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Annexe E: MELLOR’S (2003) EQUATIONS AND

GLM THEORY

The present section are the appendices of a corrected version of a paper rejected by the Journal
of Fluid Mechanics. The main body of the paper is incorporated into chapter 2 of the present thesis.
The paper was rejected supposedly because it was too focused on parameterizations, with a too large
emphasis on parameterizations. In fact the paper was also not-so-well written, and had a few mistakes,
which are corrected here.

A. Effects of surface pressure fluctuations

1. Wind-wave growth

Waves are generated by pressure and tangential stress variations on the scale of the wavelength.
We solve here the problem with the usual cartesian coordinate system before transforming the solution
to sigma coordinates. The variation of tangential stresses is neglected (see Lamb 1932 p. 629, Jenkins
1992). Atmospheric pressure at the surface can be described as,

pa (x, t) = p̂a (x, t) +
∑
k,σp

P a
k,σp

eik·x−σpt. (E.1)

with P a
k,σp

the Fourier component of the air pressure at the surface, with wavenumber k and angular
frequency σp. Following the general procedure for solving second-order differential equations, the wave
field can now be obtained by adding the general solution in absence of forcing and a particular solution
of the wave equations that satisfies this forcing. Neglecting terms that are second order in ε1, the surface
equation for the wave potential φ is

∂φ

∂t
= −gζ − 1

ρ
pa, at z = ζ, (E.2)

which can be combined with the kinematic boundary condition to give,

∂2φ

∂t2
+ g

∂φ

∂z
= −1

ρ

∂pa

∂t
at z = 0. (E.3)

A particular solution φp, that also must satisfy the Laplace equation and the bottom boundary
condition, is given by,

φp =
∑
k

cosh [k( z + D )]
cosh (kD)

Φp
k (t) eik·x, (E.4)

where Φp
k (t) is the solution of (E.3). This solution can be written as a resonant term plus some bound

terms, with resonance obtained for σp = σ ≡ gk tanh (kH)

Φp
k (t) = i

∑
σp �=±σ

σpP
a
k,σp

ρ
[
σ2 − σ2

p

]e−iσpt −
∑
s1

t
P a

k,sσ

2ρ
e−is1σt (E.5)

Pressure in the water is given by the (linearized) Bernoulli equation that we may write

p = −ρgz − ρ
∂φ

∂t
+ O (a0gε1) , (E.6)

with the non-hydrostatic part pp given by taking the derivative of (E.4),

pp =
∑
k

cosh [k( z + D )]
cosh (kD)

P p
k (t) eik·x, (E.7)
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with

P p
k (t) = −

∑
σp �=±σ

σ2
pP a

k,σp[
σ2 − σ2

p

]e−iσpt +
∑
s1

P a
k,s1σ

2
e−is1σt − iσt

∑
s1

s
P a

k,s1σ

2
e−is1σt (E.8)

so that the pressure response under the water is not entirely in phase with the pressure forcing, which was
mistakenly suggested by Mellor (2003). Although it is an apparent paradox that the wave pressure pp at
the surface is not equal to the atmospheric pressure, the difference is explained by the partial adjustment
of the surface elevation and the resulting hydrostatic pressure : Again, pp is the non-hydrostatic pressure
only.

To obtain the surface elevation amplitudes Zp
k(t) at first order, we subtract (E.2) from (E.6) at

z = 0,

ζ =
1
ρg

[pp|z=0 − pa].

Hence

Zp
k (t) = −

∑
σp �=±σ

[
σ2

p

σ2 − σ2
p

+ 1

]
P a

k,sσ

ρg
e−iσpt −

∑
s1

P a
k,s1σ

2ρg
e−is1σt − iσt

∑
s1

s1

P a
k,s1σ

2ρg
e−is1σt (E.9)

Atmospheric pressure is generally influenced by the waves, say, to first order, proportional with
a complex coefficient βC = (−βR − iβI) to the elevation,

P a
k,σp

= δ (σp, s1σ) ρgβCZs1
k (E.10)

where δ(x, y) equals 0 unless x = y, and with βI positive for growing waves, and βR positive also due
to the Bernoulli equation in the air : for winds faster than the waves, the flow accelerates over the wave
crests due to streamline convergence, and thus the pressure decreases.

