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1. Introduction.  

 
1.1  General. 

This work deals with the steady flow, of an inviscid, incompressible and 
irrotational fluid with free surface, interacting with localized disturbances (bottom 
topography, submerged bodies). The solutions to such problems are expected to 
provide at least qualitative insight into the mechanism of wave generation by the 
interaction of free surface flows with localized disturbances. This problem finds 
application to hydraulic and coastal engineering, as well as to the study of 
hydrodynamic characteristics (i.e. wave resistance) of floating and immersed bodies. 

Free surface flows over various obstacles are subject of studied from 19th century. 
Kelvin (1886) considered the stationary wave pattern caused by finite elevations or 
depressions in the bed of a stream and also developed expressions for the 
hydrodynamic forces acting on these obstacles. Several authors have used 
concentrated singularities to model uniform flow over finite and infinite bodies in 
finite or infinite depth i.e. Havelock (1927), Tuck (1965). Havelock (1927) calculated 
a linearized solution to the problem of a dipole moving with constant velocity beneath 
the surface of infinitely deep fluid at rest. He then assumed that, at some first order of 
approximation, his solution would also describe the flow about a circular cylinder 
beneath the surface of an infinitely deep fluid, as well as the flow about a semicircular 
obstruction on the bottom of horizontal canal. The book by Kochin, Kibel’ & Roze 
(1964) contains detailed and elegant solutions for the cases of point vortex, a point 
source and a dipole moving beneath the surface of infinitely deep fluid. The 
corresponding solutions for a fluid of fixed depth are given in Wehausen & Laitone 
(1960).          

The difficulty which arises in all free surface flows is that the free-surface 
boundary of the fluid field is not known a priori. In mathematical terms, the 
calculation of the steady-state, two-dimensional, irrotational, incompressible free 
surface flows involves not only the determination of the potential function, satisfying 
the Laplace equation, but also the free-surface boundary of the solution domain. In a 
very limited number of situations, where both the fluid flow and the boundary 
conditions are simple, mathematical solutions can be found directly (by finding the 
potential function), using analytical methods. In order to solve much more complex 
free surface flow problems, numerous numerical techniques have been developed in 
recent years and the most common and powerful methods are the finite-difference, the 
boundary integral equations and the finite elements methods.  

In the boundary integral method, the governing partial differential equations are 
integrated analytically, and then for a certain class of equations, which includes the 
Laplace equation, only the unknowns on the boundary of the required solution domain 
are involved. Then the problem is reformulated into a set of integral equations on the 
boundary of the surface in the region of interest.  
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For incompressible, inviscid and irrotational fluid flows a study of the boundary 
integral method, which based on Hamiltonian principle and Green’s functions, is 
given by Athanassoulis, Voutsinas & Theodoulidis (1991),   Theodoulidis (1995), Bai 
& Yeung (1974). Moreover, a study of the boundary integral method, which based on 
complex variable theory (i.e. conformal mapping), is given by Forbes & Schwartz 
(1982), King & Bloor (1987), (1990), Wen, Ingham & Widodo (1997).  

The finite element method (F.E.M.) has been very successfully used to solve a wide 
range of free surface problems. In the diffraction theory of water waves by bodies or 
arbitrary topography, the method of finite elements, which is especially versatile in 
dealing with complicated geometry, has been introduced by Bai & Yeung (1974), Bai 
(1977), (1978), Chen & Mei (1976) -for steady flows- who replaced the boundaries at 
infinity by boundaries at large but finite distances. They have applied a hybrid 
approach with conventional finite elements near the localized variable topography, 
and an analytical representation for the infinite remaining region (the super-elements). 
This method (Hybrid F.E.M.), can be applied when the disturbances are localized, in 
conjunction with the appropriate representations of the wave potential in the infinite 
half-strips. 

The present work is structured as follows: In Chapter 2 the complete, linear 
Neumann-Kelvin problem in water of constant depth, and the general representations 
of the wave potentials in the two semi-infinite strips are introduced. In Chapter 3 the 
steady free-surface flows obstructed by underwater steps and trenches are studied. 
Apart from their simple geometry these problems can be formulated as matching 
boundary value problems, with the aid of appropriate matching conditions at the 
vertical artificial interfaces. Using the conversation of mass in integral form the 
appropriate conditions for the disturbance current are developed. The problems are 
solved for various representative cases correspond to both subcritical and supercritical 
flows. In Chapter 4 steady free-surface flows over an arbitrary topography in the 
presence of submerged bodies is studied. Since the water layer extends to infinity in 
the horizontal directions, the assumption is made that, in the far field, the depth is 
eventually constant (although may be different in different directions). The problem is 
reformulated as a matching boundary value problem in the finite subdomain, 
enclosing the varying bathymetry and the fixed body, using the appropriate matching 
conditions at the vertical interfaces. In Section 4.2 a variational formulation of the 
hydrodynamic problem is presented. In Section 4.3 a complete representation of the 
velocity potential in intermediate subdomain is presented based on Finite Element 
Method, to be used in conjunction with the variational principle, leading to a Galerkin 
method. The approximate solution of the problem is obtained by truncating the 
general representations into a finite number of terms, retaining the sufficient number 
of evanescent modes and keeping the appropriate number of basis functions of  finite 
elements that are required to achieve numerical convergence. Finally, numerical 
results are presented for various cases of bottom and submerged body geometries for 
both subcritical and supercritical flows.                
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1.2  Physical description of the problem. 
Let us consider a liquid strip extending at infinity in both horizontal directions, 

whereas in vertical direction is bounded above by the free surface and below by a 
rigid bottom; see figure 1.1. Moreover, it is assumed that the fixed submerged 
obstacles and bottom unevenness appear in a local region. 

We consider a free-surface flow of a stream -which was originally at rest 
everywhere- of an inviscid, incompressible and irrotational fluid, obstructed by the 
localized disturbances. After a sufficient time, the studied problem is considered as a 
steady flow, where the term ‘steady’ is used to describe that the flow remains time-
independent for all points in the liquid domain.  
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FIGURE 1.1. Geometric configuration of the general problem 

We assume (without loss of generality) that the motion is along the x-axis of a fixed 
coordinate system, with its origin on the mean water level (in the variable bathymetry 
region), the z-axis pointing upwards and the y-axis being parallel to the bottom 
contours. 

The physical parameters which describe the studied problem are: 

• The bathymetric Froude number:  

                                                           /Fr U g h= ⋅   (1) 

• The geometry of the localized disturbances. 

Generally, the pattern of the flow downstream is not known a priori, but depends upon 
the physical parameters of the problem. Under the linear theory the flow downstream 
is uniquely determined by the Froude number. In case of subcritical flow ( ), the 
downstream flow is a wave – current system. In contrary, for supercritical 
flow ,  the disturbance decays exponentially as , thus asymptotically a 

uniform flow is observed. In case of critical flow

1Fr <

( 1Fr > ) x →∞

( )1Fr = , it seems that there is no 
steady flow. Stoker (1957) has shown this by studying the unsteady problem and 
allowing the time to tend to∞ .   

 

 

 -7-



1.3  General formulation of the problem. 
With the assumption of irrotational motion and an incompressible fluid, a velocity 

potential ( , )x zΦ exists which would satisfy the continuity equation i.e. Laplace 
equation in ( ){ }( ) 2, : , ( ) ( )x z x h x zD R η∞ −∞ < < ∞ − < <= ∈ x : 

                                        ( )( , ) 0, ( , )x z x z D ∞∆Φ = ∈ . (2) 

Laplace equation accounts for the incompressibility and the irrotationality of the flow 
and thus it is of purely kinematic character. The Laplace equation is of elliptic type 
partial differential equation thus in general it is not admits solutions of wave 
character. In the case of free surface flows the wave character of solution arises from 
the dynamical and kinematical free surface boundary conditions. 

At any boundary, whether it is fixed, such as the bottom, or free, such as the water 
surface, which is free to deform under the influence of forces, certain physical 
conditions must be satisfied by the fluid velocities. It is clear that there must be no 
flow across the surface. Under these considerations (see e.g. Stoker (1957), Wehausen 
& Laitone (1960)) the kinematical free surface b.c. is   

                                           , (3) , , , 0, ( )x x z z xη ηΦ −Φ = =

and the dynamical free surface b.c. (i.e. Bernoulli equation on free surface) is 

                                           21 0, ( )
2

g zη η⋅ ∇Φ + ⋅ = = x

)

. (4) 

In fixed boundaries such as the bottom and the submerged bodies we have the 
following condition: 

                                           . (5) , 0, (n z h xΦ = = −

In addition, proper conditions at infinity must be imposed. 

Considering that the motion arising from disturbances created in the uniform 
stream, is described by velocity potential see i.e. Stoker (1957) 

              ( , ) ( , ), , ( ),x z U x x z x h z xϕ ηΦ = ⋅ + −∞ < < ∞ − < <  (6) 

the problem is formulated as follows: 
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PROBLEM Pφ
( )( ; ,D )ϕ η∞ . Find the function ( , )x zϕ  defined 

in ( ){ }( ) 2, : , ( ) ( )x z x h x zD R η∞ −∞ < < ∞ − < <= ∈ x , and the function ( ),x x Rη ∈ , 
satisfying the following boundary value problem    

                    2 ( , ) 0,x zϕ∇ =            , ( ),x h z xη−∞ < < ∞ − < <         (7) 

             21 ,
2 xU gϕ ϕ η∇ + + = 0,                   ( ),z xη=                (8) 

                  , , , , 0x x x zUϕ η η ϕ+ − =                     ( ),z xη=        (9) 

                          ,,n Unxϕ = −                                ( , ) Bx z D DΠ∈∂ ∂∪                      (10) 

and, in addition,    ϕ∇   is bounded at  ∞  (11) 
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2. The linear Neumann-Kelvin problem in water of constant finite 
depth.  

2.1 Differential formulation of the problem. 
In this section we consider steady water waves in an infinite strip of constant 

depth h, (Fig.2.1) when the stream of an inviscid incompressible and irrotational fluid 
has uniform velocity U in the undisturbed state. The term ‘steady’ is used to describe a 
flow, which remains time-independent for all points in the liquid domain. We assume 
(without loss of generality) that the motion is along the x-axis of a fixed coordinate 
system, see Fig.2.1.  

η(x)

z

x

z = -h

U λ

 
FIGURE 2.1. Waves on a running stream 

We consider that the motion arising from disturbances created in the uniform 
stream, is described by velocity potential see i.e. Stoker (1957) 

              ( , ) ( , ), , ( ).x z U x x z x h z xϕ ηΦ = ⋅ + −∞ < < ∞ − < <  (1) 
The function ( , )x zϕ  is assumed to yield a small disturbance on the uniform flow, 
which means that ϕ  and its derivatives are small quantities with respect to 
undisturbed velocity potential, therefore the quadratic and higher-order terms can be 
neglected in comparison with linear (first-order) terms. We also assume that the 
vertical displacement of the free surface ( )xη , as measured from the undisturbed  
level , is also a small quantity - with respect to the characteristic wavelength 0z = λ - 
of the same order as ( , )x zϕ . Under these assumptions the dynamic free surface 
boundary condition (cf. (1.3.8)) and the kinematic free surface condition (cf. (1.3.9)) 
can be linearized (cf. Appendix 2.A), and the problem can be formulated as follows:  
 

( )( ; , )NK DP ϕ η∞PROBLEM . Find the function ( , )x zϕ  defined 

in ( ){ }( ) 2, : ,x z x h zD R∞ −∞ < < ∞ − < <= ∈ 0 , and the function ( ),x x Rη ∈ , satisfying 
the following boundary value problem    

                    2 ( , ) 0,x zϕ∇ =       , 0x h z ,−∞ < < ∞ − < <         (2) 
             , 0xU g ,ηϕ⋅ + ⋅ =            0,z =                (3) 

                  , ,z xU 0,ϕ η− ⋅ =              0,z =                            (4) 

                          0,,zϕ =                              ,z h= −                      (5) 

and, in addition,    ϕ∇   is bounded at  ∞  (6) 
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Eliminating ( )xη  between the dynamic (3) and the kinematic (4) free surface 
boundary conditions, the following ‘mixed’ free surface boundary condition is 
obtained, see i.e. Stoker (1957, p.200), Wehausen & Laitone (1960, §20): 

            2 0,, ,xx z
g

U
ϕ ϕ+ ⋅ =      0z = ,                              (7) 

usually referred to as the Kelvin condition. 

Defining the bathymetric Froude number  

 /Fr U g h= ⋅ ,           (8) 
where is the acceleration due to gravity, the above equation (7) takes the following 
alternative form 

g

 2

1 0,, ,xx zhFr
ϕ ϕ+ ⋅ =      0z = .                              (9) 

The Froude number’s physical significance is the ratio of inertial forces to gravity 
forces squared. It can also be interpreted as the ratio of the velocity U of uniform flow 
to propagation speed g h⋅  of infinitesimally waves propagating in shallow water. Its 
value determines the regime of flow  -sub, super or critical flow.     

Once the velocity potential ( , )x zϕ  has been determined the elevation of the free 
surface is given by 

          ( ) ( , 0),xx x
U
g

η ϕ= − ⋅ .                          (10) 

We can see according to the above analysis (also cf. Appendix 2.A) the great 
simplifications which result through the linearization of the free surface conditions: 
not only does the problem become linear, but also the domain in which its solution is 
to be determined becomes fixed and known a priori.  

 
2.2. General representation of the steady wave potential in semi-infinite strip.  

In this paragraph we refer to the linear Neumann-Kelvin problem as in the two 
semi-infinite strips  and( )UD ( )DD , where ( ){ }( ) , : , 0U

Ux z x a h zD −∞ < ≤ − < <=  is 

the upstream liquid domain and ( ){ }( ) , : , 0D
Dx z x h zD β < ∞ − < <= ≤  is the 

downstream liquid domain. Due to the simple geometry of the problem, the general 
solution of the wave potential can be represented analytically in the form of an 
eigenfunction expansion, as shown below. In favor of simplicity we study the problem 
in the downstream strip, while as for the upstream strip the basic results are 
introduced. The problem in downstream strip (Fig.2.2) can be formulated as follows:    
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FIGURE 2.2: The problem ( )( ;D D

NK DP )ϕ  

PROBLEM ( )( ; )D D
NK DP ϕ .  Find the function ( , )D x zϕ  defined in ( )DD , satisfying the 

following boundary value problem    
 

 2 ( , ) 0,D x zϕ∇ =   , 0Dx h zβ ,≤ < ∞ − < <        (11) 

 2 0,, ,D D
xx z

g
U

ϕ ϕ+ ⋅ =   0,z =                           (12) 

 0,,D
zϕ =                     ,Dz h= −             (13) 

 ,Dϕ∇ < ∞               .                (14) x →∞

As indicated from the formulation of the above problem ( )( ; )D D
NK DP ϕ ,  on the 

vertical boundary { }( ) ( , ) : , 0D
DD x z x b h zD∂ = = − < < ,  no condition is imposed for 

the wave potential ( , )D x zϕ . This means that we are interested in the general 
representation of all possible solutions of the problem. 

In view of the above definitions we are proceeding to the general solution of the 
problem ( )( ; )D D

NK DP ϕ .     

• Solution of the problem ( )( ; )D D
NK DP ϕ : 

A convenient method for solving the above problem is applying separation of 
variables. The assumption behind its use is that the solution can be expressed as a 
product of terms, each of which is a function of only one of the independent physical 
variables. In our case, 
 ( , ) ( ) ( )x z X x Z zϕ = ⋅               (15) 

where ( )X x is a function depending only on x, the horizontal co-ordinate, and  ( )Z z  
depends only on z, the vertical co-ordinate. Substituting Eq.(15) into the Laplace 
equation (11) and dividing through by ( , ) ( ) ( )x z X x Z zϕ = ⋅  we have  

  ''( ) ''( ) 0
( ) ( )

X x Z z
X x Z z

+ =                   (16) 
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Clearly, the first term of this equation depends on x alone, while the second term 
depends only on z. If we consider a variation in z in Eq. (16) holding x constant, the 
second term could conceivably vary, whereas the first term could not. This would 
give a nonzero sum in Eq. (16) and thus the equation would not be satisfied. The only 
way that the equation would hold is if each term is equal to the same constant, except 
for a sign difference, that is, 

         2''( )
( ) n

X x k
X x

=     ⇒    2''( ) ( ) 0nX x k X x− ⋅ =                   (17a)      

         2''( )
( ) n

Z z k
Z z

= −    ⇒     2''( ) ( ) 0nZ z k Z z+ ⋅ =                   (17b) 

In the above equations (17) kn
2 denotes the real separation constants ( { kn

2 } R∈ ),      
although, in general, the roots of  2

nk = ± nk   could be a complex numbers                  
( { kn

 }  ∈ ).  ^

Substituting the relation (15) for the wave potential, into the free surface b.c. (12) and 
the bottom b.c. (13) give us  

             2''( ) ( ) ( ) '( ) 0gX x Z z X x Z z
U

⋅ + ⋅ ⋅ = ,       0,z =      (18)  

 ,                             ( ) '( ) 0X x Z z⋅ = ,z h= −      (19)  
respectively. 
Using the equation (17a), the free surface b.c. (18) yields 

                   2
2( ) ( ) '( ) 0n

gX x k Z z Z z
U

⎛ ⎞
⎟⋅ ⋅ + ⋅ =⎜

⎝ ⎠
0,z,       =        

For this equation to be true for any x, the terms within the parentheses must be 
identically zero, which leads to 

                   
2

2'( ) ( ) 0n
UZ z k Z z
g

+ ⋅ ⋅ = ,              0,z =       (20) 

The vertical equation (17b), and the boundary conditions (19) and (20) constitute 
the following Vertical Eigenvalue Problem, with spectral parameter kn

2: 
 
PROBLEM ( ,0)VE h− .  Find the pairs eigenvalues-eigenfunctions ( , , 
satisfying the following vertical eigenvalue problem:    

( ))n nk Z z

 ,                 2''( ) ( ) 0nZ z k Z z+ ⋅ = 0,h z− < <        (21a) 

 
2

2' n
UZ k Z
g

0+ ⋅ ⋅ = ,                       0,z =          (21b) 

 ' 0Z =                                       ,z h= −          (21c) 
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The above problem  is a non-self-adjoint boundary value problem – 
because the spectral parameter  is contained not only in the differential equation 
(21a) but in the boundary condition (21b) as well. Therefore the problem is 
not a classical Sturm-Liouville problem. It is a Steklov eigenvalue problem (after the 
name of the great Russian mathematician Steklov who introduced and studied that 
problem in 1902). We denote here that the eigenfunctions of the problem  
form a   Riesz basis for , as treatment in the following paragraphs. 

( , 0)VE h−
2
nk

( ,0)VE h−

( ,0)VE h−
2 ( ,0)L h−

 
The general solution of the second order, ordinary differential equation  (21a), is 

of the form 
                ( ) cos( ) sin( )n n n n nZ z A k z B k z= ⋅ ⋅ + ⋅ ⋅          (22a) 

where An, Bn are constant coefficients.  
From the free surface boundary condition (21b), we have  

 
2 2

2 2'(0) (0) 0 0n n n n
U UZ k Z B k k A
g g

+ ⋅ ⋅ = ⇒ ⋅ + ⋅ ⋅ = ⇒n  

 
2

n n
U

nB k A
g

= − ⋅ ⋅  (22b)                      

and from the bottom boundary condition (21c) 

 

 

'( ) 0 sin( ) cos( ) 0n n n n n nZ h k A k h k B k h− = ⇒ − ⋅ ⋅ − ⋅ + ⋅ ⋅ − ⋅ = ⇒

tan( )n n nB A k= − ⋅ ⋅h                      (22c)    

By elimination of the coefficient Bn from the equations (22b) and (22c), we have the 
following ’’dispersion relation’’, see i.e. Lamb (1932, p.407), 

                   
2

tan( )n n
Uk k
g

h⋅ = ⋅ ,    (23a)  

or in dimensionless form  

                   2

1 tan( )nk h k hnFr
⋅ = ⋅ ,                 (23b)   

where    /Fr U g h= ⋅  is the bathymetric Froude number. 
The roots {kn}, n = 0,1,2,… of the equation (23b), which as it will be shown in the 
sequel are countably infinite, are depend on the Froude number and on the depth h 
of the semi-infinite strip.   

Fr

The corresponding eigenfunctions are obtained from the equation (22a), using eq.(22b) 
as follows 

              ( )cos ( )
( )

cos( )
n

n n
n

k z h
Z z A

k h
+

= ,   n = 0,1,2,…         (24)   

 

 

 -15-



From equation (23b) and relation (24), an obvious solution of the above problem is the 
pair ( ) . (, ( ) 0,1k Z z = )

LEMMA  For each value of Froude number (0, ), 1Fr Fr∈ ∞ ≠  and for finite 
depth h, the relation (23b) has: 
(i) one pure imaginary root o ok i k I += ∈ and infinite number of discrete real 

roots{ }nk R+∈ , n = 1,2,… if  1Fr < ,  

(i i) infinite number of discrete real roots{ }nk R+∈  , n = 0,1,2,… if  , 1Fr >
and their conjugates. 

Proof. Two individual cases are introduced: 

(a) In case where one of the roots of equation (23b) is a pure imaginary number of the 
form i|kn|, the relation (23b) take the following form  

 2

1 tanh( )nk h k hnFr
⋅ = ⋅                       (25a) 

We define ,nx k h x R+= ⋅ ∈  hence the above equation take the form 

                             2

1 tanh( )x .                              (25b) x
Fr

=

The curves 1 tanh( )xζ =  and 2
2 Fr xζ = ⋅  are plotted for 1Fr <  and in Fig.2.3a 

and Fig.2.4a respectively. The roots of (25a) are of course furnished by the 
intersections 

1Fr >

nx k h= ⋅  of these curves. One can observe the following: i) k=0 is 
always a root, ii) there is one real positive root different from zero if , iii) there 
is no real root other than zero if . 

