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Abstract

An analytical expression for the spectral probability density pBðSÞ of breaking waves in deep water, with or without
swell, is derived on the basis of a joint distribution of wave frequencies and amplitudes, and a modified Banner and

Phillips [1974. Journal of Fluid Mechanics 66, 625–640] breaking criterion. The joint probability density and the derived

marginal amplitude, frequency and conditional densities, when normalized properly, all show (within the proper

spectral bandwidth range) similarities with other pertinent distributions. The derived breaking probability is found to

depend on the spectrum bandwidth, y, and consequently on the significant slope, y, and/or the wave age, cp=u�, and is

not restricted to narrow-band seas. The variation of breaking probability, with y, at the normalized spectral peak
frequency Sp has no direct dependence on cp=u�, whereas its counterpart variations at frequencies 2Sp, and 2:5Sp both
show weak dependence on the latter parameter for large values of wave age (representing mature wave fields), in accord

with field observations. An overall (average) breaking probability, B, characterizing the wave field (locally) also is

derived and compared with counterpart-published expressions, and their similarities and differences are properly

discussed.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Wave breaking is an interesting phenomenon
with important implications in studies of the
dynamics of the upper ocean, in coastal engineer-
ing, remote sensing, meteorology and, perhaps, in
some other disciplines, as many of the processes
taking place across the ocean–air interface are
significantly altered in its presence (Melville, 1996).
It is known, for example, that wave breaking
e front matter r 2005 Elsevier Ltd. All rights reserve
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enhances the exchange of gas, water vapor,
momentum and energy between the atmosphere
and the ocean. It is also known that it has a
significant impact on the airflow above waves and,
consequently, on the surface drag and the transfer
of energy to waves. Sea-surface photographs do
show a clear association between breaking waves
and the accompanying airflow separation (Banner
and Melville, 1976). Wave breaking is also res-
ponsible for much of the acoustic noise generated
at the ocean surface. Furthermore, it represents
the major source of turbulence production in the
d.
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surface layer beneath an air–sea interface, and the
primary mechanism of wave energy dissipation.
The latter is less known among the processes
governing the generation, growth (or decay) and
propagation of ocean waves, including the inter-
actions among the various spectral components of
the sea surface. For all of the above reasons, it is
important to know how often and under what
conditions wave breaking occurs.
In deep water, wave breaking maybe caused by

various mechanisms, as for example by the non-
linear modulations and distortions of the various
frequency components of the wave spectrum
(Waseda and Tulin, 1999; Tulin and Waseda,
1999; Banner and Tian, 1998; Thorpe, 1995;
Banner and Peregrine, 1993; Tulin and Li, 1992;
Rapp and Melville, 1990; Dold and Peregrine,
1986). Although the effects of non-linearity on
single deterministic wave trains have been studied
in the laboratory, the results so obtained have
rather limited applicability to the real ocean. In a
random sea breaking (and white capping) occur(s)
intermittently, owing to the grouping of higher
waves and the difference between phase speed and
group velocity. In the presence of long waves, the
short waves riding the long ones are compelled, by
the orbital compression of the long waves, to
steepen and possibly break near the long wave
crests. Breaking of the front face of a steep gravity
wave also may be initiated by the generation of
parasitic capillary waves near the crest of the
gravity wave (Longuet-Higgins, 1963), or by the
blocking of capillary-gravity waves (Phillips,
1981).
The subject of surface wave breaking statistics

has attracted the interest of various research
groups. The available literature is quite extensive,
including laboratory and field observations as well
as theoretical approaches and numerical simula-
tions of numerous wave-breaking aspects. Most
recent work on the subject is that of Banner et al.
(2002), Banner and Song (2002), Song and Banner
(2001), Duncan (2001), Banner et al. (2000),
Gemmrich and Farmer (1999), Nepf et al. (1998),
She et al. (1997), and the references mentioned
earlier. In some of these and other older works, it
is emphasized that the wave breaking probability
and other breaking wave statistics can be para-
meterized in terms of non-dimensional fundamen-
tal quantities that express a characteristic
steepness of the wave field (locally) and/or the
coupling of the wind and wave fields.
In this work, a stochastic model is used

for calculating the probabilities of deep wave
breaking (as a function of frequency), applicable
to both narrow—as well as finite-bandwidth
sea spectra. This model is based on a joint
probability distribution of wave amplitudes and
frequencies.
Parameterization of derived quantities, here, is

based on the significant slope, y, and the wave age,
cp=u�; u� and cp being, respectively, the wind
friction velocity and the phase speed of the
dominant wave at the spectral peak frequency;
the subscript p characterizes quantities that refers
(in general) to the spectral peak. The definition of
y, although known, will be given later.
2. The stochastic model

The joint distribution of amplitude and fre-
quency (or period), as well as some other pertinent
distributions, play an important role in the
investigation of many statistical properties of sea
waves. Many of these joint distributions are based
on linear-wave theories and are restricted to
narrow-bandwidth spectra. Yuan’s (1982) distri-
bution is based on a relationship between the sea-
surface elevation, Z, and its second time derivative
(or vertical acceleration), Z00, at the extreme points
below and above the mean water level (MWL). It
was obtained by analyzing the geometry of
random waves, and is applicable to both narrow-

and finite-bandwidth spectra. Our calculations
utilize this joint amplitude-frequency density dis-
tribution. For narrow-bandwidth seas, Longuet-
Higgins (1983) has proposed a similar distribution
that reproduces satisfactorily the behavior of
oceanic observations, in such cases, but performs
poorly for broadband seas.
The derivation of Yuan’s (1982) density func-

tion is based on Longuet-Higgins (1957) original
joint distribution pðZ; Z0; Z00Þ of Z, Z0 and Z00, and a
suitable definition of (intrinsic) frequency, s. The
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latter distribution is given as

pðZ; Z0; Z00Þ ¼
1

ð2pÞ3=2m1=2
2 D1=2

exp �
Z02

2m2

(

�
1

2D
ðm4Z2 þ 2m2ZZ00 þ m0Z002Þ

)
, ð1Þ

s2 ¼ �aZ00ðt0Þ=Zðt0Þ; D ¼ m0m4 � m2
2. (2a, b)

Here prime indicates differentiation with respect to
time, mi is the ith moment of the wave spectrum,
and t0 is the time of occurrence of the (sea) surface
extrema. In terms of amplitude, h, and frequency,
s, Yuan’s (1982) joint probability density, pðh;sÞ,
has the form:

pðh;sÞ ¼ ayh
2 expð�byh

2
Þ, (3)

where

ay ¼
4s3

a2ð2pÞ1=2m3=2
0 s40

1

ðy2 � 1Þ1=2ðyþ 1Þ
,

by ¼
1

2m0
1þ

f1� a�1fs=s0g2g2

ðy2 � 1Þ

� �
, ð4a;bÞ

y ¼ ðm0m4=m2
2Þ
1=2; s0 ¼ ðm2=m0Þ

1=2. (5a,b)

Here a is a positive coefficient dependent also on
y, s0 and sp. Its variation with these three
parameters can be found in Appendix A. y is the
ratio of the expected number of wave extrema and
that of zero crossings, per unit time. It is also a
measure of the spectrum bandwidth and is related
to the parameter �, introduced by Cartwright and
Longuet-Higgins (1956), since y2 ¼ 1=ð1� �2Þ; for
a narrow band case � ¼ 1:0 and y ¼ 1:0, whereas in
the limit of an extremely broadband field ð� ¼ 1Þ y
becomes unbounded. Eq. (3) involves no limitation
on y. For calculating y and s0 we have used the
filtered moments mi ði ¼ 0; 2; 4Þ according to an
expression suggested by Glazman (1986; see also
Appendix B).
Longuet-Higgins’ (1983) joint amplitude–fre-

quency function, obtained by properly converting
wave periods in frequencies (using his definitions
of intrinsic and mean frequencies), also may be
expressed in a form similar to Yuan’s (1982) model
but with different functionals ay and by, namely

ay ¼
LðnÞs2

p1=2nm�1
0 m2

1

,

by ¼
1

2m0
1þ 1�

sm0

m1

� �2
=n2

" #
, ð6a;bÞ

where

n ¼ ½m0m2=m2
1 � 1�

1=2,

L�1ðnÞ ¼ 1
2
½1þ ð1þ n2Þ�1=2�. ð7a;bÞ

To arrive at Eqs. (6) one can use: (i) the joint
probability density of amplitude, h, and time
derivative of the phase w, given by Longuet-
Higgins (1983), (ii) his definitions of local wave
frequency, s, and (iii) a transfer function, namely:

pðh; w0Þ ¼
h2

ð2pm2
0m2Þ

1=2
exp �

h2

2

1

m0
þ

w02

m2

 !" #
,

(8)

s2 ¼ �
Z00ðtÞ
ZðtÞ

; s ¼ s̄þ w0,

w0 ¼
qw
qt

; s̄ ¼
m1

m0
, ð9a; b; c;dÞ

pðh; sÞ ¼ pðh; w0Þjqðh; w0Þ=qðh;sÞj. (10)

The surface elevation, Z, is represented now by
the following expression:

