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A Numerical Study of the Modulation of Short
Sea Waves by Longer Waves

Guangdong Pan and Joel T. Johnson, Senior Member, IEEE

Abstract—The spatial spectrum of short sea waves is locally
modulated by the presence of longer waves or currents; in the
remote sensing literature, this process is described by the hydro-
dynamic modulation transfer function (HMTF). Such modula-
tions are important in understanding radar images of sea waves
with water wavelengths longer than the radar range resolution.
Existing models for the HMTF utilized in remote sensing are based
on approximations derived from consideration of conservation
of wave action. However, the accuracy of these approximations
has been quantified only through comparison with experimental
data; in such comparisons, numerous empirical models for terms
such as wind forcing and breaking wave dissipation are required,
which make direct evaluation of the hydrodynamic effects difficult.
A method for providing direct insight into the hydrodynamic
modulation of short sea waves by longer waves is described in this
paper, through use of numerical nonlinear hydrodynamic codes
for sea surface evolution. The codes applied are reviewed, and a
Monte Carlo simulation process based on a stochastic spectrum
of short waves propagating over a single deterministic long wave
is described, including the data analysis techniques developed to
extract a numerical HMTF from the simulated surfaces. HMTF
values obtained from the simulations are compared with those
from a first-order wave action solution and are found to be in
reasonable agreement, although differences on the order of 10%
are observed. A numerical evaluation of long wave effects on the
short wave dispersion relation is also provided.

Index Terms—Hydrodynamics, modulation transfer function.

I. INTRODUCTION

I T IS well known that the amplitudes and wavenumbers of
short water waves are modulated when propagating over

an underlying long water wave or current [1], [2]. These
modulations represent a nonlinear hydrodynamic interaction
between sea waves; such interactions, however, are typically
not resonant interactions, so that no secular change of the
short wave spectrum occurs with time. Thus, these effects are
typically ignored in attempts to model and forecast the sea
surface spectrum using an energy balance approach.

Modulations of short waves by longer ocean waves do play
an important role, however, in radar imaging of the sea surface.
In this case, the commonly applied “two-scale” model of sea
backscatter states that radar returns with a specific range cell
are produced by short waves (or Bragg waves) within the range
cell, observed at the local incidence angle of the range cell.
When sea waves of wavelengths larger than the radar range cell
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are present within a radar image, the resulting changes in the
local incidence angle (“tilt modulations”) across the larger sea
waves produce variations in the measured radar cross section
image, typically allowing the sea waves to be observed. In
addition to the tilt modulation effect, variations in the Bragg
wave amplitudes along the long waves through hydrodynamic
modulations also produce variations in the radar cross section
with range. It is generally assumed in sea radar imaging that the
tilt modulation effect is well understood, so that the remaining
variations are produced by hydrodynamic effects. This process
allows empirical studies of the hydrodynamic modulation
transfer function (HMTF) (as in [3]) to be performed through
analysis of measured radar images. However, the modulations
obtained are influenced by numerous geophysical factors at the
time and location of the measurements, so that validating any
hydrodynamic theories of the HMTF can be difficult.

Existing analytical theories of the HMTF are primarily based
on the concept of conservation of wave action [3]–[7]. In these
theories, the basic equations state that the wave action of the
short waves is conserved except for the presence of a set of
source and dissipation terms. The former includes effects such
as short wave generation by either wind forcing, nonlinear inter-
actions, or wave breaking, whereas the latter includes viscous
damping and other dissipative effects. Empirical models are
utilized to describe most of these contributions. Although it is
possible to numerically solve the resulting wave action equa-
tions through the method of characteristics, an approximation
to first order is typically used in the remote sensing literature
to determine the HMTF. At this order, long wave effects appear
near identical to those from currents, with the current amplitude
equal to the horizontal component of the long wave orbital
velocity.

Although this first-order HMTF analysis has been applied in
numerous remote sensing studies, significant evidence exists in
the literature that this model underpredicts the actual modula-
tions observed [3], [8]. Although such underprediction can be
corrected by modifying or adding new source and dissipation
terms in the wave action equations, it is difficult to separate
the accuracy of the hydrodynamic model from the accuracy in
description of source and dissipation terms.