1Fr <
1Fr >

 
 

 
 
 
         
 
 
 
 
 
 
 
 
 
 
                                                                                                      kh kh

FIGURE 2.3a,b: Graphic solution of eigenvalues ( 1Fr < ) 
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(b) Moreover, equation (25b) has infinite number of discrete real roots{ }nk R+∈ ;         
n = 1,2,… if  , and  n = 0,1,2,… if  , since 1Fr < 1Fr > tan( )nk h⋅ is periodic function 

in the subsets ,
2 2nI n nπ ππ π R+⎡= − + ⊂⎢⎣ ⎦

⎤
⎥ . Graphically, these roots are the 

intersections of 1 tan( )nk hγ =  and , as shown in Fig.2.3b and Fig.2.4b, 
for  and  respectively.  

2
2 ( nFr k hγ = ⋅ )

1Fr < 1Fr >
From these figures it is evident that every root of the equation (25b) belongs to the 
interval nI ; specifically we have that 

1, 2... 1,1, ,
2 0,1, 2... 1.n n

n if Fr
k n n I

n if Fr
π π

⎧ = <⎛ ⎞⎛ ⎞ ⎪⎛ ⎞∈ + ⋅ ⊂ ⎨⎜ ⎟⎜ ⎟⎜ ⎟ = >⎝ ⎠⎝ ⎠ ⎪⎝ ⎠ ⎩
 

Asymptotically, as n becomes large, knh approaches 1
2

n π⎛ ⎞+ ⋅⎜ ⎟
⎝ ⎠

, 

or  1
2n nk n

h
ππ→∞

⎛ ⎞⎯⎯⎯→ ⋅ +⎜ ⎟
⎝ ⎠

. 

Consequently, the only point of accumulation of the sequence {kn} is .  ■ +∞
                                                                                                   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                                                                     kh kh
FIGURE 2.4a,b: Graphic solution of eigenvalues ( )               1Fr >
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According to the above analysis, the set of eigenfunctions of the problem 
 is:    

1S
( ,0)VE h− { }1 1S S= ∩ , 

where { }( ) : 0,1,2,...nS Z z n= = is the set of eigenfunctions (cf. (24)), corresponding to 
the roots of equation  (23b). 

The set  of eigenfunctions of the problem 1S ( ,0)VE h−  does not satisfy the property 
of orthogonality on ( )2 ,0L h−  (cf. Appendix 2.B), so there is no indication that the set 

 is complete and has the property of basis on1S ( )2 ,0L h− . This arises from the fact 

that the spectral parameter  is contained in the boundary condition (21b) (such 
problems are called Steklov eigenvalue problems). Physically, the appearance of the 
spectral parameter in the boundary condition reflects the fact that the wave character 
of the problem is introduced through the free-surface boundary condition.  

2
nk

The following theorem, which its proof (Athanassoulis (1991)) is associated with the 
theory of non-harmonic Fourier functions (see i.e. Young (1980) and Higgins (1976)), 
provides the completeness of sequences of eigenfunctions of the problem . ( ,0)VE h−
    

THEOREM. The set of eigenfunctions of the problem S ( ,0)VE h−  constitutes a 

Riesz basis on ( )2 ,0L h− . In particular, the series  

0

( )n n
n

C Z z
∞

=
∑  

converges on ( )2 ,0L h−  if and only if, the series  2

0
n

n

C
∞

=
∑ converges, and for every 

function  there exists a unique sequence of real constants 2( ) ( ,0)g z L h∈ −

{ }: 0,1,2,...nC n =  such that  

0

( ) ( )n n
n

g z C Z z
∞

=

= ∑ , 

if  there exists real constants A and B, 0 so 

that

A B< ≤ < ∞

2
2 2

0 0
n n

n n
LA C g CB

∞ ∞

= =

⋅ ≤ ⋅≤∑ ∑ .■
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We proceed now, by the above definitions about the set { }nk of eigenvalues, to 
the general solution of horizontal equation (17a). The general solution of Eq.(17a) is of 
the form 
                      ( ) exp( ) exp( )n n n n nX x A ik x B ik x= + −         0 1for n if Fr ,= <  
and 

                    ( ) exp( ) exp( )n n n n nX x A k x B k x= + −            for  
1, 2... 1,
0,1, 2... 1.

n if Fr
n if Fr

⎧ = <⎪
⎨

= >⎪⎩
 

where An and  Bn  are general complex constants.  
We denote here that in the case where k=0 (in this eigenvalue the opposite index 
number is ) the general solution is of the form 1n = −

                     ( )n n nX x A x B= +    for 1n = −  , 1 1A and B R− − ∈ . 

The imposed radiation conditions require that the potential ( , )x zϕ  and its derivatives 
up to first order to be bounded at infinity. Therefore, we have the following cases: 

(i) In the case where ϕ is defined in the downstream liquid domain ( )DD , the 
solutions of the form  tend to infinity with exponential rate, as . 

Consequently, these solutions must be rejected (A

exp( )n nA k x x →∞

n=0 for
1, 2... 1,
0,1, 2... 1.

n if Fr
n if Fr

⎧ = <⎪
⎨

= >⎪⎩
). 

(ii) Similarly, in the case where ϕ is defined in the upstream liquid domain , 
the solutions of the form 

( )UD
exp( )n nB k x−  tend to infinity with exponential rate, 

as . Hence, these solutions must be rejected (Bx →−∞ n=0 for 1,2... 1,n if Fr= <  
and for ).  0,1,2... 1n if F= >r

 
Accordingly to the above analysis, the general representation of disturbance 

velocity potential ( , )x zϕ  in the semi-infinite strips  and ( )UD ( )DD respectively, is: 

 
(a) Upstream ( ) ( )UDϕ∈

a1. Subcritical case ( ): 1Fr <

 ( ) ( )( )( )
1 1 0 0 0 0 0( , ) exp exp ( )U x z A x B A ik x B ik x Z zϕ − −= + + + − +   

                 ( )( )
1

exp ( )n n n
n

A k x Z zα
∞

=

+ −∑             (26a) ( )(( , ) )Ux z D∈

a2. Supercritical case ( ): 1Fr >

   ( )( )( )
1 1

0
( , ) exp ( )U

n n n
n

x z A x B A k x Z zϕ α
∞

− −
=

= + + −∑       (26b) ( )(( , ) )Ux z D∈
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(b) Downstream ( ( )DDϕ∈ ) 

b1. Subcritical case ( ): 1Fr <

 ( ) ( )( )( )
1 1 0 0 0 0 0( , ) exp exp ( )D x z A x B A ik x B ik x Z zϕ − −= + + + − +   

                 ( )( )
1

exp ( )n n n
n

A k x Zβ
∞

=

+ −∑ z            (27a) ( )(( , ) )Dx z D∈

b2. Supercritical case ( ): 1Fr >

   ( )( )( )
1 1

0
( , ) exp ( )D

n n n
n

x z A x B A k x Z zϕ β
∞

− −
=

= + + −∑ ( )(( , ) )Dx z D∈          (27b) 

 
We denote here that we study time-independent flows so only the real part of the 
disturbance velocity potential (Eq.(26a), (27a)) is to be retained.  
 

On the basis of the relations about the velocity potential, we are now to the point 
of making some general remarks. 

• In subcritical case, the terms { }0Re exp( )ik x±  are periodic in x with fixed 
wavelength λ given by 02 / kλ π=  as x tends to infinity. If we were to observe 
these steady waves from a system of coordinates moving in the x-direction with 
the constant velocity U, we would see a train of progressing waves, since the 
form of periodic terms would be { }0Re exp( ( ))ik x Ut± + . The phase speed of these 
waves would of course be the velocity U. According to the notation (  any of 
these propagating waves travel towards negative or positive x-direction 
respectively and are called propagating modes. 

)±

• In supercritical and subcritical cases, the terms ( )( )exp nk x a−  for upstream strip 

and  for downstream strip as x tends to infinity ( and 
 respectively), die out with exponential rate. These terms are only of local 

importance and are called evanescent modes. 

((exp nk xβ − )) x →−∞
x →∞

• From the general representations of the velocity potential, we have the following 
asymptotic forms, e.g. for downstream strip: 
− Subcritical case ( ): 1Fr <

( )( )
1 1 0 0 0 0 0( , ) exp( exp( )) ( )D

nx z A x B A ik x B ik x Zϕ − −→∞⎯⎯⎯→ + + + − ⋅ z  

− Supercritical case ( ): 1Fr >
( )

1 1( , )D
nx z A xϕ − −→∞⎯⎯⎯→ + B  

According to the above relations, we denote that asymptotically no motions other 
than the steady flow with no surface disturbance will exist unless .     These 
waves are then seen to have the wavelength appropriate for simple harmonic 
waves of propagation speed U in water of depth h, as mentioned above. We 
observe here the physical meaning of the roots of equation (23b), and it’s strictly 
dependence upon the velocity U of the uniform flow.    

1Fr <
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• The coefficients  - with n of the appropriate set of index - in the above 
representations are defined by using the appropriate boundary conditions at  
(or

1 1, , nA B A− −

x a=
x β= ). These boundary conditions (matching conditions) are associated with 

the additional information related to the cause of the wave disturbance.      

Concluding, we should point out that these coefficients have a special physical 
character denoting the infinite degrees of freedom of the fluid system. 
Consequently, certain radiation conditions (including the boundness) are imposed 
such that the problem will be uniquely determined, constraining the appropriate 
coefficients to the asymptotic form of the velocity potential. We denote for 
example, that an appropriate such condition is that the disturbance should die out 
upstream in subcritical flow; hence 0 0,A B 0= . In the following sections we 
introduce this special character with application to certain problems.       

 
APPENDIX 2.A.  Linearization of the non-linear problem Pφ

We recall here the non-linear problem Pφ (ϕ -formulation).  

PROBLEM Pφ
( )( ; ,D )ϕ η∞ . Find the functions ( , )x zϕ  and ( )xη  defined in ( )D ∞ , 

satisfying the following non-linear mixed boundary value problem    

                    2 ( , ) 0,x zϕ∇ =            , ( ),x h z xη−∞ < < ∞ − < <         (1) 

             21 ,
2 xU gϕ ϕ η∇ + + = 0,                   ( ),z xη=                (2) 

                  , , , , 0x x x zUϕ η η ϕ+ − =                          ( ),z xη=        (3) 

                          0,,zϕ =                                                  ,z h= −                      (4) 

and, in addition, ϕ∇  is bounded at∞ .     (5) 
 

The non-linear problem Pφ cannot be solved exactly, the principal difficulty being 
the fact that the domain in which the equations have to be solved is part of the 
solution, i.e. the free surface elevation itself is one of the unknowns. Linearization in 
fixed domains is performed by ignoring terms of quadratic and higher order. In the 
present problem, where the domain of definition is one of the unknowns, the 
perturbation procedure is used i.e. linearization of the problem about a particular exact 
solution see i.e. Wehausen & Laitone (1960, §10), Stoker (1957, §2.1). For the 
application of perturbation method, one must be able to select a dimensionless 
parameter (or parameters), sayε , which helps to determine the exact physical problem 
and is such that the known exact solution to be approached (in some sense) 
when 0ε → . It is then assumed that the various functions entering into the problem 
may be expanded into power series with respect to parameterε . Further, the series are 
substituted into the governing equation and boundary conditions and grouped 
according to powers ofε .  
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The coefficients of each power then yield a sequence of equations and boundary 
conditions. The linear solution will not depend on ε (first-order theory), while the 
second-order will, the third-order will depend on 2ε , and so on.  

In this section the above perturbation approach of infinitesimal-wave theory is 
followed, where as an exact initial solution the uniform flow is taken. We remark that 
this follows from the consideration of the studied problem that the motion arises from 
disturbances created in the uniform flow (c.f. eq.2.1.1). 

It is convenient at this point to put the governing equation and the related 
boundary conditions into dimensionless forms. We define the following dimensionless 
variables, developed in terms of , , ,U and , which are gravity, the wave 
amplitude, the depth, the velocity of the uniform flow, and the wave number, 
respectively.  

g a h k

x kx=  

   z kz=  

  
a
ηη =  

k
a gk
ϕϕ =  

UFr
gh

= . 

The governing equation (Laplace equation) is thus 

, ,xx z zϕ ϕ =+ 0 .  (6) 

The dynamic free surface boundary condition (2) is modified to be  

2 2 21 ( ) ( , , ) ( ) , ( ) 0
2 x z xka ka Fr kh kaϕ ϕ ϕ η+ + =+ ,    ( )z ka η= . (7) 

We denote that if , then0ka = 0z = ; there are no waves and therefore only the trivial 
solution exists. The kinematic free surface boundary condition (3) takes the following 
dimensionless form 

2( ) , , ( ) , ( ) , 0xx x z =ka ka Fr kh kaϕ η η ϕ+ − ,    ( )z ka η= . (8) 

As mentioned above in the infinitesimal-wave theory, the non-linear boundary 
conditions are expanded about the mean water level ( 0z = ), and then products of very 
small quantities are neglected, such as 2,xϕ . It follows that the gradient of the free 

surface elevation is small quantity; hence the terms of order  are neglected 
when are compared to . In the perturbation approach, we assume that the solution 
depends on the small quantity , which is defined as

ka 2( )ka
ka

ka ε . 
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Therefore, we decompose all quantities into a power series inε , which is presumed to 
be less than unity. 

(1) (2) (3)2η η εη ε η= + + +…  

 
(1) (2) (3)2ϕ ϕ εϕ ε ϕ= + + +…  (9) 

Again, as we a priori do not know the location of the free surface ( )z ka η= , we resort 
to expanding the non-linear free surface boundary conditions about 0z =  in terms 
ofεη , retaining the higher-order terms up to 2ε , denoted as 2( )O ε . Using the Taylor 
series, we have on z εη=  

                                  
2( )( , ) ( ,0) ( ) , ( ,0) , ( ,0)

2z z zx z x x xεηϕ ϕ εη ϕ ϕ= + + +… . (10) 

Substituting the relation (10) in the dynamic free surface b.c. (7) we obtain 

2 2 2 2 2 21 1( , , ) , ( , , ) ,
2 2x z x x z xFr kh Fr kh

z
ε ϕ ϕ ε ϕ εη εη ε ϕ ϕ ε ϕ∂⎛ ⎞ ⎛+ + + +⎜ ⎟ ⎜∂⎝ ⎠ ⎝

+ + ⎞ +⎟
⎠

            

                                                   ( )
23 2

3
2 , ( )

2 xFr kh O
z

ε η ϕ ε∂
+ + 0

∂
=  ,    0z = . (11) 

Similarly the kinematic free surface b.c. (8) takes the following form 

2 3( , , , , ) ( , ( ))xx x z zFr kh O
z

ε ϕ η ε η εϕ εη εϕ ε 0∂
+ − + −

∂
+ = ,     0z = . (12) 

Substituting the perturbations expansions, eqs. (9), into the Laplace equation (6) and 
the bottom boundary condition, we have, retaining only terms of first order in ε (the 
others being much smaller): 

(1) (2)2 2 0ϕ ε ϕ∇ + ∇ + =… , 

                                                       (1) (2), ,z zϕ εϕ 0+ + =… ,                  z kh= − .          (13)  

At the free surface, we obtain from the dynamic (11) and kinematic (12) boundary 
conditions, respectively: 

( ) (1) (2)(1) 2 (1) 2 (1) (2)1 ( , ) ( , ) , ,
2 x z x xFr kh Fr khε ϕ ϕ ϕ ε ϕ η εη+ + + ++ +  

                                               ( )(1) (1) 2, ( )xFr kh O
z

εη ϕ ε 0∂
+ + =

∂
,    0z = , (14) 

(1)(1) (1) (1) (2) (1) (2) (1) 2, , , , , , , ( )x z zx x x z zFr kh Fr kh Oεϕ η η ε η ϕ εϕ εη ϕ ε+ + − − − + 0= , 

                         0z = . (15) 
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The original non-linear boundary value problem Pφ has now been reformulated into 
an infinite set of linear equations of ascending orders. Before proceeding to the 
separation of the equations by order, we consider the following general form of the 
perturbed equations: 

(1) (2) 2 (3) (1) (2) 2 (3)A A A B B Bε ε ε ε+ + + = + + +… …  
The required condition that the above equality holds for arbitrary ε  is that the 
coefficients of like powers of ε  must be equal. Therefore, we have that  

 etc.  (1) (1) (2) (2) (3) (3, ,A B A B A B= = = ) ,
Using this procedure we obtain: 

• First-Order perturbation equations  
If we gather together all the terms that do not depend onε , the linear equations 

result: 

 
(1)2 0ϕ∇ = ,                                  (16a) 

             
(1)(1), 0 0z =xFr khϕ η+ = ,                                      (16b) 

 (1) (1), ,x zFr khη ϕ 0− = ,    0z =        (16c) 

                                 (1),zϕ 0= ,            z kh= −        (16d) 

The above equations in dimensional form are the linear Neumann-Kelvin problem 
referred to §2.1. Moreover the general solution in dimensional form is (see i.e. Stoker 
1957, §7.3)  

( , ) cos( ) cosh( ( ))x z A kx a k z hϕ = + + , 

with A and α arbitrary constants , and k a root of the dispersion equation (cf. eq.23 
§2.2). 

• Second-Order perturbation equations  

If we gather together all the terms that depend onε , we have: 

 
(2)2 0ϕ∇ = ,                                  (17a) 

( ) ( )(2) (1)(2) (1) 2 (1) 2 (1) (1)1, ( , ) ( , ) ,
2

,x x z x xϕFr kh Fr kh Fr kh
z

η ϕ ϕ ϕ ϕ η ∂
+ = − − −

∂
+ 0z =,   

 (17b)                        

                              
(1)(2) (2) (1) (1) (, , , , ,z z xx z xFr kh 1)η ϕ η ϕ ϕ η− = − ,    0z =        (17c) 

                                 (2),zϕ 0= ,            z kh= − .       (16d) 

We denote that all equations and conditions are linear in the variables of interest, 
(2)

( , )x zϕ and
(2)

( )xη , but the free surface boundary conditions have inhomogeneous 
terms that depend on the first solution. Since the first-order solution is known, the 
terms on the right-hand side are known also.  
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APPENDIX 2.B.  Non-orthogonality relation of the eigenfunctions 

With application of equation (21a) §2.2, for two different eigenfunctions ( )nZ z  
and ( )mZ z , we obtain 

2( ) ( ) 0n nnZ z k Z z′′ + = ,    (1a) 
2( ) ( ) 0m mmZ z k Z z′′ + = . (1b) 

We denote that the eigenfunctions ( )nZ z  and ( )mZ z  are corresponded to the 
eigenvalues  and , where . By multiplication of eq. (1a) and eq. (1b) 
with the eigenfunctions 

2
nk 2

mk 2
n mk k≠ 2

( )mZ z  and ( )nZ z  respectively, and subtract by parts, we have 
2 2( )m n n m n mm nZ Z Z Z k k Z Z′′ ′′− = − .  (2) 

The above relation is defined for [ ,0]z h∈ − ; hence by integration on this interval and 
applying integration by parts we obtain 

0 0

2 2

1, ( ) ( ) (
( )n m n m m n n mh h

m n
)Z Z Z z Z z dz Z Z Z Z d

k k− −
′′ ′′< >= = −

−∫ ∫ z =    

             
0 0

0 0
2 2

1
( ) m n n m m n n mh h

h hm n
Z Z Z Z Z Z dz Z Z d

k k − −
− −

⎧ ⎫
′ ′ ′ ′ ′ ′= − − +⎨ ⎬− ⎩ ⎭

∫ ∫ z ,  (3) 

where  is the inner product. ,< ⋅ ⋅ > 2L −

Using the bottom boundary condition, z h= − eq.(21c) §2.2 of the vertical eigenvalue 
problem  we obtain from (3) ( ,0)VE h−

{2 2

1, (0) (0) (0) (0)
( )n m m n n m

m n
Z Z Z Z Z Z

k k
′ ′< >= −

−
} ,  m n≠ .    (4) 

With application of free surface boundary condition, 0z = eq.(21b) §2.2 the above 
relation takes the following form 

2,n mZ Z hFr< >= m n≠, .     (5) 

According to the above, the following non-orthogonal relation of the eigenfunction of 
the vertical eigenvalue problem ( ,0)VE h− , is defined 

2

2

,
,

,n m
n

hFr m n
Z Z

Z m n

⎧ ≠⎪< >= ⎨
=⎪⎩

     (6) 

where, ( )1/ 20 2 ( )n nh
Z Z z dz

−
= ∫ is the 2L − norm of the eigenfunction ( )nZ z . 
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Steady Free-Surface Flows obstructed by underwater 
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3. Steady Free-Surface Flows obstructed by underwater Steps and 
Trenches. 

 
3.1 Free-Surface flow over an infinite step. 

3.1.1 Differential formulation of the problem. 
The steady two-dimensional free-surface flow of a stream, of an inviscid 

incompressible and irrotational fluid, which is obstructed by a semi-infinite step on 
the bottom, is considered. The wave field is excited by an incident uniform flow with 
direction normal to the bottom contours, and velocity U. The studied free-surface flow 
consists of a water layer 3DD  bounded above by the free surface ,3F DD∂  and below by 
a rigid bottom ,3DDΠ∂ . 

z

x

z = -h2

z = -h1

n2n(1)
DF

(1)
D

n

BD
(1)

n2

1

1

n1

(1) D(2)

Π

U

D n1

n2

ID
(12)

∂

∂

∂

∂

(2)
DF∂

(2)
DΠ∂

 
FIGURE 3.1. Domain decomposition and basic notation 

 
Before proceeding to the formulation of the problem, we shall introduce some 

geometrical notation. A Cartesian coordinate system is introduced, with its origin on 
the mean water level (at the cut of the step), the z-axis pointing upwards and the y-axis 
being parallel to the bottom contours. See figure 3.1.  
The liquid domain 3DD  will be represented by 3DD D R= × , where  is the (two-
dimensional) intersection of 

D

3DD  by a vertical plane perpendicular to the bottom 
contours, and , is a copy of the real line: ( ,R = −∞ +∞)

( ) ( ){ }2
3 , , : , , ( ) 0 ,DD x y z x y R h x z= ∈ − < < ( ){ }, : , ( ) 0 ,D x z x R h x z= ∈ − < <  

where . 1

2

, 0
( )

, 0

h x
h x

h x

⎧− <⎪= ⎨
− ≥⎪⎩

The liquid domain 3DD  is decomposed in two subdomains  
defined us follows: 

( ) ( )
3 , 1, 2i i

DD D R i= × = ,
(1)
3DD is the constant-depth upstream subdomain characterized 

by , and 0x < (2)
3DD  is the constant-depth downstream subdomain characterized 

by . Without loss of generality, we assume that . 0x > 1 2h h>
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The decomposition is also applied to the boundaries 
and . The lines ,3F D FD D∂ = ∂ ×R R,3DD DΠ Π∂ = ∂ × FD∂  and DΠ∂  are decomposed in 

two pieces each, for example, , where belongs to the 
boundary of , and similarly for

(1) (2)
F FD D D∂ = ∂ ∪∂ F

(1)
FD∂

(1)D DΠ∂ . Finally, we define the artificial vertical 
interface (12) (12)

,3I D ID D∂ = ∂ ×R , which is the common vertical boundary of subdomains 
(1)
3DD  and (2)

3DD , and the vertical wall (1) (1)
,3B D BD D R∂ = ∂ × which belongs to the boundary 

of (1)
3DD .  Clearly, is vertical segment (between the bottom and the mean water 

level) at . See figure 3.1. 