Z ¼ Refh expfiðs̄t þ wÞgg

¼ Refh expðiwÞ expðis̄tÞg

¼ RefAðtÞ expðis̄tÞg, ð11a;b; cÞ

where both h and w are real but slowly varying
functions of time t. The above model depends only
on the three lowest moments m0;m1;m2 of the
spectral density, but requires the narrow-bandwidth

spectrum assumption. This assumption ensures that
the complex-valued envelope function AðtÞ varies
slowly compared to the carrier wave expðis̄tÞ, so
that the wave crests lie almost on the envelope
Z ¼ h, and jw0j5s̄. Eq. (9b) is also a consequence
of this narrow-band assumption.
Tzanis (2003) recently produced a numerical

algorithm that examines the sea-surface records
and generates the short-term joint density of wave
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heights and periods and its byproducts (wave
height and period distributions) as a function
of a correlation coefficient that correlates wave
heights and periods. Tzanis’s (2003) results
(see also Memos, 2002; Memos and Tzanis,
2000), in the form of joint and marginal distribu-
tions, cover a wide range of deep (and shallow)
sea states, including conditions up to wave break-
ing that correspond to nearly any bandwidth.
These authors have shown that their results
compare favorably with field and large-scale
laboratory observations. Since Tzanis’s (2003)
computer code is not readily available, it was
felt appropriate to use the analytic expressions
of the joint and marginal statistics of wave
amplitudes and frequencies derived, in this work,
and explore (perhaps qualitatively) their simila-
rities and differences with the corresponding
properties in the wave height-period space of
Tzanis (2003).
In the following section, we describe the

behavior of the joint density distribution given
by Eqs. (3)–(5) and the statistical properties of its
byproducts.
3. Properties of various probability densities

3.1. Joint density distribution

Introducing the non-dimensional amplitude
H½¼ h=ð2m0Þ

1=2
� and the non-dimensional fre-

quency S½¼ s=ða1=2s0Þ�, pðh;sÞ is written as
θ=1.2
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Fig. 1. Typical contour plots of pðH;SÞ=pmax distributions for
pðH ;SÞ, namely:

pðH ;SÞ ¼
8H2S3

p1=2ðy2 � 1Þ1=2ðyþ 1Þ

 exp �H2 1þ
ðS2 � 1Þ2

y2 � 1

	 
� �
. ð12Þ

The maximum value of pðH;SÞ, pmax, can be found
from the conditions qp=qH ¼ qp=qS ¼ 0, which
provide the point ðHmax;SmaxÞ given by the
expressions:

Hmax ¼
1

2

y2 � 1

y2 þ 1� ð3y2 þ 1Þ1=2

( )1=2
,

Smax ¼ f�1þ ð3y2 þ 1Þ1=2g1=2 ð13a;bÞ

and the value pmax, of pðH;SÞ at this ðHmax;SmaxÞ
point, is given as

Pmax ¼
2 expð�1Þffiffiffi

p
p

y� 1
yþ 1

	 
1=2
½�1þ ð3y2 þ 1Þ1=2�3=2

½y2 þ 1� ð3y2 þ 1Þ1=2�
.

(14)

Figs. 1(A–C) show contour plots of three typical
pðH ;SÞ=pmax distributions for y ¼ 1:2; 1:5 and 1.7,
respectively. It is clearly seen that the joint density
distribution shows some asymmetry with respect
to S, in general, but in the neighborhood of S ¼ 1
it becomes symmetric about the mean wave
frequency ðSav ¼ a�1=2Þ, independently of H. Sav
is defined in Section 3.2. It is also evident that the
variation of bandwidth, y, alters the shape of
the normalized contour lines, and the larger the y
the lower the H values over which pðH;SÞ=pmax
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y ¼ 1:2; 1:5; 1:7: (A) y ¼ 1:2, (B) y ¼ 1:5, and (C) y ¼ 1:7.
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Table 1

Parameters of pðH;SÞ

y a Sp Smax Hmax pmax Sm Sav

1.0 0.69 1.00 1.00 1.00 1 1.00 1.20

1.1 0.65 1.03 1.07 0.95 1.92 1.05 1.24

1.2 0.62 1.06 1.14 0.91 1.40 1.10 1.27

1.3 0.58 1.09 1.21 0.87 1.17 1.14 1.31

1.4 0.56 1.12 1.27 0.84 1.04 1.18 1.34

1.5 0.53 1.14 1.34 0.82 0.95 1.22 1.37

1.6 0.51 1.17 1.40 0.80 0.88 1.26 1.41

1.7 0.48 1.20 1.45 0.78 0.83 1.30 1.44

1.8 0.46 1.22 1.51 0.76 0.79 1.34 1.47

1.9 0.44 1.25 1.56 0.75 0.75 1.38 1.50

2.0 0.43 1.27 1.61 0.73 0.72 1.41 1.53
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extends and the greater the width of the S values
over which pðH;SÞ=pmax extends. Comparison of
Figs. 1 with counterpart figures of Tzanis (2003)
shows very good qualitative similarities.
Table 1 lists a;Hmax;Smax and pmax for represen-

tative values of the parameter y between 1.0 and 2.0.
Although y may attain higher values (theoretically,
at least), it was felt that the choice 15yp2
represents realistic broadband field conditions.
Table 1 also lists the corresponding values of the
normalized peak frequency, Spð¼ a�1=2sp=s0Þ,
which by virtue of Eq. (A.5) (see Appendix A) is
given as: f½2þ ð4þ 21y2Þ1=2�=7g1=2. The listed values
of a correspond to s0=sp ¼ 1:20 and are typical for
values of this ratio between 1.15 and 1.25. It is
noteworthy that Glazman (1986) obtained a value
of s0=sp ð¼ m2=m0Þ

1=2
ffi 1:22 using his filtered

zero- and second-order spectral moments that were
based on a JONSWAP spectral description (for
definitions of Sm and San see Section 3.2).
Clearly, broadening of the spectrum enhances

and reduces, respectively, the ‘most probable’ joint
values of the wave frequency and amplitude, and
also reduces their maximum joint probability
density. For very large values of both H and S
(i.e. very small values of the joint density), the
normalized contours pðH;SÞ=pmax become asymp-
totically tangent to the H and S axes.

3.2. Amplitude and frequency probability densities

The density of the wave amplitude H is now
obtained by integrating pðH ;SÞ with respect to S
over all positive frequencies, namely:

pðHÞ ¼
8

ðpÞ1=2ðy2 � 1Þ1=2ðyþ 1Þ
H2 expð�H2Þ



Z 1

0

S3 exp �H2 ðS
2 � 1Þ2

y2 � 1

� �
dS

¼
F ðBmÞ

ðyþ 1Þ
2H expð�H2Þ

¼
F ðBmÞ

ðyþ 1Þ

	 

pRðHÞ, ð15a;bÞ

where

F ðBmÞ ¼ 1þ erf
1

Bm

 �
þ

Bm

p1=2
exp �

1

B2m

 �
,

Bm ¼
ðy2 � 1Þ1=2

H
ð16a;bÞ

and erf denotes the standard error function. Eq. (15)
states that the density of H has a Rayleigh-like
distribution, but must be corrected by a factor
proportional to F ðBmÞ. For large values of HfOð1Þ
or greater than 1:5g, the correction is small.
However, when H is of order ðy2 � 1Þ1=2 or less
than 1.5 (and y41) , the correction becomes
significant. Clearly for y ¼ 1; pðHÞ becomes pre-
cisely Rayleigh fi:e: pRðHÞ ¼ 2H expð�H2Þg.
The probabilities of occurrence of positive, and

of the sum of positive and negative peaks, in the
waveform, can also be obtained and written as

pþðHÞ ¼
2

yþ 1

 �
1þ erf

1

Bm

 �	 

H expð�H2Þ

	

þ
Bm

p1=2
H exp �

y2

B2m

 �

, ð17Þ

p�ðHÞ ¼
1

y
1þ erf

1

Bm

 �	 

H expð�H2Þ

	

þ
Bm

p1=2
H exp �

y2

B2m

 �

. ð18Þ

For y ¼ 1, both of these expressions (17) and
(18) reduce to the Rayleigh distribution. Note thatR

pþðHÞdH ¼ 1 and
R

p�ðHÞdH ¼ 1.
The three lowest moments of the amplitude

density, pðHÞ, found by numerical integration, are
shown in Table 2. They are given as
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Table 2

Moments of amplitude probability density

y p0 Hav H2 Hav � 0:5p1=2 H2
rms � 1

1.0 1.000 0.886 1.000 0.000 0.000

1.1 1.000 0.852 0.955 �0.035 �0.023

1.2 1.000 0.826 0.917 �0.061 �0.043

1.3 1.000 0.804 0.885 �0.082 �0.059

1.4 1.000 0.787 0.857 �0.100 �0.074

1.5 1.000 0.771 0.833 �0.115 �0.087

1.6 1.000 0.758 0.812 �0.128 �0.099

1.7 1.000 0.747 0.794 �0.139 �0.109

1.8 1.000 0.737 0.778 �0.149 �0.118

1.9 1.000 0.728 0.763 �0.158 �0.126

2.0 1.000 0.720 0.750 �0.167 �0.134

1This definition of sav maybe not valid for a non-Gaussian
field.
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P0 ¼

Z 1

0

pðHÞdH

¼
1

yþ 1
1þ y2 � 1

� � 1
y
þ 2S0ðyÞ

	 
� �
� 1, ð19Þ

Hav ¼

Z 1

0

HpðHÞdH

¼
1

yþ 1
1

2
p1=2 þ p�1=2ðy2 � 1Þ3=2

�


1

y2
þ 2p1=2S1ðyÞ

	 
�
¼ F1ðyÞ, ð20Þ

H2
av ¼

Z 1

0

H2pðHÞdðHÞ

¼
1

yþ 1
1þ

1

2
ðy2 � 1Þ2

1

y3
þ 4S2ðyÞ

	 
� �
, ð21Þ

where

S0ðyÞ ¼
X1
n¼0

ðy2 � 1Þ�ðnþ3=2Þ
�
1

2

 �n


1:3:5 . . . ð2n þ 1Þ

n!ð2n þ 1Þ

	 


