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ABSTRACT

A data-adaptive directional-spectrum estimator is developed for “point™ measurement systems such as the
pitch and roll buoy and slope array. This estimator, unlike the much employed unimodal cosine power
parameterization method of Longuet-Higgins and others, does not make a priori assumptions about the
shape of the directional spectrum. Instead improved resolution is obtained with a maximum likelihood
method similar to those successfully used with spatial arrays. The numericat algorithm is relatively simple
and computationally fast. The capabilities and limitations of the new estimator are illustrated with a variety
of synthetic directional spectra. The estimator is applied 1o field data obtained from a slope array in 9 m
depth at Santa Barbara, California and is found to yield physically realistic directional spectra. It marginally
resolves two directional modes that topographical features dictate should be separated by approximately 70

degrees.

1. Introduction

Wind-generated surface gravity waves are a principle

source of energy to oceanic coastlines. A complete
description of the incident wave field requires well
resolved estimates of both frequency and directional
spectra. Significant progress has been made in the
design of spatial wave arrays and in the refinement
of the associated analysis techniques (Davis and Re-
gier, 1977; Long and Hasselmann, 1979; Pawka,
1982, 1983; Pawka er al, 1983, 1984). Although
spatial arrays yield high resolution directional spectra,
they are difficult to install and maintain. They require
spatial homogeneity over their entire length (several
hundred meters for high resolution of long swell)
which is a condition not generally met in shallow
water. Bottom-mounted arrays in deeper water suffer
from attenuation of the wave signals, as well as a
"host of logistics problems. The difficulty associated
with deploying long linear arrays in any depth of
water is reflected in the relatively few times they have
been implemented.

Compact “point” measurement systems such as
the pitch-and-roll buoy (Longuet-Higgins et al., 1963)
have successfully yielded directional wave data in the
field. Point systems comprised of fixed instruments,
such as the pressure sensor-current meter combination
{Nagata, 1964; Bowden and White, 1966) and “slope
array” (Seymour and Higgins, 1977; Higgins et al.,
1981), have also been widely used to sample wave
directional statistics. The pitch-and-roll buoy, slope
array, and pressure-current measurement systems
have formally equivalent directional resolution.

© 1984 American Meteorological Society

Point measurement systems with theoretically
higher resolution have been deployed, but have not
yielded definitive results. For example, the theoretical
response of the “cloverleaf buoy” to a directional
spike in the true spectrum has roughly half the
bandwidth of the pitch-and-roll buoy (Cartwright and
Smith, 1964). However, lacking a standard for com-
parison, Cartwright and Smith find their cloverleaf
results only to be “reasonable”. One of the most
widely cited cloverleaf buoy papers, that by Mitsuyasu
et al. (1975), actually uses pitch-and-roll-type data
{contained as a subset of the cloverleaf data) for most
of the wave analysis. The added information of the
cloverleaf system was judged to “contain non-negli-
gible errors, due to the poor accuracy in the mea-
surement of wave curvature.” The theoretically higher
resolution of the cloverleaf buoy has not been con-
vincingly shown to be realizable in field applications.
Simpson (1969) showed that an array of three fixed
biaxial current meters has resolving power equivalent
to the cloverleaf buoy. In a field application, the
current meter array was judged to be “only partially
successful.” Borgman and Yfantis (1979) concluded
that their tower-mounted 8-element (4 on a single
vertical level) flowmeter array, although theoretically
capable of yielding higher resolution spectra, only
reliably produced resolution slightly better than a
pitch-and-roll buoy. The signal-to-noise ratio appar-
ently became small when using closely spaced sensors
to calculate high-order derivatives of the flow field.

Motivated by the need for improved resolution,
and the limited success in improving the basic point
measurement system, attention is given here to im-
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proving the resolution of the directional estimates
which can be obtained from the ubiquitous pitch-
and-roll buoy (and the theoretically equivalent slope
array and pressure-current systems). Two of the three
standard analysis methods for point measurement
systems (Longuet-Higgins, ef al., 1963) produce very
low resolution estimates; their response to a spike in
the true directional spectrum is highly smeared,
with a Full Width at Half Maximum power (FWHM)
of 88 and 131 degrees. These two methods estimate
the spectrum with a truncated Fourier series whose
coefficients are obtained from the cross-spectral data
matrix [Eq. (1)] acquired with pitch-and-roll-buoy
(and equivalent) systems. One of these methods
weights the coefficients to avoid negative-valued
spectra.