(12)
ID∂

0x =

We consider that the motion arising from disturbances created by the obstruction 
of the uniform flow by the step, have the velocity potential  

                                 ( ), ( , ),x z Ux x zϕ+Φ =        ( ),x z D∈ . (1) 

Assuming that the disturbance velocity potential ( , )x zϕ  and the velocity of the 
stream are small enough, the linearized equations of the Neumann-Kelvin problem can 
be used (cf. § 2.1). By the decomposition of the liquid domain , the 
studied problem should be formulated with the aid of the general representation of the 
disturbance velocity potential 

(1) (2)D D D= ∪

( , )x zϕ  in the semi-infinite strips  and as 
obtained in  § 2.2  

(1)D (2)D

Taking under consideration the decomposition of the total field in two 
regions , the problem can be formulated as follows: (1)D (2)D

PROBLEM . Given the upstream velocity U, find the disturbance 
velocity potentials , , satisfying the following system of equations, 
boundary and matching conditions:     

(1) (2)( , , )M DP ϕ ϕ
(1) (1)Dϕ ∈ (2) (2)Dϕ ∈

 

                             2 ( ) 0iϕ∇ =               ( )( , ) ix z D∈ ,        (2.1) 

                         ( ) ( )
2 0, ,i i

xx z
g

U
ϕ ϕ+ =         ( )( , ) i

Fx z D∈∂ ,             (2.2) 

                                                 ( ) 0, i
zϕ = ( )( , ) ix z DΠ∈∂ ,              (2.3) 

                                  (1) (2)ϕ ϕ=                  (12)( , ) Ix z D∈∂ ,                     (2.4) 

        
(1) (2)

(1) (2)n n
ϕ ϕ

= −
∂ ∂
∂ ∂
G G   (12)( , ) Ix z D∈∂  ,   

(1)
(1)

(1) xU n
n
ϕ

= − ⋅
∂
∂
G   (1)( , ) Bx z D∈∂          (2.5a,b) 

where   is the unit normal vector to the boundary directed to the 
exterior of .  

( ) ( ) ( )( ,i i i
x zn n n=

G ) ( )iD∂
( )iD 1, 2i =
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However, appropriate conditions at infinity x →∞  must imposed in order the 
problem to be well-defined. These conditions are usually called ‘radiations 
conditions’, although in some cases there may be no real ‘radiation at infinity’. 
However, in the subcritical case ( 1Fr < ) a radiation condition – such as the 
requirement of the disturbance to die out upstream – is imposed. The formulation of 
the above radiation condition upstream has been discussed by Lamb (1932, p.406) and 
Stoker (1957, p.209); see also Wehausen & Laitone (1960, p. 569). It appears from the 
definition about the velocity potential DΦ∈ , that the conservation of mass is not 
valid, since the velocity of the uniform flow remains constant; hence it is independent 
from the variation of the depth. Consequently, proper condition at infinity downstream 
must be imposed for the conservation of mass. The formulation of the radiation 
boundary condition downstream using the continuity equation in integral form is 
introduced in § 3.1.2.  

Before proceeding to the reformulation of general representation of the 
disturbance velocity potential ( , )x zϕ  in  and  according to the above 
definitions, let us define the following sets of index with respect to the studied cases: 

(1)D (2)D

− Subrcritical case ( ):1Fr < { }: 1, 2,...fN n n= =     

− Supercritical case ( ):1Fr > { }: 0,1, 2,...tN n n= =   

Hence, taking the real part of equations (2.2.26) and (2.2.27), (cf. § 2.2), and imposing 
the appropriate radiation conditions, as indicated above, we obtain: 

(a) Upstream ( ) (1)Dϕ∈

a1. Subcritical case ( ): 1 1Fr <

 (1) (1) (1) (1)

1
( , ) exp( ) ( )n n n

n
x z C k x Zϕ

∞

=

= ∑ z ,     ,                (3a) (1)(( , ) )x z D∈

a2. Supercritical case ( ): 1 1Fr >

   (1) (1) (1) (1)

0

( , ) exp( ) ( )n n n
n

x z C k x Zϕ
∞

=

= ∑ z ,      ,                     (3b)               (1)(( , ) )x z D∈

(b) Downstream ( ) (2)Dϕ∈

b1. Subcritical case ( ): 2 1Fr <

 (2) (2) (2) (2) (2) (2) (2) (2)
1 1 0 0 0 0 0( , ) ( cos( ) sin( )) ( )x z A x B A k x B k x Z zϕ − −= + + + +

∞

=

+ −∑ (2), ) )x z D∈

  

                 ,    (( ,                (4a) (2) (2) (2)

1

exp( ) ( )n n n
n

C k x Z z
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b2. Supercritical case ( ): 2 1Fr >

   (2) (2) (2) (2) (2) (2)
1 1

0
( , ) exp( ) ( )n n n

n
x z A x B C k x Z zϕ

∞

− −
=

= + + −∑ , ,               (4b) (2)(( , ) )x z D∈

where (2)
1A− , (2)

1B−  , (2) (2)
0 0,A B  and ,( )i

nC fn N∈ or tn N∈  , 1, 2i = , are real constants.           

In the expansions (3) and (4) the sets of numbers  
{ } { }(1) , 0n fk n N∈ ∩ , { } { }(2) (2)

0 , , 0n fk k n N∈ ∩ , { } { }( ) , 0i
n tk n N∈ ∩ 1, 2i = ,  

and the sets of vertical functions 
{ } { }(1) ( ), 1n fZ z n N∈ ∩ , { } { }(2) (2)

0 ( ), ( ), 1n fZ z Z z n N∈ ∩  , { } { }( ) ( ), 1i
n tZ z n N∈ ∩ 1, 2i = , 

are the eigenvalues and the corresponding eigenfunctions of the vertical eigenvalue 
problems ,  obtained by separation of variables in the half strips  
and  (cf. § 2.2).  The eigenvalues are given as the roots of the relations  

( ,0)iVE h− 1, 2i = (1)D
(2)D

              ( ) ( )
2

1 tan( )i i
in n

i

k h k h
Fr

= tN   (n∈ or fn N∈ , 1, 2i = ),                (5a) 

             (2) (2)
0 02

2

1 tanh( )k h k h
Fr

= 2 ,   where  i
i

UFr
gh

=   1, 2i =  , 

and the eigenfunctions are given by 
 

( )(2)
0 2(2)

0 (2)
0 2

cosh ( )
( )

cosh( )
k z h

Z z
k h

+
= ,  

( )( )
( )

( )

cos ( )
( )

cos( )

i
n ii

n i
n i

k z h
Z z

k h
+

= ,  ( tn N∈ or fn N∈ , ).  1, 2i =

                                                                                                                      (5b) 

The correctness (completeness) of the expansions (3) and (4) follows by the 
theorem, which is introduced in § 2.2. 

We remark that in the general representations of disturbance potential (eq. (3)), 
the coefficient 1B−  represents a part of the potential difference between far upstream 
and downstream, due to the fluid acceleration and deceleration by the obstruction, and 
is essentially the so-called blockage parameter which is discussed by Newman 
(1969). Without loss of generality we define as essential condition upstream 
that , i.e. the radiation condition upstream is  (1)

1 0B− =

                                        ( , ) 0x zϕ →  as . (6) x →−∞

Given the upstream velocity U, and imposing the downstream radiation condition 
for conservation of mass, the half strip potentials (1)ϕ and (2)ϕ  are uniquely 
determined by the means of the real coefficients{ }(1)

nC , and 
(2)
1B−

(2) (2)
0 0,A B , { }(2)

nC fn N∈ or tn N∈ , respectively. 
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3.1.2 Far field downstream condition using the conservation of mass in integral 
form. 

As mentioned above a radiation condition must be imposed for the conservation 
of mass. Let us consider the problem illustrated in Fig. 3.2 of a fluid occupies the 
region  with boundary D D∂  where F BD D D D D D− Π∞ ∞∂ = ∂ ∪∂ ∪∂ ∪∂ ∪∂ .We denote 
that the boundary segment  (D∞∂ D−∞∂ ) is an artificial boundary, chosen to be far 
downstream (upstream). Also, we assume that the disturbance velocity potential 

( , )x zϕ  on this boundary is maximum or minimum. As we will show in § 3.2.2, the 
validity of the following result is independent from this consideration.     

z

x

z = -h2

z = -h1

nnDF

D

n

BD n
nΠ

U

Dn n

D-∞

x = x(   )-∞U x = x(   )∞
D∂

∂

∂
∂

DF∂

DΠ∂
D∞∂∆Φ=0

 
FIGURE 3.2. The domain of definition D of the velocity potential Φ 

 
Without loss of generality we assume that the flow is subcritical in the region . 

We recall that the velocity potential in domain  is 
D

D
( ), ( , )x z Ux x zϕΦ = +        ( ),x z D∈ ,   (7)  

where, ( , )x zϕ is the disturbance velocity potential. 
Let us consider the velocity potentialΦ , which is finite, singled valued and 

differentiable at all points of the connected region  bounded by the closed 
surface

D
D∂ . Hence, the following form of Green’s theorem may be obtained for the 

above region , i.e. Lamb (1932, p.43): D

                  2

D D
dS dV

n∂

∂Φ
= ∇ Φ

∂∫ ∫G ,                          (8)  

where  is the unit normal vector to the boundary ( , )x zn n n=
G D∂  directed to the 

exterior of .  D
Based on the fact that the function Φ satisfies the Laplace equation in region , the 
Green’s theorem takes the following form: 

( )iD

                             0
D

dS
n∂

∂Φ
=

∂∫ G ,                                           (9)  

which simply express the conservation of mass in integral form for steady irrotational 
motion of an ideal fluid. Its physical significance is in any region occupied wholly by 
liquid, the total flux across the boundary is zero.  
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The function ϕ  cannot be a maximum or a minimum at a point in the interior of the 

fluid; for, if it were, we should have n
ϕ∂
∂  everywhere positive, or everywhere 

negative a fact that is inconsistent with (9), therefore the function ϕ  can be maximum 
or minimum at the boundary, see i.e. Lamb (1932, p.38).   

Applying the equation (9) in region , with the aid of Eq.(7) we obtain D

                       ( )x
D D

dS U n dS
n n

0ϕ

∂ ∂

∂Φ ∂
= ⋅ + =

∂ ∂∫ ∫G G .        (10)               

The disturbance velocity potential ϕ satisfies the boundary conditions of the 
problem MP ; therefore, the above integral gives 

2

0

, ( , ) ( , ) ( , )
F B

xx x n x x
DD D D D

U dS Un dS U dS U dS
g
ϕ ϕ ϕ ϕ

∞−∞Π ∂∂ ∂ ∂ ∂

− + + − + + +∫ ∫ ∫ ∫
∪����	���


0=

0

.  (11) 

As , one can easily verify from Eq.(3a) that  , then Eq.(11) 

obtains

x →−∞ ,xϕ →

2

0 02

1

, ,
D

U
xx x

x x

Dh hx x

U dx U dz U dz dz
g

ϕ ϕ
∞

=

∂− −=

− − + +∫ ∫ ∫ ∫ 0= .  (12)  

From Eq.(4a), assuming that ϕ is maximum in D∞∂ , one can verify that as  x →∞

(2)
1,x Aϕ −→  . Hence, Eq.(12) yields  (defining  (2)

1u A−≡ )    

 
2

2 2 1, ( ) = 0
D

U

x x

xx
x x

U dx uh U h h
g

ϕ
=

=

− + + −∫ ⇒                                         (13) 

2

2 2 1( , , ) ( ) 0x xD Ux x x x
U uh U h h
g

ϕ ϕ
= =

− + +− − =    (using the asymptotic forms), ⇒

2
1 2

2 2 1 2

2

( ) ( ) 0 h hUu h U h h u U
Ug h
g

−
− + − = ⇒ =

−
 (14) 

Defining the shoaling ratio , which is taken the values 2 /s h h= 1 1s <  if the flow is 
from deep to shallow water and  if the flow is from shallow to deep water, and 
denoting that

1s >

1 /Fr U gh= 1 , the above relation takes the form 

                                                     2
1

(1 )( ; ) U su s U
s Fr

−
=

−
,                (15a) 
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or in non-dimensional form 

                                                      
2

1
2

1

1 Fru U
U s Fr

−+
=

−
.             (15b) 

With reference to the asymptotic form of the potential field downstream 
(2) (2) (2) (2) (2) (2)
1 0 0 0 0 0( ) ( cos( ) sin( )) ( )x U u x B A k x B k x Z z−

→∞Φ⎯⎯⎯→ + + + + ,  

we observe that the velocity u implies a difference to the uniform velocity of a stream, 
such that the conversation of mass to be satisfied. As a consequence of the linearity of 
the problem the downstream velocity must be of the same order as upstream velocity 

i.e. the quantity u U
U
+  must be of order . Hence, the disturbance velocity u must 

be a small quantity; a fact, which is consistent with the linearization of the problem 
about the uniform flow as well as that the disturbance velocity field 

(1)O

,xϕ  must be a 
small quantity (cf. Appendix 2.A). 
In the case of subcritical flow (downstream, ) and for , equation 
(15a) indicates that , so the velocity of the uniform flow downstream is greater 
than upstream. Similarly, as for supercritical flow  ( ) we have 
that , so the velocity of the uniform flow upstream is greater than downstream. If 
the shoaling ratio is greater than unity ( ), in case of subcritical flow equation 
(15a) indicates that , so the velocity of the uniform flow upstream is greater than 
downstream. Further, for supercritical flow , so the velocity of the uniform flow 
downstream is greater than upstream.    

2
1 2 1s Fr Fr> ⇔ < 1s <

0u >
2

2 1Fr s Fr> ⇔ < 1

0u <
1s >

0u <
0u >

Some peculiarities occur when the flow downstream is critical ( ). In this case, 
the critical shoaling ratio is , and the denominator of equation (15a) is 
vanished, so the velocity u becomes infinite. This, from the physical point of view and 
under the considerations of the problem, denotes that if the flow downstream is 
critical the disturbance potential and the velocity become infinite. However, Stoker 
(1957) has shown that in this case there is no steady state motion, by studying the 
unsteady problem and allowing the time to tend to

2 1Fr =
2

1cs Fr=

∞ .     
In addition, some remarks may be obtained for the free surface elevation ( )xη . 

Recalling that 

( ) , ( ,0)x
Ux x
g

η ϕ= −                (16) 

we have that as x tends to infinite far upstream , and far downstream 0xη → −∞⎯⎯⎯→

( )
(2)

(2) (2) (2) (2)0
0 0 0 0cos( ) sin( )x U kU u B k x A k x

g g
η →∞ ⎛ ⎞⋅⋅
⎯⎯⎯→− + −⎜ ⎟

⎝ ⎠
  if  , (17a) 2 1Fr <

x U u
g

η →∞ ⋅
⎯⎯⎯→−   if  . (17b) 2 1Fr >
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If the flow is subcritical downstream and  (i.e.0u > 1s < ), as per asymptotic form of 
η  the first term of (17a) is negative, hence an oscillating steady motion about the 
level , with amplitude  /z U u= − ⋅ g

( ) ( )
(2) 2 2(2) (2)0

0 0
U ka A

g
⋅

= + B  (18) 

and wavelength  is predicted.  (2)
02 / kλ π=

On the other hand, if  (i.e. ) the mean water level rises -according to the first 
term of (17a)- so an oscillating steady motion about the level 

0u < 1s >
/z U u g= ⋅ is predicted. 

In case of supercritical flow downstream and 0u < , according to (17b) we obtain that 
the free surface rises over the step and is asymptotically flat. Similarly, as for  
the free surface drops and asymptotically becomes flat.    

0u >

Concluding, we should point out that considering the potential field arising from 
the potential of uniform flow and disturbance potential (cf. Eq.(7)), the continuity of 
the uniform flow is provided. Moreover, the conditions expressing the continuity of 

the disturbance potential ϕ  and the induced velocity field n
ϕ∂
∂  (matching 

conditions) are satisfied, by using the proper radiation condition downstream as 
follows from the conservation of mass.  

3.1.3 Weak formulation of matching -B.V.P. – Composition of the solution 
          matrix. 
 

In this subsection we proceed to derivation of the linear system, which arises 
from the matching boundary value problem MP . We recall that the matching 
conditions at the cut of the step are:  
                                  (1) (2)ϕ ϕ=          2 0, 0h z x− < < = ,                     (19a) 

                              

(2)
(1)

2(2)
(1)

1 2

, 0,

, ,x

h z x
x

x
U n h z h x

ϕ
ϕ

⎧
0

0

− < < =⎪= ∂⎨∂ ⎪− ⋅ − < < − =⎩

∂
∂   , (19b) 

where, ( ) ( , )i x zϕ 1, 2i =  is the disturbance velocity potential, given by the expansions 
(3) and (4) . Let us define a function  to be equal with the right side of equation 
(19b), so the above condition may be rewrite to the following form   

( )f z

                                  (1) (2) 0ϕ ϕ− =          2 0, 0h z x− < < = ,                      (19΄a) 

                               
(1)

(1) ( ) 0f z
x
ϕ

− =
∂
∂         1 0, 0h z x− < < = .  (19΄b) 
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According to the theorem of  § 2.2 the set of eigenfunctions (1) ( )nZ z  and (2) ( )nZ z  
constitute a Riesz basis on and , respectively. Using this 
definition, the above system of equations is equivalent on weak sense to the 
following: 

2
1( ,0L h− ) )2

2( ,0L h−

                                  (1) (2) (2), ( )mZ zϕ ϕ− 0 0x= ,     =        m∀                       (20a) 

                               
(1)

(1)
(1) ( ), ( ) 0mf z Z z

x
ϕ

− =
∂
∂ 0x,   =       m∀     (20b) 

where ,⋅ ⋅  is the  inner product . 2L −

Without loss of generality, we introduce the derivation of linear system which 
constitutes the above equations, in the case where the flow is subcritical in the 
region . Similar procedure is following in case of supercritical flow. We denote here, 
that in the expansion of 

D
(1)ϕ (Eq. (3a)), the terms that imply a disturbance on upstream 

region may be obtained, such that the number of equations to be equal with the 
number of unknowns. After the composition of the system’s matrix, the radiation 
conditions shall be imposed. Truncating the series of expansions (3) and (4) to a finite 
number of terms (modes), and denoting by N the number of evanescent modes 
retained, with above definitions we have 

(1) (1) (1) (1) (1) (1) (1) (1) (1)
0 0 0 0 0

1

( , ) ( cos( ) sin( )) ( ) exp( ) (
N

n n n
n

)x z A k x B k x Z z C k x Z zϕ
=

= + +∑ ,   

                                                                                                       , (21a) (1)(( , ) )x z D∈
 

(2) (2) (2) (2) (2) (2) (2) (2)
1 1 0 0 0 0 0( , ) ( cos( ) sin( )) ( )x z A x B A k x B k x Z zϕ − −= + + +                                                                         

                                                   , (21b) (2) (2) (2)

1
exp( ) ( )

N

n n n
n

C k x Z
=

+ −∑ z (2)(( , ) )x z D∈

 
Taking the derivatives of the above expansions with respect to x we have 

(1) (1) (1) (1) (1) (1) (1)
0 0 0 0 0 0, ( , ) ( sin( ) cos( )) ( )x x z k A k x B k x Z zϕ = − + +  

                                                   ,               (22a) (1) (1) (1) (1)

1
exp( ) ( )

N

n n n n
n

k C k x Z z
=

+∑ (1)(( , ) )x z D∈

 
(2) (2) (2) (2) (2) (2) (2) (2)

1 0 0 0 0 0 0, ( , ) ( sin( ) cos( )) ( )x x z A k A k x B k x Z zϕ −= + − + −  

                                            . (22b) (2) (2) (2) (2)

1

exp( ) ( )
N

n n n n
n

k C k x Z z
=

− −∑ (2)(( , ) )x z D∈
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Substituting the expansions (21) in equation (20a), we obtain 

2

0
(1) (2) (2)) ( ) 0( m

h
Z z dzϕ ϕ

−

− ⋅ =∫ ⇔

2h
−

=

N

 

2 2

0 0 0
(1) (1) (2) (1) (1) (2) (2) (2)
0 0 1

1

( ) ( ) ( ) ( ) ( )
N

m n n m m
nh h

A Z z Z z dz C Z z Z z dz B Z z dz−
=− − −

⇔ + −∑∫ ∫ ∫  

                                , 
2 2

0 0
(2) (2) (2) (2) (2) (2)
0 0

1

( ) ( ) ( ) ( ) 0
N

m n n m
nh h

A Z z Z z dz C Z z Z z dz
=− −

− −∑∫ ∫

 1,0,1,..., , 1m N= − +

⇔

.  (20΄a) 

Similar, from expansions (22), and equation (20b) we have 

2

2 1

0
(1) (2) (1) (1) (1)) ( ) ) ( ) 0( , ( ,x x m x m

h

h h
Z z dz U Z z dzϕ ϕ ϕ

−

− −

− ⋅ + + ⋅ =∫ ∫  

2

2

1 1

0
(1) (1) (2) (1) (1)

0

( ) ( ) ( ), ,x m x m m

h

h h h
Z z dz Z z dz U Z z dzϕ ϕ

−

− − −

⇔ − = −∫ ∫ ∫ ⇔

−

m

 

1 1

0 0
(1) (1) (1) (1) (1) (1) (1) (1)
0 0 0

1

( ) ( ) ( ) ( )
N

m n n n m
nh h

k B Z z Z z dz k C Z z Z z dz
=− −

⇔ +∑∫ ∫  

      
2 2 2

0
(2) (1) (2) (2) (2) (1) (2) (2) (2) (1)
1 0 0 0

1

0 0

( ) ( ) ( ) ( ) ( )
N

m m n n n
nh h h

A Z z dz k B Z z Z z dz k C Z z Z z dz−
=− − −

− − +∑∫ ∫ ∫ =

z N

 

                                    
2

1

(1) ( )m

h

h
U Z z d

−

−

= − ∫ 1,0,1,..., , 1m N= − + .  (20΄b) 

We denote that the term on the right side of  (20΄b) is the forcing of the system.  
The number of the unknown coefficients of expansions (21) and (22) is , and 
the total number of equations from coupling the equations (20΄a) and (20΄b) 
is .  

