frame of reference. The velocity vector then becomes (u−F )i +v j , where i and
j are the unit vectors in the x- and y-directions, respectively. A streamline is defined
by a(ξ, y) = const., which implies

(u − F )
∂a(ξ, y)

∂ξ
+ v

∂a(ξ, y)

∂y
= 0, or

∂y(a, ξ )

∂ξ
=

v

u − F
. (2.13)

When expressed in terms of τ , instead of ξ , these expressions take on the forms(
1 − u

F

) ∂y(a, τ )

∂τ
= v, (2.14)

(
1 − u

F

) ∂a(y, τ )

∂τ
+ v

∂a(y, τ )

∂y
= 0. (2.15)

For the material derivative of some quantity, G, we obtain the expression

DG

Dt
=

(
∂

∂t
+ u

∂

∂x
+ v

∂

∂y

)
G(x, y, t) =

(
1 − u

F

) ∂G(a, τ )

∂τ
. (2.16)

Naturally, (2.14) is only an instance of (2.16) with G = y.
The continuity equation (2.10) can be transformed by the introduction of the total

fluid depth, H = η+h(y), the spatial variable a instead of y, and finally by application
of (2.16). Important cancellations occur to yield a separable equation for H , u and
∂y/∂a, which may be integrated in τ . We omit the details and present the transformed
continuity equations as (

1 − u

F

)
H

∂y

∂a
= K(a), (2.17)
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where K is a constant of integration which is determined by the initial conditions.
A simple interpretation of the first integral (2.17) is that the volume flux between
two adjacent streamlines in the (ξ, y) plane is constant (see figure 1). The first factor
on the left-hand side of (2.17) is proportional to the current, while the second and
third factors are the height and relative horizontal extension of the fluid cross-section,
respectively. When F → ∞, (2.17) simplifies to express conservation of volume in
material columns moving normal to the x-axis as u/F vanishes and the flux in the
x-direction can be regarded as independent of y.

When the dispersion (O(µ2)) terms are omitted the x-component of the momentum
equation (2.11) becomes a purely algebraic equation which is unaltered during the
transformation to Lagrangian coordinates. For the y-component, we better start with
the form in (2.6). Using (2.16) and rewriting the surface elevation gradient, as done
by Jensen et al. (2003), we then readily find

u − 1
2
F −1(v2 + u2) = F −1η, (2.18)(

1 − u

F

) ∂v

∂τ
= −

(
1 − u

F

) H

K

∂H

∂a
+

dh

dy
. (2.19)

The set (2.14), (2.17), (2.18) and (2.19) will be solved numerically in the near-shore
region.

The most important consequence of the transformation to Lagrangian coordinates
is that the shoreline, which is a streamline in the (ξ, y) plane, is associated with a
constant a, namely a = 0 in the cases studied herein.

2.3. Numerical methods and incident waves

The set of Eulerian equations (2.10), (2.11) and (2.12) is solved in finite depth by a
method related to that described by Løvholt, Pedersen & Gisler (2008) and references
therein. In the vicinity of the shoreline the Lagrangian equations, (2.14), (2.17), (2.18)
and (2.19), are solved by a generalization of the technique employed by Jensen et al.
(2003) and tested by Pedersen (2008a). In both cases, finite differences on staggered
grids lead to implicit equations at each time step, which are solved by iteration. The
resulting combined model is nonlinear throughout and dispersive in finite depth.

The near-shore Lagrangian grid is combined with a finite-depth Eulerian grid
through a suitable overlap and the total solution is obtained by Schwartz iteration
at each time step. Initially, the Lagrangian grid extends from the beach (a = 0; y =0
at equilibrium) to y = a = aL and the Eulerian grid starts at y = yE <aL. During the
simulation, new nodes are included or exempted from the computational Eulerian
grid to keep the extent of the overlap of roughly the same size. The temporal
discretizations (
τ ) in the two grids are identical, while the spatial resolutions, 
a

and 
y respectively, will differ.
Details on the numerical procedure are given in Appendix B. All reported solutions

are subjected to grid-refinement tests. Also, the sensitivity with respect to other
parameters, such as the width of the overlap, is investigated. In addition to the
nonlinear model outlined above, we will also employ a linear, non-dispersive model
for comparison (see § B.4).

As incident waves we employ solitary waves that are specified in regions of unitary
dimensionless depth. Because of the particular choice for the dispersion terms, (2.10)
and (2.11) share the solitary wave solution with (2.3) and (2.4), as well as the
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Boussinesq formulations used by Pedersen (1988, 1996):

η = Y (cos θiy + ciτ ), u = sin θiU (cos θiy + ciτ ), v = − cos θiU (cos θiy + ciτ ),
(2.20)

where Y and U are shape functions. For vanishing A, the above solution approaches
the standard solitary wave solution given in § 3.2, but we invoke the full solutions
of our Boussinesq-type equations in the simulations. The use of the solitary wave
as an initial condition in the Eulerian model is straightforward, but to avoid first
order discretization errors the initial v must be shifted (1/2)
τ relative to η and u,
due to the staggered grid (see Appendix B). The height of the solitary wave decays
exponentially as | cos θiy+ciτ | → ∞. In the initial conditions, the profiles are truncated
when η/A< et , where et = 0.0002 in general.

A moving shoreline may be contained in the Lagrangian part of the model and
the condition H = 0 (zero flow depth) is invoked there. At the offshore boundary, a
no-flux condition is used. This will suffice because the incident wave is unidirectional
(onshore) and the deep region is large enough to avoid the influence of reflections
from the deep water wall on the runup.

3. Assessment and validation of method
In our approach there are two features, in particular, that call for verification.
Firstly, the transformed description of the nonlinear, oblique wave pattern, as given

by the equation set (2.10)–(2.12) should be controlled as such. This set is not limited
to runup on sloping beaches. Hence, in § 3.1 we compare our Eulerian model with
an existing Boussinesq model, from the literature, for refraction from a shelf and
reflection from a vertical wall. This test involves neither runup on sloping beaches
nor Lagrangian coordinates. In addition, our Eulerian (with the dispersion terms
omitted) and Lagrangian models were compared for oblique waves in finite depth
(results not shown).