¼

Z 1

0

ze�z2ðy2�1Þ erfðzÞdz, ð22Þ
S1ðyÞ ¼
X1
n¼0

ðy2 � 1Þ�ðnþ2Þ
ð�1Þn

n þ 1

2n þ 1

 �

¼

Z 1

0

z2e�z2ðy2�1Þ erfðzÞdz, ð23Þ

S2ðyÞ ¼
X1
n¼0

ðy2 � 1Þ�ðnþ5=2Þ
�
1

2

 �n


1:3:5 . . . ð2n þ 3Þ

n!ð2n þ 1Þ

	 


¼

Z 1

0

z3e�z2ðy2�1Þ erfðzÞdz. ð24Þ

For the limiting case y ¼ 1 : Hav ¼ p1=2=2 and
H2
rms ¼ 1. It is also seen that the rms value of H2

av,
H2
rms differs from unity by less than 10% only

when yo1:7. When y ¼ 1:25, for example, the
difference is about 5%. Furthermore Hav, or
preferably hav, when properly combined with the
spectral peak wavenumber kp to form the product
havkp, a kind of average slope ðhkÞav representing
the whole wave field (locally), it is found that this
average slope ðhkÞavf¼ 8:886 yF1ðyÞ;Section 6g has
properties confirmed by field observations (see
Section 4.3.1).
The marginal density of frequency, S, is

obtained by integrating pðH;SÞ with respect to H

over 0oHo1, namely:

pðSÞ ¼ 2ðy� 1Þ
S

½y2 � 1þ ðS2 � 1Þ2�1=2

� �3
(25)

Note that
R1
0 pðSÞdS ¼ 1. These pðSÞ distribu-

tions have a peak at Sm ¼
ffiffiffi
y

p
(the mode of this

distribution) with a value pm ¼ ½1=f2ðy� 1Þg�1=2.
For y ¼ 1; pm ¼ dðSm � 1Þ where dðÞ is the Dirac
delta function. Evidently, broadening of the
spectrum reduces these maximum frequency den-
sity values pm. The mean of the total density pðSÞ
can be obtained from the expression Sav ¼R1
0 SpðSÞdS (or its filtered version). However,
because the average frequency of zero up-
crossings of the mean water level is sav ¼
ð2pÞ�1ðm2=m0Þ

1=2
¼ ð2pÞ�1s0 (in Hz),

1 it becomes
apparent that, by our definition, the normalized
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average frequency, Sav, is a�1=2. This value of Sav
along with Sm is also listed in Table 1. Again,
broadening of the spectrum enhances both Sm
and Sav.
The effects of spectral bandwidth, in the form of

n2 now, on the distributions of wave height and
periods also have been addressed by Tayfun
(1983). He found that the probability structure of
(crest to trough) wave heights is highly dependent
on n2 and shows significant differences with respect
to the Rayleigh theory. Note that n ¼ 0 corre-
sponds to y ¼ 1.
3.3. Conditional distribution of wave frequencies

The distribution of normalized frequency
S at fixed values of the wave amplitude H,
pðSjHÞ, is found on dividing pðH;SÞ, by pðHÞ,
namely:

pðSjHÞ ¼
4HS3

p1=2ðy2 � 1Þ1=2
exp �

H2ð1� S2Þ2

ðy2 � 1Þ

	 


F�1ðBmÞ. ð26Þ

Note that
R1
0 pðSjHÞdS ¼ 1. Eq. (26) has local

maxima at the points ðHmx, SmxÞ where
qpðSjHÞ=qS ¼ 0. This condition leads to

Hmx ¼
3ðy2 � 1Þ

4S2mxðS
2
mx � 1Þ

	 
1=2
or

Smx ¼
1

2
1þ 1þ 3

y2 � 1
H2
mx

� �	 
1=2" #" #1=2
. ð27a;bÞ

It can be readily shown that the curve defined by
either of Eqs. (27a, b) passes through the point
ðHmax;Smax given by Eqs. (13a, b). It also can be
verified, by inspection of Fig. 1, that where
this curve intersects any contour pðH;SÞ=
pmax ¼ constant, the tangent to that contour is
parallel to the S-axis. This curve is also asymptotic
to both the horizontal S-axis and the vertical line
passing through S ¼ 1, for large values of S and
H, respectively, and expresses the asymmetry in
the distribution of S.
4. Wave breaking

4.1. Breaking criterion

In this work, we have adopted Banner and
Phillips (1974) breaking criterion defined by the
limiting wave amplitude, h0, at frequency s,
properly modified to account for drift current
and other effects (described below), given as;

h0 ¼
c2

2a1g
for spsp,

h0 ¼
c2

2a1g
1� a0

u�

c

� �2
for s4sp, ð28a;bÞ

where cðsÞ is the phase velocity of the wave
component at frequency s, a1 is a numerical
constant of Oð1Þ, and a0 represents the ratio of the
Eulerian mean surface-drift current, q̄we, and u�.
The constant a1 accounts for the fact that the
downward crest acceleration of the breaking wave
is not exactly 0:5g but, as indicated by theoretical
analysis and experiments, closer to 0:4g (see also
Appendix C). The coefficient a0 is about 0.5, but
caution must be exercised in selecting its appro-
priate value, as most of the surface drift current
measurements are conducted in a Lagrangian
frame. Therefore, the value 0.53 (¼ a00 in general),
often quoted in the literature, may not be suitable
for our Eulerian calculations. For intermediate
wind speeds (i.e. 30pu�p40 cm=s), the Lagran-
gian fraction a00 has been found to increase with
u�, but the opposite appears to be true for very
high wind speeds (i.e. 40ou�p60 cm=s). More
specifically, the data of Wu (1968) and others
indicate that:

a00 ffi 0:53 for 0ou�p30 ðcm=sÞ,

a00 ffi 0:0175u� for 30ou�p40 ðcm=sÞ,

a00 ffi �0:004375u� þ 0:875 for

40ou�p60 ðcm=sÞ. ð29a;b; cÞ

The data of Plant and Wright (1980), as shown in
Smith (1986), have a similar behavior in the range
0ou�p30 ðcm=sÞ, with an a00 value of 0.60, but for
u�430 cm=s they indicate that a00 decreases
monotonically with increasing u�, reaching �

0:33 at u� ¼ 100 ðcm=sÞ. The variation of the
Eulerian fraction a0 with wind and sea state is
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given by (see also Papadimitrakis et al., 1988):

a0 ¼
q̄we
u�

¼ a00 � 8p2 y2
cp

u�

 �
; y ¼

m
1=2
0 s2p
2pg

.

(30a, b)

Eq. (30a) simply states that the Eulerian (mean)
drift ðq̄weÞ is the difference between its Lagrangian
counterpart ðq̄wlÞ and the corresponding surface
Stokes transport ðq̄sÞ. This (reduced) form of
Stokes transport maybe readily obtained by noting
that, for a monochromatic wave train, q̄s ¼ ðakÞ2c

(Kinsman, 1965), where a and k represent the
amplitude and wave number of the monochro-
matic wave, and converting the above simple
relation into a counterpart expression for a
spectrum of waves with the aid of an equivalent
amplitude ðāÞ, associated with the sea-surface
variance, the wave number at the spectral peak
frequency, kp, and Eq. (30b).
In the presence of a swell, Eq. (28) is properly

modified to include the short- and long-wave
interactions. Then according to Phillips (1977),
h0 is given by

h0 ¼
c2

2a1g
½ð1� m0Þ

2
� ð1þ 2m0 � 3m02ÞB0�, (31)

where m0 ¼ a0ðu�=cÞ and B0 is the swell slope. In
this case, owing perhaps to the reduced surface
roughness, a00 has been found to be somewhat
greater than 0.53. For dimensionless wave speeds
in the range 8pcp=u�p26, a00 has been found to
increase with the wave age having values between
0.61 and 0.73, being on the average about 0.65
(Cheung, 1985).
It should be pointed out that Eq. (31) is actually

valid for sXscr, that is, above the frequency
scr where the interactions of short waves with
the swell (or the dominant wave) become impor-
tant. Phillips (1981) suggested that scr ¼ f½4B0ð1�
B0Þ��1gsp. He also has suggested that, even in
the absence of a swell, the modulation, by the
dominant wave, of short waves, riding on the
dominant wave back and having frequencies
greater than scr, remains strong. Hence, the
limiting amplitudes at those frequencies ð4scrÞ
still may be given by an expression similar to
Eq. (31) but with B0 now replaced by the average
slope of the wave field ðkhÞav, or by B0
av, the

average value of the long-wave slopes, if more long
waves are present in the sea spectrum (see
Eq. (A.16) in Appendix E). For frequencies scr,
one may apply Eq. (28) instead of (31), although it
is likely (for the reasons mentioned above, i.e.
associated with the presence of a dominant or
other long wind-generated waves) that the short-
and long-wave interactions may become effective
at frequencies much closer to sp; as mentioned
before, ðkhÞav may be taken as the product havkp,
where kp is corrected for drift current (wave- and
wind-induced) and orbital velocity effects.2 Utiliz-
ing the definitions of y and hav ¼ ð2m0Þ

1=2Hav ¼

ð2m0Þ
1=2F1ðyÞ, it can be shown that ðhkÞav ¼

2
ffiffiffi
2

p
p yF 1ðyÞ. Therefore, under all conditions scr

maybe given as a multiple of sp, with a multiplier
being a function of either B0 (in the presence
of a swell) or y and cp=u� (trough y) for wind-
generated wave conditions.
In non-dimensional form h0 fi.e., H0 ¼

h0=ð2m0Þ
1=2

g is given as

H0 ¼ ð4
ffiffiffi
2

p
pa1 yÞ�1

Sp
S

 �2
f for SpSp,

H0 ¼ ð4
ffiffiffi
2

p
pa1 yÞ�1

Sp
S

 �2
f 1� a0

cp

u�

 ��1
"


