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Abstract

A new set of Boussinesq-type equations describing the free surface evolution and the corresponding depth-integrated horizontal velocity is
derived with the bottom boundary layer effects included. Inside the boundary layer the eddy viscosity gradient model is employed to characterize
Reynolds stresses and the eddy viscosity is further approximated as a linear function of the distance measured from the seafloor. Boundary-layer
velocities are coupled with the irrotational velocity in the core region through boundary conditions. The leading order boundary layer effects on
wave propagation appear in the depth-integrated continuity equation to account for the velocity deficit inside the boundary layer. This formulation
is different from the conventional approach in which a bottom stress term is inserted in the momentum equation. An iterative scheme is developed
to solve the new model equations for the free surface elevation, depth-integrated velocity, the bottom stress, the boundary layer thickness and the
magnitude of the turbulent eddy viscosity. A numerical example for the evolution of periodic waves propagating in one-dimensional channel is
discussed to illustrate the numerical procedure and physics involved. The differences between the conventional approach and the present
formulation are discussed in terms of the bottom frictional stress and the free surface profiles.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

For long water waves traveling over a long distance bottom
frictional effects become important. The turbulence generated
inside the bottom boundary layer will not only attenuate wave
energy, but also modify wave form and wave speed. To include
the effects of bottom friction in wave models, a bed shear term is
traditionally added to the depth-integrated momentum equa-
tions and the bottom shear stress is then modeled as a function
of the velocity above the bed. Most of existing models further
assume that the shear stress is in phase with the near bed
velocity. However, it is well known that for a laminar boundary
layer, the phase lag between the bottom shear stress and the bed
velocity is π/4 (Mei, 1989). Recently, Liu and Orfila (2004)
(this paper will be referred as LO hereafter) derived a set of
depth-integrated continuity and momentum equations with
⁎ Corresponding author. Tel.: +34 971611834.
E-mail address: a.orfila@uib.es (A. Orfila).

0378-3839/$ - see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.coastaleng.2007.05.013
boundary-layer effects considered for long-wave propagation.
Considering the viscosity as a constant, LO showed that the
leading-order boundary-layer effect appears in the depth-
integrated continuity equation as a correction term representing
the velocity deficit in the boundary layer (Lighthill, 1978). The
correction term is expressed as a convolution integral and
therefore, bottom frictional effects have a memory in time. Liu
et al. (2006) solved LO's Boussinesq-type equations to examine
the damping and shoaling of solitary waves. Laboratory
experiments in a wave flume were conducted and experimental
data confirmed that LO's formulation is accurate. More
recently, using the PIV technique, Liu et al. (2007) measured
the boundary layer velocity and bottom shear stress under
solitary waves and showed that experimental data agreed with
LO's formulae very well. We remark here that in the laboratory
experiments the boundary layers are indeed laminar. However,
the theoretical formulation developed by LO can be applied to a
turbulent boundary layer with the limitation of a constant eddy
viscosity. More recently, Torsvik and Liu (2007) presented an
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efficient and accurate procedure to evaluate the convolution
integral.

For a fully developed turbulent boundary layer, many
researchers have suggested that the eddy viscosity model is
adequate and the eddy viscosity can be modeled as a power
function of the distance measured from the bottom. Adopting
this eddy viscosity model, Liu (2006) derived another set of
Boussinesq-type wave equations with the turbulent boundary
layer effects included. However, in Liu's (2006) derivation a
coordinate transformation was used such that the theory
becomes invalid when the eddy viscosity becomes a linear
function of the distance from the bottom (Kajiura, 1968;
Jonsson and Carlsen, 1976; Grant and Madsen, 1979), i.e.

mVt fVð Þ ¼ jjuV⁎ jfV; ð1Þ

where ζ′ is the local coordinate normal to the sea bottom, κ the
von Karman constant (∼0.40), and u⁎′ the frictional velocity,
which is related to the bottom stress. In this paper we shall
extend LO's model to include the effects of a fully developed
turbulent bottom boundary layer, in which the eddy viscosity
model given in (1) can be used. Furthermore, we shall focus
only on periodic waves without leading order currents.

