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ABSTRACT

One of the important characteristics of an anemometer is its spatial resolution. A three-dimensional gen-
eralization is given of a method to calculate the transfer function as a function of the wavenumber, devised
by Kaimal et al. for a sonic anemometer. The method has been applied to the sensor system of the pressure
anemometer, a new type of wind vector measuring instrument. The results, given in a number of figures, show
an extremum before the transfer function falls off to its final value,

1. Introduction

One of the important characteristics of an ane-
mometer is its useful frequency response. Two factors
can be distinguished: 1) the intrinsic frequency re-
sponse, determined by the speed with which various
elements in the instrument react to a change in wind-
speed and 2) the limitations on the useful frequency
range due to the finite dimensions of the wind sensing
system.

The second factor, which is in fact a wavelength
effect, is the subject of this paper. The calculations are
a generalization of a method outlined by Kaimal er
al. (1968) and Horst (1973), which is based on earlier
work by Uberoi and Kovasznay (1953), Gurvich (1962)
and Silverman (1968).

Kaimal et al. and Horst developed their method for
a three-dimensional sonic anemometer with the well-
known nonorthogonal sensor configuration (Fox,
1968); they could treat the vertical component of the
sensor separately from the two horizontal ones. For
the pressure anemometer, which is the subject of this
paper, this is not possible. A pressure anemometer
(PA) is in principle a combination of six pressure tubes,
arranged in three mutually orthogonal sets of two. The
two tubes in each set are pointing in opposite directions
and connected to the ports of a differential pressure
transducer. From the readings of the three transducers
the wind velocity and direction can be derived. To
keep the tubes clean inside, a continuous airflow is
forced through the tubes from within the instrument.
The tubes are, in reality, not tubes but chambers in a
hollow ring, split into two compartments by a partition
which lies in the centerplane of the ring. The outlet
port of a “tube” consists of four openings on one side
of a ring, distributed evenly along that ring. Each ring
contains both tubes of a set, so there are eight holes
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in each ring, four on each side. For a full description
of the instrument, see Oost (1983).

The full sensor system of the PA consists of three
rings with mutually orthogonal axes tilted so that these
axes all have the same angle toward the horizontal
plane. This angle, as can be easily calculated, is
cos '(2/3)"? or ~35.26°. The situation is depicted in
Fig. 1; the dashed line is along the vertical when the
instrument is in an upright position.

There are, of course, an infinite number of config-
urations that fit the description; when the rings are
displaced parallel to their own plane they stay mutually
orthogonal and the angle with the horizontal plane is
conserved. The configuration of Fig. 1 was chosen to
minimize the mutual distance of the sensor rings for
a given length from M to the center of the rings. If
the rings are displaced in the way as indicated by the
arrows near M, another interesting configuration is
obtained, viz. of minimum mutual interference in the
wind. The wind is sensed by a set of four pairs of holes
on each ring.

To prevent semantic problems, the terms “com-
ponent” and “sensor”, as far as they will be applied
to instruments, are defined as

* A component is a part of the sensor system that
functions more or less independently and measures—
at least to some degree of approximation —one com-
ponent of the windvector.

® A sensor is a subsystem of a component, that
contributes part of its signal.

For the PA, a ring is a component and each opening
on the ring is a sensor.

The finite dimensions of the sensing system are the
cause of several types of frequency response degra-
dation: 1) due to the dimensions of the sensors, 2) due
to the spatial separation of the sensors on one com-
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FIG. 1. Coordinate systems of the pressure anemometer (x, y, z)
and the wind (i, #,, #s). The u, component is along the mean wind,
u, is perpendicular to u,; and parallel to the xy-plane and u; is per-
pendicular to u, and u,. The dashed line is along the vertical, so
the plane of P, P; and P; is horizontal. The ring with its center at
P, is sensitive to. the windcomponent in the x-direction only, those
at P, and P; to the y- and z-component, respectively. The direction
of the mean wind in this figure is very unusual (an elevation of about
60°) and was chosen only for graphical reasons.

ponent, and 3) due to the distances between the com-
ponents.

The first type is very important, e.g., a sonic ane-
mometer, where the dimension meant is the distance
between a transmitter and a receiver, but with the PA
it is the diameter of a sensor opening, which is less
than 1 mm, and therefore negligible. Deviations of the
second type are considered to be nonnegligible for the
PA (although those of the third type are dominant).
There are two lengths in this connection—the distance
between two neighboring openings on one side of a
ring and between two openings on different sides of
that ring. The first one is of the order of 23, the other
of 5 mm; both are retained in the calculations.