# 2( 3)N +

# 2( 3)N +
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3.1.4 Numerical results and discussion. 
 

In this paragraph a detailed presentation of the numerical results obtained, 
according to the present method. The numerical calculations were performed for a 
step of variable height and for a wide range of upstream Froude numbers when the 
flow is subcritical or supercritical.  

The present method is compared with the method developed by King & Bloor 
(1987), based on complex variable theory. These authors used a direct conformal 
transformation of the physical plane onto a half-plane. The transformation used is a 
generalization of the Schwartz-Cristoffel transformation.   

The physical investigation of the influence of step height and of  Froude number 
– the physical parameters of the problem – to the numerical solutions of the problem 
is introduced, in order to define the range of its values for which the linear solution is 
valid. The numerical accuracy of the problem is interpreted to satisfaction of the 
matching conditions at the cut of the step, i.e. the continuity of the pressure field and 
the continuity of the velocity field. This is concerned with the appropriate number of 
evanescent modes N, such that the week solution of the problem MP  to converge to 
the exact solution in the sense. 2L −

1.  Subcritical flows ( 1Fr )<  
Numerical solutions have been obtained for a wide range of the physical parameters. 
However, in order to illustrate the results obtained we first investigate in detail the 
situations when the upstream depth is 1m, and the step heights sh are 0.01m, 0.1 m, 
and 0.156m, at upstream . 0.5Fr =

The figure 3.3 shows, as one would expect according to theoretical investigation 
of the present linear model (cf. § 3.2.2), that the level of the free surface falls as it 
approaches the step, while downstream of the step a periodic steady wave motion is 
predicted. The amplitude of these waves as well as the variation of mean water level 
depend upon both step height and Froude number whereas the wavelength depends 
only upon Froude number as shown in figure 3.3.    

Figure 3.3 also shows a comparison of the free surface profiles with the method 
developed by King & Bloor (1987). In their analysis, they satisfy the exact free 
surface condition, which yields a nonlinear integro-differential equation for the free 
surface angle. They obtained approximate linear solutions depend on the order of the 
step height O(hs) . For very small step ( 0.01sh m= ) the results showing that the 
amplitude and wavelength of the present linear solution and non-linear solution 
obtained by King & Bloor (1987) are in good agreement as shown in figure 3.3a. In 
particular the amplitude of the non-linear solution is of same order with the amplitude 
of the present linear solution (about the same level), whereas a small phase shifting 
occurs between the non-linear and linear wavelengths. On the contrary, the present 
linear solution exhibits a deviation from the linear solution obtained by King & Bloor 
(1987). This is consistent with the error O(hs) between their non-linear and linear 
solution. 
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FIGURE 3.3. The free-surface elevation (a) of present model for 0.5Fr =  compared with 
linear (b) and non-linear (c) solutions obtained by King & Bloor (1987), for three values of 
step height: a) hs = 0.01, b) hs = 0.1, c) hs = 0.156.  
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As the step height is increased a distinct difference appears between the solutions 
as shown in figure 3.3. At hs = 0.1 the amplitude of the non-linear solution is O(hs) 
different from the linear amplitude whereas the non-linear wavelength is O(1) 
different from the linear wavelength. For hs = 0.156 the amplitude and wavelength of 
the linear solution to be grossly in error. In particular, the wavelength of the non-linear 
solution is two times the wavelength of the present linear solution as well as the wave 
amplitude and the mean water level. The non-linear solution  is showing  the classical 
narrow-peak, broad-through characteristics of the Stokes’ theories and values of wave 
amplitude and wavelength, when adjusted to the local depth of fluid under the wave, 
are in good agreement with that predicted by fifth order Stokes’ theory (see e.g. 
Wehausen & Laitone 1960, p.660). This is consistent with the considerations, which 
are adopted for the linearization of the non-liner problem Pφ (cf. for details Appendix 
2.A). From these considerations such as the gradient of the free surface elevation  
and mainly the disturbance velocity field 

ka
,xϕ  to be small quantities, it follows that the 

difference between the downstream (U u)+  and upstream U uniform velocity must 
be small (cf. the discussion in §3.1.2). We remark that this restriction arises mainly 
from the representation of the velocity potential i.e. ( , ) ( , )x z Ux x zϕΦ = + , which is 
taken for the formulation of the problem. Hence, suitable representation of the 
velocity field i.e. linearization of the problem about the proper uniform flow such us 
to permit large differences between the velocities upstream and downstream, can be 
provided a basis for better linear solutions.  

In figure 3.4a the variation of the rate of downstream to upstream velocity of the 
flow, against the shoaling ratio 2 1/s h h=  ( 1s < ) for various Froude numbers, is 
presented. We recall that  is the disturbance velocity, which arises from the 
conversation of mass, and U  is the velocity in the undisturbed state. In reference to 
the discussion of  §3.1.2, figure 3.4a shows that as the shoaling ratio  tends to its 
critical value  the critical conditions downstream are approached. Under the 

considerations of the present linear model i.e.

u

s
2

1cs Fr=

(1)U u O
U
+

≈ , figure 3.4a shows that for 

a small region of the parameters values the linear solution is valid.    
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FIGURE 3.4a. The dependence of the rate of downstream to upstream velocity upon the 
upstream Froude number Fr1 and upon the shoaling ratio 2 1/s h h= ,  (h2<h1) .  
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On the contrary, if the flow is from shallow to deep water i.e. ,  figure 3.4b shows, 
as one would expect according to theoretical investigation (cf. § 3.1.2), that the 
downstream velocity tends to zero as the depth becomes large. 
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FIGURE 3.4b. The dependence of the rate of downstream to upstream velocity upon the 
upstream Froude number Fr1 and upon the shoaling ratio 2 1/s h h= ,  (h1<h2) .  
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FIGURE 3.4c. The transition from subcritical flow to supercritical flow as the downstream 
depth reduces for Fr1=0.5.  

It is of interest to note that for finite-depth water the mean potentials far upstream 
and far downstream are different. This mean potential jump between the two infinities 
is due to the fluid acceleration and deceleration by the obstruction and defines the so-
called blockage parameter, which is discussed by Newman (1969) in connection with 
channel flow. This blockage effect also denotes, if the condition of no flow normal to 
the cut of the step (or general of bottom obstruction) is satisfied exactly. 
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In figures 3.5a and 3.5b the variation of the blockage parameter C against the Froude 
number, for 1s <  and  respectively, is presented. One observes that for 1s > 1s <  the 
blockage parameter takes larger values than for .     1s >
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FIGURE 3.5a. The dependence of blockage parameter C upon the upstream Froude number 
Fr1 and upon the shoaling ratio 2 1/s h h= ,  (h2<h1) .  
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FIGURE 3.5b. The dependence of blockage parameter C upon the upstream Froude number 
Fr1 and upon the shoaling ratio 2 1/s h h= ,  (h1<h2) .  

The numerical solutions is obtained by retaining 51 evanescent modes ( ) 
in the representations of disturbance wave potential, which is enough for numerical 
converge. In order to examine on detail the effect of the number of evanescent modes 
to the solution of the problem

51N =

MP , we study the continuity of the potential field Φ  
( - continuity) and the continuity of the velocity field 0C ,xΦ  ( - continuity), at the 
junction of the step ( ).  

1C
0x =
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The potential field ( , )x z DΦ ∈  is said to be continuous in weak sense at , 
,  if  

0x =

2 0h z− ≤ ≤ 2
(1) (2) 0

L
Φ −Φ →   as  ,  n →∞

where 2
2

0(1) (2) (1) (2) 2( ( ) ( ))
L h

z z
−

Φ −Φ = Φ −Φ∫ dz ) is the norm on . 2
2( ,0L h−

Similarly the velocity field , ( , )x x z DΦ  is said to be continuous in weak sense 

at ,  ,   if   

∈

0x = 2 0h z− ≤ ≤ 2
(1) (2), ,x x L

Φ −Φ → 0   as  . n →∞

In figure 3.6 the C - continuity and C - continuity at the junction of the step, 
according to above definitions, are presented. 
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FIGURE 3.6. C - continuity a) and - continuity b) vs. number of evanescent modes at the 
cut of the step (

0 1C
0x = ), for three values of step height: (a) hs = 0.01, (b) hs = 0.1,                   

(c) hs = 0.156, at 0.5Fr = . 
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The figure 3.6 shows that for very small step height, the convergence rate is rapidly. 
On contrary as the step height increases the rate of converge is slower, and a number 
of 40 evanescent modes at least is needed, such that the error to be minimized. A 
comparison of the order of the error between - continuity and - continuity, 
denotes that there is a difference of order

0C 1C
210− , see figure 3.6. Indeed, i.e. for  

and h
51N =

s = 0.1, the errors are 2
(1) (2) 43 10

L
−Φ −Φ = ⋅ , and 2

(1) (2) 2, , 5 10x x L
−Φ −Φ = ⋅ . 

Similarly, in figure 3.7 the effectiveness of - continuity and - continuity, for 
various Froude numbers and for fixed step height, are presented. 
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FIGURE 3.7. - continuity a) and - continuity b) vs. number of evanescent modes at the 
cut of the step (
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0x = ), for three values of Froude number: (a) Fr = 0.5, (b) Fr = 0.6,                   
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As mentioned above, the amplitude of  the steady waves as well as the variation 
of  mean water level depend upon both step heigth and Froude number. In figure 3.8 
the variation of the wave amplitude (about the mean water level) and of the mean 
water level, against the upstream Froude number  and shoaling ratio , are 
presented. This figure shows , that as the Froude number increase the wave amplitude 
and the mean water level become infinite. This is consistent with that as the upstream 
Froude number  approaches the value 

1Fr 2 1/s h h=

1Fr cs the downstream Froude number  
becomes critical (cf. the discussion in §3.1.2). As shown in figure 3.8, for small 
values of the shoaling ratio this critical limit is achieved for small values of . 
Figure 3.8 also shows that there is a region of parameter’s values (about the critical 
limits) which is inconsistent with the physical considerations, i.e the wave amplitude 
exceeds the downstream depth. This is expected since the numerical results are 
obtained by the linear problem

2Fr

1Fr

MP , as well as the critical conditions are approached 
the nonlinear effects dominate.      
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FIGURE 3.8. The dependence of wave amplitude and mean water level upon the upstream 
Froude number Fr1 and upon the shoaling ratio 2 1/s h h= ,  (h2<h1) .  

In figure 3.9 the variation of the wavelength against the upstream Froude number 
and the shoaling ratio, is presented. This figure shows that for low values of the 
Froude number, the wavelength λ  is independent of the shoaling ratio. This is 
consistent with the figure 3.3, as one can be observes. Further, the wavelength λ  
denotes the same behavior with the wave amplitude α; it becomes infinite as the 
upstream Froude number  approaches the critical value1Fr cs .  Also, using this 
figure associated with the figure 3.8, the validity of the linear wave theory -in 
conjunction with figure 3.4a (cf. the discussion of fig. 3.4a)- may be predicted i.e. the 
gradient of the free surface elevation k a⋅  to be small quantity (cf. for details 
Appendix 2.A).                 

 
 

 -44-



 
 
 
 
 
 
        λ  (m)  

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.4

0.3

0.5

0.6

s=0.9

 
 
 
 
 
 
 
 
 

Upstream Froude number Fr1

FIGURE 3.9. The dependence of wavelength upon the upstream Froude number Fr1 and upon 
the shoaling ratio 2 1/s h h= ,  (h2<h1) .  

In figure 3.10a the equipotential lines of the disturbance potential field ( , )x zϕ  
have been plotted, together with the calculated free-surface elevation ( )xη , as 
obtained by the present model. The flow is from deep to shallow water ( ), the 
step height is h

1s <
s = 0.1 and the upstream Froude number is 1 0.5Fr = . This figure 

shows, as one would expect, that the disturbance potential field becomes infinite at the 
singular point 2( , ) (0, )x z = −h . In figures 3.10.b-c the continuity of the disturbance 
potential field ϕ  ( - continuity) and the continuity of the disturbance velocity field 0C

,xϕ  ( - continuity), at the junction of the step (1C 0x = ) have been plotted. This figure 
is obtained by retaining 51 evanescent modes ( 51N = ). 

Similarly, in figure 3.11a the equipotential lines of the disturbance potential field 
( , )x zϕ  have been plotted, together with the calculated free-surface elevation ( )xη , as 

obtained by the present model. The flow is from shallow to deep water ( ), the 
upstream depth is h

1s >
1 = 0.6 and the upstream Froude number is . Also, the 

corresponding figures 3.11.b-c for the continuity are presented. 
1 0.68Fr =

In figure 3.12a the equipotential lines of the potential field ( , )x zΦ  have been 
plotted, together with the calculated free-surface elevation ( )xη , as obtained by the 
present model. The flow is from deep to shallow water ( 1s < ), the step height is        
hs = 0.4 and the upstream Froude number is 1 0.5Fr = . This figure shows that the 
equipotential lines intersect the step perpendicularly, as they ought. Also, the 
corresponding figures 3.12.b-c for the continuity are presented. 

Similarly, in figure 3.13a the equipotential lines of the potential field ( , )x zΦ  
have been plotted for the flow from shallow to deep water ( ), where the upstream 
depth is h

1s >
1 = 0.3 and the upstream Froude number is 1 0.60Fr = . 
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FIGURE 3.10a. Equipotential lines of the disturbance potential field and free-surface elevation 
as obtained by present model. The flow is from deep to shallow water ( 1s < ). 
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FIGURE 3.10b-c. - continuity b) and - continuity c) of the disturbance potential at the 
cut of the step (

0C 1C
0x = ), for upstream Froude number Fr1=0.5 and shoaling ratio . 
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FIGURE 3.11a. Equipotential lines of the disturbance potential field and free-surface elevation 
as obtained by present model. The flow is from shallow to deep water ( ). 1s >
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FIGURE 3.11b-c. - continuity b) and - continuity c) of the disturbance potential at the 
cut of the step (

0C 1C
0x = ), for upstream Froude number Fr1=0.6 and shoaling ratio . 
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FIGURE 3.12a. Equipotential lines of the velocity potential field and free-surface elevation as 
obtained by present model. The flow is from deep to shallow water ( 1s < ). 
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FIGURE 3.13b-c. - continuity b) and - continuity c) of the velocity potential at the cut 
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2.  Supercritical flows  ( 1Fr > )
The numerical calculations were performed for a step of variable height and of 

various Froude numbers. However, in order to illustrate the results obtained we first 
investigate in detail the situations when the upstream depth is 1m, and the step heights 

sh are 0.2m, and 0.4m, at upstream 2Fr = . 

The figure 3.14 shows, as one would expect according to theoretical investigation 
of the present linear model (cf. § 3.1.2), that in supercritical flow the level of the free 
surface rises monotonically as it approaches the step, the slope of the surface 
becoming more gradual, until far downstream of the step is asymptotically flat. The 
slope of the free surface as well as the variation of mean water level depend both upon 
step height and Froude number.   

Figure 3.14 also shows a comparison of the free surface profiles with the method 
developed by King & Bloor (1987). For small step ( 0.2sh m= ) the results showing 
that the slope of the free surface of the present linear solution is more steeper than the 
non-linear and linear solutions obtained by King & Bloor (1987). Also a small 
difference occurs between the far downstream levels and this deviation becoming 
larger when the present model compared with non-linear solution. 

As the step height is increased a distinct difference appears between the solutions 
as shown in figure 3.14. This is consistent with the considerations of the studied 
problem. As mentioned above in subcritical flow, the difference between the 
downstream  and upstream U uniform velocity must be small (cf. the 
discussion in § 3.1.2).  
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FIGURE 3.14. The free-surface elevation (a) of present model for 2Fr =  compared with non-
linear (b) and linear (c) solutions obtained by King & Bloor (1987), for two values of step 
height: 1) hs = 0.2, 2) hs = 0.4.  
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In figure 3.14a the variation of the rate of downstream to upstream velocity of the 
flow, against the shoaling ratio 2 1/s h h=  ( 1s < ) for various Froude numbers, is 

presented. Under the considerations of the present linear model i.e. (1)U u O
U
+

≈ , 

figure 3.14a shows that for a small region of the parameters values the linear solution 
is valid and this occurs for large Froude numbers. 
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FIGURE 3.14a. The dependence of the rate of downstream to upstream velocity upon the 
upstream Froude number Fr1 and upon the shoaling ratio 2 1/s h h= ,  (h2<h1) .  

On the contrary, if the flow is from shallow to deep water i.e. ,  figure 3.14b 
shows, as one would expect according to theoretical investigation (cf. § 3.1.2), that as 
the shoaling ratio  tends to its critical value  the critical conditions 
downstream are approached. 
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FIGURE 3.14b. The dependence of the rate of downstream to upstream velocity upon the 
upstream Froude number Fr1 and upon the shoaling ratio 2 1/s h h= ,  (h1<h2) .  
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FIGURE 3.15a. The dependence of blockage parameter C upon the upstream Froude number 
Fr1 and upon the shoaling ratio 2 1/s h h= ,  (h2<h1) .  

In figures 3.15a and 3.15b the variation of the blockage parameter C against the 
Froude number, for 1s <  and  respectively, is presented. One observes that for 

 the blockage parameter takes larger values than for
1s >

1s > 1s < . Comparing with 
subcritical flow the blockage parameter in supercritical flow takes negative values.  

The numerical solutions is obtained by retaining 51 evanescent modes ( ) 
in the representations of disturbance wave potential, which is enough for numerical 
converge. In order to examine on detail the effect of the number of evanescent modes 
to the solution of the problem

51N =

MP , we study the continuity of the potential field Φ  
( - continuity) and the continuity of the velocity field 0C ,xΦ  ( - continuity), at the 
junction of the step ( ).  

1C
0x =
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FIGURE 3.15b. The dependence of blockage parameter C upon the upstream Froude number 
Fr1 and upon the shoaling ratio 2 1/s h h= ,  (h1<h2) .  
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In figure 3.16 the - continuity and - continuity at the junction of the step are 
presented. The figure 3.16 shows that for very small step height, the convergence rate 
is rapidly. On contrary as the step height increases the rate of converge is slower, and 
a number of 40 evanescent modes at least is needed, such that the error to be 
minimized. A comparison of the order of the error between - continuity and - 
continuity, denotes that there is a difference of order

0C 1C

0C 1C
210− , see figure 3.16. Similarly, in 

figure 3.17 the effectiveness of - continuity and - continuity, for various Froude 
numbers and for fixed step height, are presented. 

0C 1C

In figure 3.18a the equipotential lines of the disturbance potential field ( , )x zϕ  
have been plotted, together with the calculated free-surface elevation ( )xη , as 
obtained by the present model. The flow is from deep to shallow water ( ), the 
step height is h

1s <
s = 0.2 and the upstream Froude number is 1 2Fr = . This figure shows, 

as one would expect, that the disturbance potential field becomes infinite at the 
singular point 2( , ) (0, )x z = −h . In figures 3.18.b-c the continuity of the disturbance 
potential field ϕ  ( - continuity) and the continuity of the disturbance velocity field 0C

,xϕ  ( - continuity), at the junction of the step (1C 0x = ) have been plotted. This figure 
is obtained by retaining 51 evanescent modes ( 51N = ). 

Similarly, in figure 3.19a the equipotential lines of the disturbance potential field 
( , )x zϕ  have been plotted, together with the calculated free-surface elevation ( )xη , as 

obtained by the present model. The flow is from shallow to deep water ( ), the 
upstream depth is h

1s >
1 = 0.8 and the upstream Froude number is . Also, the 

corresponding figures 3.19.b-c for the continuity are presented. 
1 2Fr =
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FIGURE 3.16. - continuity a) and - continuity b) vs. number of evanescent modes at the 
cut of the step ( ), for three values of step height: (a) h

0C 1C
0x = s = 0.1, (b) hs = 0.2, (c) hs = 0.4, 

at 2Fr = . 

In figure 3.20a the equipotential lines of the potential field ( , )x zΦ  have been 
plotted, together with the calculated free-surface elevation ( )xη , as obtained by the 
present model. The flow is from deep to shallow water ( 1s < ), the step height is        
hs = 0.4 and the upstream Froude number is 1 1.5Fr = . This figure shows that the 
equipotential lines intersect the step perpendicularly, as they ought. Also, the 
corresponding figures 3.20.b-c for the continuity are presented. 