Secondly, we need to verify the numerical implementations and, above all, their
coupling. To this end, we simulate runup of solitary waves of normal incidence and
compare with results from the literature in § 3.2. In this section, we also include some
general properties of solitary wave runup which are useful elsewhere in this article.
We have also verified the numerics employing the standard problem of runup of an
N-wave on an inclined plane as described by Carrier et al. (2003) and Liu et al. (2008)
(results not shown).

All tests have been passed successfully.

3.1. Refraction at a shelf and reflection from a vertical wall

Normal and abnormal refraction patterns on slopes were computed by a 2HD (two
horizontal dimensions and time) Boussinesq-type model by Pedersen (1996). Later, it
has come to light that this and most other Boussinesq models, except the standard
formulation, are prone to instabilities due to steep bottom gradients (Løvholt &
Pedersen 2008). Still, for the gentle slopes and the wave patterns that were investigated
by Pedersen (1996), as well as the one in this subsection, no instabilities have been
observed. The incident solitary wave is specified in a region of unitary dimensionless
depth. From this region, a linear slope of width 25 length units leads up to a shelf of
depth 0.5 and width 25 (see figure 2). The shelf is terminated by a vertical wall and
there is no sloping beach in the geometry. Hence, the incident wave is first refracted at
the slope. The shape, which is no longer that of a single solitary wave, then modifies
due to nonlinear and dispersive effects during the propagation (back and forth)
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Figure 2. Stationary wave pattern for a solitary wave of amplitude A = 0.05 and angle θi = 45◦,
encountering a shelf and a vertical wall. (a) Contour diagram for η from the 2HD simulation.
The dashed transects correspond to the profiles shown in (b). Only a part of the computational
domain is displayed. (b) Comparison of the 2HD simulation with a corresponding simulation
based on the mathematically one-dimensional formulation used herein (sta.). Profiles are shown
for three different stages: the incident wave (a), an instant when the crest enters the shelf (b)
and after the wave has been reflected from the wall and the leading crest has descended the
slope again (c).

over the shelf and reflection from the wall. Thereafter, the wave is again refracted
during the descent of the slope towards deeper water. In the 2HD simulation, the
incident wave is specified as a moving input boundary condition, while a radiation
condition is employed for the reflected wave. For the incident wave, we choose the
parameters A= 0.05 and θi = 45◦. In the 2HD model, a grid increment 
x = 
y = 0.25
is employed, which, according to grid-refinement tests, yields a general error much
less than 1 %. For the marching technique we employ a similar resolution as in § 4.2.
The wave pattern, as obtained from the 2HD model, and the comparison are shown
in figure 2. The agreement between the models is very close, even for the last stage
shown, where the wave has descended the slope again while undergoing fission into
two distinct crests.

3.2. Runup of solitary waves of normal incidence

Synolakis (1987) derived a closed-form asymptotic expression for the runup of solitary
waves incident from a region of constant depth on a plane beach with inclination
angle φ. The incident pulse was specified according to

η = A sech2(k(y − ct)), (3.1)
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where the y-axis is normal to the shore, the dimensionless maximum depth equals
unity and

k = 1
2
(3A)1/2. (3.2)

The combination of (3.1) and (3.2) describes the leading-order approximation to
a solitary wave, as obtained by solving the Korteweg-de Vries (KdV) equation. It
is remarked that this is slightly different from the solitary wave solution of our
Boussinesq equations. Synolakis’ solution reads as

RS(A) = AKS(cotφ)1/2(A)1/4, for
√

A cotφ → ∞, A → 0, (3.3)

where Ks = 2.831 is a numeric constant. This formula also applies to weakly oblique
cases as described by Brocchini (1998). In the derivation of (3.3) in Synolakis (1987) the
relation (3.2) is invoked only at the very last stage. Hence, the derivation inherits the
runup solution for a two-parameter class of pulses, where A and k are independent,
rather than being restrained by (3.2). This is due to the fact, pointed out in the
reference, that the relation between the incident wave and the maximum runup is
linear, even though the solution behaves nonlinearly elsewhere (see also Didenkulova
2008). The more general formula for independent k and A, which will be used in § 4.1,
reads as

RP (A, k) = A
21/2KS

31/4
(k cotφ)1/2, for k cotφ → ∞, A → 0. (3.4)

We observe that RP /A depends solely on the quantity k cotφ, which is proportional
to the length of the slope relative to the length of the incident wave.

Pedersen (2008b) compared (3.3) with simulations based on the Serre equation (full
nonlinearity, standard Boussinesq dispersion) discretized on a single Lagrangian grid.
In Pedersen (2008b), computations were also made with the NLSW equations and
a variable dispersion according to putting µ(a) in the Serre equations, where µ was
reduced continuously from its proper value to zero between a = 1.1ac and a = ac. In
that context, µ had the same role as in the Boussinesq equations of § 2.1. Hence, the
region a <ac was treated with the NLSW equations. This is analogous to the present
combination of Boussinesq and NLSW equations, with aL (see § 2.3) comparable
to ac.

In figure 3, we compare runup heights from the present combined Eulerian/
Lagrangian model with those from (3.3) and numerical simulations of both Serre and
the NLSW equations from Pedersen (2008b). The deviations between the latter three
data sets are discussed by Pedersen (2008b). The present model, with aL = 0.1 cotφ,
yE = 0.05 cotφ and a resolution similar to that used in figure 5, and the Serre model
agree very well, with the present model yielding slightly higher R. It is noteworthy
that the differences between the Serre results for ac =0 and ac = (1/4) cot φ >aL,
respectively, are even smaller. This indicates that the small deviations between the
present model and that of Pedersen (2008b) stem from differences in the solitary wave
shape and deep water propagation properties, rather than the omission of dispersive
effects near-shore in the combined model used herein.