S
Sp

 �#2
; for S4Sp, ð32a;bÞ

where f expresses a measure of the non-linearity of
the wave field which, for monochromatic waves,
maybe taken as the ratio ðc=c‘Þ

2, where the
subscript ‘ refers to the corresponding linear
phase velocity. For a spectrum of waves, f may
be expressed in a number of ways, as various
investigators have proposed different forms of f.
Longuet-Higgins (1975a), for example, proposed
the following form of f, viz.:

f ¼ 1þ ðhkÞ2av þ
1
2
ðhkÞ4av þ

1
4
ðhkÞ6av

� 22
45
ðhkÞ8av þ . . . .
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The variation of f with sea state, in terms of the
significant slope, also may be derived following an
approach similar to that suggested by Longuet-
Higgins and Fox (1978), and can be found in
Appendix D (see also Appendix E). The incor-
poration of f in the above expressions of H0

accounts (only) indirectly for the influence of non-
linearity of the wave field on wave breaking; a
more precise analysis of these effects on wave
breaking is beyond the scope of this work.
The effects of non-linearity of the wave field on

the maximum sea-surface displacement also have
been addressed by Song and Wu (1999). These
authors, based on a second-order random wave
theory, found that the distribution of dimension-
less wave maxima becomes flatter and its peak
value diminishes as the non-linearity of the wave
field increases. This finding is consistent with
the classical Fig. 4:26 of Phillips (1977), which,
reproducing the results of Cartwright and Long-
uet-Higgins (1956), does show the decrease of the
peak of the probability distribution of the height
of wave maxima as the spectrum bandwidth, y,
increases (with increasing y).
In the presence of a swell and for frequencies

greater than Scr (the normalized frequency scr),
Eq. (32b) is properly modified by replacing the
expression of the square bracket by: ½ð1� m0Þ

2
�

ð1þ 2m0 � 3m02ÞB0�, in order to account (again) for
the short- and long-wave interactions. Now
m0 ¼ a0ðu�=cpÞðS=SpÞ.
The limiting amplitude concept, developed by

Phillips (1977), is compatible with the kinematical
breaking criterion used by other investigators to
characterize a breaking crest that requires that for
breaking to occur, the crest orbital velocity,
augmented by the local drift current, must exceed
the phase velocity of the wave at its forward crest.
It is also compatible with the limiting slope
concept presented in the following section, as
limiting amplitudes maybe readily converted into
limiting slopes. Limiting wave steepness measures
also have been used by various investigators to
characterize wave breaking, in both laboratory
and field observations (see, for example, Tulin and
Li, 1992). Limiting slopes provide a link among
the limiting amplitudes and the limiting downward
crest accelerations; this link (or transformation), in
turn, allows for a more accurate estimate of the
limiting amplitudes via the estimation of coeffi-
cient a1 (see Appendix C).

4.2. Importance of wind drift on wave breaking

The importance of wind drift effects, on the
breaking processes, is worth commenting here in
the light of Phillips (1977) pertinent analysis. He
supported the idea that the influence of drift
current on the spectral densities, remote from the
peak, is significant and that freely traveling waves
with phase speeds less than (the mean value of) the
surface drift are completely eliminated from the
spectrum. He further argued that, under natural
conditions, the long waves present in the spectrum
modulate the surface drift and amplify it mani-
folds along the forward side of the long-wave crest.
The maximum drift speed is, theoretically, attained
at the long-wave crest (with a value depending on
the long-wave slope) and causes the shorter waves
to break prematurely there, due to the severe
reduction of the respective limiting amplitude, a
fact consistent with numerous field and laboratory
observations. Field experiments also have stressed
the appearance of wave breaking near the center of
wave groups, indicating that, due to the sporadic
and intermittent nature of breaking, breaking
does not necessarily occur at all wave crests.
For frequencies greater than about 0:25g=q̄wef¼

ð0:25=a0Þðcp=u�Þspg, Phillips (1977) has shown that
freely travelling waves are erased completely from
the spectrum, a conclusion consistent with the
findings of Hsu et al. (1982) that the wave field
evolves from a (rather bound) non-linear system,
at cp=u� values of Oð1Þ or less, to a linear system
(with free travelling components) at large cp=u�

values of Oð10Þ or larger (see also Section 4.3.1).
Although in the presence of a swell a00 increases

(rather slowly) with increasing wave age, a0, given
now as a00 � B02ðcp=u�Þ, may either increase (for
small B0 and cp=u� values) or decrease (for large B0

and cp=u� values), indicating that the Eulerian
surface mean drift may become more or less
effective in this case. Yet, in view of the fact that
the drift near the forward face of the long-wave
crest is augmented significantly (as described
previously) and that wave breaking does occur at
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this particular location, it is not clear whether the
surface drift is less important in this case, and
further analysis is warranted. At any rate, the
influence of drift current on the processes of
surface wave breaking regards mainly the fre-
quency components above the spectrum peak and,
consequently, its importance remains.
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Fig. 2. Typical smax distributions as a function of normalized

frequencies S=Sp for y ¼ 0:015 (blue line), 0.025 (red line),
0.035 (green line) and various cp=u� values: (A) cp=u� ¼ 2, (B)

cp=u� ¼ 10, and (C) cp=u� ¼ 30.
4.3. Wave slope considerations

We now recast Eqs. (28) and (31) in a slightly
different form. In the absence of swell, using the
linear dispersion relationship (i.e. s2‘ ¼ gk‘) and
the equality k=k‘ ¼ c‘=c, we obtain:

smax ¼ kh0 ¼
f

2a1

 �
1� a0

cp

u�

 ��1
"


S
Sp

 �#2
for S4Sp, ð33Þ

where smaxðSÞ represents the limiting slope at a
frequency S. A similar expression holds in the
presence of a swell.
From the above description, it becomes appar-

ent that the limiting slope at any given frequency,
within a spectrum of waves, depends on both y
and cp=u�. The variation of smax, as function of
S=Sp, is shown in Figs. 2(A–C) for representative
values of the wave age and the significant slope. It
is seen now that for a given wave age, smax is
reduced considerably at frequencies remote from
the spectral peak. However, at a fixed frequency
smax increases with either cp=u� or y (or both). The
variation of smax, as a function of cp=u� and y
coupled to cp=u� ffor example: y ¼ 31:74
10�3ðcp=u�Þ

�0:5, see Appendix Fg and Fig. 2 all
show that, for wave trains with an overall
steepness yp ymax, the limiting (local) slopes,
close to the spectral peak, are smaller than
ðkhÞmax ¼ 0:4432. It is also obvious that in the
absence of drift currents, since the limiting slope is
then smax;0 ¼ f =2a1, the absolute local maximum
slope may increase with increasing (overall) steep-
ness y from about 0.36 to 0.44 (when a1 ¼ 1:39).
Such a behavior is consistent with the field
observations of Holthuijsen and Herbers (1986).
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It is worth noting that Ochi and Tsai (1983), in
their experiments with unsteady, plunger gener-
ated-waves, found signs of breaking individual
waves for which smax ¼ 0:35, less than the limiting
value of 0.4432, but this is not inconsistent with
the fact that the ‘‘significant waves’’, that is those
with amplitude 2

ffiffiffiffiffiffi
m0

p
, cannot have steepness

larger than 0. 4432. It is also consistent with the
fact that the value of maximum wave slope (in the
absence of drift current effects), representing also
the ratio of downward crest acceleration and g,
cannot exceed 0.39.
In the early stages of development of waves

generated locally by wind in the absence of a swell,
cp=u� ffi 0ð1Þ with a typical value of about 2, and
a0 ffi 0:5 (as for example, in a laboratory). Then, it
appears that wind-drift effects alone reduce the
limiting slope, expected otherwise, to about 12 of its
value. Low overall steepness also may reduce the
maximum real acceleration that the wave crest can
reach, before it breaks, and further diminishes the
limiting slope at a particular frequency. We
therefore can conclude that, unlike Holthuijsen
and Herbers (1986), the wave steepness can be
used as a parameter to characterize wave breaking,
provided that drift current, wave non-linearity,
and crest acceleration effects have been properly
accounted for. This conclusion also agrees with the
findings of Xu et al. (1986) who showed that in
(laboratory) wind–waves it is necessary to distin-
guish at least two classes of breakers—those
corresponding to the dominant waves, in the peak
of the frequency spectrum, and those correspond-
ing to shorter waves riding on the dominant waves.
It is also important to note that Holthuijsen and
Herbers (1986) did not consider small-scale break-
ing (with no air entrainment).
There are other reasons, that also support the

contention that the overlapping of the probability
density data of the latter authors cannot be used as
an exclusive evidence for disputing a wave slope
based breaking criterion. Perhaps, the most
important among them is the fact that Holthuijsen
and Herbers (1986) slope values were deduced
from wave-height records during the breaking
events, the latter being identified by the presence of
white capping. However, it is known that wave
slopes attain their maximum value just before, not
during, breaking. As a result of their deduction
procedure, waves with a higher slope (prior to
breaking) and subsequently breaking are classified
as non-breaking events, yielding a biased fraction
of unbroken waves on the high side. This
explanation provides also a justification for the
extremely low mean value of the threshold
parameter ðH f=gT2Þ ¼ 0:0067 reported by the
same authors, and referred to in the following
Section 4.3.1, as this value apparently contains the
bias from many unbroken waves that were
considered as breaking (or broken) by the authors.
For an explanation of symbols H f , T see also
Section 4.3.1.
In a more recent study Banner et al. (2000), by

analyzing the breaking of large-scale dominant)
surface waves of three geographically diverse
natural bodies of water (Lake Washington, Black
sea, and the Southern Ocean), concluded that non-
linear hydrodynamic processes, associated with
wave groups, play an important role in the process
of breaking, and that the significant wave steep-
ness is an appropriate parameter to quantify the
breaking probability of large-scale waves.