Longuet-Higgins et al. (1963) fully appreciated the
fact that these estimators give large overestimates of
the width of a relatively narrow true directional
spectra. In order to obtain more realistic spectral
characteristics, they proposed schemes based on a
priori assumptions about the shape of the directional
spectrum. Various combinations and ratios of the
elements of the cross-spectral data matrix (Eq. 1)
were compared with the values that would result if
the true directional spectrum were one of 3 unimodal
forms (cosine power, quasi-normal, square-topped
gate). Although there was considerable scatter, their
limited data set was most consistent with the form

Ef, 0 = K[cos(0 ; a)]zs,

where K, o, S are free parameters and functions of
frequency.

These three free parameters can be determined
using only 3 elements in the 6-eclement cross-spectral
matrix. The additional elements can be used as a
check on the internal consistency of the assumed
distribution. Cartwright (1963) observed inconsisten-
cies in the assumed cosine power distribution using
this check and remarked on the likelihood of bimodal
spectra. He still used the unimodal cosine power
form because consideration of bimodality (and pre-
sumably non-cosine unimodal forms) was “considered
too complicated to try to take into account . . . for
this work.” In other cases when the check reveals an
inconsistency with the assumed directional form,
there seems to be a tendency to question the accuracy
of the higher-order matrix elements rather than the
assumed directional form (Mitsuyasu et al, 1975;
Forristall et al., 1978). This decision seems arbitrary.

Borgman and Yfantis (1979) suggested that storm
waves can be assumed to be directionally unimodal
and that the cosine parameterization applied to pitch-
and-roll buoy (or equivalent) data can provide enough
information for most purposes. Their suggestion was
founded on measurements taken during several local
storms using their 8-element flowmeter array that
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produced spectra with only slightly better resolution
than a pitch-and-roll buoy. We note, however, that
several investigations have suggested the occurrence
of directional bimodality (within a frequency band)
caused by different wind systems (Cartwright, 1963;
Longuet-Higgins et al., 1963; Simpson, 1969) or
coastal topographic effects (Pawka, 1983; Pawka et
al., 1984). Differences in these observations from
those of Borgman and Yfantis may result from the
fact that the latter took measurements under locally
high winds so that wave energy propagating from
distant areas may have been relatively unimportant
compared to locally generated waves.

Regier and Davis (1977) deployed a relatively high-
resolution spatial array from the Research Platform
FLIP, stationed in the open ocean about 300 km east
of Barbados. They estimated ocean directional spectra
daily for a one month period and concluded that the
wave spectrum under typical rather than carefully
chosen oceanic conditions is not solely determined
by local winds, but is the result of the temporal and
spatial history of winds experienced by the waves.
The directional spectra they observed had a wide
variety of shapes and were convincingly demonstrated
to be inconsistent with a cosine power distribution.
This raised “serious questions with regard to the
practices of fitting observations to simple models
derived from prescribed directional spectra.”

The assumption of a unimodal cosine power dis-
tribution in cases other than strong local winds
appears to be unjustified and therefore limits the
usefulness of the cosine parameter-fit method. The
two alternative truncated Fourier series methods,
although without a priori power distribution assump-
tions, have very poor resolution. Long and Hassle-
mann (1979) have developed a directional spectrum
estimator for spatial arrays that they point out is
adaptable to point measurement systems. Nonetheless,
the three methods of Longuet-Higgins et al. (1963)
are still the most widely used directional estimators
for point measurement systems. In Section 2, a new
data-adaptive estimator is derived that does not require
assumptions about the directional power distribution
form. In Section 3, the new algorithm (a maximum
likelihood estimator) is tested with a variety of syn-
thetic directional spectra and its capabilities and
limitations are discussed. In Section 4, the new esti-
mator is applied to field data obtained with a bottom-
mounted pressure sensor slope array in 9 m of water
at Santa Barbara, California. It is found to yield
physically realistic directional spectra.

2. Theory

An ideal slope array (Seymour and Higgins, 1977)
or pitch-and-roll buoy (Longuet-Higgins, ef al., 1963)
provides time series of the variables #, 7. and 7,
where 75(x, y, f) is the sea surface elevation, x, y are
horizontal coordinates, and a subscripted independent
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variable indicates differentiation with respect to that
variable. With C and Q the co-spectrum and the
quadrature spectrum between any two measured vari-
ables, it is readily shown (Longuet-Higgins e al,
1963) that

27 )

Cu(f) = Cla(S ()] = : E(/, 6)db
Qu(f) = —QIn(Nn(Nk™!

2w
= - E(f, 6) cosfdb
0

Qi3(f) = —Qn( (k™

27

= —1 E(f, 6) sinfdd
o

Coaf) = Cla (N NNK?

21

= E(f, 6) cos*0d8 -
0

Cos(f) = Cln(Nmy(S)k?

2w

= E(f, 6) sinf cosfdf
0

Css(f) = Cln, (N I, ()IKk?
2n
=, E(f, 0) sin®0df

/

where E(f, 0) is the energy density at frequency f,
angle 6, and k is the scalar wavenumber (given by
linear theory). The C,,, and Q,,, are the elements of
the normalized (by factors of k) cross-spectral data
matrix, M,,,,, where

M,n = Com + iQumy, Comn = C¥, for n # m.