Thus the wave energy will be augmented at first order in βI by the following term, Ep,

Ep(k) = tσβIE2(k) (E.11)

This equation is only valid for short time scales since we have assumed a constant spectrum, it
is thus better written as a time derivative (over long times), following the method of Hasselman (1962),

∂E(k)
∂t

= σβIE2(k) = Sin(k) (E.12)

2. Bound waves and momentum equation

We have thus computed waves that are induced by air pressure fluctuations. These waves are
characterized by ζp, pp, φp. They have a free wave structure propagating at the speed of the air pressure
perturbation : the polarization relations between all variables are identical to those of free waves, except
for one extra term in the pressure and elevation represented by the second terms in (E.8) and (E.9),
respectively.

The bound wave terms (ppb, ζpb) can be written as

ppb =
∑
k,s1

−Zpb,s1
k (t) ei(k·x−s1σt) (E.13)

ζpb =
∑
k,s1

Zpb,s1
k (t) ei(k·x−s1σt) (E.14)

with
Zpb,s1

k (t) = −βC

2
Zs1

k =
βR + iβI

2
Zs1

k . (E.15)

The βI component of the pressure fluctuations, in quadrature with the free wave elevation, clearly drives
bound waves with a surface elevation in quadrature ahead of the free waves.

The βR component of the pressure fluctuations, in anti-phase with the elevation, tends to
increase the wave height since the resulting surface elevation is in phase with the free waves.

It is striking that this ‘bound wave’ has no corresponding velocity and a pressure opposite to
the corresponding pressure if it were a free wave. Indeed the associated velocity is part of the rate of
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change of the free wave velocity. It should be noted that integration of the vertical velocity does yield
the vertical displacements of the bound wave. In terms of the coordinate transform (2.47), keeping
s(ς = 0) = ζ requires a modification of s due to the bound wave. In order to change s we can add to it
a term of amplitude Spb,s1

k , with a vertical profile given by bound terms in the vertical displacement,
that happen to have the same vertical profile as the free waves,

Spb,s1
k (t) = −βCSs1

k . (E.16)

This part of the change of variable s induces extra terms in the equations of motion, including
a vertical velocity w̃pb, which now has a component in quadrature with the velocity and pressure.
Considering only the solution driven by the pressure component in quadrature with the elevation, and
evaluating all modified terms in the equations of motion, one gets exactly the same term as in Mellor’s
(2003) equation (51a), that is,

− ∂

∂ς

(
s̃pb

α p̃ + s̃αp̃pb + w̃pbũα

)
=

∂FSSFCC

∂ς
ρg

∫
k

βIkαE(k)dk, (E.17)

that we may rewrite as

T in
α = p̃wζ

∂ζ̃

∂xα

∂FSSFCC

∂ς
. (E.18)

Indeed, if one considers the hypothetical case of a uniform wave field with no current and no dissipation
we see that the wind to wave momentum flux is distributed over depth in the same way as the Stokes
drift.

The part of the pressure that is in anti-phase with the surface elevation modifies slightly the
term

p̃ s̃α, (E.19)

in the momentum equation, which is already a second order correction. We may therefore neglect this
effect, and obtain Mellor’s (2003) momentum equation with the effect of random waves accurate to
second order in ε1.

B. Transformation of the GLM equation to sigma-coordinates

For simplicity equations are derived considering a single wave train of wavenumber vector k
and intrinsic frequency σ. The various physical quantities that oscillate with the waves are, at first order
in the wave slope and zeroth order in the bottom slope and wave amplitude gradients, given by the free
wave polarization relation (e.g. Mei 1989),

p = ρgaFCCR(eiψ) (E.20)

uα = aσ
kα

k
FCSR(eiψ) (E.21)

ξα = a
kα

k
FCSR(ieiψ) (E.22)

w = −aσFSSR(ieiψ) (E.23)
ξ3 = aFSSR(eiψ), (E.24)

with a the local amplitude, R is the real part, and ψ the local phase, such that k = ∇ψ and ω =
σ + k · ûA = −∂ψ/∂t, and