The models employed herein are limited to non-breaking waves. For solitary
waves on an inclined plane, Synolakis (1987) reported a breaking criterion based
on nonlinear shallow-water theory

A = 0.818(tan θ)10/9. (3.5)
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Figure 3. Maximum runup heights for solitary waves. Results from the present, combined
Eulerian/Lagrangian model are denoted by ‘combined’. As explained in the text, the quantity
ac indicates the extent of the near-shore region where the dispersion term is turned off in the
Serre simulations. The value h(ac) = 0 implies that the Serre equation is used all the way to
the instantaneous shoreline.

For high, and thereby short, incident solitary waves, dispersion during shoaling is
important and (3.5) becomes inadequate. On the basis of simulations with a boundary-
integral technique and curve fitting, Grilli, Svendsen & Subramanya (1997) reported

A = 25.7(tan θ)2, (3.6)

as a criterion for breaking during runup. For large θ , this criterion is much more
relaxed than (3.5). For θ = 10◦, for instance, (3.6) and (3.5) yield A= 0.52 and
A= 0.12, respectively. For smaller θ , the difference is less pronounced. No criteria
are available for oblique solitary waves. Anyhow, all incident waves employed herein
have amplitudes well below the limitation (3.6) for normal incidence.

4. Oblique runup of solitary waves
We investigate the runup of solitary waves incident on a plane beach, with

inclination angle φ, from a region of constant depth which equals unity in
dimensionless coordinates. An illustration of a typical runup wave pattern is given in
figure 1.

For the runup of solitary waves on an inclined plane, there are no known rigorous
analytic solutions, in the sense that they include the variation of the runup height with
the angle of incidence. However, heuristic estimates can be provided by combining
optical descriptions and the solution (3.4).

4.1. Simple estimates of maximum runup

If the slope is sufficiently gentle the incident wave will maintain its identity as a
solitary wave with approximately the same dependence of shape and wave celerity on
amplitude and local depth as if in uniform medium. To leading order, the shoaling
will produce a single crested wave with amplification and refraction according to
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(Miles 1977a; Pedersen 1996)

cot θE(α, h) = const.,
c

sin θ
= F, (4.1)

where α(y) is the local amplitude to depth ratio, θ(y) defines the local direction
of wave advance, E =8(hα/3)3/2 is the leading-order (in α) energy per crest length
of a solitary wave and c = h1/2(1 + (α/2h)) is the leading-order local wave celerity.
These equations express that the onshore energy flux is constant and that the crest is
stationary (in the (ξ, y) plane), respectively. At h =1, the incident wave is specified
according to α = A and θ = θi .

According to (4.1) the angle θ will decrease towards zero as we approach the
shoreline. We may then assume that the runup will correspond to a case of normal
incidence where the wave height at h → 0 matches that for our case of oblique
incidence. It follows from (4.1) that the amplitude, AN , of an equivalent case of
normal incidence is determined by E(A) cos θi = E(AN ), meaning AN = A cos2/3 θi .
Employing (3.3), we then find the runup estimate

R(A, θi) = RS(AN ) = RS(A)

(
1 − 5

12
θ2
i + · · ·

)
= RS(A)

(
1 − 5

12
F −2 + · · ·

)
, (4.2)

where relative error terms, proportional to θ4
i , F −4 and A, are implicit in the

expressions. Several objections can be raised against this estimate. Firstly, the slope
must be very gentle for solitary wave optics to apply. It is not sufficient that
the slope length is large compared to the wavelength; the slope length must be
large in comparison with the much longer scales linked to the evolution of dispersive
and nonlinear effects (Miles 1980; Pedersen 1996). This is not properly fulfilled for
the runup computations of non-breaking waves that will be presented subsequently.
Secondly, solitary wave optics, like all kinds of optics, will be invalid close to the
shoreline where it predicts A → ∞. Moreover, our arguments behind (4.2) require that
the wave is close to normal incidence near-shore, which implies u � v. According
to (2.11), u does not go to zero as the beach is approached and for small F and
long incident waves u may not be small in comparison to v. However, the use of
(4.2) means that we relate the runup of an oblique wave to that of a wave of normal
incidence, with the same onshore energy transport per length of the shoreline. This
might still provide a sensible estimate of the effect of obliqueness.

In contrast to the solitary wave case, the optical approximation is often quite
good for linear waves, even if the length scale of the geometry does not exceed the
wavelength by an order of magnitude. Assuming that the slope length is too short
for dispersive effects to be important and that nonlinear effects are crucial only near-
shore, we may use linear, non-dispersive optics. The above application of (4.1) is then
repeated, but with c = h1/2 and the energy density replaced by E = Ekα

2/k, where Ek

is a constant. Here k is the pulse wavenumber as used in (3.1). For the incident wave
only, we have k = (1/2)(3A)1/2. In agreement with the kinematic condition, the time
scale of the pulse is constant, implying that kh1/2 is constant. For normal incidence,
this yields Green’s law for the amplitude, while the match of near-shore behaviour
now implies AN = A cos1/2 θi and (3.4) gives

R(A, θi) = RS(A)

(
1 − 5

16
θ2
i + O

(
θ4
i

))
, (4.3)

which yields a smaller reduction in R due to obliqueness than does (4.2).
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The main shortcoming of the estimate (4.3) is the absence of nonlinear effects.
When dispersive effects are assumed to be less significant during shoaling, steepening
of the wavefront becomes an important nonlinear effect, resulting in an asymmetric
wave. For non-breaking waves, this increases the runup heights (see, for instance,
Didenkulova et al. 2007). Steepening depends on the amplitude and the propagation
distance available for its evolution. The effect of the latter surfaces in (3.4) through
the factor k cotφ, which measures propagation distance relative to wavelength. In the
case of oblique incidence, the propagation distance is increased. This again points to
an extra steepening of the front compared with the equivalent wave (same amplitude
near-shore) of normal incidence. An indication of the increased runup due to this
effect may be obtained by replacing the factor cot φ by the arclength � of the ray in
(3.4). Employing the linear version of the kinematic condition, we find