To address this issue, a study of the HMTF is described
in this paper based on the use of numerical algorithms for
sea surface hydrodynamics. The hydrodynamic algorithm ap-
plied is based on the pseudospectral method [9], hereinafter
denoted as the Watson–West (WW) approach. This algorithm
has been applied previously in studies of gravity wave evolution
[9]–[12] as well as radar scattering from the sea surface [13],
[14]. Although the pseudospectral method is not exact, it has
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been shown in numerous studies [9], [10], [12] to provide high-
fidelity hydrodynamic simulations so long as the order of the
algorithm is sufficiently high and so long as steep features are
avoided in the surface evolution. The numerical approach in-
volves Monte Carlo simulation of the hydrodynamic evolution
of a spectrum of short sea waves in the presence of either one or
two deterministic long waves. Because no wind, wave breaking,
or viscous dissipation effects are included in the simulation, the
results of this simulation allow assessment of the accuracy of
the first-order HMTF often used in practice.

In Section II, the WW algorithm is described, along with
the simulation procedure utilized. A method for extracting a
“numerical HMTF” from the simulated data is presented in
Section III, and results obtained are presented in Section IV.
A numerical study of the short wave dispersion relation is
described in Section V. Section VI provides a review of the
analytical first-order HMTF for comparison with the numerical
results. Tests show that the numerical HMTF values are in
reasonable agreement with those from the analytical theory,
although small differences are observed that indicate that im-
proved formulations of the first-order theory may be desirable.
Final remarks are provided in Section VII.

II. NUMERICAL HYDRODYNAMIC SIMULATIONS

A. Formulation

The studies of this paper utilize a one-dimensional (1-D)
fluid surface of infinite depth and assume that the fluid is
incompressible and inviscid; surface tension effects are also
neglected. The surface elevation is denoted as z = η(x, t) and
the surface velocity potential as φ(x, t), where (x, z) are the
horizontal and vertical space coordinates, respectively, and t
represents time. The evolution of these two quantities is deter-
mined by [9]

φt = − gη − 1
2
φ2

x +
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[
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[
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]
(2)

where the subscript denotes the associated derivative and g is
the gravitational acceleration (9.8 m/s−2). We solve (1) and (2)
using the pseudospectral method of [9] and retain terms up to
fourth order in the slope expansion.

B. Initial Conditions

Initial conditions for the simulations include one or two de-
terministic “long” wave(s) and a stochastic spectrum of “short
waves” to study modulation of the short wave spectrum. The
specific initial condition with one long wave is

η(x, t = 0) = a1 sin(k1x) + ηs(x) (3)

φ(x, t = 0) = − a1

√
g/k1 cos(k1x) + φs(x) (4)

where the long wave has wavenumber k1 and amplitude a1. It
is assumed that the long wave lies in the gravity wave region,
and the initial conditions are developed to produce a long wave

traveling in the x̂ direction in the linear hydrodynamic limit.
Previous work with such initial conditions [9], [12] shows the
tendency of the long wave to approach a Stokes’ wave form for
moderate k1a1 values. The computational domain is set to 2π
meters, and the long wave wavenumber is set to k1 = 1 rad/m
in the majority of the results to be shown. Note that a scale
transformation is possible for surface composed only of gravity
waves, so that these simulations also represent hydrodynamic
effects for gravity wave surfaces with the length and height
dimensions scaled by a constant.

The initial short wave surface ηs is a realization of a Gaussian
random process surface with a Pierson–Moskowitz (P–M)
spectrum [13], i.e.,

S(ks) =
0.0081

4
k−3

s exp
(
− 0.74g2

k2
sU

4
19.5

)
(5)

where U19.5 denotes the surface wind speed at height 19.5 m.
This spectrum essentially is a k−3

s spectrum for 1-D surfaces,
with a low-frequency rolloff controlled by a wind speed pa-
rameter U19.5. The initial short wave spectrum is truncated
to exist between wavenumbers 30 and 170 rad/m only. The
lower limit of 30 rad/m ensures that the short waves are indeed
“short” compared with the long wave, whereas the upper limit
is chosen based on surface sampling requirements. Although
the parameter U19.5 was set to 3 m/s, the portion of the P–M
spectrum influenced by U19.5 has wavenumbers much less than
30 rad/m, so that U19.5 has virtually no effect. The short wave
velocity potential φs(x) was generated again through a linear,
x̂, traveling assumption for each spectral component of ηs(x).
The generated surface was sampled into 1024 points, providing
sufficient resolution to resolve the short wave spectrum while
retaining fourth-order computations in the WW method.