FCC =
cosh [kD( 1 + ς/D )]

cosh (kD)
. (E.25)

Over a gently sloping bottom these expressions should be corrected to include the effect of
the vertical velocity at the bottom. Here we only write out the local slope correction, other terms are
given by Ardhuin and Herbers (2002) with the erratum that their equation (D6) is obviously wrong
and should be,

Φsi,s
3,k = −ik · ∇HΦs

1,k, (E.26)
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which gives,

p = ρgaR
[(

FCC − iFSC
k · ∇H

k

)
eiψ

]
+ ... (E.27)

uα = aσR
[(

FCS − iFSS
kαk · ∇H

k2

)
eiψ

]
+ ... (E.28)

ξα = aR
[(

iFCS + FSS
kαk · ∇H

k2

)
eiψ

]
+ ... (E.29)

w = aσR
[(

−iFSS − FCS
k · ∇H

k

)
eiψ

]
+ ... (E.30)

ξ3 = aR
[(

FSS − iFCS
k · ∇h

k

)
eiψ

]
+ ..., (E.31)

where the missing terms refer to effects of horizontal gradients, that are easily derived from the velocity
potential amplitudes Φcoz2,s

3,k , Φcoz,s
3,k , and Φsiz,s

3,k (Ardhuin and Herbers 2002, eq. D3, D4, D5), so that
Laplace’s equation may be satisfied exactly. These missing terms are first order in ε2, just like the
bottom slope terms that have been added here. It should be noted that further correction due to the
vertical current shear are given by McWilliams et al. (2004, eq. A3).

Results from random waves are obtained by replacing the surface elevation variance varζ = a2/2
by the spectral energy density. All second order quantities are simply the sums of the following mono-
chromatic solution for all wavenumber vectors. Another option is to use a narrow spectrum approxima-
tion and resolve explicitly the variations in wave properties over the scale of wave groups.

We shall apply results obtained by Andrews and McIntyre (1978a, 1978b), replacing their
equations (3.2) and (4.1) by Reynolds-Averaged Navier Stokes equations (RANS), which means that
their dissipative forces X represent both viscous forces and turbulent Reynolds stresses. We shall retain
all wave effects up to second order in the wave slope and first order in the wave. The resulting equations
are therefore second order Generalized Lagrangian Mean RANS equation, abbreviated as GLM2-RANS.

1. Mass conservation

The Jacobian J of the GLM coordinate transformation (from Eulerian coordinates) can be
shown to be equal to 1 plus a second order quantity. Using the 3D wave action A (see Andrews and
McIntyre 1978b), one has,

J = 1 + J2 + O(ε3
1) (E.32)

J2 = −kA

σ
= −k2varζ

cosh [2k(z + h)]
sinh2(kD)

, (E.33)

where varζ is the surface elevation variance due to the waves. Because there is no mean stretching of the
horizontal coordinates, a vertical distance dz′ = Jdz in GLM corresponds to a Cartesian distance dz.
As J < 1 over the entire water column on has dz′ > dz. Thus the vertical GLM position is everywhere
larger than the mean Eulerian elevation of the same water particles. In a sense this is because at any
time there are more particles per horizontal length of crest than of trough (McIntyre 1988).

Integrating over depth we define

sG(x, z, t) = −
∫ z

−h

J2(z′)dz′ = kvarζ
sinh [2k(z + h)]

2 sinh2(kD)
. (E.34)

Using the second order expression for ζ
L

(e.g. Jenkins & Ardhuin 2004)

ζ
L

= ζ + varζ
k

tanh kD
, (E.35)

we can see that ∫ ζ

−h

Jdz = ζ
L

+ h + ζ − sG(0) = D, (E.36)

which is a further verfication of the vertical stretching induced by GLM.
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By analogy to 2.47 we thus define

s = ςD + sG + ζ̂ (E.37)

for which we can use the chain rules given by Mellor (2003) to go from (xα, z, t) to (x�
α, ς, t�), i.e. for

any variable φ

∂φ

∂t
=

∂φ�

∂t�
− s,t

s,ς

∂φ�

∂ς
(E.38)