� =

∫ cot φ

0

dy

cos θ
=

2 cotφ

1 + (1 − F −2)1/2
. (4.4)

Expanding this to the two leading orders in F −2 and inserting the result for cot φ into
(3.4) we obtain a correction factor (1 + θ2

i /8) which in combination with (4.3) yields

R(A, θi) = RS(A)

(
1 − 3

16
θ2
i + · · ·

)
. (4.5)

The evolution of the wave height during the initial stages of the shoaling may give a
clue concerning which ray theory is the more appropriate. Linear ray theory predicts
amplification when θ < 45◦ and attenuation for θ > 45◦. The corresponding limit for
solitary wave optics is θ = 60◦ when A → 0 (see Pedersen 1996, figure 1; observe the
different definition of θ). Computed wave heights (not shown) display no attenuation
for the smallest A, for which any kind of optics is inappropriate since the wavelength
is much longer than the inclined plane, and a shift from amplification to attenuation
somewhat above θi = 55◦. Bearing in mind that interference with the reflected wave
is bound to shift this transition upwards, we may interpret this as an intermediate
behaviour in relation to the optical predictions.

In general, we may write the runup height for an oblique solitary wave as
R(A, φ, F −2). For large F (close to normal incidence), the above analysis suggests

γ (A, φ) =
1

R(A, φ, 0)

∂R(A, φ, 0)

∂(F −2)
, (4.6)

as a useful quantity for further investigation. The estimates may be then summarized
as follows:

γ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

γs = − 5

12
(4.2),

γl = − 5

16
(4.3),

γn = − 3

16
(4.5).

(4.7)

It is emphasized that these values of γ should not be regarded as rigorous
mathematical results. Still, as shown later, they envelop most of the numerical results
in a nice manner.
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Figure 4. Runup heights as functions of the angle of incidence, θi , for different values of A
as indicated by the labels. Symbols correspond to the combined Eularian/Lagrangian model,
while the lines represent linear, hydrostatic computations. The correct match between symbols
and curves are found by counting from below (or from the top). (a) φ = 3◦ and (b) φ = 7.18◦.

4.2. Computations

Simulations have been performed with a junction in the depth function, which is
either a vertex or a smoothed bend which extends one tenth of the equilibrium
beach length and is represented by a polynomial that assures continuous second
derivatives of h. For the vertex the solution of our Boussinesq-type model has a
faint local distortion, which is often hard to notice. In the simulation in figure 2, for
example, apices are present both at y = 25 and at y =50, but the distortion cannot be
discerned. The smooth transition yields runup heights that are slightly higher than for
the vertex. For the steepest inclination, φ =10.54◦, the relative difference is less than
10−4 for A= 0.05 and θi = 0◦ and increases to nearly 10−3 for A= 0.175 and θi =65◦.
Generally, the relative difference is comparable to, or smaller, than the discretization
errors (around 0.001, see below). In the following, the smooth bottom is employed in
the computations. Likewise, the variation of the truncation limit (see § 2.3) indicates
that et = 0.0002 also yield smaller errors than the finite resolution.

Computations are reported for φ = 3◦, 5◦, 7.18◦, 10.54◦, covering a large span of
amplitudes and grid resolutions for each inclination. The simulations are performed
with a Lagrangian near-shore grid that initially extends to y = aL = (1/10) cot φ, which
is one tenth of the equilibrium slope length. The overlap with the Eulerian grid is kept
roughly constant according to yE = (1/20) cot φ. Moderate variations of the overlap
and the size of the Lagrangian grid have minor effect on the runup heights. However,
the inclusion of new Eulerian grid points at the beach during runup implies stepwise
changes in the length of the overlap. Because there are differences, even if small, in
the properties of the models in the overlap, this will result in small fluctuations in the
solutions. Hence, grid-refinement tests are important. Grid effects are included in
figure 5.

Runup heights for two selected inclination angles are shown in figure 4. A decrease
of R/A with the angle of incidence, θi , is observed. This decrease becomes stronger for
the larger amplitudes, causing the curves for different amplitudes to nearly collapse
for θi > 65◦, say. A similar trend is also observed for the other inclination angles (not
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Figure 5. Runup height as a function of F −2 for selected values of A. Computed results with
finest resolution are shown by + symbols, while circles (◦) correspond to half this resolution and
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y = 0.0351,

a = 0.0164; (b) φ = 10.54◦, 
y = 0.0238, 
a = 0.0085, where the grid increments correspond
to θi = 45◦ and the highest amplitude.

shown). The figure also includes runup heights from linear hydrostatic computations
(see § B.4). The comparison of linear results with the nonlinear computations is
motivated by the good performance of linear theory observed for normal incidence
(see, for instance, Didenkulova 2008, and the discussion before (3.4) herein). For the
smaller amplitudes, the agreement between these and the nonlinear, dispersive results
is close, and even for the higher amplitudes the discrepancy does not exceed 15 %.
As θi increases, the difference between nonlinear and linear runup heights diminishes
somewhat. This indicates that the unexpectedly good performance of linear runup
models carries over to the oblique case as well. On the other hand, it is not surprising
that linear theory performs better for larger φ, where the runup heights and wave
heights during shoaling are relatively smaller.

The relative rate of decrease of the runup height with obliqueness, as represented
by γ defined in (4.6), is extracted from the computations. For small F −2, we use linear
regression on R for each A and φ. The regression interval and the resulting best linear
fit are shown in figure 5 for selected amplitudes and slopes. Results obtained with
half the number of grid points are also included. The typical relative differences of
about 0.001, or less, are scarcely visible in the figure. The linear regression displayed in
figure 5 is very good and should provide accurate values for γ . Moreover, the decrease
rate with F −2 does not change much until F −2 = 0.5, say, which roughly corresponds
to θi = 45◦. For larger angles of incidence the reduction rate for R becomes markedly
larger.