The new spectrum estimator, like the three esti-
mators of Longuet-Higgins et al. (1963), operates on
this cross-spectral data matrix. It does not make a
priori assumptions about the shape of the directional
spectrum. It achieves improved resolution with a
posteriori assumptions about the directional spectrum;
assumptions that are founded on the input data. This
class of a posteriori estimators is often referred to as
data adaptive. The new data-adaptive estimator de-
veloped here is closely related to the maximum
likelihood estimator (MLE) developed for spatial
arrays by Capon et al. (1967). The following derivation
directly parallels Davis and Regier’s (1977) discussion
of the MLE for spatial arrays.

Capon et al. (1967) originally presented their
method as an estimator of the most likely complex
amplitude A(a, f) of a single plane wave in noise
which has a joint Gaussian probability distribution.
For a point array system, an MLE amplitude estimate
is a linear combination of the Fourier coefficients of
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n, 7. and 7, (denoted by F,, F,, F3, respectively) so
that

3
Ale, ) = 2 wale, IFa(S), (2

n=1t
where w, are complex weighting functions. A variance
estimate would then be

3 3
E@) = A@)A*a) = 2 2 wala)wh(a)F,F,
n=1 m=1

3 3
= 2 2 Waleywi(a)M,,, 3)
n=1 m=1

where M,,, is the complex cross-spectral data matrix
of Eq. (1) and has the form,

27

M. = E@0)G(0)G}(6)d0,

4]
where G, = 1, G, = i cosf and G3 = I sinf. The
frequency notation has been dropped. If the wave
field consists of a single plane wave of variance E(x)
embedded in noise, the spectrum has the form,

E@#) = 66 — a)E(e) + En(0),

where Ex(f) is the noise spectrum. The variance
estimate at angle « is then

3 3
E(a) = Z Z Wa(c)W ()M,
n=1 m=1

27

= E(a)W(a, ) + W(a, 0)Ex(6)ds, (4)
0
where W(a, 6) is a window function of the form,

3 3
Wi, 0) = 2 2 wa(awh()Gn(6)G T (6).

n=1 m=1
Substituting in the values of G,(0),
W(a, 8) = |wi(e) + iwy(a) cosd + iws(c) sind}>.

As Davis and Regier (1977) point out, this variance
estimate (Eq. 4) is a maximum likelihood estimate if
a constraint of unity gain of the signal E(«) in the
absence of noise is imposed so that

W(a, a) = Iw;(a) + iwy(a) cosa

+ iwy(e) sinal = 1, (5a)
27

E(a) = E(a) + W(a, )En(8)ds.  (5b)
(\]

Minimizing the convolution of W(e, ) and Ex(f) in

Eq. (5b) minimizes the error in the E(«) estimate.

Since E(a), W(a, 6) and Ey(#) are all nonnegative,

minimizing the convolution is equivalent to mini-

mizing E(a) of Eq. (3) itself. Subjecting the minimi-
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zation to the constraint [Eq. (5a)] leads to the final
form of the estimator,

303
Ea) = {2 2 MyGu(a)Gh(a)} ™!, )]
n=1 m=1

where M}, is the inverse of M,,,. This new point-
measurement maximum likelihood estimator of spec-
tra will be referred to as the MLE. An attractive
feature of the MLE is its computational speed and
simplicity. The algorithm requires only one inversion
of the 3 X 3 complex M,,, per frequency bin.

Another spectrum estimator we will present here
is intimately related to the MLE and achieves higher
resolution. It is the iterative maximum likelihood
estimate (IMLE) developed by Pawka (1982, 1983)
for spatial arrays. The application to point measure-
ment systems is straightforward.

The IMLE algorithm is founded on a recognition
of the smoothing nature of the MLE, demonstrated
by Burg (1972) in his quantitative analysis of the
relationship between the maximum entropy method
(MEM) and the MLE. The MEM yields a possible
true spectrum because the spectrum can be used to
retrieve the original cross-spectral matrix. However,
-the MLE spectrum is not consistent with the original
matrix elements. Burg showed the MLE spectrum is
an average of the MEM spectra obtained from its N-
point estimation scheme; the 1-point estimate having
the lowest resolution. The MLE spectrum is an
average of low- and high-resolution MEM spectra
and therefore is a smoothed N-point MEM spectrum.
The MLE has nonetheless played an active role in
wave directional analysis (Regier and Davis, 1977,
Davis and Regier, 1977; Pawka, 1982, 1983) because
it can be applied to unequal-lag spatial arrays. The
MEM requires equal-lag spatial arrays.

