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We investigate experimentally the early stage of the generation of waves by turbulent
wind at the surface of a viscous liquid. The spatio-temporal structure of the surface
deformation is analyzed by the optical method Free Surface Synthetic Schlieren
(FS-SS), which allows for time-resolved measurements with a micrometric accuracy.
Because of the high viscosity of the liquid, the flow induced by the turbulent wind
in the liquid remains laminar, unidirectional, with negligible drift velocity. Two
regimes of deformation of the liquid-air interface are identified. In the first regime, at
the lowest wind speeds, the surface is dominated by rapidly propagating disorganized
wrinkles, elongated in the streamwise direction, which can be interpreted as the
surface response to the pressure fluctuations in the turbulent airflow. The amplitude
of these perturbations increases approximately linearly with wind velocity and are
essentially independent of the fetch (distance along the channel). Above a threshold
in wind speed, the perturbations organize themselves spatially into quasi parallel
waves perpendicular to the wind direction. Their amplitude keeps increasing with
wind speed but far more quickly than in the first regime. As the wind velocity
is further increased, nonlinear effects are observed, resulting in an increase of the
wavelength and phase velocity with fetch.

PACS numbers: 45.35.-i,47.54.-r

I. INTRODUCTION

Understanding the generation of surface waves under the action of wind is of primary in-
terest for wave forecasting and to evaluate air-sea exchanges of heat, mass and momentum.1,2

It is also important in engineering applications involving liquid and gas transport in pipes.3

Despite the considerable literature on the subject, the physical mechanism for the onset
of the first ripples at low wind velocity is still not fully understood. The first attempt to
explain the wind-wave formation was proposed by Helmholtz and Kelvin,4,5 and the Kelvin-
Helmholtz instability is now a paradigm for instabilities in fluid mechanics. However, Kelvin
was aware of the discrepancy between the predicted critical wind of 6.6 m s−1 and the com-
monly observed minimal wind of the order of 1 m s−1 for the first visible ripples on a calm
sea.6 He ascribed this discrepancy to viscous effects, which were not taken into account in
the model. Since then, numerous attempts to better predict the onset of wind waves were
proposed, still with limited success.

Among the very large literature on the subject, pioneering theoretical contributions are
the ones of Phillips7 and Miles.8 In an enlightening paper, Phillips7 analyzed how pressure
fluctuations in the turbulent air boundary layer could deform an otherwise inviscid fluid
surface at rest. He suggested that the perturbations whose size and phase velocity match
that of the waves are selectively amplified by a resonance mechanism, and obtained a linear
growth in time of the squared wave amplitude. The same year, Miles8 proposed another
mechanism based on the shear flow instability of the mean air velocity profile, ignoring
viscosity, surface tension, drift of the liquid and turbulent fluctuations. From a temporal
stability analysis, he showed that the boundary layer in the air is unstable if the curvature of
the velocity profile is negative at the critical height at which air moves at the phase velocity
of the waves, resulting in an exponential growth in time of the wave amplitude. An effort
to classify the various instability mechanisms in parallel two-phase flow, including Miles’, is
proposed in the review by Boomkamp and Miesen.9

Since then, many attempts have been made to test these predictions10–14 or to improve
these models,15–19 with no definitive conclusion at the moment. While several experiments
were devoted to determine the temporal growth of the wave after a rapid initiation of
the wind,20–22 other tested the possible amplification by wind of mechanically generated
waves23–27 or the wave formation by a non turbulent air flow.27–29 Since both the boundary
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FIG. 1. Experimental setup. The wave tank and the wind tunnel are connected to the upstream
air flow via a flexible coupling to minimize transmission of vibrations induced by the centrifugal
fan. The surface deformations are measured by Free-Surface Synthetic Schlieren, by imaging from
above a pattern of random dots located below the liquid tank.

layer in the air and the flow induced in the water are generally turbulent,30–32 some authors
simplified the problem by considering more viscous liquids.24,28,33,34 With an airflow above
a liquid more viscous than water, the onset is larger and, paradoxically, in better agreement
with the inviscid Kelvin-Helmholtz prediction.

Rapid progresses in numerical simulations have made it possible now to address the cou-
pled turbulent flows of air and water and their effect on the interface, and to access the pres-
sure and stress fields hardly measurable in experiments.35 On the experimental side, recent
improvements in optical methods have opened the possibility to access experimentally the
spatio-temporal structures of the waves with unprecedented resolution.36,37 In the present
work, we take advantage of these improvements to analyze the early stage of wave formation
at the surface of a viscous liquid. Surface deformations are measured using Free-surface
Synthetic Schlieren,36 a time-resolved optical method based on the refraction of a pattern
located below the fluid interface, with a vertical resolution better than one micrometer.

Working with a viscous liquid has two advantages: first, the flow in the liquid remains
laminar and unidirectional with a limited surface drift; second, the perturbations of the
interface that are not amplified by an instability mechanism are rapidly damped, so the
surface deformations at low wind velocity are expected to be the local response in space
and time to the instantaneous pressure fluctuations in the air. Our results clearly exhibit
two wave regimes: (i) at low wind velocity, small disordered surface deformations that we
call ”wrinkles” first appear, elongated in the streamwise direction, with amplitude growing
slowly with the wind velocity but with no significant evolution with fetch (the distance upon
which the air blows on the liquid); (ii) above a well defined wind velocity, a regular pattern
of gravity-capillary waves appears, with crests normal to the wind direction and amplitude
rapidly increasing with wind velocity and fetch.

