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On the microseisms associated with coastal sea waves
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SUMMARY
We present a model that concerns microseisms in the period range between 7 and 9 s.
In this modelling we have incorporated the effects of incident and reflected sea waves
along the shoreline. A relationship between the phenomena of wave reflection along
the shoreline and microseisms is suggested by this study. In addition, the far-field
microseismic energy computed from this model is considerably larger than our two
previous calculations (Darbyshire & Okeke 1969; Okeke 1972) and, interestingly, closer
to that obtained from recent measurements (Trevorrow et al. 1989). A possible
explanation is that the present model incorporates the activity of the wave train
approaching the shoreline from a wide range of directions. Thus, it is a generalization
of the normal incident theory originally proposed by Darbyshire & Okeke (1969) and
employed in our two previous calculations (Darbyshire & Okeke 1969; Okeke 1972).

This model also estimates the distance from the shoreline over which the approaching
shallow water waves are expected to acquire measurable bottom pressure and confirms
that this distance is proportional to the wave period (Fig. 3).

Furthermore, by assuming that the elastic parameters in the far field are functions
of the vertical coordinate only, the depth dependence of frequency bandwidth and the
associated spectral energy peak are calculated. The results depict reasonably well
the possible effects of structural layering below the Earth’s surface in the locality.
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9 s period and is consistently present in analysed wave records.
1 INTRODUCTION

In this range, there is no relationship identical to that of single-
or double-frequency microseisms within the band; that is, withinThe small-scale earth tremors known as microseisms are

vibrations of the solid earth with an amplitude of about 10 mm. this frequency band the peak energy densities of the micro-
seisms lie neither at the same frequency nor at twice theThese vibrations usually appear on earthquake records. However,

they are usually regarded as a nuisance by seismologists because frequency of the current-generating water waves (Darbyshire

& Okeke 1969). This work is therefore concerned with thethey tend to distort the earthquake records. Nevertheless, their
appearance on seismographs usually heralds approaching storms. modelling of microseisms that have periods in the range 7–9 s.

We attempt to estimate the energy of microseisms and thatTherefore, one of their major uses is in weather forecasting,

and recently, but more importantly, they have proved useful of the related sea waves arising from interaction with the coast.
In previous attempts, Darbyshire & Okeke (1969) assumed ain geophysical inverse problems (Trevorrow & Yamamoto

1991). model of normal incidence and reflected waves on a rocky

coastline. Okeke (1972, 1985) improved on this by assumingThe coupling of microseismic energy with that of sea waves
has long been established. Two frequency bands are identifiable: that the angle of incidence ranges from 0 to p/2. However, the

reflected wave energy was neglected in the computation. Anthese are the double-frequency band (Longuet-Higgins 1950;

Hasselmann 1963; Darbyshire & Okeke 1969; Kibblewhite attempt will now be made to generalize these two successful
models and use them to study the generation of microseisms& Ewans 1985) and the single-frequency band (Darbyshire &

Okeke 1969; Okeke 1972; Goodman et al. 1989; Trevorrow in the range of intermediate frequencies.

et al. 1989). The various mechanisms for the excitation of the
two bands have also been established quantitatively.

2 THE WAVENUMBER SPECTRUM FOR
However, there is still what may be regarded as the inter-

COASTAL REFLECTED WAVES
mediate frequency band, which lies between the double- and
the single-frequency bands. It ranges from approximately 7 to The technique developed by Darbyshire & Okeke (1969) will

be exploited and further generalized. The subscripts i and r
refer to incident and reflected wave components, respectively,*Present address: The Shell Petroleum Development Company of

Nigeria Limited, Warri, Nigeria. along the coastline. Let DK=K
i
−K

r
be the wavenumber
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difference. We now divide DK into n subdivisions each of width and

dK
p
, thus DK=ndK

p
. With fixed frequency v, C

m
=v/K

m
,

where C
m

and K
m

are the phase velocity and wavenumber, SH(K, h: , v)=
ad−1/2

(K
0
−K

m
)1/2

J
0C v2ag−1

K
0
−K

m
D cos

h:
2

. (3.3)
respectively, in the range of high-phase velocity pressure

components.
Eqs (3.2) and (3.3) give the spectral amplitudes in the K0-plane

For the incident modes, the spectral amplitudes for the
for the linear bottom pressure of the gravity wave in shallow

subdivisions are h1 , h2 , … , h
n
, and for the reflected modes,

water.
g1 , g2 , … , g

n
. Here, h

i
=h

i
(R, v, K

i
, h
i
), g

r
=g

r
(R, v, K

r
, h
r
);

In the range of very low frequencies considered here,
these functions contain the angles of incidence and reflection,
which will generally be equal. The resultant spectral amplitude

J
0C v2ag−1

K
0
+K

m
D� J

0C v2ag−1

K
0
−K

m
D� 1 . (3.4)is obtained by the convolution of the two; that is,

The approximation in eq. (3.4) was utilized in the calculations∑
n

r=1
∑
n

i=1
g
r
h
i
d
ri
,

involving the range of primary frequency microseisms.