∂φ

∂xα
=

∂φ�

∂x�
α

− s,α

sς

∂φ�

∂ς
(E.39)

∂φ

∂z
=

1
s,ς

∂φ�

∂ς
(E.40)

with s,t, s,ς and s,α the partial derivatives of s with respect to t, ς and xα, respectively. In our case we
have the remarkable identity

s,ςJ = D. (E.41)

Dropping the star superscripts just like Mellor (2003) going from his equation (14) to (22), we
can transform the GLM mass conservation equation

∂ρwJ

∂t
+

∂ρwJuL
α

∂xα
+

∂JwL

∂z
= 0 (E.42)

to the following
∂ρw ζ̂

∂t
+

∂DρwUα

∂xα
+

∂ρwW

∂ς
= 0, (E.43)

by defining
W =

[
JwL − J

(
uL

αsα + st

)]�
, (E.44)

and (uL
α)� = Uα, that is, the Lagrangian drift velocity in Mellor’s coordinate is indeed the transformed

GLM velocity. For constant ρw (E.42) is clearly Mellor’s equation (51).

2. 3D momentum in Mellor’s coordinates

We start here from the ‘alternative form’ of the GLM equations, (Andrews and McIntyre 1978,
equation 8.7a), considering only the vertical component of the Earth’s rotation,

D
L
uL

α + εα3βf3u
L
β +

1
ρwJ

∂pL

∂xα
+ X

L

α =
1

ρwJ

(
∂Rαβ

∂xβ
+

∂Rα3

∂z

)
. (E.45)

First looking at the Lagrangian-mean pressure we have to second order in ε1,

pL = p + ξj
∂p′

∂xj
. (E.46)

The mean vertical momentum equation for steady mean motions gives,

−∂p

∂z
= ρwg +

∂w2

∂z
+

∂uαw

∂xα
. (E.47)

Over a gently sloping bottom uαw is third order in ε1 and (E.47) integrates vertically to

p = pH − ρwσ2FSSFSSvarζ , (E.48)

where pH is the mean hydrostatic pressure and the second term is the wave-induced Eulerian mean
pressure.

Assuming that we have only free waves, the Stokes correction in (E.46) can be rewritten as

ξj
∂p′

∂xj
= ρwvarζ

(
σ2FSSFSS − gkFCCFCS

)
, (E.49)
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so that
pL = pH − ρwgvarζkFCCFCS . (E.50)

Finally the radiation stress is defined by Andrews and McIntyre (1978a, equation 8.6) as

Rαj = pξ (1 − J)δαj + pξ
∂ξi

∂xα
Kij ,

= pξ (1 − J)δαj + Bαj (E.51)

where pξ is the pressure at the displaced position and Kij are the cofactors of the coordinate transform
matrix x → (x + ξ), and Bαj is the flux in direction j of wave pseudo-momentum in direction opposite
to xα (Andrews and McIntyre 1978b, equation 2.7b and 2.17 see also Jenkins & Ardhuin 2004), which
is, at second order in the wave slope,

Bαj = pξξj,α + pξ (ξj,αξm,m − ξj,mξm,α). (E.52)

where the subscripts with commas denote partial derivatives, i.e. φ,i = ∂φ/∂xi.
This was rewritten by Andrews and McIntyre (1978a, eq. 8.11) as,

Bαj = p′ξj,α + Zαj + Nαj + O(ε3
1), (E.53)

with
Zαj = −pL

(
ξmξj,m

)
,α

+
1
2

[
pL

(
ξmξj

)
,α

]
,m

, (E.54)

and a tensor Nαj that can be neglected when considering the divergence ∂Bαj/∂xj because for any
displacement field, ∂Nαj/∂xj = 0. Thus we shall use

B′
αj = p′ξj,α + Zαj . (E.55)

The various terms in B′
αβ can be approximated to second order in ε1 and zeroth order in ε2

since the horizontal divergence of Bαβ makes the resulting momentum term first order in ε2. We can
thus neglect Zαβ , and, using (E.34) we find