The IMLE spectrum, like the MEM spectrum, is
a possible true spectrum. The iterative algorithm
develops a spectrum that can be used to reconstruct
the original cross-spectral matrix. The original MLE
spectrum is iteratively modified in the IMLE algorithm
to move closer to a possible true spectrum by exam-
ining the behavior of MLE. In notational terms, the
IMLE algorithm is

Eimie(e) = Eivie(e@) + (), N

where ¢;(«) is the modification to the i — 1 iteration.
Pawka (1982, 1983) defines ¢;(«) as

8+1
e(e) = I)\[ MLE(a)’ (8a)
Y
_ Tiale(e)
A=10 ElMLE(a) (80)

where Tizle(e) is a MLE spectrum estimate from a
cross-spectral matrix reconstructed from E&, MLE>
E%ue the original MLE spectrum estimate and 8 and
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+ are variable parameters that dictate the convergence
rates of the IMLE algorlthm Here Tizle(e) ap-
proaches Ed g(a) with increasing iterations and the
iterative cross-spectral matrix elements should ap-
proach the original matrix element values. The latter
convergence is not an explicit constraint of the iter-
ative scheme, but appears to be a natural consequence
of it. The cross-spectral matrix elements were moni-
tored throughout synthetic and field data analysis and
were always found to converge to the original matrix
element values.

Another iterative correction term examined here
did not have the peak/trough asymmetry of the
Pawka ¢(a) term [Eq. (8)]. Using Eq. 8, iterative
corrections are larger for the energetic regions of the
spectrum. In addition, the form of Eq. (8b) develops
an asymmetry in the positive and negative values of
A resulting in a bias towards negative corrections. An
alternative symmetric correction term (IMLEO) is as
follows,

@) = 2, ©a)
A = Efwie(e) — Thale(e). (9b)

Synthetic and field data have demonstrated an
insensitivity to these two forms of iterative correction
terms. The energetic regions of the spectra are virtually
indistinguishable. Not unexpectedly, synthetic data
testing does allude to a strong dependence of the
IMLE spectrum on the original MLE spectrum. If
the MLE spectrum is a reasonable estimate of the
true spectrum, as it appears to be in many cases, the
IMLE will be as good an estimate or better. A
conservatively slow convergence was chosen (8 = 1.0,
v = 20) with 50 iterations for both synthetic and
field data.

3. Synthetic data tests

The objective of this section is to test the capabilities
of the three data-adaptive estimators, MLE, IMLEP,
and IMLEO (Egs. 6, 8, 9). The truncated Fourier
series estimators will be briefly mentioned here only
to provide an evaluation of their performance relative
to that of the data-adaptive estimators. Their perfor-
mance, measured by a variety of criteria mentioned
below, was always significantly inferior to that of the
three data adaptive estimators.

The test data can be divided into two major
categories, deterministic and nondeterministic. Both
use cross-spectral matrices generated from test spectra
of the form

E(a) = Ep(a) + En(a),

where En(a) is the uniform background noise and

> P, expl—(a — an)/Q2a,).

n=1

Ep(a) = (10) .

In (10) E o) has n, peaks, each peak having a



1804

maximum value of P, at angle «,,. Test spectra using
a cosine power instead of a Gaussian distribution
were also used with no significant change in estimator
performance. Nondeterministic matrices were gener-
ated by assuming Gaussian-distributed Fourier coef-
ficients and are discussed later.

The performance of spectrum estimators that op-
erate upon cross-spectral matrices generated from
point-measurement systems is independent of fre-
quency and wavenumber. Unlike cross-spectral ma-
trices from spatial arrays, point-measurement matrices
do not contain any frequency or wavenumber infor-
mation that cannot be normalized out [Eq. (1)).
However, the quality of these measured cross-spectral
elements is dependent upon sensor accuracy, wave-
number and other factors. For example, the optimal
spacing between slope array elements is a function of
wavenumber (Higgins et al., 1981). For a given slope
array geometry, slopes will be accurately measured
only within some wavenumber range. Such measure-
ment problems are not considered here. The spectrum
estimators are also not affected by the directional
location of the peak mode angle. However, the esti-
mator’s ability to resolve two or more modes is
dependent on the angular separation of the modes.

We have used deterministic spectra to address the
performance of the spectrum estimators with varying
uniform background noise levels and a variety of
directional mode widths and angular separations of
modes. Two fidelity measures are defined to quantify
the degree of agreement between true, E(«a) and
estimated, E(a) spectra. The average percent error
(APE)

|E(@) — E(a)l

E@) ) X 100, (11)

1
APE = —

where n, is the number of directional bins, is an
overall index of the estimator fidelity. High- and low-
energy regions equally influence the value of APE.
An alternative index, the weighted average percent
error (WAPE)

2 |Ee) - E@)|

WAPE = =

—_— X1
2 E) 00

(12)

weights the energetic region of the spectrum over
low-energy regions. Large percentage errors in the
low-energy regions do not necessarily lead to large
values of WAPE.