Similarly, in figure 3.21a the equipotential lines of the potential field ( , )x zΦ  
have been plotted for the flow from shallow to deep water ( ), where the upstream 
depth is h

1s >
1 = 0.6 and the upstream Froude number is 1 2.4Fr = . 
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FIGURE 3.17. - continuity a) and - continuity b) vs. number of evanescent modes at the 
cut of the step (

0C 1C
0x = ), for three values of Froude number: (a) Fr = 1.4, (b) Fr = 1.7,                   

(c) Fr = 2, and for step height hs = 0.2. 
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FIGURE 3.18a. Equipotential lines of the disturbance potential field and free-surface elevation 
as obtained by present model. The flow is from deep to shallow water ( 1s < ). 
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FIGURE 3.18b-c. - continuity b) and - continuity c) of the disturbance potential at the 
cut of the step (

0C 1C
0x = ), for upstream Froude number Fr1=2 and shoaling ratio . 
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FIGURE 3.19a. Equipotential lines of the disturbance potential field and free-surface elevation 
as obtained by present model. The flow is from shallow to deep water ( ). 1s >
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FIGURE 3.19b-c. - continuity b) and - continuity c) of the disturbance potential at the 
cut of the step (

0C 1C
0x = ), for upstream Froude number Fr1=2 and shoaling ratio . 

Number of evanescent modes N = 51. 
1.25s =

 

0 0.5 1 1.5 2
-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0
C0 continuity at x=0   /no of evan. modes=51

0.5 1 1.5 2 2.5 3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

Fr1=2, Fr2=1.79

-6 -4 -2 0 2 4 6 8 10 12
-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0
C1 continuity at x=0   /no of evan. modes=51

 -57-



 
 
 
 
 
 
 
 
 
 

z (m) 
 
 
 
 
 
 
 
 
 
 
 

x (m) 
-3 -2 -1 0 1 2 3

FIGURE 3.20a. Equipotential lines of the velocity potential field and free-surface elevation as 
obtained by present model. The flow is from deep to shallow water ( 1s < ). 

 
 
 
         b)                                                                       c) 
 
 
 
 

z(m) 
                                                                   
 
 
 
 
 
 

                                       Φ                                                                   ,xΦ  
FIGURE 3.20b-c. - continuity b) and - continuity c) of the velocity potential at the cut 
of the step ( ), for upstream Froude number Fr
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0x = 1=1.5 and shoaling ratio . Number 

of evanescent modes N = 51. 
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FIGURE 3.21a. Equipotential lines of the velocity potential field and free-surface elevation as 
obtained by present model. The flow is from shallow to deep water ( ). 1s >
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FIGURE 3.21b-c. - continuity b) and - continuity c) of the velocity potential at the cut 
of the step ( ), for upstream Froude number Fr

0C 1C
0x = 1=2.4 and shoaling ratio . Number 

of evanescent modes N = 51. 
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3.2 Free-Surface flow over a finite step or trench. 

3.2.1 Differential formulation of the problem. 
The steady two-dimensional free-surface flow of a stream, of an inviscid 

incompressible and irrotational fluid, which is obstructed by finite step (or trench) on 
the bottom, is considered. The wave field is excited by an incident uniform flow with 
direction normal to the bottom contours, and velocity U. The studied free-surface flow 
consists of a water layer 3DD  bounded above by the free surface ,3F DD∂  and below by 
a rigid bottom ,3DDΠ∂ . Without loss of generality we introduce as obstruction the finite 
step. See figure 3.22.  

z

x

z = -h3
z = -h1

n2n
(1)
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(1)
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1

1
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∂

∂

∂

(2)
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(3)

DF∂
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∂
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z = -h2
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∂
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(3)

∂

n2

 
FIGURE 3.22. Domain decomposition and basic notation 

Before proceeding to the formulation of the problem, we shall introduce some 
geometrical notation. A Cartesian coordinate system is introduced, with its origin on 
the mean water level (at the upstream cut of the step), the z-axis pointing upwards and 
the y-axis being parallel to the bottom contours. See figure 3.22. 
The liquid domain 3DD  will be represented by 3DD D R= × , where  is the (two-
dimensional) intersection of 

D

3DD  by a vertical plane perpendicular to the bottom 
contours, and , is a copy of the real line: ( ,R = −∞ +∞)

( ) ( ){ }2
3 , , : , , ( ) 0 ,DD x y z x y R h x z= ∈ − < < ( ){ }, : , ( ) 0D x z x R h x z= ∈ − < < . The 

function , appearing in the above definitions, represents the local depth, measured 
from the mean water level.  

( )h x

1

2

3

,

( ) ,

,

h x a

h x h a x b

h x b

⎧ ≤
⎪

= < ≤⎨
⎪ >⎩

. 

The liquid domain 3DD  is decomposed in three subdomains  
defined us follows: 

( ) ( )
3 , 1, 2,i i

DD D R i= × = 3,
(1)
3DD is the constant-depth upstream subdomain characterized 

by , x a< (3)
3DD  is the constant-depth downstream subdomain characterized by , 

and 
x b>

(2)
3DD  is the variable bathymetry subdomain lying between (1)

3DD  and (3)
3DD . Without 

loss of generality, we assume that .  1 3h h h> > 2
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The decomposition is also applied to the boundaries 
and . The lines ,3F D FD D∂ = ∂ ×R R,3DD DΠ Π∂ = ∂ × FD∂  and DΠ∂  are decomposed in 

three pieces each, for example, , where belongs to the 
boundary of , and similarly for

(1) (2) (3)
F F FD D D D∂ = ∂ ∂ ∂∪ ∪ F

(1)
FD∂

(1)D DΠ∂ . Finally, we define the artificial vertical 
interfaces (12) (12)

,3I D ID D∂ = ∂ ×R  and (23) (23)
,3I D ID D R∂ = ∂ ×  and the vertical walls 

(1) (1)
,3B D BD D∂ = ∂ ×R  and (3) (3)

,3B D BD D∂ = ∂ ×R , which is the common vertical boundaries of 

subdomains (1)
3DD  and (2)

3DD , and (2)
3DD  and (3)

3DD , respectively. Clearly, and  
are vertical segments (between the bottom and the mean water level) at  
and , respectively. See figure 3.22. 

(12)
ID∂ (23)

ID∂
0x =

x a=

We consider that the motion arising from disturbances created by the obstruction 
of the uniform flow by the finite step, have the velocity potential  

                                 ( ), ( , ),x z Ux x zϕ+Φ =        ( ),x z D∈ . (1) 
Assuming that the disturbance velocity potential ( , )x zϕ  and the velocity of the 
stream are small enough, the linearized equations of the Neumann-Kelvin problem can 
be used (cf. §2.1). By the decomposition of the liquid domain , 
the studied problem should be formulated with the aid of the general representation of 
the disturbance velocity potential 

(1) (2) (3)D D D D= ∪ ∪

( , )x zϕ  in the semi-infinite strips  and , and 
in the finite subdomain with respect to the studied cases. 

(1)D (3)D
(2)D

Taking under consideration the decomposition of the total field in three 
regions , and the problem can be formulated us follows: (1)D (2)D (3)D

PROBLEM . Given the upstream velocity U, find the 
disturbance velocity potentials , and , satisfying the 
following system of equations, boundary and matching conditions: 

(1) (2) (3)( , , , )MM DP ϕ ϕ ϕ
(1) (1)Dϕ ∈ (2) (2)Dϕ ∈ (3) (3)Dϕ ∈

 

                             2 ( ) 0iϕ∇ =               ( )( , ) ix z D∈ ,        (2.1) 

                         ( ) ( )
2 0, ,i i

xx z
g

U
ϕ ϕ+ =         ( )( , ) i

Fx z D∈∂ ,             (2.2) 

                    ,                ( ), i
zϕ = 0 ( )( , ) ix z DΠ∈∂ ,        (2.3) 

                  
(1)

(1) xUn
n
ϕ

= −
∂
∂
G ,  (1)( , ) Bx z D∈∂ ,  

(3)

(3) xUn
n
ϕ

= −
∂
∂
G ,  (3)( , ) Bx z D∈∂ ,   (2.4a,b) 

                  (2) (1)ϕ ϕ= ,    
(2) (1)

(2) (1)n n
ϕ ϕ

= −
∂ ∂
∂ ∂
G G (12)( , ) Ix z D∈∂ , (2.5a,b) 

 (2) (3)ϕ ϕ= ,  
(2) (3)

(2) (3)n n
ϕ ϕ

= −
∂ ∂
∂ ∂
G G   (23)( , ) Ix z D∈∂ ,              (2.6a,b)         

where   is the unit normal vector to the boundary directed to the 
exterior of .  

( ) ( ) ( )( ,i i i
x zn n n=

G ) ( )iD∂
( )iD 1, 2,3i =
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In addition we require the following radiation conditions (cf. the discussion in §3.1.1 
and §3.1.2): 
                                        0ϕ →          as ,   (3a) x →−∞

                                        ϕ∇ < ∞       as ,   (3b) x →∞

 (3)
1A u− =          as ,   (3c) x →∞

We denote that the condition (3c) required such as the conversation of mass to be 
satisfied. In reference to §3.1.2  

2
1

(1 )U su
s Fr

−
=

−
,   where 3 1s h h= .    (4) 

However, appropriate condition (essential condition) must be imposed in the 
representation of disturbance potential (2)ϕ for the conversation of mass. In this case 
there is no indication that the result of Green theorem of §3.1.2 (eq.(4)) is valid. In the 
following section we will see that the result of  §3.1.2 is generalized. 
Hence, the general representations of the disturbance potentials in , and 

according to the above definitions, with respect to the studied cases, are: 

(1)D (2)D
(3)D

      
(a) ( ) (1)Dϕ∈

a1. Subcritical case ( ): 1 1Fr <

 (1) (1) (1) (1)

1
( , ) exp( ) ( )n n n

n
x z C k x Zϕ

∞

=

=∑ z ,     ,                (5a) (1)(( , ) )x z D∈

a2. Supercritical case ( ): 1 1Fr >

   (1) (1) (1) (1)

0

( , ) exp( ) ( )n n n
n

x z C k x Zϕ
∞

=

=∑ z ,      ,                   (5b)               (1)(( , ) )x z D∈

(b)  ( ) (2)Dϕ∈

b1. Subcritical case ( ): 2 1Fr <

        (2) (2) (2) (2) (2) (2) (2) (2)
1 1 0 0 0 0 0( , ) ( cos( ) sin( )) ( )x z A x B A k x B k x Z zϕ − −= + + + +   

                          ( )(2) (2) (2) (2) (2)

1

exp( ( )) exp( ) ( )n n n n n
n

A k x a B k x Z z
∞

=

+ − + −∑ ,  ,(6a)         (2)(( , ) )x z D∈

b2. Supercritical case ( ): 2 1Fr >

   ( )(2) (2) (2) (2) (2) (2) (2) (2)
1 1

0
( , ) exp( ( )) exp( ) ( )n n n n n

n
x z A x B A k x a B k x Z zϕ

∞

− −
=

= + + − + −∑ , 

                                                                                                               ,   (6b) (2)(( , ) )x z D∈
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(c)  ( ) (3)Dϕ∈

c1. Subcritical case ( ): 3 1Fr <

 (3) (3) (3) (3) (3) (3) (3) (3)
1 1 0 0 0 0 0( , ) ( cos( ) sin( )) ( )x z A x B A k x B k x Z zϕ − −= + + + +

∞

=

+ − −∑ (3)(( , ) )x z D∈

  

                                         ,   ,                (7a) (3) (3) (3)

1

exp( ( )) ( )n n n
n

C k x a Z z

c2. Supercritical case ( ): 3 1Fr >

   (3) (3) (3) (3) (3) (3)
1 1

0
( , ) exp( ( )) ( )n n n

n
x z A x B C k x b Z zϕ

∞

− −
=

= + + − −∑ ,  ,    (7b) (3)(( , ) )x z D∈

 
where , (2) (2) (3) (3)

1 1 1, , , 1A B A B− − − − and ,( )i
nC fn N∈ or tn N∈  , 1, 2,3i = , are real constants. 

The sets of index fN ,  are defined as follows: tN

− Subrcritical case ( ):1Fr < { }: 1, 2,...fN n n= =     

− Supercritical case ( ):1Fr > { }: 0,1, 2,...tN n n= =   

Given the upstream velocity U, and imposing the downstream radiation condition 
and the essential condition in (6) for conservation of mass, the potentials (1)ϕ ,  (2)ϕ and 

(3)ϕ  are uniquely determined by the means of the real 
coefficients{ }(1)

nC , { }(2) (2) (3)
1 1, ,nB C B− −  and { }(3)

nC fn N∈ or tn N∈ , respectively. 

 

3.2.2 Essential condition on the representation of disturbance potential in the 
finite subdomain using the conversation of mass in integral form. 

As mentioned above an essential condition must be imposed in the general 
representation of for the conservation of mass. Let us consider the problem 
illustrated in Fig. 3.23 of a fluid occupies the region  with boundary 

(2)Dϕ∈
D D∂  

where . We denote that the boundary segment 
 is an artificial boundary chosen to be far upstream, and the boundary segment 
 is an artificial boundary chosen at

FD D D D D D− Π∞∂ = ∂ ∪∂ ∪∂ ∪∂ ∪∂B I

D∞∂

ID∂ Ix x= . 

Without loss of generality we assume that the flow is subcritical in the region . 
We recall that the velocity potential in domain  is 

D
D

( ), ( , )x z Ux x zϕΦ = +        ( ),x z D∈ ,   (8)  

where, ( , )x zϕ is the disturbance velocity potential. 
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FIGURE 3.23. The domain of definition D of the velocity potential Φ 

 
Let us consider the velocity potentialΦ , which is finite, singled valued and 

differentiable at all points of the connected region  bounded by the closed 
surface

D
D∂ . Hence, the following form of Green’s theorem may be obtained for the 

above region , i.e. Lamb (1932, p.43): D

                  2

D D
dS dV

n∂

∂Φ
= ∇ Φ

∂∫ ∫G ,                          (9)  

where  is the unit normal vector to the boundary ( , )x zn n n=
G D∂  directed to the 

exterior of . D
Based on the fact that the function Φ satisfies the Laplace equation in region , the 
Green’s theorem takes the following form: 

( )iD

                             0
D

dS
n∂

∂Φ
=

∂∫ G ,                                           (10) 

which simply express the conservation of mass in integral form for steady irrotational 
motion of an ideal fluid.  

Applying the equation (10) in region , with the aid of Eq.(8) we obtain D

                       ( )x
D D

dS U n dS
n n

0ϕ

∂ ∂

∂Φ ∂
= ⋅ + =

∂ ∂∫ ∫G G .        (11)               

The disturbance velocity potential ϕ satisfies the boundary conditions of the 
problem MP ; therefore, the above integral gives 

2

0

, ( , ) ( , ) ( , )
F B

xx x n x x

IDD D D D

U dS Un dS U dS U dS
g
ϕ ϕ ϕ ϕ

−∞Π ∂∂ ∂ ∂ ∂

− + + − + + +∫ ∫ ∫ ∫
∪����	���


0= .  (12) 
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As , one can easily verify from Eq.(5a) that  , then Eq.(12) 

obtains

x →−∞ ,xϕ → 0

2

2

1

, ,
U

xx x

IDh hx x

U dx U dz U dz dz
g

ϕ ϕ
∂− −=

− − + +∫ ∫ ∫ ∫
0 0

0
Ix x=

= .  (13)  

By differentiation of eq.(6a), for Ix x= we obtain: 
(2) (2) (2) (2) (2) (2) (2) (2)

1 0 0 0 0 0 0, ( , ) ( sin( ) cos( )) ( )I I
x

Ix z A k A k x B k x Z zϕ −= + − + +                                                             

                             . (14) ( )(2) (2) (2) (2) (2) (2)

1

exp( ( )) exp( ) ( )I I
n n n n n n

n

k A k x a B k x Z z
∞

=

+ − − −∑

Hence, eq.(13) yields  

2

2 1( , , ) ( ) , 0x x xI U

ID
x x x x

U U h h dz
g

ϕ ϕ ϕ
∂

= =
− + − +− ∫ =    (using eq. 14), ⇒

(
2

(2) (2) (2) (2) (2) (2)
1 0 0 0 0 0( sin( ) cos( ))I IU A k A k x B k x

g −− + − +

( )(2) (2) (2) (2) (2)

+

− +2 1
1

exp( ( )) exp( ) ( )I I
n n n n n

n

k A k x a B k x U h h
∞

=

⎞+ − − − +⎟
⎠

∑  

(
2

(2) (2) (2) (2) (2) (2)
1 2 0 0 0 0 0( sin( ) cos( ))I IUA h k A k x B k x

g−+ + − + +

=

 

( )(2) (2) (2) (2) (2)

1

exp( ( )) exp( ) 0I I
n n n n n

n

k A k x a B k x
∞

=

⎞+ − − − ⎟
⎠

∑ ,  (15) 

where 
2

0 2

( )n
h

UZ z dz
g−

=∫  (obtained from dispersion relation (eq. (23a) §2.2 ), has been 

used. After little algebra the relation (15) yields (defining (2)
1A ν− ≡ ): 

2
1 2

2 2 1 2

2

( ) ( ) 0 h hUh U h h U
Ug h
g

ν ν −
− + − = ⇒ =

−
 (16a) 

Defining the shoaling ratio , which is taken the values 2 /s h h= 1 1s <  if the flow is 
from deep to shallow water and  if the flow is from shallow to deep water, and 
denoting that

1s >

1 /Fr U gh= 1 , the above relation takes the form 

                                                     2
1

(1 )( ; ) U ss U
s Fr

ν −
=

−
.                (16b) 

According to the above analysis, the relation (16) is a general result, which is 
independent from the position of the artificial boundary ID∂ .    
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3.2.3 Weak formulation of matching -B.V.P. – Composition of the solution 
          matrix. 
 

In this subsection we proceed to derivation of the linear system, which arises 
from the matching boundary value problem MMP . We recall that the matching 
conditions are:  
                                  (1) (2)ϕ ϕ=          2 0, 0h z x− < < = ,                     (17a) 

                              

(2)
(1)

2(2)
(1)

1 2

, 0,

, ,x

h z x
x

x
U n h z h x

ϕ
ϕ

⎧
0

0

− < < =⎪= ∂⎨∂ ⎪− ⋅ − < < − =⎩

∂
∂   , (17b) 

                                  (2) (3)ϕ ϕ=          2 0,h z x a− < < = ,                     (17c) 

                              

(2)
(3)

2(2)
(3)

3 2

, 0,

, ,x

h z x a
x

x
U n h z h x a

ϕ
ϕ

⎧
− < < =⎪= ∂⎨∂ ⎪− ⋅ − < < − =⎩

∂
∂   , (17d) 

 

where, ( ) ( , )i x zϕ 1, 2,3i =  is the disturbance velocity potential, given by the 
expansions (5), (6), and (7) . Let us define the functions 1( )f z  and 2 ( )f z  to be equal 
with the right side of equations (17b), and (17d) respectively, so the above condition 
may be rewrite to the following form   
                                  (1) (2) 0ϕ ϕ− =          2 0, 0h z x− < < = ,                      (17΄a) 

                               
(1)

1(1) ( ) 0f z
x
ϕ

− =
∂
∂     1 0, 0h z x− < < = .  (17΄b) 

                                  (2) (3) 0ϕ ϕ− =           2 0,h z x a− < < = ,                      (17΄c) 

                               
(3)

2(3) ( ) 0f z
x
ϕ

− =
∂
∂        3 0,h z x a− < < = .  (17΄d) 

According to the theorem of  § 2.2 the set of eigenfunctions (1) ( )nZ z , (2) ( )nZ z  and 
(3) ( )nZ z  constitute a Riesz basis on , and , respectively. 