R′
αβ = R′

αβ + p′ξβ,α = R′′
αβ − E

kαkβ

k
FCCFCS , (E.56)

with E = ρwgvarζ , and

R′′
αβ = pH

sG
,ς

D
δαβ . (E.57)

The vertical flux Rα3 is much more delicate to deal with because its vertical divergence is of the
same order in ε2 as the flux itself, due to the large vertical gradient in all the vertical profiles. Thus Rα3

must be estimated to first order in ε2, including all the gradients of the wave amplitude and functions
of k and D. A direct calculation of Rα3 from (E.51) yields, to second order in ε1,

Rα3 = Bα3 = pξξ3,α +
[
p[ξ1,αξ3,1 − ξ2,αξ3,2 + ξ3α (ξ2,2 + ξ1,1)]

]
(E.58)

= pξξ3,α + pH
[
ξ3,αξβ,β − ξ3,βξβ,α

]
. (E.59)

To zeroth order in ε2, only the first term remains in the expression of Rα3. pξξ3,α is identical to Mellor’s
(2003) p̃sα, clearly expressing the correlation of pressure and streamline slope on the wave streamlines
(i.e. at the displaced position). The vertical integral of that term over a flat bottom is zero in the
absence of forcing (e.g. by the wind as seen in Appendix A).

However, to first order in ε2, and because we have already used the zero-divergence property of
Nαj in order to compute R′

αβ instead of Rαβ , it is easier to stick with the decomposition of Rαj given
by (E.53),

R′
α3 = p′ξ3,α + Zα,3

= ρwgaR
[
FCC − iFSC

k · ∇H

k

]
R

[
a

(
FSS − iFCS

k · ∇H

k

)]
,α

+ Zα,3

= E1/2FCC

(
E1/2FSS

)
,α

+ E (−FSCFSS + FCCFCS)
kαk · ∇H

k
+ Zα,3,

(E.60)
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where

Zα,3 = −pH
[
ka2FSSFCS

]
,α

+
1
2

[
pH

(
(FSS)2

a2

2

)
,α

]
,z

= −pH

ρg
(kFSSFCSE),α − 1

2
(
(FSS)2E

)
,α

. (E.61)

We can now also consider the contribution of bound waves due to air pressure fluctuations over
the waves, as considered in § 2. These clearly contribute to ∂Rα3/∂z, giving the extra term found in
Appendix A, with the same vertical profiles as the Stokes drift,

T in
α (z) = pa

∂ζ

∂xα
kD(FCCFCS + FSCFSS). (E.62)

We may now transform (E.45), to the new coordinates, using the GLM mass conservation
equation. We first consider the Lagrangian mean derivative. Using (E.44) and (E.41) we get

s,ςρwJD
L
uL

α = s,ς

[
∂

∂t
(ρwJuL

α) +
∂

∂xβ
(ρwJuL

αuL
β ) +

∂

∂z
(ρwJwL)

]
=

∂

∂t
(ρwDUα) +

∂

∂xβ
(ρwDUαUβ) +

∂

∂ς
(ρwJwLUα)

−∂s

∂t

∂

∂ς
(ρwJUα) − ∂s

∂xβ

∂

∂ς
(ρwJUαUβ) − ρwJUα

(
∂2s

∂t∂ς
+ Uβ

∂2s

∂ς∂xβ

)
=

∂

∂t
(ρwDUα) +

∂

∂xβ
(ρwDUαUβ) +

∂

∂ς
(ρwWUα), (E.63)

with the � superscripts omitted on the right hand side.
Transforming the pressure gradient term using (E.50), and combining it with R′′

αβ , one gets to
second order in ε1,

s,ς

(
∂pL

∂xα
− ∂R′′

αβ

∂xβ

)
=

∂

∂xα

[(
s − sG

)
,ς

pH
]
− ∂

∂ς

[(
s − sG

)
,α

pH
]

− ∂

∂xα
(s,ςkEFCCFCS) +

∂

∂ς

(
kEFCCFCS

∂s

∂xα

)
= gDζ̂,α +

∂

∂xα

(
DpH

) − ∂

∂ς

(
ςpH ∂D

∂xα

)
− ∂

∂xα
(kDEFCCFCS)