4.3.1. Limiting average wave slope considerations

Lake and Yuen (1978) have found experimen-
tally that for wind waves, generated under a
variety of conditions, the average slope ðhkÞav ¼

havkp does not exceed 0.28. Then, it can be argued
that yp0:28=f2

ffiffiffi
2

p
pF 1ðyÞg. When y ¼ 1; F1ðyÞ ¼ffiffiffi

p
p

=2 and ymax ¼ 0:0356, a value not that
different from y ¼ ðhkÞmax=4p ¼ 0:4432=4p ¼

0:0353. In the previous definition of y we have
used as amplitude, h, half of the significant wave
height (i.e., 2

ffiffiffiffiffiffi
m0

p
) and as a wave number, k, that

of the spectral peak; 0:4432f¼ pðH=LÞmax ¼

p=7:088 � p=7 ¼ 0:14286pg represents the abso-
lute maximum slope value that steady progressive
waves can reach at most (cf. Longuet-Higgins,
1985). It is then possible that broadening of the
spectrum may cause a reduction in the (max) value
of the average slope havkpf¼ 8:886 yF 1ðyÞg, that
the surface-wave configuration can sustain before
breaking, such that y will not exceed the value of
0.0356. When y ¼ 2, F 1ðyÞ ¼ 0:72 and we may
expect that, in such a broadband field, the
maximum value of ðhavkpÞmax � 0:227. It is not
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expressed by Eq. (36), for various cp=u� values and y ¼ 0:02:
(a) cp=u� ¼ 2 (blue line), (b) cp=u� ¼ 5 (red line), and (c)

cp=u� ¼ 15 (green line).
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unlikely, however, that for higher y values a
somewhat lower value than 0.227 may be attained
in the field, as the function F1ðyÞ decreases slowly
with increasing y, approaching a rather constant
bound (lower than 0.72). In fact F1ðyÞ approaches
0.61, as y takes on large values. Recent numerical
simulations, as well as field and lab experiments,
confirm this finding of reduced maximum average
wave slope in broadband wave fields (Banner and
Song, 2002; Song and Banner, 2001; Banner et al.,
2000; Song and Wu, 1999; Nepf et al., 1998). This
finding is also consistent with the conclusions of
Song and Wu (1999), provided that the non-
linearity of the wave field, f, increases with the
wave steepness, y, and the bandwidth, y, increases
with y. Yet with increasing y, the height of wave
maxima decreases and, therefore, the correspond-
ing limiting slope becomes smaller.
The results of Hsu et al. (1982) also suggest that

ðhkÞav diminishes with increasing non-dimensional
fetch and/or wave age. In fact their findings
suggest that laboratory (perhaps bound) waves
may sustain ðhkÞav values a little larger than
0:28fi:e: ðhkÞav � 0:32g, whereas mature waves
in the ocean, with cp=u� � 10220230, may attain
ðhkÞav values in the range 0.09–0.06, implying
that wind waves evolve from (perhaps) a bound,
non-linear system at short fetches to a linear
system at large fetches where sea becomes fully
developed.
Tulin and Li (1992) also have summarized

several limiting steepness measures that character-
ize breaking waves both in the field and in the
laboratory. Their Fig. 3 shows, in an H f � gT2

graph, the range of dimensionless H f=gT2 limiting
values that characterize tank experiments (with
H f=gT2 ¼ 0:021), North Sea observations con-
ducted by Holthuijsen and Herbers (1986) (with
H f=gT2 ¼ 0:0067), and the Stokes limit ð¼ 0:027Þ.
Here H f is the limiting wave height and T is the
corresponding period. Using the dispersion rela-
tion, it can be readily shown that these dimension-
less H f=gT2 limiting values correspond to
H f=L ¼ 1=7:579, 1/23.75 and 1/5.89, respectively,
or to y values equal to 0.0467, 0.014 and about
0.06. This latter value is somewhat higher than
about 0.05 corresponding to the traditional
(Stokes) limit of H f=L ¼ 1=7.
The above authors have commented on the large
scatter of the laboratory data, and attributed the
differences between the laboratory and sea limiting
(slope) values to the very different fetches (and the
respective different non-dimensional x� values—
for a definition of x� see Appendix F) encountered
in laboratory tanks and at sea (as Hsu et al., 1982,
has also suggested). Laboratory wind–waves are
characterized by small wave ages of Oð1Þ or less,
and they are most likely narrow-banded. Such
waves may approach the upper average slope limit,
which, however, here appears to exceed Lake and
Yuen (1978) bound. Waves at sea, on the other
hand, are usually well developed, having wave ages
of Oð10Þ or higher, and therefore broad-banded;
they can sustain small average slopes. Indeed,
for large y values F1ðyÞ ¼ 0:61 and, therefore,
ðhkÞav;min ð¼ 2

ffiffiffi
2

p
p ymax0:61Þ ¼ 0:193, an average

slope that corresponds to H f=gT2 ¼ 0:0098. It
appears then that the conclusions of Tulin and Li
(1992) do not contradict the findings of Hsu et al.
(1982), as the value of H f=gT2 ¼ 0:0067, reported
by them to represent an overall field average
of breaking wave steepness, corresponds to
ðhkÞav � 0:13; this latter value is rather consistent



ARTICLE IN PRESS

Y.A. Papadimitrakis / Deep-Sea Research II 52 (2005) 1246–12691258
with Hsu et al.’s (1982) expression of
ðhkÞav ¼ 0:29ðcp=u�Þ

�2=5, which, for cp=u� � 10,
yields ðhkÞav � 0:12. An explanation for this
extremely low ðhkÞav value was offered earlier.
5. Spectral wave breaking probability

The breaking probability, pBðsÞ, at any fre-
quency s is obtained by integrating pðh; sÞ overall
positive amplitudes exceeding h0, namely:

pBðsÞ ¼
Z 1

h0

pðh;sÞdh. (34)

Integration of Eq. (35) with respect to the wave
amplitude, h, yields:

pBðsÞ ¼ bay=ð2b3=2y ÞcGð3=2; byh
2
0Þ (35)

or in nondimensional form:

pBðSÞ ¼ 4p�1=2ðy� 1ÞGð3=2; x20Þ


S

½y2 � 1þ ðS2 � 1Þ2�1=2

� �3
, ð36Þ

where

x0 ¼ 1þ
ðS2 � 1Þ2

y2 � 1

	 
1=2
H0. (37)

Here Gð; Þ represents the incomplete Gamma
function. Since the joint model used makes

no assumption on the spectrum bandwidth, it is

expected that Eq. (36) can cover a wider range of

sea states.
Integration of Eq. (36) over all positive frequen-

cies yields an (overall) average breaking prob-
ability of the wave field, B ¼ Bð y; cp=u�Þ, namely:

B ¼

Z 1

0

pBðSÞdS. (38)

Expressions for B, as a function of m4=g2 rather
than y and/or cp=u�, also have been proposed by
other investigators (Ochi and Tsai, 1983; Snyder
and Kennedy, 1983; Srokosz, 1986). Their expres-
sions may be considered similar to Eq. (38),
provided that: (a) S is a function of H0, (b)
Eq. (38) can be viewed as an integral (over all
crest heights) of the probability that a crest of
a given height will break, and (c) as can be
readily shown:

m4

g2
¼ 4p2 y2y2

s0
sp

 �4
.

Ding and Farmer (1994) analyzing field data
fromthe Surface Wave Processes Program in terms
of wave breaking statistics, also found that the
(average) breaking probability decreases with m�1

4

in a (rather) linear statistical fashion (cf. their
Fig. 18, although the data scatter in that figure
appears to be considerable). Such B � m�1

4 beha-
vior is consistent with Srokosz (1986) results
(cf. his Figs. 1 and 2), which show that B increases
with increasing m4=g2. Then, because m4 is
proportional to both y2, y, and the ratio s0=sp,
increases with y, it becomes evident that the
(average) breaking probability, B, increases rather
dramatically with y (as our results do show).
Phillips (1985), using action conservation prin-

ciples, also estimated the average number of
(rather large) scale breaking fronts (associated
with whitecaps) per unit time and unit area, Nb

(in Hz), passing a given point, namely:

Nb ¼ g0b
3
0b

�1
0 Ið3pÞ

cp

u�

 ��3

sp,

IðpÞ ¼

Z p=2

�p=2
cosjp dj, ð39a;bÞ

where b0 ¼ 0:06 and b0, g0 are numerical constants
that satisfy certain constraints. Since the average
number of waves per unit time is ð2pÞ�1ðm2=
m0Þ

1=2
¼ ð2pÞ�1s0 (in Hz), it follows immediately

that Phillips (1985) corresponding average break-
ing probability, Bph, can be expressed as

Bph ¼ 2pg0b
3
0b

�1
0 Ið3pÞ

cp

u�

 ��3 s0
sp

 ��1

(40)

with p ¼ 2, b0 ¼ 1:1 10�2 and g0b
2
0 ¼ 0:05

(cf. Phillips, 1985) we find that:

Bph ¼ 0:062
cp

u�

 ��3 s0
sp

 ��1

. (41)

Phillips transformed expression for Bph (i.e.,
Eq. (41) does show that the overall breaking
probability diminishes with increasing wave age
ðcp=u�Þ, provided that both s0=sp and f are greater
than unity, a behavior in accord with observations
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in mature wave fields, since the latter become
progressively less steep (gentler, i.e.) with increas-
ing wave age beyond a certain threshold wave age,
ðcp=u�Þth, of about 1.85.
The dependence of the average breaking prob-

abilities on the wave age also has been stressed by
Katsaros and Atakturk (1991) who found that the
fraction of spilling and plunging breakers correlates
the best with the degree of wave development and the
wind stress, not solely with the wave age. A comment
on this double parameter dependence of average
breaking probability will be offered in Section 6. The
similarities and differences among the various
expressions of B are also described in Section 6.
0.00 2.00 4.00 6.00 8.00
0.00