However, in the intermediate range, the whole expressions inwhere d
ri
=1 when r= i and d

ri
=0 when r≠ i; d

ri
is the

eqs (3.2) and (3.3) will be used in the computations; note thatKronecker delta. Consequently, r= i corresponds to the case
K&K

m
. Thus, with a 1 per cent variation in the wavenumber,of constructive interference and r≠ i to that of destructive

the amplitude spectral density is defined byinterference.
Now, g

r
=h

i
R
f
, i=r, where R

f
is a reflection coefficient.

S2
1
(K

0
, v, h: )=[CH2 (K

0
, v)+SH2 (K

0
, v)]

Thus, for r=i,

=
2a2d−1

K
0

J2
0Cvag−1

K
0
D cos2

h:
2

. (3.5)∑
n

i=1
g
i
h
i
= ∑

n

i=1
g2
i
R
f

and h: representing the mean value of h
r
, we obtain Eq. (3.5) suggests that the spectral density favours a long but

finite breaker zone and a rather gently sloping beach. It gives
∑
n

i=1
R
f
g2
i
=R

f
S
1
(v, K

0
, h: )ndK

p
, K

0
&K

m
, (2.1) the power of the pressure wave per unit wavenumber in the

water layer. This conclusion is quantitatively in agreement
where K0 is the wavenumber of the gravity mode and with the observed behaviour of microseisms and the generation
S1 (v, K0 , h: ) represents the spectral amplitude. of sea waves.

To a reasonable degree of accuracy, the power spectrum of
a system is proportional to the square of the amplitude

4 SEISMIC RESPONSEspectrum. Thus, for −2<K0<2,

Although this paper is an extension of the previous papers, itS
p
(K

0
, v, h: )=R

f
S2
1
(K

0
, v, h: )ndK

p
, (2.2)

may be instructive to recapitulate the basic equations governing
where S

p
(K0 , v, h: ) is the power spectrum of the sea wave. The

the processes of stress waves in an elastic and homogeneous
inequality immediately before eq. (2.2) implies that both high

half-space. The components of the ground displacement in
and low phase velocity wavenumber components arising from

response to the passage of seismic oscillations are usually given
the linear modulation of the gravity (water) wave bottom

by
pressure are now involved (Hasselmann 1963).

U
R
=
∂w
∂R
+
∂2y

∂R∂z
, (4.1)

3 DETERMINATION OF THE SEA-WAVE
POWER SPECTRUM.

U
z
=
∂w
∂z
−
∂2y

∂R2
−
∂y

R∂R
, (4.2)

In this model, an oscillatory wave train approaching a shoreline

at an angle h: is considered. Here, h: is measured from the line
where U

R
is the radial component of displacement, U

z
is thenormal to the shoreline. The sea bottom is uniformly sloping

vertical component of displacement, w and y are potentialwith a gradient a but is not necessarily parallel to the shoreline.
functions associated with the compressional wave with speedThen, following Okeke (1972, 1985), the wave bottom pressure
a0 and the shear wave with speed b0 , respectively, z is thein this study takes the usual form,
vertical coordinate measured from the seabed downwards and

R is the radial distance.
P
33
=rwgS d

R
J
0A2vSa

R

gB cos
h:
2

cos vt , 0<h:<
p

2
, If we write w=Re[w0 (R, z) eivt] and y=Re[y0 (R, z) eivt],

then w0 and y0 satisfy the equations
(3.1)

A ∂2∂R2
+
∂

R∂R
+
∂2
∂z2
+

v2

a2
0
B w0=0 , (4.3)where rw is the water density, R is the radial distance, d is the

width of the shelf, which includes the breaking zone, as

measured from the shoreline, J0 is a zero-order Bessel function A ∂2∂R2
+
∂

R∂R
+
∂2
∂z2
+

v2

b2
0
By0=0 , (4.4)of the first kind and g represents the acceleration due to gravity.