In figure 6, the computed values of γ have been summarized and compared with
the three optical estimates from § 4.1. For the smallest amplitude, the incident solitary
waves are long in comparison with the slope length (cotφ). Then, ray theory does
not apply. In the limit A → 0, the beach will act as a vertical impermeable wall and
R/A → 2+ regardless of the angle of incidence θi , which in turn implies γ → 0−. For
moderate values of A, the factor γ falls between γn and γl . It is not surprising that
γn is an overestimation since it includes enhancement of nonlinear effects due to the
prolonged arclength of the ray (as compared with that of normal incidence), while
counteracting dispersive effects are neglected. For the three larger inclination angles
the effect of obliqueness increases slowly with A and we may finally obtain values
below γl . However, we have not observed computed γ values close to γs .
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5. Concluding remarks
Under the assumption of stationary wave patterns in a moving frame of reference,

nonlinear long-wave equations were transformed into a form allowing downstream
marching, where one coordinate direction is traversed by forward integration in
a time-like variable. The structure of the marching equations was made quite
similar to that used for propagation in one horizontal dimension, even when weak
dispersion, corresponding to the standard Boussinesq equations, was included. No
attempt has been made to do a similar transformation for higher-order Boussinesq-
type equations and it is open whether or not this would provide a useful basis
for numerical simulations. For the nonlinear shallow-water part of the marching
equations, Lagrangian, or rather streamline, coordinates could be employed to derive
a description that inherently traces the shoreline.

A refraction problem was used to demonstrate both the applicability of the
marching approach and its numerical realization. For this problem, the wave pattern
computed by a Boussinesq model with two horizontal dimensions was reproduced
with great accuracy. The combination of an Eulerian Boussinesq model for finite
depth and Lagrangian (streamline) model for the vicinity of the shoreline was tested
on cases with normal incidence and through grid refinement. This is not the main issue
herein, but it is noteworthy that the dynamic coupling of the static Eulerian grid and
the small, rapidly moving, Lagrangian grid worked that well. Naturally, new problems
may be encountered if a similar approach was attempted in more general cases.

The reduction of runup heights due to obliqueness is, as can be expected, very
small for the combination of long incident waves and steep beaches. For moderate
angles of incidence, we may write R(A, φ, θi) ≈ R(A, φ, 0)(1 + γ θ2

i ), where A, φ and
θi are amplitude, slope inclination and angle of incidence, respectively. Alternatively,
θi on the right-hand side may be replaced by 1/F = sin θi/ci , where F is the speed
of the frame of reference in which the wave pattern is stationary. Except for very
long incident waves, typical computed γ values are in the range −0.2 to −0.37,
say. This compares well with the three estimates inspired by optics, namely γ =
−0.19, −0.31 and − 0.42. Moreover, the reduction rate of R with 1/F 2 does not
change dramatically for θi < 45◦. A typical value γ = −0.25 and an angle of incidence
θi = 45◦ then yield a reduction of R of approximately 12 % as compared to the
case of normal incidence. For larger angles of incidence, the reduction rate increases
somewhat.

It is well known that linear shallow-water theory may perform surprisingly well for
runup of waves of normal incidence. Our results suggest that this theory is at least
as good for moderate obliqueness, with angles of incidence up to 70◦, say.
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The present investigation has been limited to waves that do not break during runup,
even though the higher amplitude cases will break during drawdown. Breaking may
be introduced in the fashion of Kennedy et al. (2000), for instance. If the dispersive
terms are omitted, more options are available. However, breaking will introduce
rotation and a reformulation of the equations used herein would be required.

Appendix A. Validity of downstream marching
In Pedersen (1988), a marching procedure similar to the present one gave very

good agreement with simulations by a more general model, involving evolution in
two horizontal dimensions and time, for supercritical wave generation by a pressure
disturbance in a channel. As expected, the marching procedure failed when the
Froude number came close to the trans-critical regime with upstream emission of
waves. According to Pedersen (1988), the upper limit of the trans-critical regime
is linked to the speed of ‘wave–waves’ in the form of nonlinear modulations on
solitary waves (Reutov 1976; Miles 1977a; Ko & Kuehl 1979; Pedersen 1994). The
modulations may propagate, in both directions, along a solitary carrier wave with
speed ±cm. For gentle modulations and small carrier-wave amplitudes (A), the speed
is cm = ((1/3)A)1/2. To prevent modulations from travelling upstream in our stationary
pattern, we must then require√

A

3
≈ cm < c cot θ ∼

√
h

(
1 + O

(
A

h

))
cot θ, (A 1)

where A and θ are the local amplitude and the angle of incidence of a solitary-wave
crest, respectively.

While the criterion (A 1) assures that infinitesimal modulations on a solitary crest
do not propagate upstream, it does not apply to configurations where wave jumps,
in the sense of strong and abrupt variation of wave characteristics along a crest
(Miles 1977a; Peregrine 1983; Pedersen 1994), are involved. An example of such a
process is Mach reflection from a straight wall in constant depth, which occurs when√

3A> (1+O((A/h), θ2
i ))

√
h((π/2)−θi) (see Miles 1977b, c). Clearly, this phenomenon

is outside of the validity range of our marching procedure, thus imposing a stronger
constraint than (A 1). Still, to leading order in A and (π/2) − θ both requirements are
of the form (

A

h

)1/2

< C
(π

2
− θ

)
. (A 2)

There is no reason to expect formation of wave jumps during runup, unless the slope
is very steep. Hence, we may employ (A 1). For θi =60◦, this criterion yields A< 1,
which includes much more than the meaningful range of solitary wave amplitudes.
For θi = 75◦ and θi =80◦, we find A< 0.21 and A< 0.09, respectively, which still leave
an appreciable amplitude range. The question then is whether or not the criterion
(A 1) may be violated during shoaling.