Fig. 4. Typical pBðSÞ distributions, in the absence of a swell, for
various y values and cp=u� ¼ 7: (a) y ¼ 0:02 (blue line); (b)
y ¼ 0:025 (red line); and (c) y ¼ 0:03 (green line).
6. Results and discussion

Fig. 3 shows typical pBðSÞ distributions in the
absence of a swell, as expressed by Eqs. (36) and
(37), for various wave ages ð¼ 2; 5; 15Þ and a
representative y value ð¼ 0:02Þ. It is seen from
these figures that as the wave age increases and the
wave field becomes progressively more mature and
broadband, the bandwidth y increases and the
peak breaking probability decreases. As expected,
for constant y the pBðSÞ curves shrink with
increasing wave age, a behavior reflecting precisely
the physics of a maturing wave field. If y and
cp=u� (are assumed to) vary independently, then
low cp=u� values produce peakier breaking prob-
abilities. Fig. 4 shows typical pBðSÞ distributions
(in the absence of a swell), for various significant
slopes ð¼ 0:02; 0:025; 0:03Þ and a representative
wave age (say ¼ 7). Again, as expected, for this
fixed wave age the peak breaking probability
increases with increasing significant slope. pBðSÞ
distributions for various wave ages and y coupled
to them through the y-cp=u� relation mentioned
above (representing wind-generated waves in the
absence of a swell) show that as the wave age
increases, y decreases and the shrinking of pBðSÞ
profiles becomes stronger than those when y and
cp=u� vary independently.
Fig. 5A shows the distribution of pBðSpÞ as a

function of y, whereas Figs. 5(B) and (C) show
typical distributions of pBð2SpÞ and pBð2:5SpÞ as a
function of y and various representative cp=u�
values (¼ 2; 10; 30), all in the absence of a swell. It
is reminded that since the pBðSpÞ expression does
not depend directly on cp=u�, the pBðSpÞ- y curve
has no parametric dependence on the wave age.
As seen, all of these probabilities increase with
increasing y and, certainly, the curves showing the
distributions pBð2SpÞ and pBð2:5SpÞ lie below the
pBðSpÞ curve. It is also apparent that these
distributions are less sensitive to the wave age for
large values of the latter parameter (ðcp=u�X10,
say) representing mainly field conditions, a con-
clusion virtually in agreement with the findings of
Banner et al. (2002) and others.
The variation of B with cp=u�, and y as a

parameter or v.v., as expressed by Eq. (38), is
shown in Figs. 6 and 7, respectively, whereas Fig. 8
shows the variation of B as a function of cp=u� and
y coupled to cp=u�. As expected (and shown in
Fig. 6), B increases with increasing wave steepness,
for a fixed value of wave age. B also increases
with decreasing wave age, for a fixed y value
(as shown in Fig. 7). Yet when cp=u� and y
become interdependent (as for waves generated
locally in the absence of a swell), the variation
of B with cp=u� is not monotonic. At very small
wave ages B increases with this parameter but
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Fig. 5. (A) pBðSpÞ distribution, in the absence of a swell, as a function of y, (B) Typical pBð2SpÞ distributions, in the absence of a swell,
as a function of y and various cp=u� values ð¼ 2; 10; 30Þ; (a) cp=u� ¼ 2 (blue line); (b) cp=u� ¼ 10 (red line); and (c) cp=u� ¼ 30 (green

line) and (C) Typical pBð2:5SpÞ distributions, in the absence of a swell, as a function of y and various cp=u� values ð¼ 2; 10; 30Þ; (a)
cp=u� ¼ 2 (blue line); (b) cp=u� ¼ 10 (red line); and (c) cp=u� ¼ 30 (green line) .

3As follows from (5a), the definition of significant slope and

the dependence of spectral density on cp=u�.
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beyond the critical value of cp=u� ¼ 1:85B de-
creases, a behavior in accord with the ascending
and descending branches of the y-cp=u� curve (see
also Appendix F).
It is noteworthy that, under conditions where

y ¼ yðcp=u�), B also can be expressed as a
function of m4=g2, as given before (Section 5).
Since y varies with both y, cp=u�

3
ðs0=sp varies

rather slowly with these parameters) and now



ARTICLE IN PRESS
B

cp/u*

0.00 10.00 20.00 30.00

0.80

0.60

0.40

0.20

0.00

§=0.03 

§=0.02

§=0.01

Fig. 6. Typical B distributions, in the absence of a swell, as a

function of cp=u� and y as a parameter, as expressed by Eq.
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Fig. 8. Variation of B, in the absence of a swell, as a function of
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curve are represented in this graph).
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y ¼ y ðcp=u�Þ, a unique relation between (say) y
and m4=g2 may be obtained. Furthermore, in order
to make the comparison of our B results, given by
Eq. (38), consistent with the results of the
respective expression for B given by Srokosz
(1986) fi.e. Bsr ¼ exp½�ða02=2Þðm4=g2Þ�1�g, we have
set the constant of proportionality, a0, appearing in
the argument of the latter expression equal to 0.39
(not 0.40), as in Srokosz’s calculations the
dimensionless limiting downwards crest accelera-
tion was taken equal to 0.4.
The variation of B with y, according to

Eqs. (36)–(38), Phillips (1985) and Srokosz (1986)
expressions, is shown in Fig. 9. As seen, B has
similar trends in all cases but its magnitude differs.
Our B values are larger than those corresponding
to Srokosz (1986) and Phillips (1985) expressions,
but this reflects the inclusion of drift currents and
other effects in our formulation (only). The latter
causes premature breaking at the various frequen-
cies, enhancing the corresponding spectral break-
ing probabilities and hence B. The fact that our B

values are somewhat lower than Srokosz (1986) B,
at the higher end of y values, maybe explained by
noting that his B expression contains contributions
from negative peaks as well (not only from the
positive ones) and that the number of extrema in a
wave form increases at these large wave steep-
nesses enhancing Bmore than the inclusion of drift
current and other effects could possibly do.
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Phillips (1985) B curve also lies below the other
two curves showing systematically lower B values
at any single slope. Such a behavior, however, is
not unexpected provided that Phillips expression
refers only to (rather) large-scale breaking events
associated with the presence of whitecaps, not
to all breaking events (i.e. it does not include
microbreaking not accompanied by foam forma-
tion) and, furthermore, the whitecap fraction or
coverage is not identical to breaking probabilities
as the former relates to the duration of life of foam
(and air bubble formation) while the latter is not.
The fact that the spectral wave breaking

probabilities, pBðSÞ, and the average breaking
probability, B (Eqs. (36)–(38)), depend on both
the wave age and the wave steepness appears to
support the findings of several field observations
that have shown that the spectral breaking
probabilities over sufficiently wide frequency bins
spread from the spectral peak to about 2.5 times
the spectral peak frequency and/or the overall
breaking probability correlate rather weakly with
the wave age alone (Banner et al., 2002; Gemmrich
and Farmer, 1999). In many wave fields, it is
possible that the significant slope (wave steepness,
i.e.) and the wave age may be independent
parameters, particularly if in the area one or more
long(er) waves are present, due perhaps to some
past storm or other conditions. It is also possible
that the poor collapsing of the data sets collected
from various observations sites, that some of the
earlier mentioned investigators analyzed and sub-
sequently argued that they correlated weakly with
the wave age alone, may be due to the fact these
fields correspond to waves with and without long
waves, conditions that generally require more than
one parameter for their description. Nepf et al.
(1998) also have argued that wave directionality
effects maybe responsible for such discrepancies.
Analytical expressions of various quantities

associated with the breaking probability of waves,
under different sea state and wind conditions, as
for example expressions for the fractional losses of
the wave energy per frequency (per unit area and
time) and of the total wave-energy losses per
average wave cycle (and unit area), caused by
deep-wave breaking, as well as expressions of the
whitecap coverage and of the turbulence energy
dissipation (per unit mass and area, at the sea
surface and throughout the water column), as a
function of the significant slope and/or wave age,
will be given in a forthcoming paper shortly.
7. Conclusions

We have derived an analytical expression for the
probabilities of wave breaking (in the absence
or presence of swell), as a function of frequency
fi.e. Eq. (36)g, using a joint amplitude–frequency
probability model that applies to both narrow-
and broadband wave fields. The derived expres-
sion has incorporated wind forcing, wave non-
linearity and downward crest acceleration effects
on wave breaking, in the form of a modified
Banner and Phillips (1974) mechanism.
The normalized joint density and the derived

marginal amplitude and frequency density distri-
butions, as well as the conditional distribution
of wave frequencies in the ðH;SÞ plane, all show
many similarities with their counterpart quantities
in the ðH;TÞ plane proposed by Longuet-Higgins
(1983), particularly at small y values (nearly
close to unity). The same holds true for contours
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of the normalized joint distribution of amplitudes
and frequencies pðH ;SÞ=pmax. Our results are
also, qualitatively, similar with those of Tzanis
(2003).
The maximum value that the average slope,

havkp, of a surface-wave configuration can attain
depends on the spectrum bandwidth, y, and
ultimately on the wave age. It diminishes with
increasing wave age, implying that as the wave age
increases from very small values of Oð1Þ or less to
values of Oð10Þ or larger the wave field evolves
from a non-linear (perhaps bound) wave system to
a linear one with free traveling waves. The limiting
average slope concept provides a means of
examining, in a unified manner, field and labora-
tory observations covering a wide range of wave
breaking conditions fas those examined by Tulin
and Li (1992)g that correspond to completely
different dynamical regimes.
In the absence of a swell, the peak breaking