The effect of uniform background noise levels was
examined for unimodal and bimodal spectra. The
amount of background noise, relative to the deter-
ministic signal [the noise-to-signal ratio (NSR)]

Z' Epn(a)

NSR = <

— 13
2 Ep(a) (13)
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varied from 0.001 to 0.2. Figure 1 shows the WAPE
fidelity of the estimators for a bimodal spectrum as a
function of NSR. The modes have 10 degrees full
width at half maximum power (FWHM) and are
separated by 90 degrees. A monotonic performance
degradation of all three estimators with increased
noise is shown. However, a monotonic degradation
was not always observed. Unimodal spectra with low
NSR values would sometimes be over-resolved by
both of the IMLE algorithms and thereby slightly
decrease WAPE performance relative to higher NSR
values. In general, unimodal test spectra show a
dependence on the NSR similar to bimodal spectra.
In all cases the IMLEP and IMLEO outperformed
the MLE. Figure 2 shows a bimodal test spectrum
used in Fig. "1 (NSR = 0.05) and its associated
estimated spectra. Even for a WAPE value in excess
of 100 (the MLE spectrum), the general shape of the
estimated spectrum is reproduced reasonably well.
The FWHM of a unimodal test spectrum (NSR
= 0.05) was varied from 3 to 45 degrees. Figures 3

" and 4 show the true FWHM and full width at average

power (FWAP) respectively against the estimated
values. The average power is the power level if the
frequency band energy was isotropically distributed.
Both IMLE methods underestimate the true FWHM
of the mode whereas the MLE is in very good

0.1
a
w
2
0.0l
s J ———IMLEO
0.00I \_./l [T TR SR
0 40 80 120 160

WAPE

FIG. 1. The weighted average percent error (WAPE) fidelity of a
bimodal spectrum with varying noise-to-signal ratio (NSR). The
two directional modes are of equal energy with 10 degrees full
width at half-maximum power and are separated by 90 degrees.
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FIG. 2. A true bimodal directional spectrum (NSR = 0.05) and the MLE, IMLEP and
IMLEOQ estimated spectra. The true spectrum modes are 10 degrees full width at half maximum

power,

agreement (Fig. 3). However, the IMLE methods
outperform the MLE in estimating FWAP (Fig. 4).
For these test spectra, the average power level is lower
than the mode’s half-power level so that the above
observations reflect the tendency of the IMLE to
underestimate the width of the upper portion of the
mode. An example of estimator performance for a
true unimodal spectrum with a 10-degree FWHM is
given in Fig. 5.
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FIG. 3. Estimated versus true full width at half-maximum power
(FWHM) for unimodal spectra, NSR = 0.05.

Although the MLE outperforms the IMLE in esti-
mating certain mode-width parameters, the IMLE
has superior overall performance. In all the unimodal
test spectra of Figs. 3 and 4, the weighted average
percent error (WAPE) values are smaller for the
IMLE than for the MLE (Fig. 6). In addition, the
average error in the estimated percent power in the
mode was 7.8% for the MLE whereas it was 0.69%
and 1.1% for the IMLEP and IMLEO respectively.
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FIG. 4. Estimated versus true full width at average power (FWAP)
for unimodal spectra, NSR = 0.05.
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FIG. 5. A unimodal test spectrum with 10 degrees full width at half-maximum power
(NSR = 0.05) and the MLE, IMLEP and IMLEO estimated spectra.

The superiority of the IMLE is more evident when
estimating a bimodal spectrum. Figure 7 plots the
WAPE values of the three estimators against the true-
spectrum FWHM values. Both modes have the same
shape and magnitude and are separated by 90 degrees.

A final look at estimator performance with deter-
ministic data addresses the resolvability of directional
modes. Figures 8 and 9 plot the estimated peak angles
of each- mode against angular separation of two
modes with 10-degree FWHM. The modes are located
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0 5 10 5 20 25 30 35 40 45 50
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FIG. 6. The weighted average percent error (WAPE) fidelity of
the three spectrum estimates of unimodal true spectra of varying
- full width at half-maximum power (FWHM), NSR = 0.05.

at plus and minus one-half the angular separation.
In Fig. 8 the two modes are of equal magnitude. The
IMLEP, IMLEO and MLE were able to resolve

140 —
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FIG. 7. The weighted average percent error (WAPE) fidelity of
the three spectrum estimates of bimodal true spectra of varying
full width at half-maximum power (FWHM), NSR = 0.05.
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FIG. 8. Estimated peak angles of bimodal test spectra with
varying angular separation of the modes. The modes (M1 and M2)
have equal energy and are 10 degrees full width at half-maximum
power, NSR = 0.05.