The paper is structured in the following manner. For
completeness we first summarize the governing equations and
boundary conditions for the long wave propagation in Section 2.
The Boussinesq-type equations are derived in Section 3. These
equations are expressed in terms of the Fourier (harmonic)
components of the free surface displacement and the depth-
averaged horizontal velocity. The effects of the boundary layer are
described. Section 4 presents the analysis for turbulent boundary
layer under an oscillatory flow. In particular, the expressions for
boundary layer thickness and bottom stress are given. We need to
point out that the boundary layer thickness is a part of the solution.
Once the relationship between the boundary-layer solution and the
depth-averaged velocity is found, the Boussinesq-type equations
presented in Section 3 can be combined into one set of equations in
terms of the free surface displacement. The final equations are
presented in Section 5. Numerical results for a sinusoidal wave
propagating in a numerical tank are shown in Section 6. The
effects of turbulent boundary layer on the evolution of different
harmonics are discussed. Finally, Section 7 concludes the paper.

2. Governing equations and boundary conditions

In this paper, we consider a periodic wave train with the
surface displacement η′(x′, y′, t′) propagating in a constant
water depth, h0′ . The wave train is characterized by a typical
wave amplitude, a0′ , its fundamental frequency, ω0′ , and the

corresponding wave number, k V
0 ¼ xV

0=
ffiffiffiffiffiffiffiffiffi
gVhV

0

q
. The following

dimensionless variables are introduced:

x; yð Þ ¼ k V0 xV; yVð Þ; z ¼ zV=hV0; t ¼ xV0tV
g ¼ gV=aV0; p ¼ pV=qVgVaV0;

u; vð Þ ¼ uV; vVð Þ=ϵ ffiffiffiffiffiffiffiffiffiffi
gVhV0

p
; w ¼ lwV=ϵ

ffiffiffiffiffiffiffiffiffiffiffiffi
gVhV0;

p ð2Þ
in which p′ denotes the pressure, (u′, v′) the horizontal velocity
components in the (x′, y′) directions, w′ the velocity component
in the z′ direction, ρ′ the fluid density, and g′ the gravitational
acceleration. Two dimensionless parameters have been intro-
duced in the dimensionless variables:

ϵ ¼ aV0=hV0; l ¼ k V0hV0: ð3Þ

As explained in LO, the dynamics of the interactions
between surface waves and boundary layer flows can be
described as follows. The flow motions are essentially
irrotational except in the boundary layer adjacent to the
seafloor, z′=−h′. In order to satisfy the no-slip boundary
condition on the bottom, the leading order of magnitude of the
horizontal rotational velocity components inside the bottom
boundary layer must be the same as that of the irrotational
velocity, i.e., O(1). From the continuity equation, a vertical
rotational velocity component is generated inside the bottom
boundary layer, which is no longer zero at the bottom.
Therefore, to satisfy the no flux boundary condition on the
bottom, the irrotational flow in the core region must be
modified, feeling the effects of bottom boundary layer.

In the core region where the flow is assumed to be
irrotational, a velocity potential Φ is introduced. The continuity
equation in dimensionless form becomes,

l2j2Uþ A
2U
Az2

¼ 0; � 1bzbϵg; ð4Þ

and the free surface kinematic and dynamic boundary
conditions are,

Ag
At

þ ϵjgdjU ¼ 1

l2
AU
Az

; z ¼ ϵg: ð5Þ

AU
At

þ ϵ
2

jjUj2 þ 1
l2

AU
Az

� �2
( )