Because the linear assumption of the initial conditions does
not match the nonlinear nature of (1) and (2), we utilize a
“ramp-up” procedure [9], [13] to reduce any discontinuities that
may be introduced. In this procedure, all nonlinear terms in the
evolution (1) and (2) are multiplied by a ramp-up factor

WR(t) = e−( t−a
b )2

(6)

for t < a, and by unity for t ≥ a. Note that for t � a, this
term is zero, whereas it approaches unity for t = a at a rate
determined by b. We have tested several combinations of a and
b and found a = 2 s and b = 0.5 s in (6) to yield reasonable
predictions; this approach is similar to that described in [15].
Here, 2 s is approximately one period of the long wave.

As the surface evolves in time, short waves have only a
minimal effect on the evolution of the long wave, given their
much smaller amplitude. The short wave spectrum, however,
broadens from the truncated spectrum provided initially and
exhibits some interactions among short waves. However, the
dominant effect to be examined here is the variation in the
local short wave spectrum with position on the long wave. For
this purpose, localized short wave spectra will be introduced in
Section III, so that the variation of these localized spectra with
position on the long wave can be observed.
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Fig. 1. Comparison of initial and final short wave spectra with k1a1 = 0.05.

C. Other Information

The simulation was time stepped at ∆t = 0.001 s for a
duration of 5000 time steps (5 s) following the ramp-up period.
Surface profiles were recorded every 0.1 s, providing 50 profiles
per realization. The simulation was repeated using 1200 distinct
short wave surface realizations, so that average spectra could
be computed. Tests with larger numbers of realizations showed
this choice to provide reasonable convergence for the results
illustrated. Fig. 1 compares the initial input spectrum and final
ensemble averaged spectrum of short waves in the presence of
a long wave with k1a1 = 0.05. The result shows that the short
wave spectrum remains relatively constant during its evolution.
The data set produced by the simulation consists of surface
profile information η(xq, ti,Mj), where xq and ti refer to the
discretized horizontal and time coordinates, and Mj provides
an index to the set of realizations generated.

III. DETERMINATION OF THE NUMERICAL HMTF

The configuration of this simulation allows long–short wave
hydrodynamic modulations to be examined in detail. For this
purpose, the computational domain in x is divided into sub-
regions, and local Fourier transforms [using a fast Fourier
transform (FFT) algorithm] are utilized to compute the spatially
localized short wave spectrum for each region. The specific
procedure is as follows.

1. Begin a loop over time ti;
2. Begin a loop over realizations Mj ;
3. Filter out all long wave components by passing the

η(xq, ti,Mj) surface through a spatial rectangular
high-pass filter with cutoff ks = 30 rad/m: call the
resulting short wave surface ηs(xq, ti,Mj);

4. Divide the x range into 31 spatial subregions, each
subregion has a half overlap to its preceding one;
label these subregions by their central x-values Xn;

5. Begin a loop over subregions Xn;

Fig. 2. Illustration of the first eight Gaussian windows used in defining spatial
subregions.

6. Multiply ηs(xq, ti,Mj) by a Gaussian window
centered at Xn and perform an FFT zero padded
to the length of the original profile on the result;
denote FFT output as ηsn(ks,Xn, ti,Mj);

7. Take |ηsn(ks,Xn, ti,Mj)|2 to obtain the spectrum
S(ks,Xn, ti,Mj);

8. End loop over subregions;
9. End loop over realizations;
10. End loop over time.

In the above, the Gaussian window length is chosen as
64 points (∼40 cm) with overlap 32 points, which results in
31 spatial subregions; a plot of the first several Gaussian
windows is illustrated in Fig. 2. Parameters of the Gaussian
function are chosen, so that the Gaussian is at e−1 at 18.1 points
from the center of the filter. Tests varying these parameters
within a reasonable range show only minor effects on the
obtained MTF values.

The localized spectrum S(ks,Xn, ti,Mj) can then be aver-
aged over realizations to obtain the ensemble average localized
spectrum Sa(ks,Xn, ti), which describes the average evolution
of the spectrum with time in a given subregion. This can be
correlated to the approximate long wave phase versus time in
that subregion, i.e.,

Φl = k1Xn − ω1ti (7)

where ω1 =
√
gk1; it is also possible to determine the long

wave phase numerically if desired. Because tests showed only
minimal differences between these two methods, the former
approach is utilized in the results shown. Finally, an additional
average over time can be performed to obtain S̄(ks,Xn), the
ensemble and time average spectrum in a given subregion.