o -

(defined as a spectral valley between peaks having
less than half the power of the small peak) the modes

at angle separations greater than 64 degrees, 68

degrees and 72 degrees respectively. When the modes
were resolved, each mode’s peak angle was well
estimated. When the modes were not resolved, the
peak power occurred midway between the true peaks
(i.e., at 0°). The estimators’ behavior for two modes
of unequal magnitude is shown in Fig. 9. Mode 1
has one-half the peak power of mode 2. When the
modes are not resolved, the estimated peak angle is
shifted towards the larger mode (mode 2).
. The performance of the two truncated Fourier-
series estimators in this series of tests was very poor.
For a unimodal spectrum with a true FWHM of 3
degrees, the weighted window and unweighted Fourier
estimators had an estimated FWHM of 131 and 88
degrees respectively (compare to Fig. 3). The WAPE
values for the two estimators were 237 and 180,
respectively. These two estimators were unable to
resolve the two modes in the bimodal spectra of Figs.
8 and 9.

Nondeterministic synthetic data were generated to
examine the stability of the three spectrum estimators.
Statistical fluctuations in the cross-spectral matrix
were introduced following the method of Brennan
and Mallet (1976). Their technique develops a vector
of three complex Gaussian random numbers with
zero mean and second moments defined by the
deterministic cross-spectral matrix; the Gaussian vec-
tor is one synthetic realization of the Fourier coeffi-
cients of 7(t), n,(f) and »,(?).
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Fifty statistically independent nondeterministic
cross-spectral matrices were generated. Each matrix
had roughly 30 degrees of freedom. The cross-spectral
matrices were used to generate 50 spectrum esti-
mates, each one being a statistical realization with 30
degrees of freedom of the true unimodal spectrum
(peak angle = 0°, FWHM = 10°). The average peak
angle of the 50 MLE estimates was 0.12 degrees, with
a standard deviation of 1.32 degrees. The IMLE
statistics were similar. These estimators do not exhibit
any stability problems.

4. Field data

Slope array data were collected during February
1980 as part of the Nearshore Sediment Transport
Study at Leadbetter Beach, California (Gable, 1981).
The slope array was located in about 9 m depth,
offshore of about 20 electromagnetic current meters
deployed in the surf area. One major purpose of the
slope array was to provide directional information
about the incident wave field driving longshere cur-
rents within the surf zone. The emphasis here is on
demonstrating that the new data-adaptive estimators
yield physically realistic directional spectra in a field
application.

The Leadbetter Beach site is well suited for this
purpose because there are only two narrow apertures
through which long gravity waves can pass (Fig. 10).
The fetch between Santa Barbara and the Channel
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FiG. 9. Estimated peak angles of bimodal test spectra with
varying angular separation of the modes. One mode (M1) has half
the energy of the other (M2). Both modes are 10 degrees full width
at haif-maximum power, NSR = 0.05.



1808

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME {4

=

SANTA ROSA ISL.

CALIFORNIA

F1G. 10. Bathymetry in the region of Santa Barbara, California.

Islands is too short (50 km) for local generation of
long gravity waves.

Refraction calculations determined the possible
angular range of waves incident on the slope array
from the west window (240-258° on Fig. 10). For a
frequency of 0.075 Hz, only a small angular range of
incident wave angles (at the array) was observed to
map back into the deep ocean. Angles greater than
188 degrees could not escape the coastal bathymetry,
while angles less than 184 degrees hit the Channel
Islands. The southeast window (123-143° on Fig. 10)
has a restricted fetch (150 km) and is not generally
energetic, although substantial energy did occasionally
come from this quadrant during the experiment. If
rays with these angles were effected only by the
topography directly offshore of the array, and that
topography was plane and parallel to Leadbetter
Beach, then Snell’s law maps the deep ocean angles
to 124-144 degrees (for f = 0.25 Hz) at the array.
The salient point is that most frequencies can only
reach the slope array from two narrow sources which
are separated by about 100 degrees in deep water.
Typically, low-frequency energy is expected out of
the west window and high-frequency energy is ex-
pected out of either window dependent upon local
wind conditions.