þ g ¼ 0; z ¼ ϵg: ð6Þ

At the sea bottom the no-slip and no-flux boundary
conditions are required. Defining the horizontal and vertical
components of the rotational velocity inside the bottom
boundary layer as ur and uζ , respectively, the boundary
conditions can be expressed as

jU ¼ �ur; z ¼ �1: ð7Þ
AU
Az

¼ �u1; z ¼ �1: ð8Þ

These boundary conditions serve as the link between core
region flows and boundary layer flows. The boundary layer
flows are driven by the no-slip condition, while the feedback
from the boundary layer to the core-region is through the no-
flux condition.
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3. Boussinesq-type equations

In this section, we shall present simplified governing
equations for the irrotational flows by adopting the Boussinesq
approximation, i.e., O(ϵ)∼O(μ2).

The primary difference between the traditional Boussinesq
equations and the present problem is that the vertical component
of the irrotational velocity at the bottom is not zero in the
present situation. Following LO's approach, we expand the
potential function as a power series in the vertical coordinate,

U x; z; tð Þ ¼
Xl
n¼o

zþ 1ð Þn/n x; tð Þ: ð9Þ

Substituting the expansion into the Laplace Eq. (4), and the
bottom boundary conditions, (7) and (8), we obtain the
following recursive relation:

/nþ2 ¼
�l2j2/n

nþ 1ð Þ nþ 2ð Þ ; ð10Þ

with

/1 ¼ �u1: ð11Þ
where the boundary layer effects are introduced through the
velocity potential ϕ1. Thus, using the recursive relation in the
expansion, we get the potential function truncated up to O(μ5)

U ¼ /0 þ zþ 1ð Þ/1 �
l2

2
zþ 1ð Þ2j2/0

þ l4

24
zþ 1ð Þ4j2j2/0 þ O l6

� �
: ð12Þ

We reiterate here that the rotational velocity, uζ, which
appears in ϕ1 in (11), is expected to be greater than O(μ

5) and is
to be determined from the boundary-layer analysis in Section 4.
Defining the depth-averaged velocity as,

ū ¼ 1
1þ ϵg

Z ϵg

�1
jU dz; ð13Þ

the depth-integrated momentum and continuity equations can
be derived following LO, from the free surface boundary
conditions, (5) and (6),

Aū
At

þ ϵ
2
j ūd ūð Þ þjg� l2

3
j jd

Aū
At

� �
¼ O l4

� �
; ð14Þ

jd 1þ ϵgð Þūf g þ Ag
At

þ u1
l2

¼ O l4
� �

: ð15Þ

In this paper we shall focus only on periodic waves with a
fundamental frequency ω0′. The free surface displacement and
the velocity field can be expressed as a Fourier series in time,

g ¼ 1
2

X
n

gnexp intð Þ; n ¼ 0;F1;F2; N ð16Þ
ū ¼ 1
2

X
n

ūnexp intð Þ; n ¼ 0;F1;F2; N ð17Þ

u1 ¼ 1
2

X
n

u1;n exp intð Þ; n ¼ 0;F1;F2; N ð18Þ

where (η−n, ū−n, uζ,−n) are the complex conjugates of (η−n,
ū−n, uζ,n). u0 and η0 represent the mean velocity and the mean
free surface elevation, respectively. In the present study, we
assume that the mean flow field is generated only through the
nonlinearity.

Introducing (16), (17) and (18) into (14) and (15) and
collecting the different Fourier components, we have

inūn þ
ϵ
4

X
s

j ūsd ūn�sð Þ þjgn �
inl2

3
j jd ūnð Þ ¼ O l4

� �
;

ð19Þ

ingn þ
ϵ
2

X
s

jd gsūn�sð Þ þjd ūn þ
u1;n
l2

¼ O l4
� �

; ð20Þ

for n≠0. The leading order of magnitude of mean velocity and
mean free surface elevation is O(ϵ). If the mean free surface
setdown in deep water is zero, the mean velocity and mean
surface elevation can be calculated as (Mei, 1989):

g0 ¼ � ϵ
4

X
sp0

ūsd ū�sð Þ þ O l4
� �

: ð21Þ

ū0 ¼ � ϵ
2

X
sp0

gsū�sð Þ þ O l3
� �

: ð22Þ

Thus, (19) and (20) constitute the governing equations for ūn

and ηn (n≠0) and (21) and (22) are used to calculate the mean
flow field.