+
∂

∂ς

(
ςkEFCCFCS

∂D

∂xα

)
(E.64)

where s,ς = D + sG
,ς has been used. Defining the buoyancy as b = −g (ρ̂w − ρw0) /ρw0, with ρw0 a

reference water density, the first two hydrostatic terms can be expressed as (Mellor 2003)

∂

∂xα

(
DpH

) − ∂

∂ς

(
ςpH ∂D

∂xα

)
= +ρw0D

2

∫ 0

ς

(
∂b

∂xα
− ς

∂D

∂xα

∂b

∂ς

)
(E.65)

and we define the last term

T p1
α =

∂

∂ς

(
ςkEFCCFCS

∂D

∂xα

)
(E.66)

Now transforming the remaining terms of the radiation stresses,

sς

[
∂

∂xβ

(
R′

αβ − R′′
αβ

)
+

∂R′
α3

∂z

]
= − ∂

∂xβ

(
sςE

kαkβ

k
FCCFCS

)
+

∂

∂ς

(
R′

α3 + sβE
kαkβ

k
FCCFCS

)
=

∂

∂xβ
Su

αβ + T in
α +

∂

∂ς

(
ρwgaFCC

∂ (aFSS)
∂xα

+ Zα,3

)
+ T bottom

α , (E.67)
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with Su
αβ the non-isotropic part of the 3D radiation stresses,

Su
αβ = kDE

kαkβ

k2
FCCFCS , (E.68)

and Sbottom
α the vertical fluxes induced by the bottom slope,

T bottom
α =

∂

∂ς

[
E [FCCFCS (1 + ς) − FSCFSS ]

kαk · ∇H

k

]
, (E.69)

which integrates to zero over the vertical.
Finally one can see that parts of the two terms ∂Sαβ/∂xβ and ∂s̃αp̃/∂ς that appear in Mellor’s

(2003) equation cancel. Namely,

∂

∂ς

[
FSSE1/2 ∂

∂xα

(
E1/2FSS

)]
= − ∂

∂xα
(kDEFSSFCS) . (E.70)

Putting all the pieces of this puzzle together (E.45) can be rewritten in the new coordinate
system to obtain a generalization of Mellor’s (2003) equation (51a)

∂

∂t
(ρwDUα) +

∂

∂xβ
(ρwDUαUβ) +

∂

∂ς
(ρwWUα) + εα3βf3DUβ

+ D
∂

∂xα
(ρwgζ̂ + p̂a) + ρw0D

2

∫ (
∂b

∂xα
− ς

∂D

∂xα

∂b

∂ς

)
= −∂Sαβ

∂xβ
+ T in

α +
∂S3

α

∂ς
+

∂Zα,3

∂ς
+ T bottom

α + T p1
α − (X

L

α)�, (E.71)

with (X
L

α)� the transformed viscous and turbulent stresses, and, with the same definition as given by
Mellor (2003),

Sαβ = kDE

[
kαkβ

k2
FCSFCC + δαβ (FCSFCC − FSSFCS)

]
. (E.72)

and S3
α corresponds to Mellor’s s̃αp̃,

S3
α = E (FCC − FSS)

∂FSS

∂xα
+

FSS

2
(FCC − FSS)

∂E

∂xα
. (E.73)

Our equation apparently differs from Mellor’s due to the term T p1 as well as Zα,3 and T bottom
α .

Although the latter term is readily interpreted physically and integrates to zero over the vertical, the
other two are probably due to the missing terms in (E.27)–(E.31) that contribute to S3

α.



Annexe F: BRAGG SCATTERING OF RANDOM

SURFACE GRAVITY WAVES BY IRREGULAR

SEABED TOPOGRAPHY

par Fabrice Ardhuin et Thomas H. C. Herbers.
Journal of Fluid Mechanics, vol. 451, pp. 133, 2002.