II. EXPERIMENTAL SET-UP

A. Liquid tank and wind tunnel

The experimental set-up is sketched in Fig. 1. It is composed of a fully transparent
Plexiglas rectangular tank of length L = 1.5 m, width W = 296 mm, and depth h = 35 mm,
fitted to the bottom of a horizontal channel of rectangular cross-section. The channel width
is identical to that of the tank, its height is H = 105 mm, with two horizontal floors of
length 26 cm before and after the tank. The tank is filled with a water-glycerol mixture,
such that the surface of the liquid precisely coincides with the bottom of the wind tunnel.

Air is injected upstream by a centrifugal fan through a honeycomb and a convergent (ratio
2.4 in the vertical direction). To minimize transmission of vibrations induced by the fan,
the wind-tunnel is mounted on a heavy granite table and connected to the upstream channel
via a flexible coupling. The wind velocity Ua, measured at the center of the outlet of the
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FIG. 2. Mean velocity profiles U(z) in the air for Ua = 3.9 m s−1 at fetch x = 20, 500 and
1000 mm. The dotted line shows the streamwise development of the 99% boundary-layer thickness,
δ0.99(x) ' 12.6 mm+0.02x. The curves for z < δ0.99(x) show the fit with the logarithmic law (2).

wind tunnel with a hot-wire anemometer, can be adjusted in the range 1 − 10 m s−1. We
define x in the streamwise direction (fetch), y in the spanwise direction and z in the vertical
direction. The origin (0,0,0) is located at the free surface at fetch 0, at mid-distance between
the lateral walls.

The tank is filled with a mixture of 80% glycerol and 20% water, of density ρ = 1.20 ×
103 kg m−3 at 25oC (the room temperature being regulated to this temperature). Kinematic
viscosity, measured with a low shear rheometer, is ν = η/ρ = 30 × 10−6 m2 s−1 at this
temperature. The water-glycerol mixture is extremely sensitive to surface contamination,
which may induce strong surface tension gradients and alter both the mean flow in the liquid
and the generation of waves.11 To overcome this problem, we let the wind blow for a few
minutes, and we remove the contaminated part of the surface liquid by collecting it at the
end of the tank. The procedure is repeated frequently, and in normal operating conditions
the surface of the liquid remains clean over most of the liquid bath, with less than 30 cm
of polluted surface remaining at the end of the tank. Surface tension of the clean mixture,
measured with a Wilhelmy plate tensiometer, is γ = 60 ± 5 mN m−1, and the capillary
wavelength is λc = 2π

√
γ/ρg ' 14.2 mm. The dispersion relation for free surface waves

propagating in liquid at rest is

ω2 =

[
gk +

γ

ρ
k3
]

tanh(kh), (1)

where ω and k are the angular frequency and wave number. Finite depth effects are small
in the present experiments: the depth correction factor, tanh(kh), is larger than 0.98 for
wavelength smaller than 90 mm.

One important feature of our system using a liquid of high viscosity is the strong damping
of the surface disturbances. In the present configuration, friction with the bottom and side
walls are negligible, and the attenuation length for a given wave number k is controlled by
the dissipation in the bulk,38 Lv = cg/(2νk

2), with cg(k) the group velocity. The atten-
uation length for the waves observed at onset (λ ' 30 mm) is Lv ' 60 mm, indicating
that a disturbance at this scale cannot propagate over a distance much larger than a few
wavelengths. As a consequence, although the tank is of limited size, reflections on the walls
or at the end of the tank can be neglected in our experiment.

B. Wind profile

The velocity profile in the air U(z), measured using hot-wire anemometry, is shown in
Fig. 2 for a wind velocity Ua = 3.9 m s−1 at fetch x = 20, 500 et 1000 mm. The hot-wire
(Dantec Dynamics 55P01) is 5 µm in diameter with an active length of 1.25 mm, and is
mounted on a sliding arm to allow vertical motion with a 0.1 mm accuracy. The velocity
profiles show the development of the boundary layer along the channel: the thickness δ0.99,



4

−0.01 0 0.01 0.02 0.03

−30

−25

−20

−15

−10

−5

0

u (m/s)

z 
(m

m
)

−35 

U
a
 = 2.3 m/s

U
a
 = 3.2 m/s

U
a
 = 4.1 m/s

U
a
 = 5.6 m/s

0 2 4 6
0

0.1

0.2

0.3

U
a
 (m/s)

u*  (
m

/s
)

FIG. 3. Velocity profiles in the liquid measured by PIV at fetch x = 400 mm for various wind
velocities Ua. The profiles are averaged in time and in the streamwise direction over ∆x = 100 mm.
The continuous line for the largest value of Ua shows the quadratic profile (3). Inset: friction
velocity u∗, deduced from the mean profile in the airflow at x0 = 500 mm (squares) and deduced
from the shear stress at the liquid surface (circles), as a function of the wind velocity Ua. The
continuous line is a fit by u∗ = 0.05Ua.

defined as the distance from the surface at which the mean velocity is 0.99Ua, increases
nearly linearly, from 12.6 mm at x = 0 to 40 mm at x = 1.5 m (slope of order of 2%). The
fact that δ0.99(x) approaches the channel half-height H/2 ' 52 mm indicates that the flow
becomes fully developed at the end of the channel.