For future use, we also note that for n≠0

ūn ¼
i
n
jgn þ O l2

� �
; ð23Þ

jd ūn ¼ �in gn þ O l2
� �

: ð24Þ

However, before (19) and (20) can be solved, the boundary-
layer flow must be analyzed so as to find the expression for the
vertical component of the rotational velocity evaluated at the sea
bottom; i.e., uζ,n.
4. Turbulent bottom boundary layer under an oscillatory
flow

In the turbulent bottom boundary layer, the eddy viscosity is
modeled as a function linearly proportional to the distance from
the seafloor, i.e., (1). However, since the frictional velocity, u⁎′ ,
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depends on time, it makes the problem not tractable. Here, we
further simplify the eddy viscosity model as

mVt fVð Þ ¼ jhjuV⁎jifV; ð25Þ
in which 〈 〉 denotes the average over the fundamental wave
period. Introducing a stretched coordinate in the boundary layer

f
f

u
fV
f
d V

; ð26Þ

where δ
~
′= 〈δ′(t′)〉 is the time averaged boundary-layer

thickness, (25) can be expressed as

mVt fVð Þ ¼ f
ffmV0; ð27Þ

with

fm V0 ¼ jhjuV⁎jifdV; ð28Þ
being the characteristic eddy viscosity. Since we anticipate that
the order of magnitude of the boundary layer thickness is

f
d V;¼

ffiffiffiffiffiffiffiffi
fmV0
xV0

;

s
ð29Þ

the scales of eddy viscosity and the boundary layer thickness
can be expressed in terms of the averaged bottom stress,
hjsVbji ¼ qhjuV

⁎ji2, as

fm V0 ¼ j2hjsVbji
qVxV0

and
f
d V2 ¼ j2hjs Vbji

qVxV20
: ð30Þ

Therefore, even with the simplifications adopted for the eddy
viscosity, the boundary layer thickness as well as the eddy
viscosity, can only be determined when the bottom shear stress
is solved.

Following LO, the continuity and linearized momentum
equations for the rotational velocity components in the
boundary layer are, respectively,

jd ur þ 1
fau

Auf

A
f
f
¼ 0; ð31Þ

and

Aur
At

¼ A

A
f
f

f
f
Aur

A
f
f

� �
ð32Þ

with ã ≡d̃Vk0′. In the present formulation we have adopted the
Boussinesq hypothesis O(ϵ)≈O(μ2) and O(ã )≈O(μ4) so as to
linearize the boundarylayer equations. Hereafter, it is assumed
that O(ã )≈O(ϵ2)≈O(μ4).

Since only periodic motions are considered, we shall also
express the rotational velocity inside the boundary layer as a
Fourier series in time

ur x;
f
f; t

� �
¼ 1

2

Xl
n¼�l

ur;n x;
f
f

� �
exp intð Þ; ð33Þ
where ur,−n is the complex conjugate of ur,n. Similarly, the
vertical rotational velocity uζ and the velocity potential Φ can
also be expanded as

uf x;
f
f; t

� �
¼ 1

2

Xl
n¼�l

uf;n x;
f
f

� �
exp intð Þ; ð34Þ

and

U x;
f
f; t

� �
¼ 1

2

Xl
n¼�l

Un x;
f
f

� �
exp intð Þ: ð35Þ

The momentum equation for ur,n is obtained by introducing
(33) into (32),

inur;n ¼ A

A
f
f

f
f
Aur;n
A
f
f

� �
: ð36Þ

The no-slip at the bottom requires that,

ur;n ¼ �jUn at
f
f ¼ fV0

f
d V

u
f
f0

h i
ð37Þ

with ζ0′≡ks′/30 and ks′ the equivalent bottom roughness. At the
outer edge of the boundary layer, the rotational velocity must
vanish, i.e.,