Fig. 3 illustrates the normalized quantity
Sa(ks,Xn, ti)/S̄(ks,Xn) for subregions 1, 5, 10, and 15
(relative initial long wave phases of π/16, 5π/16, 10π/16, and
15π/16 rad, respectively) and for ks values ranging from 50 to
100 rad/m, with k1a1 = 0.10. The influence of the long wave
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Fig. 3. Normalized–localized spectrum of k1a1 = 0.10.

is clearly visible in these plots through the periodic variation
in the normalized–localized spectra obtained; the period of
the oscillation observed is consistent with that of the long
wave. Although some variations from simple oscillations are
obtained, the basic spectrum modulations are clearly correlated
to the long wave phase in a given subregion.

Given this behavior, we define the numerical modulation
R(ks,Xn, ti) as follows:

R(ks,Xn, ti) =
Sa(ks,Xn, ti) − S̄(ks,Xn)

S̄(ks,Xn)
. (8)

Note the spectrum in the denominator could be further averaged
over subregions, but again, this modification does not yield
significant variations in the obtained MTF values.

Fig. 4 plots an example value of R versus time (ks =
70 rad/m in the tenth subregion). The oscillation of the spectrum
is obvious, although an additional slow amplitude decay in
time is observed that is not directly related to the long wave
phase. We performed several tests of this slow decay and found
it to be a much slower periodic function, evolving at a time
rate involving the group velocity of the short wave spectrum.
Although such effects do play a role in the evolution of the
surface, and could likely be captured by a full simulation of
the wave action equations, they are not of interest in studying
first-order MTF effects, and therefore, a procedure for removing
these slow time variations in extracting a numerical MTF value
was developed.

Specifically, the following functional form was used to de-
scribe the short wave spectrum at a specified wavenumber and
subregion:

R(ks,Xn, ti) ≈ bc0(ks,Xn) + bc1(ks,Xn) sin (cg(ks)ti)

+ b1(ks,Xn) sin (k1Xn − ω1ti + Φ01(ks,Xn))

+ b2(ks,Xn) sin (2k1Xn − 2ω1ti + Φ02(ks,Xn)) (9)

Fig. 4. Envelope of the total numerical HMTF versus time with k1a1 = 0.10.

where cg denotes the group velocity of the short wave at
wavenumber ks. In (9), the real-valued coefficients b1 and Φ01

describe the amplitude and phase of a “first-order” numerical
MTF, whereas the coefficients b2 and Φ02 are included to allow
some description of “second-order” effects. The coefficients
bc0 and bc1 model an additive correction to account for the
slow time evolution described previously. Other forms could
be proposed as well, but the above definition appears to provide
a reasonable means for extracting the portion of the spectrum
modulation due to the long wave influence in the data set
utilized. Unknown coefficients were determined using a least
squares fitting procedure to the R data set; results were then
averaged over subregions to obtain a final numerical value of
the MTF, i.e., b̄1(ks). An alternative procedure involving a si-
multaneous fit to the data in all subregions was also considered;
again, the results were practically identical to those using the
procedure described and are therefore not discussed further.

IV. NUMERICAL HMTF RESULTS

A. One Long Wave

According to the wave action HMTF theory, the first-order
coefficient b̄1(ks) should be directly proportional to k1a1, and
it is shown in [7] that the second-order coefficients should be
proportional to (k1a1)2. Therefore, the results illustrated will
be normalized by these quantities.

Fig. 5 plots normalized first- and second-order HMTF values
(b̄1(ks)/(k1a1) and b̄2(ks)/(k1a1)2) obtained using k1a1 =
0.05 and k1a1 = 0.10. Results in the upper plot show the
numerical b̄1 values to be approximately 4 in both long wave
cases, with a difference from the value 4 on the order of 1%
that depends weakly on ks. The second-order coefficient is in
the range 7–8.5 and shows a small decreasing trend as the long
wave amplitude is increased.

HMTF phases averaged over subregions (Φ̄01 and Φ̄02) are
plotted in Fig. 6. First-order phase results in the upper plot show
values near 0◦, with a very weak dependence on ks and a slight
trend (to −2◦) versus the long wave amplitude. Second-order
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Fig. 5. Numerically obtained normalized HMTF amplitudes.