probabilities diminish with increasing wave age at
fixed wave steepness and, certainly, increase with
increasing steepness at fixed wave age. The break-
ing probabilities, at normalized frequencies 2Sp
and 2:5Sp, show a weak dependence on the wave
age for large values of the latter parameter
(representing mature wave fields), whereas the
corresponding probabilities at Sp have no direct
dependence on the wave age, all in accord with
field observations. In the presence of a swell, the
breaking probability curves pBðSÞ show a similar
behavior, getting peakier as the swell slope B0

increases from (typical) values of 0.1–0.3. Yet, they
approach nearly zero values close to the spectral
peak frequency, much faster than their counter-
parts curves do in the absence of swell. Due to
space limitations, figures associated with breaking
probabilities in the presence of swell will be not
included here.
The average breaking probability, B (expressed

by Eq. (38)), shows a similar behavior (when y
and cp=u� remain independent); it diminishes with
increasing wave age, for fixed wave steepness, and
increases with increasing steepness for fixed wave
age. For large values of wave age, B remains
nearly insensitive to the latter parameter. Yet
when y and cp=u� become interdependent (as in
wave fields generated locally in the absence of
swell), the variation of B with cp=u� is not
monotonic; for very small wave ages, on the order
of unity or less, B increases with the wave age, but
for larger wave ages B decreases with the latter
parameter, as expected. The B curves (Fig. 9),
representing Srokosz (1986) and Phillips (1985)
expressions as a function of wave steepness alone
(when cp=u� is coupled to y through the relation-
ship which describes the descending branch of the
y-cp=u� curve), both have a rising trend similar to
the corresponding B curve expressing Eq. (38),
although the rates of rising and the B values of
these three curves are different. Srokosz (1986) B

values are larger in the neighborhood of y ¼ ymax,
whereas Phillips (1985) B curve lie below the other
two showing systematically lower B values at any
single slope.
Appendix A. Determination of a

To determine the coefficient a we define an
S-function as

SðsÞ ¼
1

2

Z 1

0

gh2pðh;sÞdh, (A.1)

where gf¼ gðyÞg is another coefficient with the
property gð1Þ ¼ 1:0. From the above definition, it
follows that SðsÞ has dimensions identical to those
of the spectral density function; g accounts for
the fact that, for a finite bandwidth spectrum, the
expected energy density is not exactly equal to the
half of the amplitude squared, as discussed
by Longuet-Higgins (1980). Substitution of
Eqs. (3)–(5) into Eq. (A.1) yields:

SðsÞ ¼
3gm0s3

a2s40

ðy2 � 1Þ2ðyþ 1Þ

y2 � 1þ 1� s2
s2
0
a

� �2	 
5=2 . (A.2)

It is easily seen now that SðsÞ is positive definite
for all s values. Since

R1
0 SðsÞds ¼ m0, we obtain:

g ¼ 2y=ð1þ yÞ (A.3)

For all positive y, g increases monotonically
with y. We now force the maximum of the S-
function to coincide with the peak of the spectrum.
The maximum value of SðsÞ is readily found from
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the condition qSðsÞ=qs ¼ 0. This yields:

s2max
s20

¼ a
2� f25þ 21ðy2 � 1Þg1=2

7

( )
. (A.4)

Letting smax ¼ sp we find:

a ¼
sp
s0

 �2
7

f2þ ½25þ 21ðy2 � 1Þ�1=2g
. (A.5)

Theoretically, when y ¼ 1, a should also be
equal to 1; yet according to Eq. (A.5) a ¼ ðsp=s0Þ

2

which, in general, is not exactly unity. However,
calculations with either laboratory or field data
show that a is not significantly different from unity
(Typically: s0=sp ffi 1:15 and 1.20, respectively,
for wind-generated waves in the presence or
absence of swell).
Appendix B. Low-pass filtering and high-order

moments

Filtering is commonly used in signal processing
techniques. Its application essentially removes the
difficulties encountered in determining m4 from
field and laboratory data, since the high-frequency
tail of the measured spectrum is usually quite
noisy. Low- and/or band-pass filtering has also
been applied to theoretical calculations of group
statistics by Longuet-Higgins (1986, 1984). Glaz-
man (1986) presented a filtering technique, which
successfully resolves the problem of calculating the
high-order moments of the sea spectrum. His
technique is based on the theory of random fields
(Vanmarcke, 1983) and treats the surface elevation
as specified on a spatial (or temporal) running
grid. The introduction of a spatial (temporal)
scale, characterizing the resolution of a given
physical theory (or observational technique)
makes the statistical description of the wave field
consistent with the limitations of the physical
theory that has yielded a given model of sea waves.
In this work we have adopted Glazman, 1986
approach in calculating the filtered moments
mi ði ¼ 0; 1; . . . ; 4Þ of the wave spectrum. Accord-
ing to him (cf. his Eq. (27)):
m0 ¼

Z p

�p

Z 1

0

V2ðsT f ÞF ðs;jÞdsdj,

m1 ¼

Z p

�p

Z 1

0

V2ðsT f ÞsF ðs;jÞdsdj,

m2 ¼

Z p

�p

Z 1

0

V2ðsT f Þs2F ðs;jÞdsdj,

m4 ¼

Z p

�p

Z 1

0

V2ðsT f Þs4F ðs;jÞdsdj,

ðB:1a; b; c;dÞ

where

V ðsT f Þ ¼ sinðsT f=2Þ=ðsT f=2Þ, (B.2)

T f and j are cutoff period and angle of wave
propagation direction. Evidently, as T f ! 0,
V ðsT f Þ ! 1. F ðs;jÞ is the 2D wave spectrum
which, in many applications, is approximated
by the product of the 1D spectrum, FðsÞ, and
a directionality spreading factor, DðjÞ, viz.,
F ðs;jÞ ¼ FðsÞDðjÞ. Occasionally the spreading
factor is expressed as D1ðs;jÞ. Then: F ðs;jÞ ¼
F1ðsÞD1ðs;jÞ, and integration of this F ðs;jÞ
function, over �p to p, yields (perhaps) a different
FðsÞ:F ðs;jÞ and DðjÞ must satisfy the conditions:

Z p

�p

Z 1

0

F ðs;jÞdsdj

¼

Z 1

0

FðsÞds ¼ Z2 ¼ Z2rms,Z p

�p
DðjÞdj ¼ 1. ðB:3a;b; cÞ

The directional wave spectrum, F ðs;jÞ, proposed
by Donelan et al. (1985), and modified slightly by
Banner (1990), has been used in the subsequent
calculations of spectral moments mi ði ¼ 0; . . . ; 4Þ.
The application of filter function (B.2) to

the spectral density F ðs;jÞ removes from the
latter all components with periods shorter than
T f . However here, unlike in Glazman (1986), T f

is not taken as the Taylor (time) microscale defined
by 2pðm0=m2Þ

1=2. Such a cutoff period corresponds
to a frequency sf , which lies in the range
sposfo2sp and essentially eliminates an impor-
tant part of the spectrum (i.e. a significant part
of the equilibrium region). In this study the cutoff
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frequency, sf , has been taken as the smaller of
ð10sp;snÞ, where sn represents the threshold
frequency that separates the capillary and viscous
dissipation regions of the spectrum. It has
been suggested that sn increases with u�, and
that for wind speeds between 3 and 10m=s, 45
2pð¼ 283Þpsnp200 2pð¼ 1257 rad=sÞ. Komen
(1987) also proposed that sn ¼ a0u2�=n, where
a0 � 0:04 and n here is the kinematic viscosity of
water. We have set sn ¼ maxð283; a0u2�=nÞ. Our
cutoff frequency, sf , is greater than the value
of 5sp used by otherinvestigators in the past,
but consistent with photographs of whitecap
events showing that sf ought to be in the range
ð5210Þsp.
Appendix C. Determination of a1

From Eq. (33) it follows that in the absence of
drift currents, the limiting slope smax;0ð¼ f =2a1Þ
increases monotonically with y; smax;0 also may be
taken as the ratio of the real, downward wave crest
and gravitational accelerations (aL and g, respec-
tively), provided that h0s2=g ¼ �f =2a1 represents
the dimensionless (limiting) downward wave crest
acceleration. For waves of arbitrary steepness
ðp ymaxÞ, the variation of smax;0 with y can,
therefore, be interpreted as that of a1=g with y.
Since, however, the calculations of Longuet-
Higgins (1985) show that for (symmetric, steady)
waves approaching the limiting form aL=g

ffi �0:39, it is possible to estimate the numerical
coefficient a1 such that smax;0 ¼ 0:39 when
y ¼ ymax. This yields: a1 ¼ f m=ð2 0:39Þ ¼ 1:53,
where f mð¼ 1:1931Þ is the value of f corresponding
to y ¼ ymax (see also Appendix D). Somewhat
different a1 values are obtained when a1 is
interpreted as either the ratio of 0:50g=0:39gð¼

1:28Þ or when smax;0 ¼ 0:4432, which then yields
a1 ¼ f m=ð2 0:4432Þ ¼ 1:35. A similar value of f m
may be obtained if the expression of f, proposed by
Longuet-Higgins (1975a) and shown above is
used with ðkhÞ ¼ ðkhÞmax � 0:4432. That yields:
f m;LH ¼ 1:24, and the corresponding a1 values
are: a1 ¼ f m;LH=ð2 0:39Þ ¼ 1:58 or a1 ¼ f m;LH=
ð2 0:4432Þ ¼ 1:39. In this study a1 has been
taken as 1.39.
Appendix D. Wave field non-linearity

considerations

In this study, the phase velocities c have been
corrected to account for the non-linearities of the
wave field according to the following relationship
(Longuet-Higgins and Fox, 1978):

f ¼
c2

c2‘
¼ 1:1931� 1:18�3l cosð2:143 ln �l þ 2:22Þ.