The evolution of the friction velocity u∗(x) along the channel is obtained by fitting the
velocity profiles for z < δ0.99(x) with the classical logarithmic law,10,39

U(z)

u∗
=

1

κ
ln

(
z

δv

)
+ C, (2)

with κ ' 0.4 the Kármán constant, C = 5, and δv = νa/u
∗ the thickness of the viscous

sublayer. The friction velocity is defined as u∗(x) =
√
σ(x)/ρa, with σ(x) the shear stress

at the surface. We find u∗ to slightly decrease with fetch: For Ua = 3.9 m s−1, u∗ decreases
from 0.22 m s−1 at x ' 0 down to 0.17 m s−1 at x = 1 m. Accordingly, δv(x) slightly
increases with fetch, from 0.07 to 0.09 mm.

The procedure is repeated for different wind velocities at a fixed fetch, x0 = 500 mm.
Measurements are restricted to Ua < 6 m s−1, when the surface deformations remains weak
(less than 10 µm), because the hot-wire could not be positioned too close to the liquid. We
find that in this range u∗ is almost proportional to Ua , u∗(x0) ' 0.05Ua (see inset in Fig. 3).
The corresponding half-height channel Reynolds number at this fetch, Reτ = Hu∗/2νa,
varies in the range 160− 1000, and the thickness of the viscous sublayer δv decreases from
0.3 to 0.05 mm. Since the flow in the viscous sublayer is essentially laminar up to z ' 10δv,
which is comfortably larger than any surface deformation over this range of velocity, we can
consider the air flow to be close to a canonical turbulent boundary over a no-slip flat wall,
at least for a wind velocity up to 6 m s−1.

C. Flow in the liquid tank

The shear stress induced by the wind at the interface drives a drift flow in the liquid.
Since the tank is closed, this drift is compensated by a back-flow at the bottom of the tank,
and a stationary state is reached after a few minutes. We have measured the velocity profile
in the tank using Particule Image Velocity (PIV) in vertical planes (x, z) (Fig. 3). Except
at small fetch (on a distance of the order of the liquid height) and over the last 30 cm of
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the tank (where surface contamination cannot be avoided), the velocity profiles are found
nearly homogeneous in x and y. The velocity profiles are well described by the parabolic
law, solution of the stationary Stokes problem

u(x, z) = Us(x)
(

1 +
z

h

)(
1 + 3

z

h

)
, (3)

for −h ≤ z ≤ 0, where Us(x) = u(x, z = 0) is the surface velocity. The surface velocity is of
order of 1 cm s−1 for Ua = 4 m s−1. This value is much smaller than the 2-3% of wind velocity
typically found in classical air-water experiments.10,12,24,27 The small surface velocity here
is expected to have negligible effect on the waves: Lilly (see appendix of Hidy and Plate40)
shows that the correction to the phase velocity for this parabolic profile is 2Us/kh, which is
only 2% of the phase velocity for the most unstable wavelength (λ ' 30 mm).

Because of the development of the boundary layer and the resulting decreasing friction
velocity, the surface velocity Us decreases slightly along the tank. For Ua = 4 m s−1, Us(x)
decreases from 1.5 to 1.1 cm s−1. Measuring Us(x) provides another way to determine u∗(x):
using the continuity of the stress at the interface, one has σ(x) = ρau

∗2(x) = η∂u/∂z(z = 0),
yielding

u∗ =

√
4ηUs
ρah

. (4)

The friction velocity u∗ measured in the liquid with this method is in good agreement
with the one measured in air with the hot-wire at x0 = 500 mm (inset of Fig. 3). For
simplicity, the ratio of u∗/Ua is taken in the following as constant and equal to 0.05 for all
fetches. By comparison, the ratio of u∗/Ua is generally found of order of 3% in air-water
experiments,20,41,42 with weak dependence on the wind velocity.20

The shear stress at the liquid surface must be balanced by a small longitudinal pressure
gradient ∆p/L in the air along the channel. As a result, the liquid surface is slightly
tilted, with the inlet liquid height below the outlet height. Assuming equal stress σ on
the liquid surface and on the lateral and upper walls, this pressure gradient writes ∆p/L '
2σ(1/W+1/H), with W,H the channel width and height. For a wind velocity Ua = 4 m s−1,
the pressure drop along the tank is ∆p ' 2 Pa, which results in a hydrostatic height
difference between the two ends of the tank of ∆p/ρg ' 0.2 mm, in good agreement with the
observation. We observed that, without tilting the channel, the resulting backward facing
step flow at x = 0 increases the turbulent fluctuations and significantly enhances the wave
amplitude at small fetch by typically a factor of 2. It is therefore critical to maintain the
liquid level at x = 0 by carefully tilting the channel. This is achieved by using the tangential
reflexion of a laser sheet intersecting the upstream plate and the liquid surface, allowing for
a leveling of the liquid better than 20 µm.