ur;nY0 at
f
fYl: ð38Þ

The solution of the two-point boundary-value problem
described by (36)–(38) can be readily obtained (Kajiura, 1964),

ur;n ¼ �jUnN
0
n
f
f

� �
for nN0; ð39Þ

with

Nj
n
f
f

� �
u

Kj 2
ffiffiffiffiffiffiffiffi
in
f
f

q� �

K0 2
ffiffiffiffiffiffiffiffiffi
in
f
f0

q� � ; ð40Þ

where Kj is the modified Bessel function of second kind and
order j.

Finally, integrating continuity Eq. (31) inside the boundary
layer for the nth harmonic, we obtain the leading order vertical
rotational velocity at the sea bottom,

uf;n
f
f0

� �
¼ �falj2Un

1� iffiffiffiffiffi
2n

p
ffiffiffiffiffiffi
f
f0

q
N1
n
f
f0

� �
þ O l6

� � ð41Þ

for nN0. We remark that since∇2Φn=∇ · ūn+O(μ
2), the above

equation can be re-written as

uf;n
f
f0

� �
¼ �faljd ūn

1� iffiffiffiffiffi
2n

p
ffiffiffiffiffiffi
f
f0

q
N1
n
f
f0

� �
þ O l6

� � ð42Þ

for nN0. This vertical velocity induced by the boundary layer is
used in the depth-integrated continuity equation for irrotational
flows in the core region, (20). The effects of the boundary layer
are of the order of O(μ3). Both fa(≡

f
d′k0′) and

f
d′ depend on the
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bottom stress as shown in (30). In the following section, we
present the formulae for bottom stress, τb′, and the boundary
layer thickness,

f
d′, so as to close the problem.

4.1. Bottom shear stress and boundary layer thickness

The bottom shear stress in dimensional form is defined as

sVb ¼ qVmVt
AuVr
AfVjfV¼k Vs=30

: ð43Þ

The corresponding dimensionless form can be written as

sb ¼ f
f
Aur
A
f
f jf

f¼f
f0

with sbu
sVb

faϵqVgVhV0
: ð44Þ

Introducing (33) and (39) into (44), the dimensionless
bottom stress can be related to the depth-integrated velocity, ūn,
as

sb ¼
ffiffiffiffiffiffiffiffiffiffi
k Vs
30
f
d V

s Xl
nN0

R ūn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
inN1

n
f
f0

� �
exp intð Þ

r
g;

	
ð45Þ

in which R{} denotes that only the real part is considered.
Recalling (30), we obtain a transcendental equation for the
boundary layer thickness

f
d′ as

f
d V3=2 ¼ ϵj2

k V0

ffiffiffiffiffi
k Vs
30

r hjXl
nN0

R ūn
ffiffiffiffi
in

p
N1
n
f
f0

� �
exp intð Þ

n oji: ð46Þ

in which
f
f0 is a function of

f
d′, i.e. (37).

5. Governing equation for the free surface displacement

Once the boundary-layer rotational velocity is related to the
depth-integrated velocity in the core region, we can present the
Boussinesq-type equations in terms of a single unknown
variable, the free surface displacement. Following the procedure
presented in Liu et al. (1985), we combine (19) and (20) into a
single equation to describe the free surface evolution,

u1;nj
2gn þ u2;nn

2gn

¼ ϵ
2

X
spn
sp0

n2 � s2
� �

gsgn�s �
ϵ
2

X
spn
sp0

nþ s
n� s

jgsdjgn�s

�ϵ
X
spn
sp0

1
s n� sð Þ

A
2gs
Ax2

A
2gn�s

Ay2
� A

2gs
AxAy

A
2gn�s

AxAy

� �
þ O l4

� �
;