Fig. 6. Numerically obtained HMTF phase.

phases are near −90◦, although the first-order values obtained
are in the range −92 to −94◦ for the smaller long wave case
and near −98◦ for the larger long wave case.

Although several potential sources of small errors exist in
the values obtained, overall, the numerical results indicate that
the first-order HMTF amplitude and phase are reasonably ap-
proximated as 4(k1a1) and 0◦ in the data obtained, whereas the
second-order coefficient (b̄2) is reasonably (but less reasonably
than the first-order coefficient) approximated as 7.5(k1a1)2

with a phase of −90◦. Although more detailed analyses could
be conducted to increase confidence in the prediction of any
small deviations from these values, this basic information
is sufficient for comparison with the first-order wave action
theory, as will be performed in Section VI.

B. Two Long Waves

Additional numerical simulations were performed for initial
conditions with two deterministic long waves, using (k1, a1) =

Fig. 7. Fitting of HMTF versus ks with k1a1 = 0.07 and k2a2 = 0.04.

Fig. 8. Numerically obtained normalized HMTF amplitudes with k1a1 =
0.07 and k2a2 = 0.04.

(1, 0.07) and (k2 = 5, a2 = 0.008). Fig. 7 plots an example R,
for ks = 60 rad/m and in subregion 18, and shows that more
complicated trends versus time are observed due to the presence
of multiple long waves. The wave action theory at first order
predicts that these trends should be due to a simple summation
of the first-order effects from each long wave. Accordingly,
the fitting function (9) was modified to include separate first-
and second-order coefficients for the two long waves. Plots of
the fit curves in Fig. 7 show that the fit accuracy is somewhat
improved when second-order terms are included.

The two obtained normalized first-order MTF values aver-
aged over spatial subregions are plotted in Fig. 8 and again are
found to be near 4. However, the observed deviations from 4
are larger than those observed in the single long wave case,
particularly for the k2 wave. Again, detailed numerical studies
could be conducted to assess these small deviations, but the
basic conclusion from this analysis is that the linear summation
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of first-order contributions from each long wave in computing
combined modulation effects appears reasonable.

V. NUMERICAL STUDY OF THE SHORT WAVE

DISPERSION RELATION

Modeling the effect of long waves on the dispersion relation
of short waves is implicit in any wave action theory analysis of
the HMTF. When short waves propagate over a slowly varying
long wave or current, the short wave radian frequency ω is
expected to undergo a Doppler shift [16], [17], i.e.,

ω = ωs + ks · U (10)

where ωs is the short wave frequency in the absence of Doppler
shift effects and U is the underlying medium horizontal veloc-
ity with respect to the observer. Here, the dot product describes
the relationship between the direction of the orbital velocity and
the short wave propagation direction.

To study this Doppler shift, a new data set η(xq, ti,Mj) was
generated using k1 = 0.0625 rad/m (wavelength and compu-
tational domain size 32π m). The long wave wavelength was
extended in this case due to a desire to perform an additional
temporal Fourier analysis of the short wave spectrum within a
given subregion; use of longer long wave wavelengths results in
an increased amount of time during which the long wave phase
remains relatively constant in a given spatial subregion, so that
the temporal Fourier analysis is more reasonable.

A time step of 0.002 s was used in the hydrodynamic
simulations, with a total time duration of 20.48 s. The surface
profile was discretized into 4096 points, and surface profile
information was recorded every 0.04 s, so that 512 temporal
samples are available during the time evolution. This time
resolution is sufficient to capture the short wave temporal
frequencies of interest. The short wave spectral range utilized
in the simulations was ks ∈ [5, 15] rad/m. Other simulation
parameters are similar to those described previously.

Analysis of the data set is similar to that used previously,
with the exception that only 15 spatial subregions were used.
In addition, the complete time history of FFT outputs of the
surface within each spatial subregion was stored as the quantity
a(ks,Xn, ti,Mj); these are complex-valued Fourier coeffi-
cients versus time in each subregion. The 512-point time history
of these Fourier coefficients was then divided into 15 overlap-
ping time intervals labeled Tm through the use of Gaussian
windows in time. An FFT of these localized time histories was
then performed; the amplitude squared of this FFT output is
then denoted as Ω(ks,Xn, ωs, Tm,Mj) and includes the time
history (on a long time scale Tm) of the radian frequency (ωs)
spectrum for the surface spectrum at wavenumber ks in spatial
subregion Xn. As in the previous analysis, this function can be
ensemble averaged to eliminate the Mj dependence.