D. Surface deformation measurements

We measure the surface deformation of the liquid using the Free Surface Synthetic
Schlieren (FS-SS) method.36 This optical method is based on the analysis of the refracted
image of a pattern visualized through the interface. A random dot pattern located below
the liquid tank is imaged by a fast camera located above the channel, with a field of view of
390 × 280 mm. A reference image is taken when the liquid surface is flat (zero wind), and
the apparent displacement field δr between the reference image and the distorted image is
computed using an image correlation algorithm. Integration of this displacement field gives
the height field ζ(x, y, t) (Fig. 4).

Measurements are performed at three fetches, corresponding to the the first three quarters
of the tank with a small overlap: x ∈ [10, 400] mm; x ∈ [370, 760] mm; x ∈ [700, 1090] mm.
No measurements are performed in the last quarter of the channel because of the surface
contamination. The distance between the random dot pattern and the liquid surface sets
the sensitivity of the measurement, and is chosen according to the typical wave amplitude.
We chose a distance of 29 cm for waves of weak amplitude (of order of 1 − 10 µm), and
6 cm for waves of large amplitude (up to 1 mm). For wave amplitude larger than a few
millimeters, the image distortion is too strong: crossing of light rays appear below waves
of large curvature (caustics), which prevents the measurement of the apparent displacement
field. The horizontal resolution is 3 mm, and the vertical resolution of order of 1% of
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FIG. 4. Instantaneous surface height ζ(x, y) measured by FS-SS centered at intermediate fetch x =
570 mm, at increasing wind velocities. (a) Ua = 3.2 m s−1, showing small-amplitude disorganized
wrinkles elongated in the streamwise direction (ζrms = 0.0032 mm). (b) Ua = 5.9 m s−1, showing
a combination of streamwise wrinkles and spanwise waves (ζrms = 0.009 mm). (c) Ua = 7.0 m s−1,
showing well-defined spanwise waves of mean wavelength λ = 35 mm (ζrms = 0.12 mm). (d)
Ua = 7.8 m s−1, showing large-amplitude waves of mean wavelength λ = 44 mm with increasing
disorder (ζrms = 0.6 mm). Note the change of scale in the color map.

the wave amplitude. Acquisitions of 2 s at 200 Hz are performed for time-resolved wave
reconstruction, and 100 s at 10 Hz to ensure good statistical convergence of the root mean
square of the wave amplitude.

III. RESULTS

A. Amplitude versus velocity

Figure 4 shows four snapshots of the surface deformation at increasing wind velocity,
between Ua = 3.2 and 7.8 m s−1, at intermediate fetch x ∈ [370, 760] mm. At small Ua
the wave pattern shows rapidly moving disorganized wrinkles of weak amplitude, of order
10 µm, elongated in the streamwise direction (Fig. 4a). As the wind velocity is increased,
noisy spanwise crests, normal to the wind direction, gradually appear in addition to the
streamwise wrinkles (Fig. 4b). The amplitude of these spanwise crests rapidly increases
with velocity and becomes much larger than the amplitude of the streamwise wrinkles for
wind velocity in the range 6 − 7 m s−1. At Ua = 7.0 m s−1(Fig. 4c) the surface field
is dominated by a regular wave pattern of typical amplitude 0.2 mm, with a well defined
wavelength in the streamwise direction. The wave crests are not strictly normal to the wind,
but rather show a dislocation that may be due to slight wind inhomogeneities across the
channel width. As the wind speed is further increased, this regular wave pattern becomes
gradually disorganized (Fig. 4d), with more dislocations and larger typical wavelength and
amplitude. These patterns are similar to those reported by Lin et al.35 from direct numerical
simulation of temporally growing waves with periodic boundary conditions.

The evolution from the disorganized longitudinal wrinkles to the well-defined transverse
waves as the wind velocity is increased is evident from the root mean square of the defor-



7

100 101
10−4

10−3

10−2

10−1

100

101

Ua (m/s)

ζ  rm
s (m

m
)

(a)
(b)

(c)

(d)

wrinkles waves

x = 10 - 400 mm
x = 700 - 1090 mm

FIG. 5. Root mean square of the surface height ζrms as a function of wind velocity Ua. The data
are averaged over the measurement windows centered at two values of the fetch x. The vertical
arrows show the velocities corresponding to the four snapshots in Fig. 4. The continuous line shows
the linear fit ζrms = αUa, with α = 10−6 s.

mation amplitude,

ζrms = 〈ζ2(x, y, t)〉1/2,

where the brackets are both temporal average and spatial average over the field of view.
This quantity, plotted as a function of the wind velocity in Fig. 5 for two values of the
fetch x, clearly exhibits the two regimes: at small velocity, when the surface deformation
is dominated by the longitudinal wrinkles, the wave height slowly increases with the wind
velocity, but beyond a threshold of order of 6 m s−1 the increase becomes much sharper: the
wave amplitude grows by a factor of 100 for Ua increasing between 6 and 8 m s−1. A similar
transition for water waves is reported by Kahma and Donelan11 from slope measurements.
At the largest velocity, Ua ' 8 m s−1, the sharp increase of the wave amplitude starts to
saturate. This wind velocity represents an upper limit for the FS-SS measurements because
of the caustics induced by the strong wave curvature.