113



114ANNEXE F. BRAGG SCATTERING OF RANDOM SURFACE GRAVITY WAVES BY IRREGULAR SEABED TO



Annexe G: TOPOGRAPHICAL SCATTERING OF

WAVES : A SPECTRAL APPROACH

par Rudy Magne, Fabrice Ardhuin, Thomas H. C. Herbers et Vincent Rey.
Journal of Waterways, Port, Coastal and Ocean Engineering, sous presse,

disponible sur ArXiv : http ://arxiv.org/abs/physics/0504148

147



148 ANNEXE G. TOPOGRAPHICAL SCATTERING OF WAVES : A SPECTRAL APPROACH



Annexe H: A HYBRID

EULERIAN-LAGRANGIAN MODEL FOR

SPECTRAL WAVE EVOLUTION WITH

APPLICATION TO BOTTOM FRICTION ON

THE CONTINENTAL SHELF

par Fabrice Ardhuin, Thomas H. C. Herbers et W. C. O’Reilly
Journal of Physical Oceanography, vol. 31(6), pp. 1498–1516, 2001

149



150ANNEXE H. A HYBRID EULERIAN-LAGRANGIAN MODEL FOR SPECTRAL WAVE EVOLUTION WITH APP



Annexe I: NUMERICAL AND PHYSICAL

DIFFUSION : CAN WAVE PREDICTION

MODELS RESOLVE DIRECTIONAL SPREAD ?

par Fabrice Ardhuin and Thomas H. C. Herbers
Journal of Atmospheric and Ocean Technology, vol. 22(7), pp. 883–892, 2005

151



152ANNEXE I. NUMERICAL AND PHYSICAL DIFFUSION : CAN WAVE PREDICTION MODELS RESOLVE DIREC



Annexe J: ON THE EFFECT OF WIND AND

TURBULENCE ON OCEAN SWELL

Fabrice Ardhuin et Alastair D. Jenkins
Proc. 15th Int. Polar and Offshore Engineering Conference, Seoul, South Korea, 2005

153



154 ANNEXE J. ON THE EFFECT OF WIND AND TURBULENCE ON OCEAN SWELL



Annexe K: OBSERVATIONS OF

WAVE-GENERATED VORTEX RIPPLES ON

THE NORTH CAROLINA CONTINENTAL

SHELF

par Fabrice Ardhuin, Thomas G. Drake et Thomas H. C. Herbers
Journal of Geophysical Research, vol. 107(C10), doi :10.1029/2001JC000986

155



156ANNEXE K. OBSERVATIONS OF WAVE-GENERATED VORTEX RIPPLES ON THE NORTH CAROLINA CONT



Annexe L: SWELL TRANSFORMATION ACROSS

THE CONTINENTAL SHELF. PART I :

ATTENUATION AND DIRECTIONAL

BROADENING

par Fabrice Ardhuin, W. C. O’Reilly, T. H. C. Herbers et P. F. Jessen
Journal of Physical Oceanography, vol. 33, pp. 1921–1939, 2003

157



158ANNEXE L. SWELL TRANSFORMATION ACROSS THE CONTINENTAL SHELF. PART I : ATTENUATION AN



Annexe M: SWELL TRANSFORMATION

ACROSS THE CONTINENTAL SHELF. PART II :

VALIDATION OF A SPECTRAL ENERGY

BALANCE EQUATION

par Fabrice Ardhuin, T. H. C. Herbers, W. C. O’Reilly et P. F. Jessen
Journal of Physical Oceanography, vol. 33, pp. 1940–1953, 2003

159



160ANNEXE M. SWELL TRANSFORMATION ACROSS THE CONTINENTAL SHELF. PART II : VALIDATION OF A



Annexe N: EXTRACTION OF COASTAL OCEAN

WAVE FIELDS FROM SAR IMAGES

par Fabrice Collard, Fabrice Ardhuin et Bertrand Chapron
IEEE Journal of Ocean Engineering, in press

161



162 ANNEXE N. EXTRACTION OF COASTAL OCEAN WAVE FIELDS FROM SAR IMAGES



Annexe O: DIRECT MEASUREMENTS OF

OCEAN SURFACE VELOCITY FROM SPACE :

INTERPRETATION AND VALIDATION

par Bertrand Chapron, Fabrice Collard et Fabrice Ardhuin
Journal of Geophysical Research, vol. 110, C07008, doi :10.1029/2004JC002809, 2005

163