The components of the Fourier–Bessel coefficients
wherecorresponding to eq. (3.1) are

CH(K, h: , v)=
ad−1/2

(K
0
+K

m
)1/2

J
0C v2ag−1

K
0
+K

m
D cos

h:
2

(3.2) K2=K2
a
0

+
v2

a2
0
=K2

b
0

+
v2

b2
0

. (4.5)
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The formal integral representations of the solutions of eqs
5 DETERMINATION OF THE SPECTRAL

(4.3) and (4.4) using eq. (4.5) are, respectively,
WIDTH

Moving nearer to deep-water areas, where linear bottomw
0
=P2

0
A(K)J

0
(KR)K exp(−K

a
0

z) dK (4.6)
pressure vanishes, we have

and

F(K, v)=F(K∞, v)+dK
∂F
∂K

(K, v) |
K=K∞
+ (dK)2=0 , (5.1)

y
0
=P2

0
B(K )J

0
(KR)K exp (−K

b
0

z) dK . (4.7)

from which
In this study, we are concerned with the vertical displacement.

This can be derived from eqs (4.6) and (4.7) as follows:
dK=

−F(K∞, v)

∂F/∂K(K∞, v)
, (5.2)

U
z
(R, z, t)=ReCe−ivtP2

0
K2 (K

a
0

A(K) exp (−K
a
0

z)
where K∞ is the value of K for which eq. (5.1) is satisfied and

+K2B(K) exp (−K
b
0

z))J
0
(KR) dKD . (4.8) ∂F

∂K
=

C
m

K
m

∂F
∂V

, (5.3)

In eq. (4.8) the spectral amplitudes A(K) and B(K) are calculated
with C

m
=2.8 km s−1 and ∂F/∂K=65.3∂F/∂V (km, s units),

from the following boundary conditions at z=0.
where V is the group velocity for the seismic modes.

Numerical evaluation of eqs (5.2) and (5.3) when(1) Vanishing of tangential stress, which gives
K∞=0.30 km−1 (wavelength of about 20.9 km) gives

2K
a
0

A(K)−A2K2−
v2

b2
0
BB(K)=0 . (4.9)

dK=3.1×10−4 km−1 . (5.4)

(2) The vertical stress component has to be balanced by The result in eq. (5.4) suggests that the spectrum for the elastic
the high phase velocity random pressure components that are solid is as expected; that is, it is highly peaked. Thus, the
associated with the propagating gravity water waves, i.e. dominant mode is associated with a far greater proportion of

elastic wave energy.Al+r
s
l∞
∂
∂tBV2w+2Am+r

s
m∞
∂
∂tB ∂Uz

∂z However, the wave energy or amplitude spectrum is usually
calculated in terms of frequencies rather than wavenumbers.
Thus, following the same procedure adopted in deriving

=P2
0

KP
33

J
0
(KR

0
) eivtdK , (4.10) eq. (5.2), the frequency bandwidth is given by

where P33=P33 (v, h: , R, t) is defined in eq. (3.1), l and m are
elastic constants and l∞ and m∞ are the corresponding para-

dv=A4p2b2
0

l2
m

v
m
BA96−128a2

1
+16a4

1
−a6

1
256−64a2

1
+6a4

1
B ,

d f=dv/2p , a
1
=c/b

0
<1 ,

(5.5)
meters associated with damping in the solid earth with

density rs .
Solving eqs (4.9) and (4.10),

where l
m

and m
m

are the wavelength and frequency associated

with the dominant mode in the vibration of the elastic medium.
B(K, v)=2K

a
0

P
33

r
s
D(K, v)

, First, we note the strong dependence of dv on b0 . Consider
the case of a stratified medium in which b0 is a function of the

vertical coordinate below the Earth’s surface (b0=b0 (z) ). Thus,
dv=dv(z). Furthermore, in spite of the factor b2

0
on the right-

A(K, v)=
A2K2−

v2

b2
0
BP33

r
s
D(K, v)

,
hand side of eq. (5.5), dv(z)%1. The inequality applies at all

depths below the Earth’s surface over which microseismic
where signals are detectable. This statement is confirmed by numerical

calculations, using the shear velocity vertical profile extra-
D(K, v)= (b2

0
+ ivl∞)CA2K2−

v2

a2
0
BA2K2−

v2

b2
0
B polated from the reference shear wave velocity profile as the

data source (Bullen & Bolt 1985; Yamamoto & Torri 1986;