Ray theory may also be applied to investigate if the criterion (A 1) may be violated
during shoaling, even when it is fulfilled for the incident wave. Assuming that the
wave remains of solitary shape, one finds that the critical relation is approached when
θi is somewhat larger than 45◦ or when h → 0, when the ray theory in any case is
dubious. On the other hand, when the linear non-dispersive ray theory is employed,
we always move away from the limit of (A 1) during shoaling. Unfortunately, since
the true behaviour falls between the different ray theories (see § 4.1), their application
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yields no clear indication whether or not the criterion (A 1) becomes more critical as
the depth decreases.

Naturally, a criterion such as (A 1) is only a necessary condition for applicability of
our theory. The possibility that there are other causes for limitations on the validity
range cannot be excluded. Experience with the simulations reported in § 4.2 suggests
that the applicability of the marching procedure is somewhat more restricted than
indicated by the above criterion. For a given A, the solution breaks down for θi that
is 5◦–10◦ smaller than that predicted by (A 1). For instance, the parameters A=0.15,
θi = 70◦ and φ = 10.54◦ lead to an apparent instability in the incident wave that
rapidly stops the simulation. The evolution of this instability seems independent of
the resolution as well as the number of iterations in the numerical method. Even if
there is no breakdown in the incident wave or during shoaling, we have no guarantee
that the results obtained for the largest values of θi are quantitatively accurate. Hence,
we report computed runup heights when reasonable values have been obtained, but
the most oblique cases should be taken critically.

Appendix B. Numerical methods
In the following, we use the notations δq and ()

q
for the centred, divided difference

and the average, respectively, with regard to the variable q . These operators involve
two neighbouring points and give discrete approximations to the first partial derivative
and the function itself, respectively. The grid site of a quantity is specified by a
subscript for the spatial location and a superscript for the time. The difference and
the average then inherit indices which are shifted by a half relative to that of the
quantity itself. When all discretization, as far as possible, are based on midpoint
representations, the different terms of a difference equation usually end up with
identical indices which correspond to the ‘simulation node’ of the equation. This is
exploited by collecting the terms within square brackets, while leaving the indices
outside. Details on the notation can be found in, for instance, Pedersen (1988). Either
the subscript or superscript on discrete quantities or equations may be omitted. The
implicit index is then arbitrary or the value can be inferred from the context.

B.1. Eulerian marching procedure

In this subsection, we describe the finite-difference method for the equations derived
in § 2.1. In that section we employ the scaling (2.2), but this time we omit the hats
(ˆ). We regard τ as a time variable and discretize the equations on a staggered
grid, yα = yE + α
y, τ (β) = β
τ , with integral and semi-integral values for α and β .
Accordingly, the nodal values become

η
(n)
j , u

(n)
j , v

(n+(1/2))
j+(1/2) , (B 1)

and we assume that depth values are available at every grid point. Difference versions
of (2.10), (2.11) and (2.12) read

[δτ {η − F −1(h + εη)u} = −δy{(h + εη)v} + B](n−(1/2))
j , (B 2)

[
u − ε

2
F −1(u2 + (vxt )2) = F −1η + µ2h

{
1

3
F −2c2

i h
(
1 − hF −2c2

i

)−1
+

1

2

}
δy(hδyu)

−1

6
µ2h2δ2

yu

](n)

j

, (B 3)
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[
δτ v +

ε

2
δy(T + (uy)2) = −δyη +

1

2
µ2hδ2

y(hδτv) − 1

6
µ2h2δ2

yδτ v

+
1

3
µ2F −2c2

i h
2δy{(1 − hc2

i F
−2)−1δy(hδτv)}

+
1

2
µ2F −2c2

i hδyh(1 − hc2
i F

−2)−1δy(hδτv) + D

](n)

j+(1/2)

, (B 4)

where

[T (n) = (vy)(n−(1/2))(vy)(n+(1/2))]j+(1/2), (B 5)

and B and D are numerical correction terms that read[
B = δy

{

τ 2

24
hδyδτη − 
y2

24
δy((1 − F −2h)δτη)

}](n−(1/2))

j

, (B 6)

[
D =


τ 2

24
δy{(1 − F −2h)−1δy(hδτv)} − 
y2

24
δ2
yδτ v

](n)

j+(1/2)

. (B 7)

The inclusion of B and D removes second-order discretization errors from the
hydrostatic, linear parts (of the order of ε0µ0) of the equations. This gives a numerical
accuracy similar to that obtained by Kennedy et al. (2000), Lynett et al. (2002) and
Løvholt et al. (2008) (see discussion in Pedersen & Løvholt 2008). For each time
increment, we solve all three difference equations simultaneously. We use an iteration
procedure that treats all links through zeroth-order terms (in µ and ε) implicitly at
each iteration level, while some of the remaining couplings are given Jacobi/Gauss–
Seidel-like representations. The matter is then reduced to repeated solution of linear,
three diagonal systems of equations. The discrete Eulerian equations are solved with
boundary conditions corresponding to impermeable walls or input from other models,
such as the Lagrangian one presented subsequently. An impermeable wall may be
located at the yN−(1/2), say, with the computational domain limited by y <yN−(1/2).

Then, we set v
(n+(1/2))
N−(1/2) = 0 and apply the symmetry condition u

(n)
N = u

(n)
N−1 in (B 4). On

the other hand, if we have an input boundary at yI , with an Eulerian domain limited
by y >yI , we specify u and η at node I and v at node I + (1/2).