Using this definition, the above system of equations is equivalent on weak sense to the 
following: 

2
1( ,0L h− ) ) )2

2( ,0L h− 2
3( ,0L h−

                                  (1) (2) (2), ( )mZ zϕ ϕ− 0 0x= ,     =        m∀                       (18a) 

                               
(1)

(1)
1(1) ( ), ( ) 0mf z Z z

x
ϕ

− =
∂
∂ ,   0x =       m∀     (18b) 
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                                (2) (3) (2), ( )mZ zϕ ϕ− 0 x a= ,     =        m∀                       (18c) 

                               
(3)

(3)
2(3) ( ), ( ) 0mf z Z z

x
ϕ

− =
∂
∂ ,   x a=       m∀     (18d) 

where ,⋅ ⋅  is the  inner product . 2L −

Without loss of generality, we introduce the derivation of linear system, which 
constitutes the above equations, in the case where the flow is subcritical in the 
region . Similar procedure is following in case of supercritical flow. We denote here, 
that in the expansion of 

D
(1)ϕ (Eq. (5a)), the terms that imply a disturbance on upstream 

region may be obtained, such that the number of equations to be equal with the 
number of unknowns. After the composition of the system’s matrix, the radiation 
conditions shall be imposed. Truncating the series of expansions (5), (6) and (7) to a 
finite number of terms (modes), and denoting by N the number of evanescent modes 
retained, with above definitions we have: 
 

2

0
(1) (2) (2)) ( ) 0( m

h
Z z dzϕ ϕ

−

− ⋅ =∫ ⇔

2h
−

=

N

 

2 2

0 0 0
(1) (1) (2) (1) (1) (2) (2) (2)
0 0 1

1

( ) ( ) ( ) ( ) ( )
N

m n n m m
nh h

A Z z Z z dz C Z z Z z dz B Z z dz−
=− − −

⇔ + −∑∫ ∫ ∫                              

, 
2 2

0 0
(2) (2) (2) (2) (2) (2) (2) (2)
0 0

1

( ) ( ) ( exp( ) ) ( ) ( ) 0
N

m n n n n m
nh h

A Z z Z z dz A k a B Z z Z z dz
=− −

− − − +∑∫ ∫

 1,0,1,..., , 1m N= − + .  (19a) 
2

2 1

0
(1) (2) (1) (1) (1)) ( ) ) ( ) 0( , ( ,x x m x m

h

h h
Z z dz U Z z dzϕ ϕ ϕ

−

− −

− ⋅ + + ⋅ =∫ ∫ ⇔  

2

2

1 1

0
(1) (1) (2) (1) (1)

0

( ) ( ) ( ), ,x m x m m

h

h h h
Z z dz Z z dz U Z z dzϕ ϕ

−

− − −

⇔ − = −∫ ∫ ∫ ⇔

h−
−∫

=

z N N

 

21 1

0 0
(1) (1) (1) (1) (1) (1) (1) (1) (2) (1)
0 0 0 1

1

0

( ) ( ) ( ) ( ) ( )
N

m n n n m m
nh h

k B Z z Z z dz k C Z z Z z dz A Z z dz−
=− −

⇔ + −∑∫ ∫   

 
2 2

0
(2) (2) (2) (1) (2) (2) (2) (2) (2) (1)
0 0 0

1

0

( ) ( ) ( exp( ) ) ( ) ( )
N

m n n n n n m
nh h

k B Z z Z z dz k A k a B Z z Z z dz
=− −

− − − −∑∫ ∫

                                   , 
2

1

(1) ( )m

h

h
U Z z d

−

−

= − ∫ 1,0,1,..., ,m = − .  (19b) 
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2

0
(2) (3) (2)) ( ) 0( m

h
Z z dzϕ ϕ

−

− ⋅ =∫ ⇔

+

N

 

2 2 2

0 0 0
(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)
1 1 0 0 0 0 0( ) ( ) ( cos( ) sin( )) ( ) ( )m m m

h h h
A a Z z dz B Z z dz A k a B k a Z z Z z dz− −

− − −

⇔ + + +∫ ∫ ∫

2 2 2

0 0 0
(2) (2) (2) (2) (2) (3) (2) (3) (2)

1 1
1

( exp( )) ( ) ( ) ( ) ( )
N

n n n n m m m
n h h h

A B k a Z z Z z dz A a Z z dz B Z z dz− −
= − − −

+ + − − − −∑ ∫ ∫ ∫

2 2

0 0
(3) (3) (3) (3) (3) (2) (3) (3) (2)
0 0 0 0 0

1

( cos( ) sin( )) ( ) ( ) ( ) ( ) 0
N

m n n m
nh h

A k a B k a Z z Z z dz C Z z Z z dz
=− −

− + − =∑∫ ∫ , 

 1,0,1,...,m = − .  (20a) 

2

2 3

0
(2) (3) (3) (3) (3)) ( ) ) ( ) 0( , ( ,x x m x m

h

h h
Z z dz U Z z dzϕ ϕ ϕ

−

− −

− ⋅ − + ⋅ =∫ ∫ ⇔  

2

2 3 3

0
(2) (3) (3) (3) (3)

0

( ) ( ) ( ), ,x m x m m

h

h h h
Z z dz Z z dz U Z z dzϕ ϕ

−

− − −

⇔ − =∫ ∫ ∫ ⇔  

2 2

0
(2) (3) (2) (2) (2) (2) (2) (2) (3)
1 0 0 0 0 0 0

0

( ) ( sin( ) cos( )) ( ) ( )m m
h h

A Z z dz k A k a B k a Z z Z z dz−
− −

⇔ + − +∫ ∫ +

−

=

N

   

2 3

0
(2) (2) (2) (2) (2) (3) (3) (3)

1
1

0

( exp( )) ( ) ( ) ( )
N

n n n n n m m
n h h

k A B k a Z z Z z dz A Z z dz−
= − −

+ − − −∑ ∫ ∫  

3 3

0 0
(3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3)
0 0 0 0 0 0

1

( sin( ) cos( )) ( ) ( ) ( ) ( )
N

m n n n m
nh h

k A k a B k a Z z Z z dz k C Z z Z z dz
=− −

− − + +∑∫ ∫
 

                                   , 
2

3

(3) ( )m

h

h
U Z z dz

−

−

= ∫ 1,0,1,..., , 1m N= − + .  (20b) 

 
The number of the unknown coefficients of expansions is # 2(2 5)N + , and the total 
number of equations from coupling the equations (19) and (20) is .  # 2(2 5)N +
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3.2.4 Numerical results and discussion. 
 

In this paragraph a detailed presentation of the numerical results obtained, 
according to the present method. The numerical calculations were performed for a 
finite step (or trenche) of variable height and for a wide range of upstream Froude 
numbers when the flow is subcritical or supercritical.  

The physical investigation of the influence of the size of obstruction and of 
Froude number – the physical parameters of the problem – to the numerical solutions 
of the problem is introduced, in order to define the range of its values for which the 
linear solution is valid. The numerical accuracy of the problem is interpreted to 
satisfaction of the matching conditions at the artificial interfaces, i.e. the continuity of 
the pressure field and the continuity of the velocity field. This is concerned with the 
appropriate number of evanescent modes N, such that the week solution of the 
problem MMP  to converge to the exact solution in the 2L − sense. 

1.  Subcritical flows ( 1Fr )<  
Numerical solutions have been obtained for a wide range of the physical parameters. 
However, in order to illustrate the results obtained we first investigate in detail the 
situations when the depth is constant far upstream and far downstream and the flow 
obstructed by a finite step. The depth is 1m, and the finite step heights sh are 0.1m, 0.2 
m, 0.3m, at upstream . The length of the finite step is0.5Fr = 0.6m=A . 

The figures 3.23 shows, as one would expect, that the level of the free surface 
falls as it approaches the finite step, while downstream of the finite step a periodic 
steady wave motion is predicted. The amplitude of these waves depends upon both 
finite step height and Froude number whereas the wavelength depends only upon 
Froude number as shown in figure 3.23 (see also fig.3.24).  
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FIGURE 3.23. The free-surface elevation of present model for 0.5Fr = , for three values of 
finite step height: (a) hs = 0.1, (b) hs = 0.2, (c) hs = 0.3. The length of the finite step is 0.6 m 
and the location of its center is on x=0.3. 
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FIGURE 3.24. The free-surface elevation of present model for three values of Froude number: 
(a) , (b)0.5Fr = 0.6Fr = , (c) . The height and length of the finite step are 0.1m and 
0.6 m, respectively. The location of its center is on x=0.3. 

0.7Fr =

In figure 3.25 the variation of the blockage parameter C against the Froude number, 
for various heights of finite step is presented.    

 
 
 
 
 

                        C 
 
 
 
 
 
 
 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

hs=0.4

hs=0.3

hs=0.2

hs=0.1

 Froude number Fr 

FIGURE 3.25. The dependence of blockage parameter C upon the Froude number Fr and upon 
the height of the finite step sh .         

In figure 3.26a the equipotential lines of the disturbance potential field ( , )x zϕ  
have been plotted, together with the calculated free-surface elevation ( )xη , as 
obtained by the present model. The flow obstructed by a finite step of height hs = 0.3 
and length  at Froude number1m=A 0.5Fr = . This figure shows, as one would 
expect, that the disturbance potential field becomes infinite at the singular points 

2( , ) (0, )x z h= −  and 2( , ) ( , )x z a h= − .  
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In figures 3.26.b-c and 3.26.d-e the continuity of the disturbance potential field ϕ  

( - continuity) and the continuity of the disturbance velocity field 0C ,xϕ  ( - 
continuity), at 

1C
0x =  and , respectively, have been plotted. These figures are 

obtained by retaining 51 evanescent modes (
x a=

51N = ). 
In figure 3.27a the equipotential lines of the disturbance potential field ( , )x zϕ  

have been plotted, together with the calculated free-surface elevation ( )xη , as 
obtained by the present model. The flow obstructed by a trench of depth hs = 1.4 and 
length  at Froude number1m=A 0.6Fr = .  

In figures 3.28-3.29 the equipotential lines of the potential field ( , )x zϕ  have 
been plotted, together with the calculated free-surface elevation ( )xη , in case where 
the far depths is different.  
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FIGURE 3.26a. Equipotential lines of the disturbance potential field and free-surface elevation 
as obtained by present model. 
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                                       ϕ                                                                   ,xϕ  
FIGURE 3.26b-c. - continuity b) and - continuity c) of the disturbance potential 
at , for Froude number Fr=0.5. The height and length of the finite step are 0.3m and 1m, 
respectively.  Number of evanescent modes N = 51. 
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FIGURE 3.26d-e. - continuity d) and - continuity e) of the disturbance potential 
at , for Froude number Fr=0.5. The height and length of the finite step are 0.3m and 1m, 
respectively.  Number of evanescent modes N = 51. 
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FIGURE 3.27a. Equipotential lines of the disturbance potential field and free-surface 
elevation as obtained by present model, for Froude number Fr=0.6. The depth at the 
trench is 1.4m and its length is 1m. 
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FIGURE 3.27b-c. - continuity b) and - continuity c) of the disturbance potential 
at , for Froude number Fr

0C 1C
0x = 1=0.6. The depth at the trench is 1.4m and its length is 1m. 
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FIGURE 3.27d-e. - continuity d) and - continuity e) of the disturbance potential 
at , for Froude number Fr=0.5. The depth at the trench is 1.4m and its length is 1m. 
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FIGURE 3.28. Equipotential lines of the disturbance potential field and free-surface elevation 
as obtained by present model, for upstream Froude number Fr=0.4. The depths are h1=1, 
h2=0.6, h3=0.8. 
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                                                                    x (m) 
FIGURE 3.29. Equipotential lines of the disturbance potential field and free-surface elevation 
as obtained by present model, for upstream Froude number Fr=0.5. The depths are h1=1, 
h2=1.5, h3=0.7. 
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2.  Supercritical flows ( 1  )Fr >
Numerical solutions have been obtained for a wide range of the physical parameters. 
However, in order to illustrate the results obtained we first investigate in detail the 
situations when the depth is constant far upstream and far downstream and the flow 
obstructed by a finite step. The depth is 1m, and the finite step heights sh are 0.1m, 0.2 
m, 0.3m, . The length of the finite step is2Fr = 1m=A . 

The figures 3.30 shows, as one would expect, that the level of the free surface 
rises monotonically as it approaches the finite step, while downstream of the finite 
decreases monotonically and becoming asymptotically flat.  
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FIGURE 3.30. The free-surface elevation of present model for 2Fr = , for three values of 
finite step height: (a) hs = 0.1, (b) hs = 0.2, (c) hs = 0.3. The length of the finite step is 1 m and 
the location of its center is on x=0.5. 

In figure 3.31 the variation of the blockage parameter C against the Froude 
number, for various heights of finite step is presented.    
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FIGURE 3.31. The dependence of blockage parameter C upon the Froude number Fr and upon 
the height of the finite step sh .   
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FIGURE 3.32. Equipotential lines of the disturbance potential field and free-surface elevation 
as obtained by present model, for Froude number Fr=2. The depths are h1=1, h2=0.5, h3=1. 
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FIGURE 3.32. Equipotential lines of the disturbance potential field and free-surface elevation 
as obtained by present model, for Froude number Fr=2. The depths are h1=1, h2=1.5, h3=1. 
      

-1.5

-1

-0.5

0

5

1

0.

5

Fr1=2, Fr2=1.633, Fr3=2

 -77-



 

 

 
 
 
 
 
 

Chapter Four 
Steady Free-Surface Flows over an arbitrary 

topography  
in the presence of submerged bodies  
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4. Steady Free-Surface flows over an arbitrary topography in the  

presence of submerged bodies. 
4.1 Differential formulation of the problem. 

The steady two-dimensional free-surface flow of a stream, of an inviscid 
incompressible and irrotational fluid, which is obstructed by variable topography on 
the bottom with the presence of submerged body, is considered. The wave field is 
excited by an incident uniform flow with direction normal to the bottom contours, and 
velocity U. The studied free-surface flow consists of a water layer 3DD  bounded 
above by the free surface  and below by a rigid bottom,3F DD∂ ,3DDΠ∂ . It is assumed 
that the bottom slope exhibits an arbitrary one-dimensional variation in a subdomain 
of finite length, i.e. the bathymetry is characterized by parallel, straight bottom 
contours lying between two regions of constant but different depth, (region of 
incidence) and  (region of transmission); see figure 4.1. 

1h h=

3h h=
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z = -h3

z = -h1
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∂

∂
∂
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D(3)
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∂
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U
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FIGURE 4.1. Domain decomposition and basic notation 

 
Before proceeding to the formulation of the problem, we shall introduce some 

geometrical notation. A Cartesian coordinate system is introduced, with its origin on 
the mean water level (in the variable bathymetry region), the z-axis pointing upwards 
and the y-axis being parallel to the bottom contours. See figure 4.1.  
The liquid domain 3DD  will be represented by 3DD D R= × , where  is the (two-
dimensional) intersection of 

D

3DD  by a vertical plane perpendicular to the bottom 
contours, and , is a copy of the real line: ( ,R = −∞ +∞)

( ) ( ){ }2
3 , , : , , ( ) 0 ,DD x y z x y R h x z= ∈ − < < ( ){ }, : , ( ) 0D x z x R h x z= ∈ − < < . The 

function , appearing in the above definitions, represents the local depth, measured 
from the mean water level. It is considered to be a twice continuously differentiable 
function defined on the real axis

( )h x

R , such that  

 
1

2

3

,

( ) ( ),

,

h x a

h x h x a x b

h x b

⎧ ≤
⎪

= < ≤⎨
⎪ >⎩

. (1) 
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The liquid domain 3DD  is decomposed in three subdomains  
defined us follows: 

( ) ( )
3 , 1, 2,i i

DD D R i= × = 3,
(1)
3DD is the constant-depth upstream subdomain characterized 

by , x a< (3)
3DD  is the constant-depth downstream subdomain characterized by , 

and 
x b>

(2)
3DD  is the variable bathymetry subdomain lying between (1)

3DD  and (3)
3DD . Without 

loss of generality, we assume that . The decomposition is also applied to the 
boundaries and

1h h> 3

R R,3F D FD D∂ = ∂ × ,3DD DΠ Π∂ = ∂ × . The lines FD∂  and  are 

decomposed in three pieces each, for example, , where 
belongs to the boundary of , and similarly for

DΠ∂
(1) (2) (3)

F F FD D D D∂ = ∂ ∂ ∂∪ ∪ F
(1)
FD∂ (1)D DΠ∂ . Finally, we define the 

artificial vertical interfaces (12) (12)
,3I D ID D∂ = ∂ ×R  and (23) (23)

,3I D ID D R∂ = ∂ × , which is the 
common vertical boundaries of subdomains (1)

3DD  and (2)
3DD , and (2)

3DD  and (3)
3DD , 

respectively. Clearly, and  are vertical segments (between the bottom and 
the mean water level) at  and

(12)
ID∂ (23)

ID∂
x a= x b= , respectively. See figure 4.1. 

We consider that the motion arising from disturbances created by the obstruction 
of the uniform flow by the variable bathymetry, have the velocity potential  

                                 ( ), ( , ),x z Ux x zϕ+Φ =        ( ),x z D∈ . (2) 
Assuming that the disturbance velocity potential ( , )x zϕ  and the velocity of the 
stream are small enough, the linearized equations of the Neumann-Kelvin problem can 
be used (cf. §2.1). By the decomposition of the liquid domain , 
the studied problem should be formulated with the aid of the general representation of 
the disturbance velocity potential 

(1) (2) (3)D D D D= ∪ ∪

( , )x zϕ  in the semi-infinite strips  and  (see 
e.g. § 3.1.1), with respect to the studied cases:  

(1)D (3)D

(a) Upstream ( ) (1)Dϕ∈

a1. Subcritical case ( ): 1 1Fr <

 (1) (1) (1) (1)

1

( , ) exp( ( )) ( )n n n
n

x z C k x a Zϕ
∞

=

= −∑ z ,     ,                (3a) (1)(( , ) )x z D∈

a2. Supercritical case ( ): 1 1Fr >

   (1) (1) (1) (1)

0

( , ) exp( ( )) ( )n n n
n

x z C k x a Zϕ
∞

=

= −∑ z ,      ,                  (3b)               (1)(( , ) )x z D∈

(b) Downstream ( ) (3)Dϕ∈

b1. Subcritical case ( ): 3 1Fr <

 (3) (3) (3) (3) (3) (3) (3) (3)
1 1 0 0 0 0 0( , ) ( cos( ) sin( )) ( )x z A x B A k x B k x Z zϕ − −= + + + +

∞

=

+ − −∑ (3), ) )x z D∈

  

                                         ,   (( ,                (4a) (3) (3) (3)

1
exp( ( )) ( )n n n

n
C k x b Z z
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b2. Supercritical case ( ): 3 1Fr >

   (3) (3) (3) (3) (3) (3)
1 1

0
( , ) exp( ( )) ( )n n n

n
x z A x B C k x b Z zϕ

∞

− −
=

= + + − −∑ ,   ,   (4b) (3)(( , ) )x z D∈

where (3)
1A− , (3)

1B−  , (3) (3)
0 0,A B  and ,( )i

nC fn N∈ or tn N∈  , 1,3i = , are real constants. 

The sets of index fN ,  are defined as follows: tN

− Subrcritical case ( ):1Fr < { }: 1, 2,...fN n n= =     

− Supercritical case ( ):1Fr > { }: 0,1, 2,...tN n n= =   

In the expansions (3) and (4) the sets of numbers  
{ } { }(1) , 0n fk n N∈ ∩ , { } { }(3) (3)

0 , , 0n fk k n N∈ ∩ , { } { }( ) , 0 1,3ii
n tk n N∈ ∩ = , and the sets 

of vertical functions 
{ } { }(1) ( ), 1n fZ z n N∈ ∩ , { } { }(3) (3)

0 ( ), ( ), 1n fZ z Z z n N∈ ∩  , { } { }( ) ( ), 1i
n tZ z n N∈ ∩  

are the eigenvalues and the corresponding eigenfunctions of the vertical 
eigenvalue problems ,

1,3i =
( ,0)iVE h− 1,3i =  obtained by separation of variables in the half 

strips  and  (cf. § 2.2).  The eigenvalues are given as the roots of the relations  (1)D (3)D

              ( ) ( )
2

1 tan( )i i
n i n i

i

k h k h
Fr

= tN   (n∈ or fn N∈ , 1,3i = ),                (5a) 

             (3) (3)
0 2 0 22

3

1 tanh( )k h k h
Fr

= ,   where  i
i

UFr
gh

=   1,3i =  , 

and the eigenfunctions are given by 
 

( )(3)
0 2(3)

0 (3)
0 2

cosh ( )
( )

cosh( )
k z h

Z z
k h

+
= ,  

( )( )
( )

( )

cos ( )
( )

cos( )

i
n ii

n i
n i

k z h
Z z

k h
+

= ,  ( tn N∈ or fn N∈ , ).  1, 2i =

                                                                                                                      (5b) 

The correctness (completeness) of the expansions (3) and (4) follows by the 
theorem, which is introduced in § 2.2.  

We remark that in the general representations of disturbance potential (eq. (4)), 
the coefficient 1B−  represents a part of the potential difference between far upstream 
and downstream, due to the fluid acceleration and deceleration by the obstruction, and 
is essentially the so-called blockage parameter which is discussed by Newman (1969) 
in connection with channel flow. Without loss of generality we define as essential 
condition upstream that , i.e. the radiation condition upstream is  (1)

1 0B− =

                                        ( , ) 0x zϕ →  as . (6a) x →−∞

and the radiation condition downstream is 

                                          ϕ∇ < ∞     as x →+∞ . (6b) 
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Given the upstream velocity U, the half strip potentials (1)ϕ and (3)ϕ  are uniquely 
determined by the means of the real coefficients, { }(1)

nC tn N∈  or fn N∈ , 

and (3)
1A− , (3)

1B−  , (3) (3)
0 0,A B  , { }(3)

nC fn N∈ or { }(3)
nC tn N∈ , respectively; see (3) and (4). 

Bearing this in mind, we shall occasionally use the notation: 

{ }(1) (1) (1)( , ; )n n N
x z Cϕ ϕ

∈
= ,  { }(3) (3) (3) (3) (3)

1 1( , ; , , )n n N
x z A B Cϕ ϕ − − ∈

=  

where, the set of index  is defined with respect to the studied cases as follows:  N

{0} fN N= ∩ if  and  if .  1Fr < tN N= 1Fr >

By exploiting the representations (3) and (4), of disturbance velocity potential the 
problem can be formulated as a transmission boundary-value problem in the bounded 
domain , as follows: (2)D

PROBLEM . Given the upstream velocity U, and the 
representations (3) and (4) of the disturbance velocity potential in the semi-infinite 
strips and , find the coefficients 

(2) (2) (3) (3) ( )
1 1( , , , ,{ }i

nT D A B CP ϕ − − ∈ )n N

(1)D (3)D { }(1)
n n N

C
∈

 and (3)
1A− , (3)

1B−  , { }(3)
n n N

C
∈

 , and the 

function (2) ( , )x zϕ , defined in , satisfying the following system of equations, 
boundary and matching conditions: 

(2)D

 

                             2 (2) 0ϕ∇ =               (2)( , )x z D∈ ,        (7a) 

                         (2) (2)
2 0, ,xx z

g
U

ϕ ϕ+ =         (2)( , ) Fx z D∈∂ ,             (7b) 

 
(2)

(2) xUn
n
ϕ

= −
∂
∂
G ,  (2)( , ) Bx z D∈∂ ,   

(2)

(2) 0
n
ϕ

=
∂
∂
G ,  (2)( , )x z DΠ∈∂ ,          (7c,d) 

 (2) (1)ϕ ϕ= ,    
(2) (1)

(2) (1)n n
ϕ ϕ

= −
∂ ∂
∂ ∂
G G (12)( , ) Ix z D∈∂ ,   (7e,f ) 

 (2) (3)ϕ ϕ= ,  
(2) (3)

(2) (3)n n
ϕ ϕ

= −
∂ ∂
∂ ∂
G G   (23)( , ) Ix z D∈∂ ,                  (7g,h)    

       (2) (1)ϕ ϕ= ,    (2) (1), ,x xϕ ϕ=        ,     (7i,j)    ( , ) ( ,0)Ux z x=

 (2) (3)ϕ ϕ= ,    (2) (3), ,x xϕ ϕ=       ,  (7k,l)    ( , ) ( ,0)Dx z x=

where   is the unit normal vector to the boundary directed to the 
exterior of .  