In the wrinkle regime (Ua < 6 m s−1), the wave height is almost independent of the fetch,
and is approximately proportional to the wind velocity: ζrms ' αUa, with α = 10−6 s. This
suggests that the wrinkles can be simply viewed as an imprint on the free surface of the
turbulent fluctuations in the airflow. Relating quantitatively the height fluctuations to the
pressure fluctuations is however a difficult task. A simple estimate, assuming an instan-
taneous hydrostatic response of the liquid interface (i.e., neglecting viscous and capillary
effects) would yield ζrms ' prms/ρg. The pressure fluctuation at the wall in a fully devel-
oped turbulent channel is well described by the empirical law43,44 prms = f(Reτ )ρau

∗2, with
f(Reτ ) = (2.60 ln(Reτ )−11.25)1/2. In the range Ua ' 1−6 m s−1, one has Reτ ' 160−1000,
which (neglecting the logarithmic variation over this range and taking u∗ ' 0.05Ua) yields
prms ' 0.006ρaU

2
a , and hence ζrms ' 0.3 − 20 µm. Although the order of magnitude is

consistent with Fig. 5, the predicted scaling (ζrms ∝ U2
a ) is not compatible with the data,

suggesting that dynamical effects must be accounted for to describe the observed scaling
ζrms ∝ Ua.

B. Spatial growth rate

Contrarily to the wrinkles, which are almost independent of the fetch x, the amplitude
of the transverse waves strongly increases with x, as shown in Fig. 6. The rms amplitude
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FIG. 6. Wave amplitude ζrms (averaged over the spanwise coordinate y and time) as a function of
the fetch x for various wind speeds Ua. In the wrinkle regime (Ua < 6.3 m s−1) ζrms(x) is almost
constant, whereas it increases with fetch in the wave regime.

ζrms(x) is computed here using an average over y and time only. The spatial growth is
approximately exponential at small fetch (x < 400 mm), but it significantly weakens at
larger fetch. This slower growth at large fetch probably results from nonlinear effects, and
is discussed in Sec. III E.

The spatial growth rate β can be estimated in the initial exponential growth regime
(x < 400 mm) by fitting the squared amplitude as ζ2rms(x) ∝ exp(βx). The growth rate β,
plotted in Fig. 7 as a function of the wind velocity, allows to accurately define the onset of
the wave growth: one has β ' 0 for Ua < 6.3 m s−1, and a linear increase at larger Ua,
which can be fitted by

β ' b(Ua − Uc) (5)

with Uc ' 6.3 ± 0.1 m s−1 and b ' 11.6 ± 0.8 s m−2. In this respect, the wave growth at
small fetch is compatible with a classical supercritical bifurcation, with a velocity thresh-
old compatible with the onset of the Kelvin-Helmholtz instability over a viscous liquid, as
observed by Francis.33 Interestingly, Fig. 6 indicates that the seed noise for the exponential
growth cannot be attributed to the wrinkles: for Ua > 6.3 m s−1, the initial wave amplitude
ζrms extrapolated at x = 0 increases with Ua much more rapidly than the amplitude of the
wrinkles; ζrms(x = 0) grows from 8 to 30µm for Ua increasing from 6.3 to 7.7 m s−1 only.
This suggests that the wrinkles are not a necessary condition for the growth of the waves.
Instead, the seed noise for the waves probably results from the surface disturbance induced
by the sudden change in the boundary condition from no-slip to free-slip at x = 0. Accord-
ingly, the rms amplitude can be described as the sum of the wrinkle amplitude (linearly
increasing with Ua) and the wave amplitude (exponentially increasing with Ua),

ζrms ' αUa + ζn(Ua) exp [b (Ua − Uc)x] , (6)

with ζn(Ua) the amplitude of the noise at zero fetch.
To provide comparison with other experiments and theoretical results, it is interesting to

express Eq. (5) in terms of a temporal growth rate. In the frame moving with the group
velocity, this temporal growth rate writes βt = cgβ, with cg ' 0.16 m s−1 for the most
unstable wavelength λ ' 30 mm. In terms of the friction velocity u∗ ' 0.05Ua, one has

βt ' (36± 8)(u∗ − 0.31)

(in s−1). Not surprisingly, these values are smaller than the ones reported in air-water
experiments,26,45–48 by a factor of order of 3, suggesting that the wave growth is weakened
by the viscosity of the liquid.
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FIG. 7. Spatial growth rate β, measured at small fetch (x < 400 mm), as a function of wind speed.
The continuous line corresponds to the linear fit (5).