The third type of deviation has been treated by Kai-
mal et al. (1968) for a two-dimensional nonorthogonal
system. In their case this was sufficient, as the midpoint
of the vertical component of the sonic coincided with
that of the line connecting the midpoints of the other
two components. For the PA this simplification cannot
be used, due to the different geometry and the fact
that the signals are treated as a set, so a three-dimen-
sional treatment is necessary. As a kind of compen-
sation for the added complexity, the components of
the PA are mutually orthogonal.

Two effects will be neglected that are related to those
treated: the differences in the contributions of indi-
vidual sensors to the signal of a component and time
of travel effects in a component, due to the different
distances of the various sensors to the pressure trans-
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ducer that transforms the pressure signal for a com-

. ponent into an electric signal. The first effect has been

neglected because we have no reliable data on it, al-
though there are indications that it does exist. The
second effect can indeed be neglected, because the
pressure waves from the sensor openings travel at the
speed of sound. A distance of 2 cm between the open-
ings gives a difference in time of arrival at the pressure
transducer of less than 0.1 m s. This is well outside
the frequency range of the PA because the intrinsic
frequency response of the instrument has its 3 dB point
at ~35 Hz (Oost, 1983).

2. Method

We will follow the method outlined by Kaimal et
al. (1968), which can be summarized as follows:
+  The three-dimensional wind field u(x, ) with x the
space and ¢ the time coordinate, is assumed to be ho-
mogeneous, isotropic and stationary. Each component
of the turbulent velocity field #;(x) can be expanded
as a Fourier-Stieltjes integral (see, e.g., Lumley and
Panofsky, 1964, p. 16)

u(x) = f ) exp(ik - x)dU(K),

—c0

ey

with k the wavenumber vector. The time coordinate
has been omitted because of the supposed stationarity.
The U,(k) are random functions with orthogonal in-
crements which are used to define the spectral density
tensor ®,,(k)

dU®)AUK)* = @p(k)dkd(k — k),  (2)

where an asterisk denotes a complex conjugate, an .
overbar an ensemble average and 6(k’ — k) is the Dirac
delta function, the use of which is a consequence of
the homogeneity. We will further assume that the rel-
evant wavenumbers lie in the inertial subrange (Lumley
and Panofsky 1964, p. 29) so
. i
(k) = — k™P(k?6y, — kik,). 3
4

Here ¢ is the turbulent energy dissipation, §,, the Kro-
necker delta and k = |k|. The relation between ®,,(k)
and the components of the velocity field is

Ri(r) = u(X)u,(x + 1)

= f f} exp(ik - r)@zn(k);i'k, 4)

which is independent of & due to the homogeneity
assumption.

In practice, however, spatial correlations cannot be
measured. The quantity presented as the spectrum is
obtained by analyzing the fluctuations in time, mea-



DECEMBER 1983

sured by a single fixed instrument, so it is basically a
frequency spectrum in the direction of the mean wind
(X direction). With the use of the Taylor hypothesis
this frequency spectrum can be transformed into a
one-dimensional wavenumber spectrum in the X,-di-
rection, which will be indicated as F(k;) giving

R,(r1, 0, 0) = w(x)u(x + ry)

- f " explikr)Fulkodki,  (5)

—0

where r, = u,t, with u; the mean velocity in the X;-
direction and ¢ the time interval; (5) is again indepen-
dent of X due to the homogeneity. Comparing (4) and
(5) it is clear that

Fulle) = | | #u00dkadts ©)

Up to this point we were concerned with an ideal
measuring instrument i.e., one without dimensions.
In analyzing the results of a real instrument we can
use the same quantities as defined above, but now for
the measured values. To indicate this, we will add an
index m, so uﬁ”" is the signal induced in component
[ by the wind vector u. In this way, we will also use
U™, ™ and F{™. The equations for the indexed
quantities will not all be given anew, but they will be
indicated by adding an m to the number of the cor-
responding equation for an ideal sensor. What we wish
to find in this article is a relation between (6) and its
counterpart

+o0
Fip) = [ [ spodiedis. 6m)

To this end, we will discuss the nature of the measured
signals to establish a relation between ® and &, for
the deviations of types 2 and 3, as mentioned in the
foregoing paragraph, then we will perform the inte-
grations to obtain the desired result, using (3).