( ) ( ) ( )( ,i i i
x zn n n=

G ) ( )iD∂
( )iD 1, 2,3i =
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4.2 Variational formulation of the problem. 

Consider the functional: 

F { } { }(2) (1) (3) (3) (3)
1 1, , ,( ,n nn N n N

C B CAϕ − −∈ ∈
) =  

 (2) (2)(2)
(2) 2 (2) 2 (2)1 1( ) ( )

2 2
,

F B
x xD D D

dV dS Un dSµϕ ϕ
∂ ∂

= ∇ − +∫ ∫ ∫ ϕ + 

 
(1)

(1)
(12)

(1)
(2) (1)

(1)

({ } )
({ }

1( ))
2

n
n

I

n N
n ND

C
C dS

n
ϕϕ ϕ ∈

∈∂
+ −

∂
∂

∫ G +  

 
(3) (3) (3)

(3) (3) (3) 1 1
1 1(23)

(3)
(2) (3)

(3)

( , ,{ } )
( , ,{ } )

1( )
2

n
n

I

n N
n ND

A B C
A B C dS

n
ϕϕ ϕ − −

− −
∈

∈∂
+ −

∂
∂

∫ G +  

 (1) (2) (1) (2) (3) (3)

( , ) ( ,0) ( , ) ( ,0)

1 1( ) , ( ) ,
2 2U D

x x
x z x x z x

µ ϕ ϕ ϕ µ ϕ ϕ ϕ
= =

⎡ ⎤ ⎡ ⎤+ − + −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
,  (8) 

where 2U gµ = . 

The Variational formulation of the problem  is now 
stated as follows: 

(2) (2) (3) (3) ( )
1 1( , , , ,{ }i

nT nD A B CP ϕ − − ∈ )N

 
THEOREM 1 [The Variational principle]. The function (2) ( , )x zϕ , (2)( , )x z D∈  and 
the coefficients { }(1)

nC  and (3) (3)
1 1,A B− − ,{ }(3)

nC  , ( n N∈ ) constitute a solution of the 

problem  if and only if they render the functional 
F , equation (8), stationary, i.e. 

(2) (2) (3) (3) ( )
1 1( , , , ,{ }i

nT D A B CP ϕ − − ∈ )n N

  δF { } { }(2) (1) (3) (3) (3)
1 1, , ,( ,n nn N n N

C A B Cϕ − −∈ ∈
) = 0. (9) 

For the proof of the above theorem the following lemmas will be used: 

LEMMA 1 Consider the functions ( , )x zϕ ,  which are the solutions of the 
Neumann-Kelvin problem in the semi-infinite upstream 
region

( , )g x z

( ){ }(1)
1, : , 0Ux z x x h zD −∞ < ≤ − < <= . These functions satisfy the following 

relation: 

 (12) ,0)( , ) (
( ) ( , ), | U

I
n n x xD x z x

g dS gg gϕ µ ϕϕ ϕ
∂ =

− ∂ = −∂∫ ,  (10) 

where 2U gµ = . 

Proof. The solutions ( , )x zϕ ,  both satisfy the same boundary conditions and 
Laplace’s equation throughout the fluid region (cf. problem

( , )g x z
(1)D MP , §3.1.1), see 

figure 4.2a. Hence, applying the Green’s formula we are obtained: 
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FIGURE 4.2a 

 
(1) (1)( ) ( )n nD D

g g dV g g dSϕ ϕ ϕϕ
∂

∆ − ∆ = − ∂ ⇒∂∫ ∫       

 . (11a) (1) ( )n nD
g g dSϕϕ

∂
⇒ − ∂∂∫ 0=

The integrals at the boundaries (1)DΠ∂ and (1)D−∞∂  are vanished, and this follows from the 
bottom boundary condition and from the fact that asymptotically as   x →−∞

0ϕ∇ →  and 0g∇ → , respectively. Using this and that the functions φ , g are satisfy 
the free surface boundary condition, we have: 

(12) (1) (1)( ) ( ) ( , ,
I F F

n n n n xx xxD D D
g g dS g g dS g g dSϕ ϕ µϕ ϕ ϕ

∂ ∂ ∂
− ∂ = − − ∂ = − =∂ ∂∫ ∫ ∫ )ϕ  

,( , ) ( 0)
, , ), ( , )( , | U

Ux x

x x x x x
x

x z x
g g dS ggµ ϕ µ ϕϕ ϕ

=

=−∞
=

= − = −∫ .■ (11b)

  

LEMMA 2 Consider the functions ( , )x zϕ ,  which are the solutions of the 
Neumann-Kelvin problem in the semi-infinite downstream 
region

( , )g x z

( ){ }(3)
3, : , 0Dx z x h zD x < ∞ − < <= ≤ . These functions satisfy the following 

relation: 

 ,  (12) (23) ( , ) ( ,0)
( ) ( , ), | D

I
n n x xD x z x

g dS gg gϕ µ ϕϕ ϕ
∂ =

− ∂ = − −∂∫
where 2U gµ = . 

Proof. The solutions ( , )x zϕ ,  both satisfy the same boundary conditions and 
Laplace’s equation throughout the fluid region (cf. problem

( , )g x z
(1)D MP

0=

, §3.1.1), see 
figure 4.2b. So applying the Green’s formula we are obtained: 

(3) (3)( ) ( )n nD D
g g dV g g dSϕ ϕ ϕϕ

∂
∆ − ∆ = − ∂ ⇒∂∫ ∫       

 . (13a) (3) ( )n nD
g g dSϕϕ

∂
⇒ − ∂∂∫

The integral at the boundary  is vanished, as φ , g are satisfy the bottom b.c.  (3)DΠ∂
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FIGURE 4.2b 

Asymptotically, 

as
(3) (3) (3) (3) (3) (3)
1 1 0 1 0 0

(3) (3) (3) (3) (3) (3)
1 1 0 1 0 0

exp( ) , exp( )

exp( ) , exp( )
x

x

A x B A jk x A jk A jk x
x

g A x B B jk x g A jk B jk

ϕ ϕ− − −

− − −

⎧ → + + ⇒ → +⎪→∞⇒ ⎨
→ + + ⇒ → +⎪⎩ x

, 

hence the integral on the boundary (3)D∞∂  is vanished: 

(3) (3)
(3) (3)
0 0( ) ( )n nD D

g g dS jk g gjk dSϕ ϕϕ ϕ
∞ ∞∂ ∂

− ∂ = − =∂∫ ∫ 0

)ϕ

. 

According to the above definitions as well as that the functions φ, g are satisfy the free 
surface boundary condition, we have: 

(23) (3) (3)( ) ( ) ( , ,
I F F

n n n n xx xxD D D
g g dS g g dS g g dSϕ ϕ µϕ ϕ ϕ

∂ ∂ ∂
− ∂ = − − ∂ = − =∂ ∂∫ ∫ ∫  

( , ) ( ,0)
, , ), ( , )( , |

D
Dx x x x x

x x
x z x

g g dS ggµ ϕ µ ϕϕ ϕ
∞

=
=

= − = − −∫ .■ (13b) 

Proof  of  the Theorem 1.  
By calculating the first variation δF  of the functional we obtain:  

δF F = ( )ϕ δϕ+ −F ( )ϕ =  

 (2) (2)(2)
(2) (2) (2) (2) (2)( ),

F B
x xD D D

dV dS Un dS
x

δ µ δϕ δϕ ϕ ϕ ϕ
∂ ∂

∂
= ∇ ∇ − +

∂∫ ∫ ∫ +  

 (12) (12)

(1) (1)
(2) (2) (1)

(1) (1)) ( )(
I ID D

dS dS
n n

δϕ ϕδϕ ϕ ϕ
∂ ∂

+ + − ⋅
∂ ∂
∂ ∂

∫ ∫G G +  

 (23)

(3)
(1) (1) (1) (1) (2)

(3)( ,0)

1 , ,
2 U

I
x x x D

dS
n

µ δϕ δϕ ϕ ϕϕ δ
∂

⎡ ⎤+ − +⎣ ⎦ ∂
∂

∫ Gϕ +  

 (23)

(3)
(2) (3) (3) (3) (3) (3)

(3) ( ,0)

1) ( ) , ,
2

( D
I

x x xD
dS

n
δ µ δϕ δϕ ϕϕϕ ϕ ϕ

∂
⎡ ⎤+ − ⋅ − −⎣ ⎦∂

∂
∫ G +  

 (1) (1) (1) (1) (1) (2) (2) (1)

( ,0)

1 1 , ,
2 2

, ,
U

x x x x
x

µ δϕ ϕ δϕ δϕ ϕ δϕϕ ϕ⎡ ⎤+ + − −⎢⎣ ⎦
+⎥                                                                  

(3) (2) (2) (3) (3) (3) (3) (3)

( ,0)

1 1, ,
2 2

, ,
D

x x x x
x

µ δϕ ϕ δϕ δϕ ϕ δϕϕ ϕ⎡ ⎤+ + − −⎢ ⎥⎣ ⎦
⇔     
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δF  (2) (2)(2)
(2) (2) (2) (2) (2)( ),

F B
x xD D D

dV dS Un dS
x

δ µ δϕ δϕ ϕ ϕ ϕ
∂ ∂

∂
= ∇ ∇ − + +

∂∫ ∫ ∫  

 (12) (12) (23)

(1) (1) (3)
(2) (2) (1) (2)

(1) (1) (3)) ( )(
I I ID D D

dS dS dS
n n

δϕ ϕδϕ ϕ ϕ δϕ
∂ ∂ ∂

+ + − ⋅ +
∂ ∂
∂ ∂

∫ ∫ ∫G G n
ϕ
∂
∂
G  

 (23)

(3)
(2) (3) (1) (2) (1) (1) (2)

(3) ( ,0) ( ,0)
) ( ) ) ,( ( U

I
x xx xD

dS
n

δ µ ϕ δϕ µ ϕ δϕϕϕ ϕ ϕ
∂

⎡ ⎤ ⎡+ − ⋅ + − −⎣ ⎦ ⎣∂
∂

∫ G U⎤⎦

⎤⎦

                               

(2) (3) (3) (3) (2)

( ,0) ( ,0)
) ,( D Dx xx x

µ ϕ δϕ µ ϕ δϕϕ⎡ ⎤ ⎡+ − +⎣ ⎦ ⎣ . (14)   

Applying Green’s formula to the first integral and partial integration to the second 
integral of relation (14), the variational equation (9) takes the following form: 

δF  0= ⇔

( ) (2) (2)(2)

(2) (2)
2 (2) (2) (2) (2) (2)

(2) (2) ,
FD D D xxdV dS dS

n n
δ δ µϕ ϕϕ ϕ ϕ ϕ

Π∂ ∂

⎛ ⎞ ⎛ ⎞
− ∇ + + +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

∂ ∂
∫ ∫ ∫G G δϕ  

(2) (12) (12)

(2) (1) (2) (1)
(2) (2) (1) (2)

(2) (1) (2) (1)) ( )(
B I I

xD D D
Un dS dS dS

n n n
δ δϕ ϕ ϕϕ ϕ ϕ δ

∂ ∂ ∂

⎛ ⎞ ⎛ ⎞
+ + + − ⋅ + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠

∂ ∂ ∂
∫ ∫ ∫G G G n

ϕ ϕ
∂
∂
G

 

(23) (23)

(3) (2) (3)
(2) (3) (2) (1) (2) (1)

(3) (2) (3) ( ,0)
) ( ) ( ) ,( U

I I
x xD D

dS dS
n n n

δ µϕ ϕ ϕϕ ϕ δϕ
∂ ∂

⎛ ⎞
⎡ ⎤+ − ⋅ + + + −⎜ ⎟ ⎣ ⎦∂ ∂ ∂⎝ ⎠

∂ ∂ ∂
∫ ∫G G G ϕ ϕ δϕ

Dx
=

 

(2) (1) (2) (2) (3) (3) (3) (2) (2)

( ,0) ( ,0) ( ,0)
( , , ) ( ) , ( , , ) 0.U Dx x x x xx x

µ ϕ ϕ δϕ µ ϕ ϕ δϕ µ ϕ ϕ δϕ⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ − + − + −⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 

 (15) 

The two functions ( ) ( )i inϕ∂ ∂ , 1,3i = , appearing in (15), are considered to be 
represented by means of their series expansions obtained by differentiating (3) and (4). 
Consequently, the variations (1) (1)( )nδ ϕ∂ ∂ and (3) (3)( nδ ϕ∂ ∂ ) are, eventually, 
expressed in terms of the variations of the coefficients { }(1)

n n N
Cδ

∈
 

and { }(3) (3) (3)
1 1, , n n N

A B Cδ δ δ− − ∈
, respectively.  

The proof of the equivalence of the variational equation (15) and the problem 
 is completed by using standard arguments of 

calculus of variations (see e.g. Gelfant & Fomin 1963).  

(2) (2) (3) (3) ( )
1 1( , , , ,{ }i

nT D A B CP ϕ − − ∈ )n N

 
 
 
 

 -86-



 
In order for δF  for arbitrary variations of the potential field 0= (2)δϕ  in ,(2)D (2)δϕ  
on and of the coefficients of the upstream and downstream expansions , (2)D∂ (1)

nCδ
(3)
1 ,Aδ −

(3)
1 ,Bδ −

(3)
nCδ  ( n ), -in conjunction with the fact that the systems N∈

{ }( ) ( )i
n n N

Z z
∈

 are complete in the intervals ( ,0)ih− 1,3i = , respectively- it is both 

necessary and sufficient that Laplace’s equation to be satisfied as the Euler-Lagrange 
equation, while all the other boundary conditions of  the problem must be satisfied as 
natural conditions. Thus the stationary of F is equivalent to the problem .TP ■

Apart from its theoretical interest, the usefulness of the above variational 
principle hinges on the fact that it leaves us the freedom to choose any particular 
representation for the unknown potential (2)ϕ in . In this way, a variety of possible 
algorithms for the numerical solution of the problem can be constructed.   

(2)D

 
4.3 The Finite Element approximation. 

As the basis of the present numerical procedure, Galerkin’s method will be used. 
In order to use the standard Galerkin method in the finite subdomain , we will 
apply the Green’s theorem and partial integration to lower the continuity requirements 
for the disturbance potential

(2)D

(2)ϕ . Moreover, applying Green’s theorem and partial 
integration in the finite subdomain , the variational equation (15) takes the 
following form, which is the weak formulation of the problem (cf. §4.1). 

(2)D
TP

 (2) (2)(2)
(2) (2) (2) (2) (2)( ),

F B
x xD D D

dV dS Un dS
x

δ µ δϕ δϕ ϕ ϕ ϕ
∂ ∂

∂
∇ ∇ − +

∂∫ ∫ ∫ +  

 (12) (12) (23)

(1) (1) (3)
(2) (2) (1) (2)

(1) (1) (3)) ( )(
I I ID D D

dS dS dS
n n

δϕ ϕδϕ ϕ ϕ δϕ
∂ ∂ ∂

+ + − ⋅ +
∂ ∂
∂ ∂

∫ ∫ ∫G G n
ϕ
∂
∂
G  

 (23)

(3)
(2) (3) (1) (2) (1) (1) (2)

(3) ( ,0) ( ,0)
) ( ) ) ,( ( U

I
x xx xD

dS
n

δ µ ϕ δϕ µ ϕ δϕϕϕ ϕ ϕ
∂

⎡ ⎤ ⎡+ − ⋅ + − −⎣ ⎦ ⎣∂
∂

∫ G U⎤⎦

=

                               

(2) (3) (3) (3) (2)

( ,0) ( ,0)
) , 0( D Dx xx x

µ ϕ δϕ µ ϕ δϕϕ⎡ ⎤ ⎡ ⎤+ − +⎣ ⎦ ⎣ ⎦ . (16) 

 The Galerkin method is based on the following representation of the unknown 
potential (2)ϕ : 

 (2) (2)

1

ˆ( , ) ( , )j j
j

x zϕ ϕ β
+∞

=

=∑ x z                                      (17) 

where are linear independent functions satisfying  ( , ), 1,2,3,...j x z jβ =

{ }
1j j

span Vβ
+∞

=
= , and V the appropriate function space where the problem on (2)ϕ is 

posed. 
 

 -87-



4.3.1 The F.E.M. system of equations. 

Let us consider the variational equation (16), assuming that the unknown potential 
(2)ϕ is based on the above representation (17). The use of a different (equivalent) set 

of degrees of freedom of the system in the variational equation (16) leads to a 
different (equivalent) set of equations for the same problem . Without loss of 
generality the system of equations for the subcritical case (

TP
1)Fr <  is obtained. 

Hence, by assuming that all variation except (2) ( , )x zδϕ  in are 
kept zero, the variational equation (16) becomes: 

(2) (2) (2)
F BD D D∂ ∂∪ ∪

(2) (2)(2)
(2) (2) (2) (2) (2)( ),

F B
x xD D D

dV dS Un dS 0
x

δ µ δϕ δϕ ϕ ϕ ϕ
∂ ∂

∂
∇ ∇ − + =

∂∫ ∫ ∫ .  (18a) 

By introducing in the above equation the representation (17) for (2)ϕ , we obtain the 
following variational equation: 

(2) (2)(2)
(2) (2)

1 1

ˆ ˆ 0
F B

ji
i j i j x i

i j
D D D

dV dS Un dS
x x

ββδϕ ϕ β β µ β
+∞ +∞

= =
∂ ∂

⎧ ∂⎛ ⎞∂⎪ ⎪∇ ∇ − + =⎨ ⎬⎜ ⎟∂ ∂⎪ ⎪⎝ ⎠⎩ ⎭
∑ ∑ ∫ ∫ ∫

⎫
.  (18b) 

Since the variations (2) (2)

1

ˆ( , ) ( , )i i
i

x zδϕ δϕ β
+∞

=

= ∑ x z  is arbitrary, it follows that the 

equation (18b) holds, only if the term in brackets is zero, i.e. the variational equation is 
equivalent to the following infinite system of linear equations: 

(2) (2)(2)
(2)

1

ˆ , 1,2,3,.
F B

ji
j i j x i

j
D D D

dV dS Un dS i
x x

ββϕ β β µ β
+∞

=
∂ ∂

∂⎛ ⎞∂
∇ ∇ − = − =⎜ ⎟∂ ∂⎝ ⎠

∑ ∫ ∫ ∫ ..      (18c) 

We denote that the term appearing in the right-hand side of the above system of 
equations is the forcing of the system. 

We now continue by the implementation of the matching conditions on the 
upstream interface and on the point . We recall that these conditions are 
the following: 

(12)
ID∂ ( ,0)Ux

(12) (12)

(1) (1)
(2) (2) (1)

(1) (1), ) ((
I ID D

dS dS
n n

δϕ ϕδϕ ϕ ϕ
∂ ∂

− ⋅
∂ ∂
∂ ∂

∫ ∫G G ) ,

⎤⎦

 

(1) (2) (1) (1) (2)

( ,0) ( ,0)
) , ,( U Ux xx x

µ ϕ δϕ µ ϕ δϕϕ⎡ ⎤ ⎡− −⎣ ⎦ ⎣ . 