C. Spatial structures

To characterize the spatial structure of the wrinkles and waves, we introduce the two-point
correlation

C(r) =
〈ζ(x, t)ζ(x + r, t)〉
〈ζ(x, y, t)2〉

,

where 〈·〉 is a spatial and temporal average. The correlation in the streamwise direction
(r = rxex) is plotted in Fig. 8 for the four wind velocities corresponding to the snapshots
in Fig. 4. The monotonic decay of C(rx) at small wind velocity is a signature of the
disordered deformation pattern in the wrinkle regime, whereas the oscillations at larger
velocity characterize the onset of waves. Interestingly, these oscillations are clearly visible
even at Ua = 5.9 m s−1, confirming that the transverse waves are already present in the
deformation field significantly before the critical velocity Uc ' 6.3 m s−1. This indicates
that the transition between the wrinkles and the waves is not sharp: both structures can be
found with different relative amplitude over a significant range of wind velocity.

The smooth transition between wrinkles and waves can be further characterized by com-
puting the correlation length Λi in the direction ei (i = x, y), which we define as 6 times
the first value of ri satisfying C(ri) = 1/2. This definition is chosen so that Λi coincides
with the wavelength for a monochromatic wave propagating in the direction ei. Although
no wavelength can be defined for the disorganized wrinkles, Λx and Λy provide estimates
for the characteristic distance between wrinkles in the streamwise and spanwise directions.

The correlation lengths Λx and Λy are shown in Fig. 9 as functions of the wind velocity. At
very low wind (∼ 1 m s−1), both lengths are of the same order, Λx ' Λy ' 250 mm. Between
1.5 and 5 m s−1, the surface deformations are mostly in the streamwise direction (Λx/Λy '
3), whereas at larger velocity they are essentially in the spanwise direction (Λx/Λy ' 0.15).
Note that pure monochromatic waves in the x direction would yield C(ry) = 1 and hence
Λy =∞; the saturation of Λy to the channel width (W = 296 mm) observed at large Ua is
a signature of the dislocation observed near the center line y = 0.

It is worth noting that the increase of Λy and the decrease of Λx start at a wind velocity
Ua ' 5 m s−1 which is significantly lower than the critical velocity Uc ' 6.3 m s−1,
confirming that transverse waves are present well before their amplification threshold. This
coexistence of wrinkles and waves at Ua < Uc suggests the following picture: below the
onset, waves are locally excited by the wrinkles, but they are exponentially damped (β < 0).
The surface field can therefore be described as the sum of a large number of spatially
decaying transverse waves, locally excited by the randomly distributed wrinkles generated
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FIG. 8. Spatial correlation function in the streamwise direction, C(rx), at four wind velocities for
x ∈ [370, 760] mm.

by the pressure fluctuations in the boundary layer. Since the amplitude of the wrinkles
is essentially independent of x, the resulting mixture of wrinkles and decaying transverse
waves is also independent of x, yielding to the apparent growth rate β = 0 of Fig. 7. As
a consequence, the expected negative growth rate below the onset is hidden by the spatial
average over randomly distributed decaying waves, and cannot be inferred from the observed
constant deformation amplitude for Ua < Uc.

If the elongated wrinkles at low velocity are traces of the pressure fluctuations in the
boundary layers, we expect a relationship between their characteristic dimensions. The
geometrical and statistical properties of the pressure fluctuations in a turbulent channel
cannot be obtained experimentally, but are available from numerical simulations. We refer
here to data from Jimenez and Hoyas44 at Reτ up to 2000. The intensity of the pressure
fluctuations increases logarithmically from the center of the channel down to z ' 30δv,
and then remains essentially constant in the viscous sublayer down to z = 0 (see their
Fig. 8b). In the thin region where the pressure fluctuations are maximum, 0 < z < 30δv,
the characteristic dimensions of the pressure structures in the (x, y) planes normal to the
wall are nearly equal, `x ' `y ' 160δv, and are hence decreasing with increasing wind
velocity. These features are indeed compatible with the correlation lengths in Fig. 9: at
very low velocity the wrinkles are nearly isotropic, Λx ' Λy ' 250 mm. As Ua increases up
to 3 m s−1, the spanwise correlation length decreases as Λy ' 550δv, similarly to the width
`y of the pressure fluctuations. This decrease is however not observed for the streamwise
correlation length Λx, which may result from the viscous time response of the surface.

D. Spatiotemporal dynamics

In order to confirm the relation between the surface wrinkles and the pressure fluctuations
traveling in the boundary layer, we now turn to a spatio-temporal description of the surface
deformation. We show in Fig. 10 spatio-temporal diagrams (left) and two-point two-time
correlation (right) at increasing wind velocity. The spatio-temporal diagrams are constructed
by plotting the surface deformation ζ(x, y, t) in the plane (x, t) along the center line y = 0.
The oblique lines in these diagrams indicate the characteristic velocity of the deformation
patterns. The spatio-temporal correlation in the streamwise direction is defined as

C(rx, τ) =
〈ζ(x + rxex, t+ τ)ζ(x, t)〉

〈ζ(x, t)2〉
, (7)

where 〈·〉 is a spatial and temporal average. For statistically stationary and homogeneous
deformations, one has C(−rx,−τ) = C(rx, τ), so only the positive time domain is shown.

At small wind velocity (Ua = 3.2 m s−1) the surface deformation shows rapidly propagat-
ing disorganized structures, with life time of order of their transit time [Fig. 10(a)]. Their
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∗ the thickness
of the viscous sublayer.

characteristic velocity is distributed over a large range, resulting in a broad correlation in
Fig. 10(b).