(D.1)

The coefficient �1 can be determined as described
in Longuet-Higgins (1985, 1986). Briefly, for
uniform, steady wave trains, and in the absence
of drift currents, �1 is given by

�l ¼
c � uorbffiffiffi
2

p
c‘

, (D.2)

where uorb denotes the wave crest orbital velocity.
Longuet-Higgins and Fox (1978), and Longuet-
Higgins (1980) have also shown that �1 is a
function of the crest wave slope hk, namely:

kh ¼ ðkhÞmax � 0:50�
2
l þ 0:160p�

3
l

 cosð2:143 ln �l � 1:54Þ, ðD:3Þ

where ðkhÞmaxðffi 0:4432 ¼ 0:14107pÞ is the abso-
lute maximum value of the wave slope. This
limiting slope value is in fact the Stokes limit
f i.e., ðH f=LÞ � 1=7, yst ¼ 0:0505g. For a spectrum
of ocean waves (perhaps asymmetric, unsteady
wave trains), Eq. (D.3) still can be used to obtain
a mean value of �1, if one replaces hk by a
characteristic mean slope, say, havkp. In terms of
the significant slope y, Eq. (D.3) can be recast in
the form:

y ¼ ½F 1ð1Þ=F1ðyÞ� ysmax � 0:5f2
ffiffiffi
2

p
pF1ðyÞg�l�2l

þ 0:160pf2
ffiffiffi
2

p
pF1ðyÞg�l�3l

 cosð2:143 ln �l � 1:54Þ ðD:4Þ

ysmax represents the maximum value of the
significant slope that corresponds to the Stokes
limit ð� 0:0505Þ. Yet, since this limit is not realized
in the field it was considered appropriate to use the
limiting value ymax ¼ 0:0356 found in Section
4.3.1. In utilizing Eq. (D.4), we have assumed that
for a spectrum of waves the nonlinear phase
velocity can still be determined from an equation
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derived for uniform waves by means of a
characteristic (average) slope. However, further
testing of this hypothesis may be required in the
future. Accurate c=c‘ values were obtained by
successive Pade approximants ½N;N�, with N ¼ 15
(cf. Longuet-Higgins, 1975b), for y varying from
zero up to ymax. In the following appendix we
present another approximate expression for the
ratio c=c‘, that is for f.
Appendix E

We assume here that the effects of nonlinearity
of the wave field on the ratio c=c‘ are independent
of frequency, that is, c=c‘ ffi c̄=c̄‘. Here c̄ repre-
sents a mean characteristic phase velocity and
c̄‘ ¼ g=s0. Then, from the definition of �1 it follows
that:

c̄

c̄‘
¼

uorb

c̄‘
þ

ffiffiffi
2

p
�l, (E.1)

where �1 can be obtained in terms of y via
Eq. (D.4). The above equation neglects surface
drift current effects, and a more complete expres-
sion for the ratio c̄=c̄‘ may be given as:

c̄

c̄‘
¼

uorb

c̄‘
þ

q̄we
c̄‘

þ
ffiffiffi
2

p
�l. (E.2)

Since for a monochromatic wave train, uorb / hs,
it can be argued that for a spectrum of waves:

u2orb ¼ 2

Z 1

0

V 2ðsT f Þs2FðsÞds. (E.3)

For calculating uorb, in wind-generated waves
without swell, a modified Donelan spectrum has
been adopted, as described earlier.
In the presence of a swell, a somewhat different

form of the spectrum is adopted for frequencies
greater than a critical frequency, scr, where the
interactions of short waves, riding on the swell,
with the swell become significant (Phillips, 1977),
viz.,

FðsÞsw ¼ FðsÞfð1� m0Þ
2
� ð1þ 2m0 � 3m02ÞB0g2

for sXscr. ðE:4Þ

Under field conditions, it is perhaps more realistic
to replace B0 either by ðkhÞav or by B0

av, the average
of the maximum slopes associated with the long
waves, in the case of co-existence of more than one
long waves in the sea spectrum. According to
Longuet-Higgins (1962), for a random Gaussian
surface:

B0
av ffi 2

Z sf

0

V2ðsT f Þk
2FðsÞds

	 
1=2
. (E.5)

Combining the above expressions, we may write

f 1=2 ¼
c̄

c̄‘
¼ 2

ffiffiffi
2

p
p yF c þ a0

cp

u�

 ��1

F 1=2
c �

ffiffiffi
2

p
�l.

(E.6)

F c is a complicated function of y, cp=u� and of the
spectrum characteristics. Comparison of the var-
iation of f 1=2 with y, according to Eqs. (E.6) (with
u� ¼ 0) and (D.1), shows satisfactory agreement.
Appendix F. Significant slope-wave age

correlations

In order to get a deeper insight into—and a
better understanding of—the behavior of the
results derived in this study, it was felt appropriate
to explore the nature of significant slope–wave age
correlations that might exist under field and
laboratory conditions, in the absence and/or
present of swell. The pBðSÞ and B results may
differ (to a greater or lesser extent) depending on
whether y and cp=u� remain coupled or indepen-
dent, and the extent of similarities or differences of
pBðSÞ and B results certainly depends on the
combination of the parameters and/or the y-cp=u�

correlation used. In the absence of swell, these two
non-dimensional parameters are interdependent,
whereas the opposite appears to be true for wind-
generated seas in the presence of swell. Yet, in the
former case these correlations may also differ
under laboratory and field conditions.
In the early stages of development (or at very

short fetches) where cp=u� � Oð1Þ or less, the wave
steepness increases with wave age (cf. Fig. 4 of
Huang et al., 1986; Fig. 4:19 of Jones and Toba,
2001 taken from Baily et al., 1991), whereas for
developing waves (at moderate and large fetches)
y decreases with it. The field data of Kahma
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(1981), for example, indicate that in the latter case
y / ðcp=u�Þ

�1=2, but similar expressions have been
proposed by Hsu et al. (1982) and others.
More recent expressions relating y (or the mean

square slope, S� ¼ k2pZ
2
rmsÞ with the non-dimen-

sional frequency, s�, can be obtained by utilizing
the data on dimensionless energy, e�, frequency,
s�, and fetch, x�, reported in Kahma and Calkoen
(1994) and in Young (1999). Their studies
provide excellent summaries of the efforts made
to produce the best correlations of the form:
e� ¼ A1x � a and s� ¼ B1x � b, where e� ¼

Z2rmsg
2=U4

10; s� ¼ U10sp=g, x� ¼ gx=U2
10 and x

denotes fetch. Elimination of x� between these two
correlations, recalling that e� ¼ S � s�4� and using
the average coefficients suggested by Young
(1999), yields: S� ¼ 2:47 10�3s0:8� . Since, how-
ever, y2 ¼ S � =4p2, it follows that: y ¼ 7:91
10�3ðcp=U10Þ

�0:4, an expression very similar to
that proposed by Donelan et al. (1985), viz.:
y ¼ 33:1 10�3ðcp=U10Þ

�0:35. Since also U10 ¼

u�C
�1=2
d , where Cd is the drag coefficient, it follows

immediately that in terms of the wave age cp=u�,
the first correlation maybe expressed as:
y ¼ 7:91 10�3ðcp=u�Þ

�0:4C�02
d . Several expres-

sions have been proposed for Cd as a function of
cp=u�, in the form: Cd ¼ A2ðcp=u�Þ

B2 , most notably
that of Geernaert et al. (1987) who found that
A2 ¼ 0:0148 and B2 ¼ �0:738. Substitution of this
Cd expression into the above correlation yields:
y ¼ 18:37 10�3ðcp=u�Þ

�0:2424, a form similar to
that proposed by Kahma (1981). For waves,
however, developing in rather short fetches, the
exponent B2 in the above expression for Cd maybe
positive, as found for example by Papadimitrakis
and Papaioannou (2003) in their analysis of
data collected at several short fetch locations
in the Aegean sea. They obtained: A2 ¼ 0:04088
and B2 ¼ 1, which then yield: y ¼ 23:76 10�3

ðcp=u�Þ
�0:6.

Assuming that the value ymax ¼ 0:0356 is an
upper bound of (characteristic-average) wave
slopes that describes realistic field conditions,
and utilizing one (or all) of the above three y-
cp=u� correlations, it is possible to determine the
lower bound of wave age, ðcp=u�Þth, below which it
is expected that y will increase with increasing
cp=u�. The values ðcp=u�Þth ¼ 0:8, 0.5 and 0.06
were obtained from the above three correlations
with exponents: �0:5, �0:6 and �0:2424, respec-
tively. The least of these threshold values appar-
ently corresponds to well developed-mature wave
fields having large (dimensional and/or dimension-
less fetches), while the former correspond to rather
short fetches. It was felt that the value ðcp=u�Þth ¼

0:8 is a reasonable lower limit of the validity of an
inverse y-cp=u� relation. In fact, this value is closer
to the threshold value ðcp=u�Þth that can be
obtained by equating an expression for y similar
to Eq. (4.1) of Huang et al. (1986) and that
given by Kahma (1981), viz., ð4p

ffiffiffi
2

p
a1Þ

�

1f1� a0ðcp=u�Þ
�1
g2 ¼ 31:74 10�3ðcp=u�Þ

�0:5. So-
lution of the above equation, with a0 � 0:5, yields
ðcp=u�Þth � 1:85, but somewhat different values of
cp=u� may be obtained if other a0 values are used,
in view of the various relations that describe the
variation of a0 with y and/or cp=u�. Lower values
for ðcp=u�Þth ðp1:25Þ are obtained with the other
two y-cp=u� correlations. The LHS and RHS
expressions of the above equation describe the
rising and falling branches of the y-cp=u� curve.
Most investigators describe only the falling branch
of this y-cp=u� curve.
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