ð47Þ
where

u1;nu1� n2l2

3
; ð48Þ
and

u2;nu1þ
fa
l

1� ið Þffiffiffiffiffi
2n

p
ffiffiffiffiffiffi
f
f0

q
N1
n
f
f0

� �
: ð49Þ

We note that (23) and (24) have been employed in deriving
(47). If the viscous term is neglected (i.e., ã =0), (47) reduces to
that obtained in Liu et al. (1985). Eq. (47) is a system of non-
linear wave equations for ηn, (n=1, 2, …). The nonlinear
interactions among different harmonics are included in the
right-hand side terms. The boundary layer effects are repre-
sented explicitly in the second term of φ2,n, (49), which will not
only reduce the amplitude, but also modify the wave phase.
Once ηn is obtained, the depth-integrated velocity un, can be
found by using (23).
6. Damping and evolution of a modulating periodic wave
train in a long channel

Now, we shall examine the damping and evolution of a
modulating periodic wave train in a long channel with a
constant depth. The free-surface displacement for the nth

harmonic, can be written as,

gn xð Þ ¼ An xð Þexp �inxð Þ; ð50Þ

where An (x) is the complex amplitude function. It is well
known that because of nonlinear interactions among harmonics
the amplitude functions modulate periodically along the
channel. Mei and Unluata (1972), have investigated this
phenomena without considering the boundary layer effects.
Here, we reexamine the problem with the additional consider-
ation of the damping and phase modifications caused by the
turbulent boundary layer.

Substituting (50) into (47), we obtain:

u1;n
d2An

dx2
� 2in

dAn

dx

� �
þ bnn

2An

¼ en
2

X
spn
sp0

nþ sð ÞAsAn�s

� e
2

X
spn
sp0

nþ s
n� s

dAs

dx
dAn�s

dx
� isAs

dAn�s

dx
� i n� sð ÞAn�s

dAs

dx

� �

þO l4
� �

; ð51Þ

where

bnu u2;n � u1;n

� � ¼ n2l2

3
þ
fa
l

1� ið Þffiffiffiffiffi
2n

p
ffiffiffiffiffiffi
f
f0

q
N1
n
f
f0

� �
: ð52Þ
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Moreover, assuming weak amplitude variations in the
direction of wave propagation, i.e.,

AAn

Ax
¼ O l2

� �
;

A
2An

Ax2
¼ O l4

� �
; ð53Þ

Eq. (51) can be simplified to

dAn

dx
¼ � in

2
bnAn þ iϵ

4

X
spn
sp0

nþ sð ÞAsAn�s þ O l4
� �

: ð54Þ

which is similar to the system of nonlinearly coupled equations
obtained by Grataloup and Mei (2003) for the damping of
weakly nonlinear waves due to multiple scattering by a
randomly rough seabed.

Considering the first 5 harmonics in the wave propagation,
the governing equations for the amplitude functions become,

dA1

dx
¼ � i

2
b1A1 þ 3iϵ

4
A�1A2 þ A�2A3 þ A�3A4 þ A�4A5ð Þ;

ð55Þ

dA2

dx
¼ � 2i

2
b2A2 þ 6iϵ

4
1
2
A2
1 þ A�1A3 þ A�2A4 þ A�3A5

� �
;

ð56Þ
dA3

dx
¼ � 3i

2
b3A3 þ 9iϵ

4
A1A2 þ A�1A4 þ A�2A5ð Þ; ð57Þ

dA4

dx
¼ � 4i

2
b4A4 þ 12iϵ

4
1
2
A2
2 þ A1A3 þ A�1A5

� �
; ð58Þ

dA5

dx
¼ � 5i

2
b5A5 þ 15iϵ

4
A2A3 þ A1A4ð Þ; ð59Þ

which are accurate up to O(μ4).