In the mixed wrinkle-wave regime (Ua = 5.9 m s−1), slow wave packets with well defined
velocity appear, embedded in a sea of rapid disorganized fluctuations [Fig. 10(c)]. These
slow wave packets confirm the picture of transverse waves locally excited by the wrinkles
but rapidly damped because of their negative growth rate. The wavelength and the phase
velocity of these evanescent waves can be inferred from the corresponding spatio-temporal
correlation [Fig. 10(d)].

At larger wind velocity (Ua = 7.0 m s−1), the surface deformation becomes dominated
by spatially growing transverse waves (β > 0), resulting in well defined oblique lines in the
spatio-temporal diagram [Fig. 10(e)] and a marked spatial and temporal periodicity in the
correlation [Fig. 10(f)]. These transverse waves, however, are never strictly monochromatic:
wave packets are still visible, delimited by boundaries propagating at the group velocity.
For this wind velocity and fetch, the local wavelength is λ = 37 mm, for which the predicted
phase and group velocities are c = 0.26 m s−1 and cg = 0.16 m s−1 respectively, in good
agreement with the observed slopes in Fig. 10(f).

Finally, at even larger wind velocity (Ua = 7.9 m s−1) the phase velocity increases,
and becomes again broadly distributed. Accordingly, the spatial and temporal periodicity
weakens in Fig. 10(h).

For monochromatic waves propagating in the x direction, one has C(rx, τ) = cos(krx−ωt),
so the correlation is 1 along characteristic lines parallel to rx/t = c, where c = ω/kx is the
phase velocity. For a (non-monochromatic) propagating pattern, the correlation is weaker
but remains maximum along a line rx/t given by the characteristic velocity of the pattern.
We therefore define the correlation velocity as

Vcorr =
Λx
τ
, (8)

where Λx and τ are defined as the first value such that C(Λx/6, 0) = 1/2 and C(0, τ/6) = 1/2
(here again, the factor 6 is chosen such that Λx and τ correspond to the wavelength and
period for monochromatic waves). This correlation velocity is shown as black dashed lines
in Fig. 10, and is plotted in Fig. 11 as a function of the wind velocity Ua. At very small
velocity (Ua < 2 m s−1), Vcorr first increases, following approximately Vcorr ' 0.6Ua. This
short range coincides with the regime in which Λy decreases (Fig. 9), as the result of the
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FIG. 10. (a,c,e,g) Spatio-temporal diagrams ζ(x, t) taken along the line y = 0. Same velocities and
scales as in Fig. 4. (b,d,f,h) Longitudinal spatio-temporal correlation C(rx, τ) [Eq. (7)]. Colormap
is [−1, 1] from blue to red. The black dashed line shows the correlation velocity Vcor (8). In (f),
the two white dashed lines show the group velocity cg = 0.16 m s−1 corresponding to the observed
wavelength λ = 37 mm, which delimit the wave packets.

decreasing width of the pressure structures in the boundary layer. The observed correlation
velocity indeed matches with the advection velocity of the pressure fluctuations: the pressure
fluctuations are maximum at zm/δv ' 20 − 50 (see Jimenez and Hoyas44) and, according
to the logarithmic law (2), the mean velocity at this height is u(zm) ' (13 ± 1)u∗. Using
u∗ ' 0.05Ua in the present experiment, this yields u(zm) ' (0.65 ± 0.05)Ua, which is
consistent with the measured correlation velocity. This suggests that the surface response to
the traveling pressure fluctuations is essentially local and instantaneous up to Ua ' 2 m s−1.



13

Ua (m s-1)

0 1 2 3 4 5 6 7 8

V co
rr

 (m
 s-1

)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

c

Uc

FIG. 11. Correlation velocity Vcorr = Λx/τ , averaged over x ∈ [700, 1090] mm, as a function of the
wind velocity Ua. The vertical dashed line at Uc = 6.3 m s−1 indicates the onset of wave growth,
β = 0. The continuous line shows Vcorr = 0.6Ua. The dashed horizontal line shows the local phase
velocity c = 0.27 m s−1 corresponding to the local wavelength λ = 44 mm.

For Ua > 2 m s−1, the correlation velocity departs from the linear growth 0.6Ua, and
saturates at Vcorr ' 1.2 m s−1. We note that this saturation velocity is much larger than
the maximum phase velocity of free waves allowed by the finite depth (

√
gh ' 0.59 m s−1).

Accordingly, the saturation of Vcorr cannot be directly described by wave motion, but must
be related to the viscous dynamics of the surface response to the rapidly propagating pressure
disturbance in the air flow.

As the wind velocity is further increased, the correlation velocity decreases down to the
phase velocity of the pure waves, c ' 0.27 m s−1. This gradual decrease does not correspond
to a slowing of the wrinkles, but rather to an average over the rapid wrinkles propagating
at velocities of the order of 1.2 m s−1, which dominate the surface at low Ua, and the slow
transverse waves at velocity of the order of 0.27 m s−1, which dominate the surface at high
Ua. Finally, for Ua > 7 m s−1, the correlation velocity increases again. This increase can be
attributed to nonlinear effects, and are described in the next section.