The cross-spectral data matrix [Eq. (1)] needed for
calculation of the directional spectra was obtained
from the four bottom-mounted pressure sensors of
the slope array. The time series of each pressure
sensor was Fourier transformed. Linear theory was
used to calculate the Fourier coeflicients of sea surface
elevation from the pressure coefficients. An inverse
Fourier transform produced time series of sea surface

elevation above each pressure sensor. At each time
sample, a two-dimensional plane surface was fit to
the sea surface elevations yielding time series of sea
surface elevation (n) and slopes (1x, 1,). Only three
sensors are required for this procedure; the fourth
sensor reduces noise-related errors. Fourier transforms
of n, . and 7, produce the coefficients required in
Eq. (1). The spectra discussed below are calculated
from 2 hours of data. Averaging resulted in a fre-
quency bandwidth of 0.0078 Hz and 112 degrees of
freedom. R
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FiG. 11. Energy spectrum for 12 February (112 degrees
of freedom, Af = 0.0078 Hz).
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On several days of the experiment, local winds
blowing from the southeast created a mixed sea with
both swell and wind chop peaks in the energy spec-
trum (Fig. 11)]. An example of the estimated (IMLEP)
angle of maximum power at the slope array under
these conditions is shown in Fig. 12. The variation
of the mode peak angle with frequency clearly shows
low-frequency waves (f < 0.13 Hz) from the west
and high frequency waves (f > 0.19 Hz) predomi-
nantly from the east. At intermediate frequencies
(0.13 < f < 0.19 Hz) the spectrum would be expected
to be bimodal, providing a field test of the estimators’
ability to resolve two directional modes. At the two

RELATIVE POWER

JOAN OLTMAN-SHAY AND R. T. GUZA

/D -

1809

peaks of the energy spectrum (f = 0.059 and 0.250
Hz on Fig. 11), the observed directional spectra are
relatively narrow and have peak energy at angles
corresponding to the west and east windows respec-
tively (Fig. 13). At an intermediate frequency, 0.153
Hz, two peaks are present in the estimated spectrum.
However, a nearby frequency (f = 0.138 Hz) shows
a unimodal structure centered between the expected
peaks.

The spectrum estimators behave in a realistic man-
ner with these field data. They show the expected
incident-wave direction transition with frequency and
are marginally able to resolve the two directional
modes at the intermediate frequencies. The marginal
resolution is not unexpected. The deterministic syn-
thetic-data resolution analysis (Figs. 8 and 9) indicates
that the angular separation of these two modes (ap-
proximately 70°) barely allows resolution.

5. Summary

Maximum likelihood (MLE) and iterative MLE
(IMLE) directional estimators, similar to those suc-
cessfully used with spatial arrays (Davis and Regier,
1977; Pawka, 1982, 1983), have been developed for
“point” measurement systems. These estimators do
not require a priori assumptions about the true shape
of the directional spectrum. Improved resolution is
obtained with data-adaptive assumptions about the
true spectrum. These estimators have numerical al-
gorithms that are relatively simple and computation-
ally fast.

\, — 0.059 Kz

—-=— 0./153 HZ
--= 0.250 HZ
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165.0

232.5 255.0

DEGREES

F1G. 13. IMLEP directional spectra (112 degrees of freedom) for four frequencies
on 12 February. Each spectrum is scaled to have maximum density 100.
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The IMLE is an iterative algorithm that operates
on the MLE spectrum. It has better resolution than
the MLE and, unlike the MLE, is a possible true
spectrum. The IMLE iterative algorithm develops a
spectrum that can be used to reconstruct the original
cross-spectral data matrix. Two variations of the
IMLE iterative correction term [Eqgs. (8) and (9)]
have been used and found to yield very similar
estimated spectra.

The performance of these estimators with deter-
ministic data was -good (Figs. 1-9) and found to be
similar for either Gaussian or cosine power mode
shapes. In fact a wide range of smooth shapes can be
similarly well estimated; this is a distinct advantage
over the cosine' power parameterization of Lonquet-
Higgins et al. (1963).

The peak angle of unimodal test spectra was always
correctly estimated. Mode-shape parameters such as
full width at half maximum (FWHM) were reasonably
well estimated (Figs. 3 and 4). However, the IMLE
at times overresolved peaks, underestimating the
FWHM.

A significant improvement in directional-spectrum

estimation provided by these data-adaptive estimators -

is the ability to resolve some bimodal spectra. The
unweighted truncated Fourier-series estimation
method was only able to resolve modes separated by
greater than 120 degrees and the unimodal cosine-
power parameterization by definition should not be
used with possible bimodal spectra. These data adap-
tive estimators were able to resolve spectral modes
with 10 degrees FWHM at approximately 70 degrees
separation for deterministic synthetic data (Figs. 8
and 9). The synthetic data further showed that if two
modes are of equal energy and not resolvable, the
estimated peak angle will fall symmetrically between
the peak angles of the two modes. If they are of
unequal energy, the estimated peak angle will be
skewed towards the more energetic mode. Field data
at Santa Barbara, California indicated similar be-
havior.