By assuming that all variation except (2)δϕ  in are kept zero the variational 
equation (16) becomes: 

(12)
ID∂

                                                 (12)

(1)
(2)

(1) 0
ID

dS
n
ϕδϕ

∂
=

∂
∂

∫ G .                                         (19a) 
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Expressing the normal derivative (1) (1)nϕ ∂∂ G of the disturbance potential by means of 
the termwise differentiated series (3a), and using the representation (17) for the 
potential (2)ϕ , equation (19a) takes the form: 

1

0(2) (1) (1) (1)

1 1

ˆ ( ) ( , ) 0U
i n n n ih

i n

k C Z z x z dzδϕ β
+∞ +∞

−
= =

⎧ ⎫ =⎨ ⎬
⎩ ⎭

∑ ∑ ∫ .   (19b) 

Since the variations (2)δϕ  is arbitrary, the equation (19b) is equivalent to the 
following infinite system of linear equations: 

1

0(1) (1) (1)

1

( ) ( , ) 0, 1, 2,3...U
n n n ih

n
k C Z z x z dz iβ

+∞

−
=

= =∑ ∫                                       (19c)                           

Similarly, by assuming that all variation except 
(1)

(1)( )
n

δ ϕ
∂
∂
G  in are kept zero the 

variational equation (16) becomes: 

(12)
ID∂

                                                 (12)

(1)
(2) (1)

(1)) ( )(
ID

dS
n

δ ϕϕ ϕ
∂

− ⋅
∂
∂

∫ G .                              (20a) 

By substituting equations (3a) and (17) into equation (20a), we obtain the equation: 

1 1

0 0(1) (1) (2) (1) (1) (1) (1) (1)

1 1 1

ˆ ( ) ( , ) ( ) ( ) 0U
m m j m j m n n mh h

m j n
C k Z z x z dz k C Z z Z z dzδ ϕ β

+∞ +∞ +∞

− −
= = =

⎧ ⎫
− =⎨ ⎬

⎩ ⎭
∑ ∑ ∑∫ ∫ .   (20b) 

Since the variations  is arbitrary, the equation (20b) is equivalent to the 
following set of linear equations at  x=x

(1)
mCδ

U: 

1 1

0 0(1) (2) (1) (1) (1) (1) (1)

1 1

ˆ ( ) ( , ) ( ) ( ) 0, 1,2,3,...U
m j m j m n n mh h

j n
k Z z x z dz k C Z z Z z dz mϕ β

+∞ +∞

− −
= =

− =∑ ∑∫ ∫ =  (20c) 

Further, by assuming that all variation except (2)δϕ  in the point  are kept zero 
the variational equation (16) becomes: 

( ,0)Ux

                                                .                                          (21a) (1) (2)

( ,0)
0Ux x

µ ϕ δϕ⎡ ⎤− ⎣ ⎦ =

⎞ =⎟

By substituting equations (3a) and (17) into equation (21a), and using that , 
we obtain the equation: 

(1) (0) 1nZ =

1 1

(2) (1) (1)
P P

1

ˆ ( ,0) 0U
n n

n

k C xδϕ µ β
+∞

=

⎛−⎜
⎝ ⎠

∑ ,                                                                        (21b) 

where 
1

(2)
Pˆδϕ  denotes the arbitrary variation of (2)ϕ at the point ( . Thus, for 

arbitrary variation of

,0)Ux

1

(2)
Pˆδϕ , we obtain the following equation: 

1

(1) (1)
P

1

( ,0) 0U
n n

n
k C xµ β

+∞

=

− =∑ 1P=,   i .                                                                        (21c) 
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Similarly, by assuming that all variation except (1),xδϕ  in the point  are kept 
zero the variational equation (16) becomes: 

( ,0)Ux

 (1) (2) (1)

( ,0)
) , 0( Ux x

µ ϕ δϕϕ⎡ ⎤− =⎣ ⎦ .                                (22a) 

By substituting equations (3a) and (17) into equation (22a), and using that , 
we obtain the equation: 

(1) (0) 1nZ =

1 1

(1) (1) (1) (1) (2)
P P

1 1

ˆ ( ,0) 0U
m m n m

m n
C k C k xδ µ ϕ β

+∞ +∞

= =

⎧ ⎫⎛ −⎨ ⎜
⎝ ⎠⎩ ⎭

∑ ∑ ⎞ =⎬⎟ .                                                  (22b) 

Thus, for arbitrary variations of , we obtain the following set of equations: (1)
mCδ

1 1

(1) (1) (1) (2)
P P

1

ˆ ( ,0) 0, 1,2,3,...U
m n m

n

k C k x mµ ϕ β
+∞

=

⎛ ⎞− = =⎜ ⎟
⎝ ⎠

∑                                               (22c) 

Working similarly with the terms of variational equation (16) defined on 
downstream interface and on , we derive the following set of conditions 
at

(23)
ID∂ ( ,0)Dx

Dx x= : 

( )
3 3

0 0(3) (3) (3) (3) (3) (3) (3)
1 0 0 0 0 0 0( , ) sin( ) cos( ) ( ) ( , )D D D

i ihh
DA x z dz k A k x B k x Z z x z dzβ β− −−

− − − +∫ ∫ +

=

                        

         (23) 
3

0(3) (3) (3)

1

( ) ( , ) 0, 1, 2,3...D
n n n ih

n
k C Z z x z dz iβ

+∞

−
=

+ =∑ ∫

( )
3 3

0 0(3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3)
1 1 0 0 0 0 0( ) ( ) cos( ) sin( ) ( ) ( )D D D

m m m m m mhh
c A x B k Z z dz c k A k x B k x Z z Z z dz− − −−

+ + +∫ ∫ +

{ }
3 3

0 0(3) (3) (3) (3) (2) (3) (3)
j

1 1

ˆ( ) ( ) ( , ) ( ) 0, 1,0,1,2...D
m m n n m m m i mh h

n j
c k C Z z Z z dz k x z Z z dz mϕ β

+∞ +∞

− −
= =

+ − = =∑ ∑∫ ∫A −

 
where  , for , 1mc = − 1, 2,...m = 1mc = , for 1,0m = −  and  

( )(3) (3)
0 0sin( ) cos( )D D

m k x k x= − +A , for 0m = , 1m =A , for 1,1, 2...m = −  and 

also we define (3)
1 1k− = .                                                                                              (24)  

 

( )
2

(3) (3) (3) (3) (3) (3) (3) (3)
1 0 0 0 0 0 P

1

sin( ) cos( ) ( ,0) 0D D D
n n

n

A k A k x B k x k C xµ β
+∞

−
=

⎛ ⎞+ − + − =⎜ ⎟
⎝ ⎠

∑ , 

                                                                   .    (25)   2Pi =

( )(3) (3) (3) (3) (3) (3) (3) (3) (3) (3)
1 1 0 0 0 0

1
( ) cos( ) sin( )D D D

m m m m m m n
n

c A x B k c k A k x B k x c k Cµ
+∞

− −
=

⎧⎛ ⎞+ + + +⎨⎜ ⎟
⎝ ⎠⎩

∑

( )( )

−

}2 2

(2) (3) (3) (3) (3)
P 0 0 0 Pˆ 1 sin( ) cos( ) ( ,0) 0D D D

mk k x k x k xϕ β− + − + − = , 1,0,1, 2...m = −  (26) 
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Recapitulating the above results we can state the following theorem: 

THEOREM 2 [The F.E.M. system]. The variational equation (9) and, thus, the 
problem , are equivalent to the following system of 
equations, boundary and matching conditions: 

(2) (2) (3) (3) ( )
1 1( , , , ,{ }i

nT D A B CP ϕ − − ∈ )n N

(2) (2)(2)
(2)

1

ˆ , 1,2,3,.
F B

ji
j i j x i

j
D D D

dV dS Un dS i
x x

ββϕ β β µ β
+∞

=
∂ ∂

∂⎛ ⎞∂
∇ ∇ − = − =⎜ ⎟∂ ∂⎝ ⎠

∑ ∫ ∫ ∫ ..

=

D

     (27a) 

1

0(1) (1) (1)

1

( ) ( , ) 0, 1, 2,3...U
n n n ih

n

k C Z z x z dz iβ
+∞

−
=

= =∑ ∫                                       (27b)  

(27c) 
1 1

0 0(1) (2) (1) (1) (1) (1) (1)

1 1

ˆ ( ) ( , ) ( ) ( ) 0, 1,2,3,...U
m j m j m n n mh h

j n
k Z z x z dz k C Z z Z z dz mϕ β

+∞ +∞

− −
= =

− =∑ ∑∫ ∫

( )
3 3

0 0(3) (3) (3) (3) (3) (3) (3)
1 0 0 0 0 0 0( , ) sin( ) cos( ) ( ) ( , )D D D

i ihh
A x z dz k A k x B k x Z z x z dzβ β− −−

− − − +∫ ∫ +

=

                        

          (27d) 
3

0(3) (3) (3)

1

( ) ( , ) 0, 1, 2,3...D
n n n ih

n
k C Z z x z dz iβ

+∞

−
=

+ =∑ ∫

( )
3 3

0 0(3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3)
1 1 0 0 0 0 0( ) ( ) cos( ) sin( ) ( ) ( )D D D

m m m m m mhh
c A x B k Z z dz c k A k x B k x Z z Z z dz− − −−

+ + +∫ ∫ +

{ }
3 3

0 0(3) (3) (3) (3) (2) (3) (3)
j

1 1

ˆ( ) ( ) ( , ) ( ) 0,D
m m n n m m m i mh h

n j
c k C Z z Z z dz k x z Z z dzϕ β

+∞ +∞

− −
= =

+ − =∑ ∑∫ ∫A  

       

 (27e)

,   .                                                                             (27f) 

                                     (27g) 

1,0,1, 2..m = −

1

(1) (1)
P

1

( ,0) 0U
n n

n

k C xµ β
+∞

=

− =∑ 1Pi =

−

1 1

(1) (1) (1) (2)
P P

1

ˆ ( ,0) 0, 1,2,3,...U
m n m

n

k C k x mµ ϕ β
+∞

=

⎛ ⎞− = =⎜ ⎟
⎝ ⎠

∑

( )
2

(3) (3) (3) (3) (3) (3) (3) (3)
1 0 0 0 0 0 P

1

sin( ) cos( ) ( ,0) 0D D D
n n

n

A k A k x B k x k C xµ β
+∞

−
=

⎛ ⎞+ − + − =⎜ ⎟
⎝ ⎠

∑ , 

                                                                   .   (27h)   2Pi =

( )(3) (3) (3) (3) (3) (3) (3) (3) (3) (3)
1 1 0 0 0 0

1
( ) cos( ) sin( )D D D

m m m m m m n
n

c A x B k c k A k x B k x c k Cµ
+∞

− −
=

⎧⎛ ⎞+ + + +⎨⎜ ⎟
⎝ ⎠⎩

∑

( )( ) }2 2

(2) (3) (3) (3) (3)
P 0 0 0 Pˆ 1 sin( ) cos( ) ( ,0) 0D D D

mk k x k x k xϕ β− + − + − = , 1,0,1, 2...m = −  (27i) 

 
 
 

 -91-



4.3.2 Construction of the solution matrix. 
 

In this subsection, a discrete scheme for the numerical solution of the F.E.M. 
system of equations (27), is introduced. 

Truncating the series (3), (4) of the disturbance potential in the semi-infinite strips 
and , to a finite number of terms (modes), –denoting by  the number of 

evanescent modes retained– and the series (17) of the disturbance potential in the 
finite subdomain , to a finite number of basis functions –denoting by  the 
number of basis functions in the Galerkin method retained– the infinite system of 
equations (27) reduced to a finite system. Hence, the following approximation of the 
disturbance potential in is obtained: 

(1)D (3)D mN

(2)D neN

(2)D
 

                                         (2) (2)

1

ˆ( , ) ( , )
neN

j j
j

x zϕ ϕ β
=

=∑ x z .                                  (28) 

The region  is divided into triangles to form a network with  nodes. Let us 
introduced  be a triangulation of  with triangles

(2)D neN

hℑ
(2)D τ , whose interior belongs 

to . We define the finite element space: (2)D
                                    { }(2)

1( , ) ( ), P ,h hV x z C D τβ β τ= ∈ ∈ ∀ ∈ℑ , (29) 

where, by { }1 2, ,...,
neNβ β β  we denote its usual finite element basis, where the bases 

functions jβ  –polynomials of first degree – and the nodes1)(P iα , , of 
the triangulation  are such that

, 1,2,..., nei j N=

hℑ ( )j ia ijβ δ= , with ijδ  as the Kronecker symbol.  
According to the above definitions the F.E.M. system of equations can be expressed in 
the following matrix form: 
Eq.(27a) ⇒ [ ]{ } { }(2)ˆ jKS Fϕ = s .   

The matrix [ ]KS  is sparse and has dimension ne neN N×  . 

The vector { } { } { }{ }0 ,T T T (1 )neNFs fs= × , is the forcing of the system arising by 

localized disturbances (i.e. submerged bodies, bottom topography). If the total number 
of nodes on  is , the dimension of the forcing sub-vector (2)

BD∂ bN { }fs  is . 1bN ×

Eq.(27b) ⇒ [ ]{ } { }(1)1 0nKU C = .  

The matrix [ ] [ ] [ ]1 1 ,KU Ku⎡= ⎣ 0 ⎤⎦  has dimension ( )2mN + × neN . If the total number of 

nodes on  is , the dimension of the sub-matrix [(12)
ID∂ UN 1]Ku  is ( )2m UN N+ × . 

Eq.(27c) ⇒ [ ]{ } { }(2)ˆ2 0jKU ϕ =  and[ ]{ } { }(1) 0nKU C = . 

The matrix [ ]KU  has dimension ( )2mN + × mN  and the matrix [ ] [ ] [ ]2 2 ,KU Ku⎡ ⎤= ⎣ ⎦0  

has dimension ne mN N× . The dimension of the sub-matrix [ 2]Ku  is . U mN N×

Eq.(27d) ⇒ [ ]{ } { }(3)1 0nKD C = .  
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The matrix [ ] [ ] [ ]1 1 ,KD Kd⎡= ⎣ 0 ⎤⎦  has dimension ( )2mN + × neN . If the total number of 

nodes on  is(23)
ID∂ DN , the dimension of the sub-matrix [ 1]Kd  is ( )2m DN N+ × . 

Eq.(27e) ⇒ [ ]{ } { }(2)ˆ2 0jKD ϕ =  and[ ]{ } { }(3) 0nKD C = . 

The matrix [ ]KD  has dimension ( 2) ( 4)m mN N+ × +  and the matrix 

[ ] [ ] [ ]2 2 ,KD Kd⎡= ⎣ 0 ⎤⎦  has dimension ( )4ne mN N× + . The dimension of the sub-matrix 

[ 2]Kd  is . ( )4D mN N× +

The equations (27f)-(27i) are added to the corresponding positions of the above 
matrices, i.e. eq.(27f) is added in  row of  [1P 1]Ku .     
 
Assembling the above equations we obtain : 

                                                      [ ]{ } { }ˆKK FSϕ =  (30) 

where the transpose of the unknown column vector { }ϕ̂  is arranged as follows 

{ } { } { } {{ } }(1) (1) (2) (2) (3) (3) (3) (3) (3) (3)
1 1 1 1 0 0 1ˆ ˆ ˆ,..., , ,..., , , , , , ,...,

T TT
N Nm ne

C C A B A B C Cϕ ϕ ϕ − −=
T

Nm
, (31) 

and the forcing vector { }FS  has non zero entries only for the nodes on . (2)
BD∂

The global stiffness matrix [ ]KK  has the following form: 

                 

[ ] ( )( ) ( )( ) ( )

( ) ( )

( 2) ( 4)2 2

( ) ( ) ( ( 4))

(( 2) )( 2) ( 2) ( 4)

[ 1] [0]

[ 2] [ ] [ 2]

[0] [ 1] [ ]

Nm NmNm Nm Nm Nne

Nne Nm Nne Nne Nne Nm

Nm NneNm Nm Nm Nm

KU KU

KU KS KD

KD KD

+ × ++ × + ×

× ×

+ ×+ × + × +

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

× + . (32) 

The dimension of the global matrix [ ]KK  is 

( )( ) ( )(2 2 2 2m ne mN N N N⋅ + + × ⋅ + + )ne

e

, and the number of unknowns 

is . ( )#2 2m nN N⋅ + +
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4.4 Numerical results and discussion. 
 

In this paragraph a detailed presentation of the numerical results obtained, 
according to the hybrid Finite Element Method. The numerical calculations were 
performed for various topographies (and/or submerged bodies), and for a wide range 
of upstream Froude numbers when the flow is subcritical or supercritical. The source 
code was written in Matlab® v.6.1. The triangulation based on the Delaunay algorithm 
(see fig. 4.13) and the mesh size is determined from the shape of geometry. 

The physical investigation of the influence of the size of obstruction and of 
Froude number – the physical parameters of the problem – to the numerical solutions 
of the problem is introduced, in order to define the range of its values for which the 
linear solution is valid. The numerical accuracy of the problem is interpreted to 
satisfaction of the matching conditions at the artificial interfaces, i.e. the continuity of 
the pressure field and the continuity of the velocity field.  

4.4.1 Flow over shoaling bottom. 
The case of a smooth underwater shoaling is introduced. The environment is 

characterized by the following depth function 

1
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1.  Subcritical flows ( 1Fr <  
In figure 4.3a the equipotential lines of the disturbance potential field ( , )x zϕ  

have been plotted, together with the calculated free-surface elevation ( )xη , as 
obtained by the present model, for 0.6Fr = . In figures 4.3b-c and 4.3.d-e the 
continuity of the disturbance potential field ϕ  ( - continuity) and the continuity of 
the disturbance velocity field 

0C
,xϕ  ( - continuity), at 1C ( 0)x a= =  and , 

respectively, have been plotted. One observes that the free surface elevation has 
similar form with analytical solution obtained in §3.1.4. ( i.e the level of the free 
surface falls as it approaches the shoaling bottom while downstream a periodic steady 
wave motion is predicted ).  

x b=

2.  Supercritical flows  ( 1Fr > )

In figure 4.4 the equipotential lines of the disturbance potential field ( , )x zϕ  have 
been plotted, together with the calculated free-surface elevation ( )xη , as obtained by 
the present model, for . One observes that the free surface elevation has 
similar form with analytical solution obtained in §3.1.4. ( i.e. the level of the free 
surface rises monotonically as it approaches the shoaling bottom, the slope of the 
surface becoming more gradual, until far downstream is asymptotically flat). 

1.5Fr =
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FIGURE 4.3a. Equipotential lines of the disturbance potential field and free-surface elevation 
as obtained by the F.E.M, for Froude number Fr=0.6. The depth function is given by equation 
(1). 
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FIGURE 4.3d-e. - continuity d) and - continuity e) of the disturbance potential at . 0C 1C x b=

 
 
 
 
 
 
 
 
 
 

z (m) 
 
 
 
 
 
 
 
 
 
 
 

x (m) 
FIGURE 4.4. Equipotential lines of the disturbance potential field and free-surface elevation 
as obtained by present model, for Froude number Fr=1.5. The depth function is given by 
equation (1). 

  
 

 

0.64 0.66 0. 86 0.7 0. 27 0. 47 0.76 0.78 0.8 0.82 0.84
-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0
C1 continuity at x=b   /no of evan. modes=55

1.7 1.72 1.74 1.76 1.78 1.8 1.82
-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

C0 continuity at x=b   /evan modes=55
0

1.

0.5 1 1.5 2 2.5 3 3.5 4 4.5

-0.5

0

5

1

-2

-1.5

-1

5

Fr1=1.5  Fr3=1.6771

0.

 -96-



4.4.2 Flow over bottom obstruction. 
 

The case of a smooth sinusoidal bump is introduced. The bottom shape is given 
by the following depth function 
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1.  Subcritical case ( 1Fr <  
In figure 4.5 the equipotential lines of the disturbance potential field ( , )x zϕ  have 

been plotted, together with the calculated free-surface elevation ( )xη , as obtained by 
the present model, for . The height of sinusoidal bump is h  and its 
length is 3m. 

0.5Fr = 0.3bump m=

)
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FIGURE 4.5. Equipotential lines of the disturbance potential field and free-surface elevation 
as obtained by the F.E.M, for Froude number Fr=0.5. The depth function is given by equation 
(2). 

2.  Supercritical case ( 1  Fr >
In figure 4.6 the equipotential lines of the disturbance potential field ( , )x zϕ  have 

been plotted, together with the calculated free-surface elevation ( )xη , as obtained by 
the present model, for . The height of sinusoidal bump is  and its 
length is 3m. 

2Fr = 0.3bumph = m
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FIGURE 4.6. Equipotential lines of the disturbance potential field and free-surface elevation 
as obtained by the F.E.M, for Froude number Fr=2. The depth function is given by equation 
(2). 

 

4.4.3 Flow past a submerged body (constant depth). 
 

The case of a submerged cylinder with a circular section is introduced. The 

cylinder is submerged at depth
2
hd = , with radius 0.15mρ =  (where h is the constant 

depth).  
 

1.  Subcritical case ( 1Fr )<  
In figure 4.7 the equipotential lines of the disturbance potential field ( , )x zϕ  have 

been plotted, together with the calculated free-surface elevation ( )xη , as obtained by 
the present model, for .   0.4Fr =

 

 2.  Supercritical case  ( 1Fr > )
In figure 4.8 the equipotential lines of the disturbance potential field ( , )x zϕ  have 

been plotted, together with the calculated free-surface elevation ( )xη , as obtained by 
the present model, for .   2Fr =
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FIGURE 4.7. Equipotential lines of the disturbance potential field and free-surface elevation 

as obtained by the F.E.M, for Froude number Fr=0.4.  (
2
hd = , 0.15mρ = ). 
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FIGURE 4.8. Equipotential lines of the disturbance potential field and free-surface elevation 

as obtained by the F.E.M, for Froude number Fr=2.  (
2
hd = , 0.15mρ = ). 
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4.4.4 Flow over shoaling bottom with submerged body. 
The case of a submerged cylinder with a circular section over a smooth 

underwater shoaling is introduced. The bottom shape is given by the relation (1). 
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FIGURE 4.9. Equipotential lines of the disturbance potential field and free-surface elevation 
as obtained by the F.E.M, for Froude number Fr=0.4.  
( ,  , 04 / 3cyx = / 3d h= .1mρ =  , ) .  3 0.8h =
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FIGURE 4.10. Equipotential lines of the disturbance potential field and free-surface elevation 
as obtained by the F.E.M, for Froude number Fr=1.7.  
( ,  , 04 / 3cyx = / 3d h= .1mρ =  , ) .  3 0.8h =
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4.4.5 Flow over bottom obstruction with submerged body. 

The case of a submerged cylinder with a circular section over a sinusoidal bump 
is introduced.. The bottom shape is given by the relation (2). 
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FIGURE 4.11. Equipotential lines of the disturbance potential field and free-surface elevation as 
obtained by the F.E.M, for Froude number Fr=0.4.  
( ,  ,4 / 3cyx = / 2d h= 0.15mρ =  , ) .  0.2pbh =
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FIGURE 4.12. Equipotential lines of the disturbance potential field and free-surface elevation 
as obtained by the F.E.M, for Froude number Fr=1.8. 
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FIGURE 4.13. The constructed mesh, where the triangulation based on the Delaunay 
algorithm. 
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APPENDIX 4.A.  Calculation of the Wave Drag Force. 
           

After the solution of the problem, the velocity potential ( , )x z DΦ ∈  is uniquely 
determined by the means of the coefficients of general representations at the semi-
infinite strips and the potential (2) (2)( , )x z DΦ ∈ . As the velocity potential is 
determined, the pressure p of any point of the fluid region can be calculated using the 
Bernoulli equation: 

 21
2

p gzρ ρ= − ∇Φ − ( , ),  x z D∈ ,                  (1) 

where the atmospheric pressure is taken to be zero.  
The calculation of the wave drag force on a bottom topography caused by the fluid 
flow, as well as on a body moving with constant velocity is obtained by integrating 
the pressure over its surface : BD∂

 ,          (2) 
B

x
D

D p n d
∂

= ⋅∫ S

where is the normal vector in the direction of the motion, taken to be positive when 
pointing out of the fluid volume. Alternative, the wave drag force on a moving body 
may be calculated using the conservation of energy, see i.e. Wehausen & Laitone 
(1960, §8): 

xn

 2 2
( )1 1( , , ) ( )

2 2

D

D
z x

x

h
D dS

η

ρ ϕ ϕ ρ η
−

= − +∫ g x . (3) 

The wave drag force for an ideal fluid represents the change in momentum flux due to 
the change in the stream produced by the obstruction, so the conversation of 
momentum may also be applied: 

 ,x x
D D

dS p n dS
n

ρ
∂ ∂

∂Φ
⋅Φ ⋅ ⋅ = − ⋅

∂∫ ∫G , (4) 

where D∂  denotes the boundary of the fluid volume D. 
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