E. Nonlinear waves

We finally focus on the nonlinear evolution of the wave properties with the fetch at the
largest wind velocities. The local wavelength, wave period and phase velocity, computed
as before with a spatial averaging over windows of length 120 mm with 50% overlap, are
plotted in Figs. 12(a,b) and 13. For velocity slightly above the onset Uc, the wavelength
and wave period are almost independent of the fetch, as expected for linear waves. As the
velocity is increased, these quantities are first constant but start increasing after a transition
fetch xs (shown by the vertical arrow). This increase for x > xs is more pronounced for
the wavelength, which grows by a factor up to 2.5 along the channel at the highest wind
velocity. The increase of the period is weaker, resulting in an increase of about 40% of the
local phase velocity c(x) = λ(x)/τ(x) along the channel (Fig. 13).

Although the acceleration of the waves along the channel must originate from nonlinear
effects, we note that the evolution of the wave properties remains compatible with the liner
dispersion relation at all fetches. This is visible in Fig. 13, showing that the measured
local phase velocity c(x) = λ(x)/τ(x) is correctly described by the phase velocity c(λ) of
linear waves computed from Eq. (1) for the measured local wavelength λ(x). The increase
in wavelength and phase velocity cannot result from a stretching induced by a surface drift
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acceleration: Even if the increasing surface roughness at large wind probably increases the
surface current, this current remains much too weak to explain the observed increase of
the phase velocity (up to 0.2 m s−1). Moreover, such stretching of the wave pattern by
an inhomogeneous surface current would lead to a wave period independent of x, which
contradicts Fig. 12(b).

A possible explanation for the increase of the wavelength and phase velocity with fetch is
the nonlinear saturation occurring gradually from an initial collection of waves of different
wavelengths growing with different spatial growth rates. As the wind velocity is increased,
the range of amplified wave numbers k characterized by a positive growth rate β(k) increases,
with a maximum for the most amplified wave number kc at small fetch. Waves with smaller
or larger k are attenuated or less amplified than the waves at kc, and are therefore not
visible at small fetch. As the most amplified wave grows with fetch, its maximum slope
kζk(x) increases, as shown in Fig. 14 [here the wave amplitude is taken as ζk(x) =

√
2ζrms(x)

for nearly monochromatic waves, and the local wavenumber is taken as 2π/λ(x)]. At small
Ua the wave slope remains weak, increasing from 0.3% to 3%: the wave remains linear all
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along the channel, so its growth remains essentially exponential, and the wavelength, period
and phase velocity remain independent of x. As Ua is increased, the local slope reaches a
maximum value of order smax ' 0.10 − 0.15 at some fetch (dashed line), beyond which it
remains essentially constant. The fetch at which this maximum slope is reached remarkably
coincides with the saturation fetch xs beyond which the local wavelength and phase velocity
start increasing. This means that the most unstable wave saturates once its slope reaches
the critical slope, but larger wavelengths, although less amplified at small fetch, become in
turn dominant until their amplitude saturates, and the process repeats for larger and larger
wavelengths. As a result, at each fetch x > xs, the dominant wave is the wave having its
local slope kζk(x) reaching the saturation value smax, so the apparent wavelength grows
with fetch as λ(x) ' ζ(x)/smax.

IV. CONCLUSION

In this paper, we explored the spatio-temporal properties of the surface deformations
induced by a turbulent wind on a viscous fluid. New insight into the wave generation mech-
anism is gained from spatio-temporal correlations computed from time-resolved measure-
ments of the surface deformation field. At low wind velocity, rapidly propagating disordered
wrinkles of small amplitude are observed, resulting from the response of the surface to
the traveling pressure fluctuations in the turbulent boundary layer. Above a critical wind
velocity Uc, we observe the growth of well defined propagating waves, with growth rates
compatible with a convective supercritical instability. Interestingly, an intermediate regime
with spatially damped waves locally excited by the wrinkles is observed below Uc, resulting
in a smooth evolution of the characteristic lengths and velocity as the wind velocity is in-
creased. Above the onset Uc, the seed noise for the growth of the waves is apparently not
governed by the wrinkles, but rather by the perturbations at the inlet boundary condition at
zero fetch. Finally, nonlinear effects are observed at large wind velocity, with an increase of
the wavelength and phase velocity with fetch. Such increase with fetch is classically observed
in laboratory or field experiments,40 but it is usually ascribed to nonlinear interactions be-
tween wave numbers. Our results suggest here that the waves of different wave numbers do
not interact, but simply grow at different rates and therefore saturates at different fetches.

Using a liquid of large viscosity yields considerable simplification of the general problem
of wave generation by wind. Although some of the present results may be relevant to the
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more complex air-water configuration, other are certainly specific to the large viscosity of
the liquid. In particular, the wrinkles observed at very low wind velocity (Ua < 2 m s−1) are
compatible with a local and instantaneous response of the surface to the pressure fluctuations
traveling in the boundary layer. This simple property is not expected to hold for liquids
of lower viscosity such as water, for which the surface deformation at a given point results
from the superposition of the disturbances emitted from all the surface. New experiments
with varying viscosity are necessary to gain better insight into the intricate relation between
the turbulent pressure field and the surface response below the onset of the wave growth.
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