3. Application to the PA

The signal of a ring is considered to be the sum of
the signals from the eight individual sensor openings
(cf Section 1). For reasons of normalization, the mean
is taken instead of the sum; this has no influence on
the argument. So, using (1) and neglecting (as stated)
the dimensions of the openings of a ring,

8
u{™(x) = 3 Dux+r)
j=1

1 8 +a0
== f exp{ik-(x + r)}dUi(k), (7)
8 jo1 J-

where x denotes the center of the ring and the r; are
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the position vectors of the sensor openings relative to
this center. We suppose the sensors to have a cosine
directional dependence i.e., to be sensitive only to the
wind component along its axis. This assumption is
permitted because the first step in the interpretation
of data is a transformation from measured signals to
wind components using calibration data (Oost, 1983).
Comparing (1) and (7) it follows that

1 8
AU(k) = 2 3 exp(ik - 1)dUiK),

J=1
from which with (2) and (2m)
1

8
6a 2 explik- (r; — 1,)]P1(K),

hj=1

H) -

and finally (6m) becomes
Fiiky)

+o0

1 8
Y f f > exp{ik- (r; — 1)} ®u(K)dkrdks. (8)

© hj=1

To calculate the effect of the distance between the
centers of the components, we use again the cosine
direction dependence of the rings.

The mutually orthogonal components of the in-
strument have their centers in P,, P, and P; (Fig. 1),
and they are sensitive to respectively, the x, y and z
components of the wind.

The wind has its own coordinate system, with com-
ponents u,, along the mean wind direction, u, per-
pendicular to u; and parallel to the xy-plane and u3,
perpendicular to u; and u,. For greater clarity we will
leave the effect just treated, due to the distance of the
sensor openings along a ring, out of our formulae,
until after the treatment of the effect now under con-
sideration.

The signals of the rings can be written as linear
combinations of the three windcomponents at P,, P,
and P; such that

P P P P
uy' = apuy + apus' + apzus’

Py Py

= P
uy = ayut® + apuy® + ayui? |,

®

ul’ = asul + apuf + azuf

where 1 denotes the windcomponent in the i-direction

at P;; The a; are coefficients which depend only on
the wind direction. The matrix A of the coefficients
a;; represents a rotation of the coordinate system. It is
therefore an orthogonal matrix. The inverse transfor-
mation is given by

Py P P P
ul‘ = c”ux‘ 4 Clzuyl + cnuz‘

ub? = cuf® + cpul® + cpul? (10)
— P
u‘;’ = c31u§3 + Cz3uJI:3 + C33u23
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Because of the orthogonality,

Ajn = Cyj.

(1n

The PA measures u%', u}? and u%*. The usual es-
timate for (u;, u,, u3)—the wind vector in the center
of the sensor system—is obtained by neglecting the
distance between the components. For the measured
wind vector this gives

U™ = cpul + cpul? + cul?

Uy = cul + cpul® + cppul? (12)
“ul™ = cup + opul? + cpul?
Combining (12) and (10) we obtain
ul™ = guaguf” j,Ln=1,2,3, (13)

where a summation over repeated indices is under-
stood.

The (x, y, z)-system can be transformed into the (1,
2, 3)-system by a rotation over an angle « in the xy-
plane (the angle between MB and the x-axis in Fig. 1)
and angle { in the plane through MB and the z-axis
(for which we have chosen the angle between the —u,
direction and MB), because both systems are orthog-
onal. The transformation coefficients are a; and ¢,
SO

a; = ¢ =cos§cosa  ap =y = —sina )

a3 = 3 = —sin{ cosa  az; = ¢); = cos{ sina

az; = Cy3 = COSA a3 = €3 = —sin{ sina >

as = ¢i3 = sin{ ayp=0c3=0

as; = ¢33 = cos{ y
(14)

Combining (7) and (13) we find for the combination
of both effects '

1 8
U™ = G g 22 (P + 1)
h=1

1 8 + 00 ] ’
= 3 Gl > f explik - (P, + rp)}dU(k),
h=1 Y™

resulting in the same way as with Eq. (8) in
+oo
1
F gn)(kl) = a ClgQqnCjsQsp f f explik - (P, — PJ)]

8 8
X [ 2 exp(ik-1))[ 2 exp — (k- ry)]

=1 =1
X ‘I’npdkzdk:,

Vector r has two indices now, the first one denoting
the component (ring) and the second one its position
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in the ring. Using (3), (15) can be calculated. What
we wish to know, however, is not (15) itself, but the
ratio of (15) and the spectrum measured by a point
sensor, as given by (6). The ratio of (15) and (6), which
is 1 for large wavelengths, will be indicated, following
Kaimal et al., as the transfer function (TF).

4. Calculations

We will calculate the TF for the u,, 4 and u; au-
tospectra; this means that in (15) / = j{in (6): / = n]
and / = 1, 2, 3. The calculation is performed using
(3); with this type of spectrum, (6) can be evaluated
analytically.