B.2. Lagrangian marching procedure

Now, we again switch to the scaling (2.1). In Lagrangian coordinates, we have four
unknowns, namely y, H , u and v, which are determined by the set (2.14), (2.17), (2.18)
and (2.19). As discrete unknowns, we employ

y
(n)
j+(1/2), H

(n)
j , u

(n)
j , v

(n+(1/2))
j+(1/2) , (B 8)

where an index j now refers to the Lagrangian coordinate aj = j
a. The discrete
equations then read [(

1 − uaτ

F

)
δτy = v

](n−(1/2))

j+(1/2)

, (B 9)

[(
1 − u

F

)
Hδay = K

](n)

j
, (B 10)[

u = − 1

2F
((vaτ )2 + u2) +

1

F
{H − h(ya)}

](n)

j

, (B 11)
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1 − ua

F

)
δτv = −

(
1 − ua

F

)
H

a

K
a δaH +

dh(y)

dy

](n)

j+(1/2)

, (B 12)

where the depth gradient term in (B 12) is computed by differences as in Jensen et al.
(2003). In the present study, this is of minor consequence since the Lagrangian model
is generally employed in regions where the depth gradient is constant. When F → ∞
(normal incidence), the discrete equations yield explicit time integration. However,
when u is non-zero, iteration must be employed. In the computational step that
advances the discrete solution from τ = (n − (1/2))
τ to τ = (n + (1/2))
τ , we first
assign u

(n−1)
j as start values for u

(n)
j . In each iteration cycle, we then compute new (and

improved) generations of values according to the scheme (subscripts are omitted):
New y(n) are found from (B 9) and new H (n) are computed by (B 10). Then, v(n+(1/2))

are updated through (B 12). Finally, new u(n) are found by inserting the last available
values into the right-hand side of (B 11).

At an input boundary, with location a = aL = (N − (1/2))
a, we must specify the
values for vN−(1/2) and uN , which may be provided by, for instance, the Eulerian
model. The position of the uN node is then determined by linear extrapolation from
yN−(3/2) and yN−(1/2). If we have a shoreline at a = 0, we set H0 = 0. In addition, we
define u0 = 2u1 − u2 and v−1/2 = (3/2)v1/2 − v3/2. The first of these fictitious values is
required when F < ∞, while the τ -integral of the latter is needed in the depth gradient
term of (B 12) for curved beach profiles.

B.3. Model coupling

A key idea in the solution procedure employed herein is the combination of the
dispersive, Eulerian equations in finite depth and the Lagrangian NLSW equations
near-shore. To this end, we employ overlapping domains and Schwartz iteration. The
exchange of boundary conditions is enhanced by the common temporal resolution
in the Eulerian and Lagrangian models. However, the spatial resolutions will not
coincide and linear interpolations are then used in y and a, respectively. In the case
F = ∞, ε = µ = 0, the exchange of data may be made only once, provided the overlap
is larger than the wave speed times 
τ . However, in the general case, we must employ
iterations on implicit equations in each domain. After each internal iteration, we then
extract updated boundary values for the adjacent domain in a modified Schwartz
iteration. Similar procedures are elaborated by Glimsdal, Pedersen & Langtangen
(2004).

Only values obtained solely from internal nodes should be exported from a grid.
This imposes a minimum overlap. If we mark the Lagrangian and Eulerian grids by
the superscripts L and E, respectively, it is required that

y
(E)
I � (ya)(L)

N−1, y
(E)
I+(1/2) � y

(L)
N−(3/2), y

(L)
N−(1/2) � y

(E)
I+(3/2), (B 13)

where I and N denote the boundaries of the two grids, respectively, and the Eulerian
grid is located to the right (larger y). However, as shown by Glimsdal et al. (2004),
a larger overlap may yield better performance for implicit equations, whereas a
too large overlap is undesirable due to slight differences in wave celerity in the
domains. Hence, the overlap is preferably kept at roughly the same size throughout
a simulation. Initially, the Lagrangian grid is generally confined to a small near-
shore region. During runup, the whole Lagrangian grid may be moved onshore and
additional points must be activated in the Eulerian grid to maintain a good overlap.
During drawdown, Eulerian points must correspondingly be exempted. Near the
equilibrium shoreline, h is small and the dispersion (O(µ2)) terms in the Boussinesq
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momentum equations (2.11) and (2.12) are small. However, in a combined simulation,
the Boussinesq equations may be invoked far inshore with relatively large negative
values of h. The dispersion terms, as written in (2.11) and (2.12), may then give an
appreciable, artificial effect. To avoid this, negative h values are replaced by zeros. As
a consequence, the set (2.10)–(2.12) becomes the NLSW set onshore. Testing shows
that in most cases the difference between keeping a negative h or replacing it by zero
is small.

The procedure of exchanging boundary condition will generally suffice to produce
good results. However, due to differences in mathematical and numerical properties
in the two domains, the results in the overlap may deviate slightly. When the Eulerian
grid is shrunk or extended, thereby changing the positions where values from the
Lagrangian domain are imposed as boundary conditions, this will produce a moderate
noise that becomes discernible in grid-refinement tests, for instance. One way to obtain
a smoother transition is to apply a relaxation zone. In the momentum equation for
the Eulerian velocity vE , say, a term in −κ(vE − vL) is added on the right-hand
side. Here vL is the Lagrangian velocity interpolated onto the Eulerian grid and the
factor κ varies from unity to zero across the overlap zone. However, this strategy is
presumably not fully effective in the present context, where the overlap zone moves
and extends/shrinks abruptly. Instead, a global solution is defined through a weighted
average in the overlap, with the weighing going linearly from purely Lagrangian near-
shore to purely Eulerian at the other end. Precedence is given to the near-shore region
such that the Eulerian field variables are replaced by the global solution in the overlap.
This procedure reduces the noise substantially.