Fig. 9 illustrates ensemble averaged ωs spectra versus time
subregion Tm for the case k1a1 = 0.02, ks = 10 rad/m, and
in several spatial subregions. The results appear consistent
with a modulation in the short wave dispersion relation due to
currents produced by the long wave orbital velocity. However,
the observed ωs spectra have nonzero width in frequency

Fig. 9. Trajectories of ωs with k1 = 1/16 and k1a1 = 0.02.

and show variations in amplitude that are more complex than
(10) alone.

Using the ensemble averaged data set Ω̄(ks,Xn, ωs, Tm), we
identify the value of ωs that maximizes Ω̄(ks,Xn, ωs, Tm) for
all other parameters fixed as P (ks,Xn, Tm). A least squares fit
to the obtained P (ks,Xn, Tm) values is then performed using

P (ks,Xn, Tm)=a0(ks,Xn)+c0(ks,Xn) sin(k1Xn−ω1Tm)
(11)

where a0 should be approximately ωs from (10), and c0 rep-
resents the amplitude of the modulation due to long waves.
Results for the a0 and c0 coefficients are then averaged over
spatial subregions (Xn) to obtain ā0(ks) and c̄0(ks).

Assuming that the current in the dispersion relation can be
represented by the first-order horizontal component of the long
wave orbital velocity, the predicted value of ω can be written as

ω ≈ ωs + ksω1a1 sin(k1x− ω1t) (12)

with ωs =
√
gks. Fig. 10 plots the obtained coefficients

normalized by their expected values (i.e., ā0(ks)/ωs and
c̄0(ks)/(ksω1a1)); values near unity would indicate that
the approximation of (12) is accurate. Results show the ā0

term indeed to be well predicted by the theory, although the
numerical results are slightly larger (by a factor less than
1%) than the prediction. The first-order modulation, however,
is significantly less (around 0.88) than the predicted unity
value, indicating that (12) may neglect some important effects.
Numerically obtained coefficients show a slight increasing
trend versus ks in both cases.

Further dispersion studies were performed in an attempt
to determine the source of the reduced numerical modulation
compared with the first-order theory. Results show the offset
between predictions to be near independent of k1a1, so that
the error is clearly at first order. To simplify the problem,
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Fig. 10. Normalized dispersion relation coefficients ā0(ks)/ωs (upper) and
c̄0(ks)/(ksω1a1) (lower) with k1 = 1/16 and k1a1 = 0.02.

simulations were also performed using a deterministic single-
frequency short wave packet, localized spatially on the long
wave in the initial conditions; results again showed a similar
offset in obtained frequency modulations. Consideration of the
analytical theory suggests that corrections to the ωs term may
be relevant, involving either modulations of the wavenumber
or local acceleration effects [7] involved in the definition of ωs.
Further investigation of these differences will be performed in
future studies. Overall, the results show the standard first-order
prediction of the local frequency to have reasonable, but not
complete, accuracy.

VI. WAVE ACTION THEORY

The theory of wave action was developed for analysis of the
evolution of a weakly nonlinear short wave “packet” as it prop-
agates in an inhomogeneous background medium. The short
wave packet consists of a narrowband set of waves centered
around a carrier wavelength. In many water wave applications,
the inhomogeneities encountered are current fields that vary
slowly in space and/or time compared with the corresponding
scales of the wave packet of interest. The concept of the conser-
vation of wave action is based fundamentally on a separation of
scales in both space and time, with packet properties described
in terms of short scale wavenumber ks and angular frequency
ωs parameters, whereas the slower variations are described
in terms of x and t for space and time scales, respectively.
The theory has been utilized to describe many phenomena of
oceanographic interest, including the modulation of short waves
by long waves relevant in this paper. Here, we follow the first-
order solution of the wave action equation [4], [5], [7] devel-
oped to capture long–short wave modulation effects. Although
a numerical solution of the wave action equation (as in [18])
for the configurations of this paper could be pursued, such

numerical solutions are far less frequently utilized in practice
than the first-order solution and are therefore not considered
further.

We also note that small differences in the form of the
first-order HMTF are observed in the literature, for example,
between [4] and [7]. These differences are partially explained
by the inclusion of “heaving” effects not only due to the vertical
component of the long wave orbital velocity in [7] but also
due to the neglect of a group velocity term in the zeroth-
order Lagrangian in [7]. Although other authors [4], [5] do
not include the former, these other authors are uniformly in
agreement that the latter is necessary. We choose to follow the
formulation of [5] in what follows.