6.1. Boundary layer thickness and an iterative procedure

The bottom boundary layer effect term, φ2,n, in (55)–(59) is
a function of the non-dimensional parameters

f
f0=ks′/30

f
d′ and

fa≡
f
d′k0′, which are part of solutions. An iterative procedure is

adopted to find the solutions. Initial guesses (constant values)
for

f
f0 and fa are made so as to calculate Ξn

1(
f
f0) in (49). The

system of nonlinear ordinary differential Eqs. (55)–(59), is then
solved numerically with an implicit finite difference scheme.
Once the free surface elevation for the nth harmonic, ηn, is
obtained, using the relation (23) the leading order of the depth
averaged velocity ūn can be computed. The non-dimensional
parameter

f
f0 is then updated by applying (46), which can also

be expressed as Eq. (60).

f
f0 ¼

30ϵj2

. hjXl
nN0

R ūn
ffiffiffiffi
in

p
N1
n
f
f0

� �
exp intð Þ

n oji( )�2=3

:

ð60Þ
with .≡k0′ks′. The new value
f
f0 is used to update fa, for fa =./

30
f
f0. The procedure described above is repeated until a

converge criteria between two successive iterations is reached
(the relative error between two successive iterations is smaller
than 10−3 for all x).

6.2. Results

In the numerical example, a wave maker, located at x=0,
generates a sinusoidal wave train with A1(0)=1 and A2(0)=A3

(0)=A4(0)=A5(0)=0. The values for the nonlinear parameter
and the frequency dispersion are ε=0.1, and μ2 =0.1216,
respectively. The bottom roughness is specified by .≡k0′ks′=
10− 4. The initial guesses are made for

f
f0 = 0.01 and

fa =3.3·10−4 for all x positions.
The amplitude variation for the first five harmonics is shown

in Fig. 1. The grey lines correspond to the classical solution
where the viscous terms are neglected (i.e.,fa =0). The solutions
considering the boundary layer effects are displayed as black
lines. In both situations, as the wave train propagates into the
channel, wave energy is transferred from the first to higher
harmonics as the result of the nonlinearity in (55)–(59). How-
ever, when the turbulent boundary layer effects are included, the
viscous damping reduces the amplitudes for all harmonics. The
boundary layer also affects the phases of each harmonic re-
sulting in different phase speed. It is quite obvious that the
boundary layer effects are accumulative. Those effects could
become very significant if the wave train propagates a long
distance. In Fig. 2, a snapshot of the depthaveraged velocity ū
and dimensionless boundary layer thickness,

f
f0, along the

channel at t=0.
To further illustrate the boundary layer effects, the time

histories of the freesurface elevation at the nondimensional
locations x=20 and x=120 are shown in Fig. 3. The grey lines
correspond to the inviscid solutions where fa =0 and the black
lines denote the solutions with the effects of the boundary layer
included. Since the boundary-layer dissipative effect is
accumulative, near the wavemaker (top panel in Fig. 3), the
wave train has not been significantly influenced by the
boundary layer and both solutions are almost identical. How-
ever, as the wave train propagates farther down the channel
(bottom panel in Fig. 3), the dissipative effects reduce the wave
amplitude. The phase shifts in the wave form are also obvious.

To compare the present results with the traditional
formulation in which a bottom stress term is added in the
momentum equations, a companion model has also been devel-
oped (see Appendix). In the traditional model, the bottom stress
is assumed to be in phase with the bottom velocity and a
frictional coefficient is estimated from the empirical formula
suggested by Nielsen (1992). This frictional coefficient is a
function of the bottom roughness and the near bottom orbital
displacement (ab′). The time history of the depth-averaged
velocity ū at x=120 obtained from (54) where φ2,n is given by
(49) is presented in Fig. 4 (top panel) in black together with the
velocity obtained from the traditional approach (61), in grey.
The bottom shear stress τb from (45) is displayed in black in the
bottom panel of Fig. 4 together with the bottom stress from



Fig. 1. Amplitudes of the modulated wave train with five harmonics. The grey
lines correspond to the results without the viscous effects and black lines are
results with the boundary layer effects included.