This is not the case with (15). Originally the double
integrals were calculated using straightforward nu-
merical integration. Due to the oscillating functions
in (15) a small step size was required, resulting in long
computing times: the calculation of F{7’, F{? and
F{ for one value of k, required a minimum of 1300

sec CPU-time on a Burroughs B6800 computer, despite
the use of a fairly fast Gaussian integration algorithm,
However, (15) can be rewritten as

3
F gn)(kl) = _4_ 2 ClgCngCisCps
™ an,s
[ XRN

+a0
X exp(—ik,;B;) X f J. exp(—ikyB; — ik3B3)
hl e o]

(k% + k308, — kuk,
(k1 + k33)
K,A=1,2,...,8,

using (3) and (11) and the notation
Bj = (qux)\)j = (Ps - Pq + o - rqx)j;
k3 = k3 + k}; v = 17/6.

All summations have been indicated at the sigma sign
for greater clarity. Using the substitutions

k2 = k23 0080, k3 = k23 sind J
B, = Rcos¢, B; = Rsing

Eq. (16) can be transformed into
2/3

dkdk;

hbhnpags =123 (16)

Fm(k)) = ¢ 2 ClgCngCjsCps €XP(—ik1B))
b 1447 S ST
« DA

10 o 1 &
2 = —
x[(k ' RAR oR* R? a¢2.)5”” D "D"]

f ©  Kyydkys
0

(k3 + K3y f exp[—ikxR cos( ~ ¢)}db,

(17)
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with
e ke D= i 0 _sing 8},
Dy =—k;; D t(cosd)aR R 6¢)’
_ . 8  cosd 8
D; = z(sm¢ -—-—aR+—-—R 6¢)'

The second integration is of a standard type and
produces a zero order Bessel function of the first kind
(Jo). Substituting this, the form of the remaining in-
tegral is

kazdkss
(k1 + k33>

which is again a standard form (Gradshteyn and Ry-
zhik, 1965), resulting in a Hankel-function with imag-
inary argument (K-function). The result, substituting
p= klr s iS

f: 2dolkR)

62/3](,_5/22”6

(m) A S . -
Flj (kx) 2881“(17/6) q§j c[qcnchscps CXP( llel)
’ DA
¥ 190 1 &
X _______ —— —
[(’ % pop 7 a¢2)5"” b "D"]
X p'eK,6(p),  (18)
with .
. d sing 8)
D, =~ = — A A
) 1, D, z(cos¢ 3 > 33)°
{. . 0 cosp 6)
= — — + ——
D; z(sm¢ P > 3%)

and T the gamma function.

The derivatives of the K-function are also known
from literature (Abramowitz and Stegun, 1964) and
our final result is, using the summation convention
again,

e2/3kl—5/32|/6

FP) = STaxcimge) Cucrecseno

8
X 2 exp(—ikiB,),

&A=1

hlhansp=1,223
Q11 = p¥*[2Ks6(0) — pKy/s(p)] )
Q1> = Oy = —i cospp' K e(p)
Qi3 = Qs; = ~i singp'*Kse(p)
22 = Y0¥ Ksyelp) + o117 cos6Kielo) |

Q>3 = O3 = cos singp'/°K,/6(p)

033 = %p™*Kss(p) + p'"/® sin’¢ K, 6(p)

T'(17/6) = 1.72453

(19)
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The calculation of the K-functions can be done once
and for all, after which the time needed for the cal-
culation is reduced to a small fraction of the original
value: the calculation, mentioned earlier in this section
now took about 4 seconds on the same B6800. The
slow program could nevertheless be put to good use
in the debugging phase, as it will be evident that both
programs should yield the same values.

The results of our calculations are given in a number
of figures which show the effect of the variation of
several parameters on the TF. In Fig. 2, the meaning
of azimuth and elevation as used in the remaining
figures is shown. The lines in Figs. 3~7 have been
drawn using third-order spline functions to interpolate
between the calculated values.