The wave action quantity N here is defined as [17]

N(ks, x, t) =
S(ks, x, t)

ωs
(13)

where ks is the local short wave wavenumber, S(ks, x, t) is
the local short wave spectrum, and ωs =

√
gks is the short

wave radian frequency. For the purposes of this analysis, the
wave action is modeled only for the short wave portion of the
spectrum, and the dependencies on x and t result due to long
wave effects that occur on the larger spatial and time scales.
The analysis assumes that k and x are independent variables,
although both depend on time.

Following [4], [5], [7], and [17], an equation describing the
conservation of wave action can be written as

dN

dt
= Q (14)

where the differential operator d is the material derivative and
operates along the characteristic or “ray” paths, whereas the
term Q represents any sources or sinks of wave action. These
include potential wind forcing, viscous damping, resonant non-
linear wave–wave interactions, or wave breaking [7] effects.
Again, in practice, these terms are described primarily using
empirical relations. The simulations performed include none
of these sources or sinks with the exception of wave–wave
interactions. However, because no strong resonant interactions
are expected in the simulations, the term Q is set to zero in the
remaining analyses.

For long–short wave modulation studies, it is convenient to
rewrite (14) in phase space to

∂N

∂t
+ ẋ

∂N

∂x
+ k̇s

∂N

∂ks
= 0 (15)

where the dot denotes the derivative with respect to time.
The ray equations that describe the evolution of the canonical
variables x and ks are

ẋ =
∂ω

∂ks
= cg + U (16)

k̇s = − ∂ω

∂x
= −ks

∂U

∂x
(17)
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where cg = 1/2
√
g/ks is the short wave group velocity for the

wavenumber considered, and U is the horizontal component of
the long wave orbital velocity.

A. Determination of HMTF

Following [4] and [5], a perturbative solution to first order
is sought. A description of the long wave orbital velocity
consistent with this goal is

U = ω1a1 sin(Φ) (18)

where Φ = k1x− ω1t denotes the long wave phase.
Because it is modulations of the spectrum, not of wave

action, that are of interest in the studies of this paper, the
substitutions

∂N

∂t
=

1
ωs

∂S

∂t
(19)

∂N

∂x
=

1
ωs

∂S

∂x
(20)

∂N

∂ks
=

1
ωs

∂S

∂ks
− cg
ω2

s

S (21)

= − S

ωsks
[m+ γs] (22)

are utilized to recast (15) in terms of the short wave spectrum
alone; (22) holds when it is assumed that the spectrum assumes
the form S̄ ∝ k̄−m

s as given in (5). The quantity γs(ks) is
given by cg(ks)/cp(ks), where cg and cp are the group and
phase velocities of the short wave considered, respectively;
for purely gravity waves, γs = 0.5. Note that it is assumed in
(19) that the value of ωs used in the denominator of the wave
action definition is independent of time; this will be considered
further below.

Substituting the above equations into (15) and combining
with (16) and (17) yields

∂S

∂t
+ cg

∂S

∂x
= −U ∂S

∂x
− [m+ γs]S

∂U

∂x
. (23)

A perturbation solution is now performed, in which the
orbital velocity U is assumed to be the small parameter. Writing

S = S(0) + S(1) + · · · (24)

yields at zeroth order

∂S(0)

∂t
+ cg

∂S(0)

∂x
= 0. (25)

The above can be transformed into an ordinary differential
equation by introducing the variables

α =x− cgt (26)

β =x+ cgt (27)

to obtain

∂S(0)

∂β
= 0. (28)

The solution to this equation is that S(0) is constant in β while
remaining arbitrary in α. However, if an initial condition of the
zeroth-order solution is chosen that is independent of x at time
zero (as is appropriate for the studies described here), the result
is that S(0) is independent of x and t.

Continuing to first order, the relevant equation is

∂S(1)

∂t
+ cg

∂S(1)

∂x
= −[m+ γs]S(0) ∂U

∂x
(29)

with the linear term in U vanishing due to the constant nature of
S(0). Substituting the specified form for U , and again making
use of the variable transformation described previously, allows
this equation to be solved. The result is

S(1) = k1a1 sin(Φ)
[m+ γs]
1 − cg

c1

S(0) (30)

where c1 =
√
g/k1 is the long wave phase velocity.