Fig. 3. Time histories of the free surface elevations at x=0 (top panel), and at
x=120 (bottom panel) for a wave train propagating without damping (grey)
and with the turbulent boundary layer effects (black).
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traditional approach (66), in grey where φ2,n is given by (64).
Using the traditional formulation with the proper selection of
frictional coefficient, the effects of boundary layer on wave
propagation are quite similar to those obtained from the present
formulation for the present case. However, these two models
predict very different bottom stress as shown in Fig. 4 (grey
lines). The bottom stress, in turn, will have significant impacts
on estimating sediment transport.

7. Concluding remarks

In the present paper a new Boussinesq-type model for
periodic wave propagation has been developed when the effects
Fig. 2. A) The depth-averaged velocity ū along the wave channel at t=0. B) Distrib
ε=0.1 and ϱ=10−4.
of a turbulent boundary layer are significant. In this model the
eddy viscosity model is used in the turbulent boundary layer and
is further approximated as a linear function of the distance
measured from the seafloor. The analytical expressions for the
boundary-layer velocity can be found in terms of the irrotational
velocity in the core region and the effects of the boundary layer
appear in the depth-integrated continuity equation. The bottom
stress, the boundary layer thickness and the magnitude of the
turbulent eddy viscosity are part of solutions. An iterative
scheme is introduced to solve the system of equations.
Numerical solutions for the evolution of periodic waves
propagating in a one-dimensional channel are discussed. The
ution of
f
f0. The characteristics of the wave motion are defined by, μ2=0.1216,



Fig. 4. Time histories of depth integrated velocity in dimensionless form at x=120 (top panel) from the present approach (black) using (49) and from the traditional
approach (64) (grey). The time history of bottom stress from (45) is presented in grey (bottom panel) together with the bottom stress calculated from (66). The frictional
coefficient for the traditional approach sused Cf=0.0037.
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model can be extended and implemented straightforwardly for
two-dimensional problems.
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Appendix

The viscous effects induced by the bottom boundary layer
have been traditionally included in the momentum equation
as

AūV
AtV

þ 1
2
jV ūVd ūVð Þ þ gVjVgV� hV2

3
jV jVd

AūV
AtV

� �
¼ � t Vb

qVhV
ð61Þ

where τb′ is the bottom shear stress for which we parameterize
as,

t Vb ¼ Cf qVuVcuV ð62Þ

where Cf is the frictional coefficient, uc′ a characteristic velocity
and u′ the near bottom orbital velocity. We remark here that the
use of a characteristic velocity is employed, instead of |u′|, is for
the convenience of obtaining the solution in the frequency
domain. The continuity equation in dimensional form reads,

jVd h Vþ g Vð Þū Vf g þ Ag V
At V

¼ 0 ð63Þ

Assuming periodic motions in time and following the same
approach as the one employed in this paper, we obtain the same
expression for the free surface elevation as (47) but with the
viscous term φ2,n being expressed as,

u2;n ¼ 1� iϵCf

nl
ð64Þ

We note that uVc ¼ ϵ
ffiffiffiffiffiffiffiffiffi
gVhV

p
has been used. The friction

coefficient Cf is obtained using the empirical formula (Nielsen,
1992):

Cf ¼ 1
2
exp 5:5

k Vs
aVb

� �0:2

�6:3

 !
c

1
2
exp 5:5

ϱ
ϵ

� �0:2
�6:3

� �

ð65Þ

For the example presented in this paper Cf =0.0037. To
compare the bottom stress obtained from two models, the
dimensional bottom stress, (62), is normalized by the same
parameters used in the present formulation,

tb ¼
30Cf ϵ

f
f0

ϱ
u ð66Þ
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