Figures 3a and 3b show the effect of an elevation
and an azimuth variation respectively on the TF of
fluctuations in the k, direction (along the mean wind).
Figs. 4a and 4b show the same for the k, and Figs. 5a
and 5b for the k; direction. The most striking features
in these figures are the positive and negative resonance
type deviations at ~0.016 mm™'. Kaimal et al. (1968)
also found a comparable deviation for the k; — TF of
their sonic anemometer and a slight depression for the
k, — TF. The maximum effect of path separation on
k; is larger with the sonic than with the PA; whereas
Kaimal ez al. calculate a maximum value of 2.5 for
the deviation for a 120° array the PA has a maximum
of 1.4 for an infinite ratio of component separation
and ring dimensions. Like the sonic, the PA has an
optimum value where the TF deviates only slightly
from 1 for a maximum range of wavenumbers: this
is the case when the distance between the rings is about
3 times their radius (the dashed curve in Fig. 6). It
must be kept in mind, however, that the intrinsic fre-
quency response, mentioned in the introduction, has
not been taken into account. This frequency response
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S S S B /
ELEVATION \ — —— P3
\
\ -

FI1G. 2. Elevation and azimuth. The solid arrows indicate
the projections of the wind vector.
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FiG. 3. Transfer function (ratio of the available and detected one-dimensional spectral densities)
in the u,-direction as function of elevation and azimuth for an inertial subrange type of spectrum.
The wavenumber k is in mm™'. Ring diameter is 30 mm. Distance between ring centers is 150
mm. (a) Azimuth = 0 and elevation 0° (solid), 10° (dotted), 20° (dashed) and 30° (dash-dotted).

(b) Elevation = 0° and azimuth 0° (solid), 10° (dotted), 20° (dashed), 30° (dash-dotted).

has a negative slope in the range corresponding to the
place of the maximum in Fig. 3, which has a com-
pensating effect on the TF.

The strength of the maximum changes quite strongly
with the elevation but is hardly influenced by changes
in the azimuth. The highest maximum occurs at an
elevation of 0°; the effects are more or less symmetric
around this elevation angle, at least for an azimuth
angle of 0°.

The effect of enlarging the ratio of the distance be-
tween the ring centers and the ring diameter is shown
in Fig. 6. When the centers of the rings coincide, the
TF curve has the appearance of a low-pass filter with
a low steepness (about 1.3 dB/octave at the 3 dB point).
When the rings are placed at larger mutual distances
a “hump” appears, which grows to the maximum of
Fig. 3 (the same type of behavior appears with the k;
and k3 TF).
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F1G. 4, As in Fig. 3, but for the u,~direction.

We have also checked the sensitivity of the results
to the shape of the velocity spectrum. These tests
showed the height of the maxima and minima to be
proportional to the exponent in Eq. (3) for values in
the range of —% to —2. Finally, Fig. 7 gives the k;
~— TF for a ring diameter 0.

Comparing Figs. 3a and 7 it is clear that the use of
a finite ring smoothes the high-frequency drop-off and
gives a lower high-frequency tail. This may be con-
sidered as one of the causes of the well-behaving angular
response of the PA at higher frequencies. In all figures,
the transfer function finally falls off to a value which

is different from 0, due to the neglect of the dimensions
of the sensor openings.

5. Conclusions

The change in the response of the pressure ane-
mometer with wavelength has been calculated and
presented in a number of figures which give the transfer
function as defined by Kaimal ez al. (1968).

From these figures it can be concluded that the 3
dB point will lie at a wavelength about equal to the
distance between the ring centers. Before the final drop-
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FIG. 5. As in Fig. 3, but for the us-direction.

off in these figures, there is a maximum, which becomes
more pronounced as the ratio of the ring diameter and
the distance between the ring centers diminishes. This
maximum can be sufficiently pronounced to be taken
into account when interpreting data.

However, the calculations in this article are not the
full story: the pressure anemometer also has an intrinsic
frequency response, as mentioned in the introduction.

A few experimental results indicate that this frequency
response starts falling off at a wavelength between 1
and 0.4 m, depending on the wind speed. The effects
of the combination of the intrinsic response with the
transfer function, calculated in this article, is a leveling
of the maximum and a steepening of the final intensity
drop; the 3 dB point will not shift very much.

It may safely be concluded that the instrument gives
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FIG. 6. Transfer function in the u,-direction as function of the distance between the rings.
Azimuth 0°, elevation 0° and ring diameter 30 mm. Distance between ring centers: 0 (dash-
dotted), 15 (dotted), 50 (dashed) and 150 mm (solid).

useful data for frequencies up to 25 Hz, corresponding This conclusion is not contradicted by our field re-
to wavenumbers of 0.04 mm™! at 4 m s™! and 0.01 sults, which were obtained at a research platform off
mm™! at 16 m s}, provided corrections are made for the Dutch coast. At the end of the high-frequency end
the maximum in the transfer function, especially at of the f~** slope in our spectra, a small hump was
low wind velocities. present before the final drop-off. However, the devia-
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tions were too small compared to the variability of the
spectrum to permit a detailed comparison.
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