These spectrum estimators appear to be stable and
give reasonable estimates with nondeterministic data.
Nondeterministic synthetic data were generated from
a true, unimodal spectrum with peak angle at O
degrees and a FWHM of 10 degrees. The average
estimated peak angle from 50 statistical realizations
of the true spectrum was 0.12 degrees, with a standard
deviation of 1.32 degrees. The field data at Santa
Barbara, California were found to yield physically
realistic directional spectra from cross-spectral matri-
ces with 112 degrees of freedom.

Acknowledgments. This research was supported by
NSF grant OCE-8213657. S. S. Pawka suggested
application of MLE techniques to point array mea-
surements, and made many valuable and insightful
suggestions. Joan Semler typed the manuscript and
Michael Clark drafted the figures.

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 14

REFERENCES

Borgman, L. E., and E. Yfantis, 1979: Three-dimensional character
of waves and forces. ASCE Civil Engineering in the Oceans,
Vol. 4, 791-804.

Bowden, K. F., and R. A. White, 1966: Measurements of the
orbital velocities of sea waves and their use in determining the
directional spectrum. Geophys. J. Roy. Astron. Soc., 12, 33—
54.

Brennan, L. E., and J. D. Mallet, 1976: Efficient simulation of
external noise incident on arrays. IEEE Trans. on Antennas
and Propagation, 24, 740-741.

Burg, J. P, 1972: The relationship between maximum entropy
spectra and maximum likelihood spectra. Geophysics, 37,
375-376.

Capon, J., R. J. Greenfield and R. J. Kolker, 1967: Multidimensional

- maximum-likelihood processing of a large aperture seismic
array. Proc: IEEE, 55, 192-211.

Cartwright, D. E., 1963: The use of directional spectra in studying
the output of a wave recorder on a movstudying ship. Proc.
Conf. Ocean Wave Spectra, Easton, MD, Prentice-Hall, 203-
218.

——, and N. D. Smith, 1964: Buoy techniques for obtaining
directional wave spectra. Buoy Technology, Washington, DC,
Mar. Technol. Soc., 112-121.

Davis, R. E.,, and L. A. Regier, 1977: Methods for estimating
directional wave spectra from multi-element arrays. J. Mar.
Res., 35, 453-477.

Forristall, G. Z., E. G. Ward, V. J. Cardone and L. E. Borgmann,
1978: The directional spectra and kinematics of surface gravity
waves in tropical storm Delia. J. Phys. Oceanogr., 8, 888-909.

Gable, C. G., Ed., 1981: Report on data from the Nearshore
Sediment Transport Study Experiment at Leadbetter Beach,
Santa Barbara, California, January-February 1980. IMR Ref.
No. 80-5, University of California, Inst. Mar. Resour., La
Jolla, CA. i

Higgins, A. L., R. J. Seymour and S. S. Pawka, 1981: A compact
representation of ocean wave directionality. Appl. Ocean Res.,
3, 105-112,

Long, R. B, and K. Hasselmann, 1979: A variational technique
for extracting directional spectra from multi-component wave
data. J. Phys. Oceanogr., 9, 373-381.

Longuet-Higgins, M. S, D. E. Cartwright and N. D. Smith, 1963:
Observations of the directional spectrum of sea waves using
the motions of a floating buoy. Proc. Conf. Ocean Wave
Spectra, Prentice-Hall, 111-132.

Mitsuyasu, H., F. Tasai, T. Suhara, S. Mizuno, M. Ohkuso, T.
Honda and K. Rikishi, 1975: Observations of the directional
spectrum of ocean waves using a cloverleaf buoy. J. Phys.
Oceanogr., 5, 750-758.

Nagata, Y., 1964: The statistical properties of orbital wave motions
and their application for the measurement of directional wave
spectra. J. Oceanogr. Soc. Japan, 19, 169-181.

Pawka, S. S., 1982: Wave directional characteristics on a partially
sheltered coast. Ph.D. dissertation, University of California,
San Diego, 246 pp.

——, 1983: Island shadows in wave directional spectra. J. Geophys.
Res., 88, 2579-2591. .

———, D. L. Inman and R. T. Guza, 1984a: Island sheltering of
surface gravity waves: model and experiment. Continental
Shelf Res., 3(1),"35-53.

——, —— and ——, 1984b: Radiation stress estimators. J. Phys.
Oceanogr., 13, 1698-1708.

Regier, L. A., and R. E. Davis, 1977: Observations of the power
and directional spectrum of ocean surface waves. J. Mar. Res.,
35, 433-452. .

Seymour, R. J., and A. L. Higgins, 1977: A slope array for
measuring wave direction. Proc. Workshop on Coastal Processes
Instrumentation. La Jolla, University of California, San Diego,
Sea Grant Publ. No. 62, IMR Ref. No. 78-102, 133-142.

Simpson, J. H., 1969: Observations of the directional characteristics
of sea waves. Geophys. J. Roy. Astron. Soc., 17, 93-120.