Because S(1) above is directly proportional to sin Φ, the
predicted HMTF can now be determined in terms of

S(1)

S(0) sin(Φ)
(31)

with the magnitude and phase of this quantity defined as R1 and
Φ1, respectively. Substituting (30) in (31) and solving yields

R1 = (k1a1)
[m+ γs]
1 − cg

c1

(32)

Φ1 = 0. (33)

This HMTF prediction is identical to that in [5].
Although only a single long wave was considered in this

derivation, the linear nature of the first-order solution ensures
that the combined effect of two long waves to first order is
simply the sum of their individual contributions.

B. Comparison With Numerical Simulations

For the numerical simulations performed, the spectrum uti-
lized had a k−3

s dependence, yielding m = 3 for use in (32). In
addition, the value of γs is 0.5 for gravity waves, so that the
predicted value of R1 can be simplified to

(k1a1)
3.5

1 − 1
2

√
k1
ks

. (34)

Factoring out k1a1 as in Fig. 5, the remaining coefficient ranges
from a value of 3.766 at ks = 50 rad/m to 3.684 at ks =
100 rad/m with k1 = 1 rad/m, as compared with the observed
values near 4 from the numerical simulations (Figs. 5 and 8).
The predicted phase of 0◦ is well matched by the numerical
simulations.
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Although further studies of the differences between the nu-
merical and analytical models could be performed, overall, the
results indicate that the first-order HMTF derived from wave
action theory yields reasonable (within 10%) predictions of
short wave modulations by longer sea waves. It is noted that this
difference remains consistent even as the long wave amplitude
is decreased; this fact motivates continued studies to improve
upon the wave action theory formulation applied here.

One possible correction involves inclusion of time variations
in ωs in computing the time derivative of the wave action,
so that

∂N

∂t
=

1
ωs

∂S

∂t
− cg
ω2

s

S
∂ks

∂t
(35)

as opposed to (19). The result of this modification is a change
in the value 3.5 in (34) to 4; the final predicted HMTF values
now exceed 4 by 5%–8%, whereas the original values were less
than 4 by similar percentages. Therefore, no clear improvement
results from this change.

A second possible correction involves the inclusion of
local acceleration effects as described in [7]. In this case, the
gravitational acceleration is modified along the long wave
by the vertical long wave acceleration; this change in the
local gravitational acceleration is modeled by introducing an
additional −∂ω̃s/∂x term on the right-hand side of (17). The
local frequency is given by

ω̃s =
√
g̃ks (36)

within which only g̃ is considered a function of x. The
method for determining the local gravitational acceleration g̃ is
described in [7]. Following this process results in a change in
(34) to

(k1a1)
3.5

(
1 + 1

2

√
k1
ks

)

1 − 1
2

√
k1
ks

(37)

which varies from 4.033 at ks = 50 rad/m to 3.87 at
ks = 100 rad/m when normalized. Although these values
are closer to those obtained numerically, the inclusion of local
acceleration effects in fact increases the error in the short wave
dispersion relation fits described in Section V. For this reason,
the modeling of local acceleration effects used here cannot be
considered completely validated.

Although further extensions of the wave action theory to
include other effects or second-order contributions for compari-
son with the second order numerically obtained results are pos-
sible, the first-order theory described here is most commonly
used in practice and is the most relevant in applications. Further
examinations of improvements to the wave action theory are left
for future work.

VII. CONCLUDING REMARKS

A numerical study of the modulation of short sea waves by
longer waves was performed to provide an assessment of the
first-order HMTF commonly used in remote sensing of the sea.
The use of numerical simulations allowed examination of the

theory in a controlled environment without need for empirical
models of effects such as wind forcing and wave breaking.
Results show the first-order HMTF to provide a reasonable pre-
diction of the short wave modulations observed in the numerical
simulations. Numerical results also show the basic applicability
of the standard Doppler-shifted dispersion relation in the cases
considered. However, in both of these areas, differences on the
order of 10% from the commonly used analytical theories were
encountered, indicating that revisions to the standard first-order
forms may be possible to yield improved predictions.

Future work will include further analysis of the basic wave
action theory formulation and its first- and second-order HMTF
predictions, as well as more detailed numerical simulations
over a wider range of short and long wave environments. The
numerical procedures presented here should be applicable to
such studies with only minor modifications.
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