B.4. The linear model

The leading-order equations, which are linear and non-dispersive, are obtained by
putting µ = ε =0 in (2.10)–(2.12). We may then eliminate the velocities to obtain a
single wave equation

∂2η

∂τ 2
−

(
1 − F −2h

)−1 ∂

∂y

(
h

∂η

∂y

)
= 0, (B 14)

where an extra coefficient has appeared in front of the spatially differentiated term
as compared to the case of normal incidence. In Pedersen (1985) and Koshimura,
Imamura & Shuto (1999), an equation equivalent to (B 14) is solved for a periodic
incident wave. For single pulses of certain shapes, such as a Gaussian bell or a solitary
wave given by a squared hyperbolic secant, a Fourier transform may be applied (see
Carrier & Noiseux 1983). However, this approach will involve the numerical inversion
of integrals of expressions involving the Kummer function. A finite-difference solution
of (B 14) is preferred herein because it is simpler, more general, and, in fact, involves
less numerics.

Equation (B 14) is discretized by the standard five-point, explicit method[
δ2
τ η −

(
1 − F −2h

)−1
δy(hδyη) = 0

](n)

j
. (B 15)

Assuming the shoreline to be located at y = 0, we obtain the best performance by
defining the grid according to yj = (j − (1/2))
y. Then y

(n)
1 , located at y =(1/2)
y, is

the surface node closest to the shoreline. For j = 1, the shoreward flux term in (B 15),
which involves η

(n)
0 , then becomes zero because h1/2 = h(0) = 0. Then, no boundary

condition is needed for η
(n)
0 since this quantity does not couple to the wet nodes.

This is the discrete counterpart to the common analytic condition of finite η at the
shoreline, which more properly should be stated as zero volume flux.
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While initial conditions are used for our primary, nonlinear model, a combined
input/radiation condition is used for (B 15). The condition is invoked in constant
depth h = 1 and the analytic version reads

∂η

∂τ
+ (cos θi)

−1 ∂η

∂y
= 2Y ′, (B 16)

where Y (cos θiy + τ ) defines the incident wave, which has celerity equal to one in
the linear approximation. Any wave propagating in the positive y-direction will be
transmitted out of the computational domain without reflection. The form function Y

may be the one referred to at the end § 2.3 or given by (3.1). The relative differences in
the runup heights are small. For φ = 10.54◦, differences increase from 0.0006 to 0.0023,
roughly, when the amplitude is increased from A= 0.05 to A= 0.25. The profile from
the formula (KdV soliton) is wider near the crest and narrower at the base and yields
the smaller R/A. In the computations, (3.1) is used. The discrete version of (B 16)
reads as

[δτη
y + (cos θi)

−1δyη
τ = P ](n+(1/2))

N+(1/2) , (B 17)

where P is evaluated by inserting the incident wave into the left-hand side. The choice
of N is restricted by N
y � cotφ, which ensures that ηN−(1/2) in principle may be
linked to the constant depth region, without involving non-unitary depths.

REFERENCES

Briggs, M. J., Synolakis, C. E., Harkins, G. S. & Green, D. R. 1995 Laboratory experiments of
tsunami runup on a circular island. Pure Appl. Geophys. 144 (3–4), 569–593.

Brocchini, M. 1998 The run-up of weakly-two-dimensional solitary pulses. Nonlinear Processes
Geophys. 5, 27–38.

Brocchini, M., Kennedy, A., Soldini, L. & Mancinelli, A. 2004 Topographically controlled,
breaking-wave-induced macrovortices. Part 1. Widely separated breakwaters. J. Fluid Mech.
507, 289–307.

Brocchini, M. & Peregrine, D. H. 1996 Integral flow properties of the swash zone and averaging.
J. Fluid Mech. 317, 241–273.

Bühler, O. & Jacobson, T. E. 2001 Wave-driven currents and vortex dynamics on barred beaches.
J. Fluid Mech. 449, 313–339.

Carrier, G. F. & Greenspan, H. P. 1958 Water waves of finite amplitude on a sloping beach.
J. Fluid Mech. 4, 97–109.

Carrier, G. F. & Noiseux, C. F. 1983 The reflection of obliquely incident tsunamis. J. Fluid Mech.
133, 147–160.

Carrier, G. F., Wu, T. T. & Yeh, H. 2003 Tsunami run-up and draw-down on a plane beach.
J. Fluid Mech. 475, 79–99.

Choi, B. H., Pelinovsky, E., Kim, D. C., Didenkulova, I. & Woo, S.-B. 2008 Two- and three-
dimensional computation of solitary wave runup on non-plane beach. Nonlinear Processes
Geophys. 15, 489–502.

Didenkulova, I. 2008 New trends in the analytical theory of long sea wave runup. In Applied
Wave Mathematics: Selected Topics in Solids, Fluids, and Mathematical Methods, pp. 265–296.
Springer.

Didenkulova, I., Pelinovsky, E., Soomere, T. & Zahibo, N. 2007 Runup of nonlinear asymmetric
waves on a plane beach. In Tsunami and Nonlinear Waves (ed. A. Kundu), pp. 175–190.
Springer.

Glimsdal, S., Pedersen, G. & Langtangen, H. P. 2004 An investigation of overlapping domain
decomposition methods for one-dimensional dispersive long wave equations. Adv. Water
Resour. 27 (11), 1111–1133.

Grilli, S., Svendsen, I. & Subramanya, R. 1997 Breaking criterion and characteristics for solitary
waves on slopes. ASCE J. Waterway Port Coastal Ocean Engng 123 (3), 102–112.



Oblique runup of non-breaking solitary waves on an inclined plane 605

Guza, R. T. & Davis, R. E. 1974 Excitation of edge waves by waves incident on a beach. J. Geophys.
Res. 79, 1285–1291.

Hall, J. V. & Watts, J. W. 1953 Laboratory investigation of the vertical rise of solitary waves on
impermeable slopes. Tech. Memo. 33. Beach Erosion Board, US Army Corps of Engineers.

Imamura, F. 1996 Review of tsunami simulation with a finite difference method. In Long-Wave
Runup Models (ed. H. Yeh, C. E. Synolakis & P. L.-F. Liu), pp. 25–42. World Scientific.

Jensen, A., Pedersen, G. & Wood, D. J. 2003 An experimental study of wave run-up at a steep
beach. J. Fluid. Mech. 486, 161–188.
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