Trevorrow & Yamamoto 1991) (Fig. 1). This compares well
−4K2K

a
0

K
b
0D (4.11)

with the records from our local data source. The computed
values of d f as a function of z are shown in Fig. 2. If we

is the Rayleigh function (Bullen & Bolt 1985). assume that z=1.1 m and the period is 8 s, then (dv)2=
Assume that 16.9×10−8 (rad s−1)2. These data are those frequently used for

theoretical calculations involving the peak energy of the solid
F(K, v)=Ab0vB2D(K, v) . (4.12) ground vertical displacement. Thus, z=1.1 m suggests the

likely depth of burial of a land-based seismometer. Calculations
from eq. (5.5) further verify that dv is a decreasing function ofF(K, v) is also the Rayleigh function but multiplied by a factor

of (b0/v)2 This factor drops out in the subsequent calculations b0 . Fig. 1 depicts the form of the vertical structures of the
elastic medium to a depth of about 100 m below the Earth’sinvolving the function, except in the essential computations

of dv(z). surface in the locality (Trevorrow et al. 1989).
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Figure 1. The variation of b0 and rs with depth for far-field shallow seismic structures.
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Figure 2. Variation of frequency bandwidth with depth below the Earth’s surface for seismic waves of periods 7, 8 and 9 s.
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Using the sampling property of the delta function, the spectral
6 TRANSFER FUNCTION

energy density becomes
m∞=ca−2

0
and l∞=cb−2

0
, where c is the damping coefficient

(Okeke 1972). Eventually, eq. (4.8) takes the form H2 (K
p
, v)=C2K

pR A ∂F∂KB−2D
K=K

p

. (6.6)

U
z
(R, v) e−0.11ct=2 P2

0
CKJ

0
(KR

0
)P
33

(K, v, h)

r
s
F(K, v) D dk . (6.1)

The spectrum expressed by eq. (6.6) is strongly peaked when

K
p
=K

m
; dK is the width of the spectrum. However, due to

For large R, we use the asymptotic form of J0 (KR), thus
the damping factor, the spectral peak height is still finite and
a function of R.

J
0
(KR)=A 2

pKRB1/2 cosAKR−
p

4B , (6.2)

K=K(K0 , Kp
), 20 km−1≤K0≤100 km−1, 0.1 km−1≤K

p
≤ 7 ESTIMATE OF THE SHELF WIDTH

0.4 km−1. Applying the stationary phase method to the
We take Dv as the angular frequency difference between twoevaluation of eq. (6.1) using eq. (6.2),
successive maxima in the spectra of the incident and reflected

U
z
(R, v) e−0.11ct beach waves. Using some of the relations for the shallow

water waves, the characteristic linear wave speed c0=√(gh0 ),=
2P

33
(K

0
, v)

r
s
A 2

pRB1/2 ∑
K
A √K

∂F/∂KB d(K−K
p
) , (6.3) h0 being the depth of the water layer measured from the

undisturbed free surface, and v2=K2
0
C2
0
. Thus, DK0=

where d(K−K
p
) is the delta function. ∑

K
implies that the Dv/√(gh0 )=0.0081K0=0.051/L 0 ; DK0 is the change in K0

between two successive maxima in the wavenumber spectrum
summation is over all possible values of K in the spectrum.

and L 0 is the corresponding wavelength (L 0=2p/K0 ).However, the contribution to eq. (6.3) will come from those
With v=2pi, where f=0.11 Hz, C0=15 m s−1, h0=22 m

values of K that are the roots of F(K, v)=0.
and DK0=1.4×10−4 km−1, d=0.002p/DK0 . This relationship

We now evaluate the amplitude spectrum in the K-plane for
suggests that d is an increasing function of the wave period

the left- and right-hand sides of eq. (6.3). The convolution
(Fig. 3). If the wave period is 8 s then d=45 km. This value

theorem is used to evaluate the power associated with the
agrees with that obtained by computing the orthogonal spacing,

product on the right-hand side. Thus, in terms of the amplitude
the corresponding group velocity V

g
and hence the wave

spectrum,
bottom pressure. The data are from a refraction diagram for

S
u
(K, v, h: )=S

p
(K

0
, v, h: )H(K

p
, v) , (6.4) an 8 s water wave (Darbyshire & Okeke 1969; Kinsman 1965).

In this case, d is the distance from the shoreline (seawards),where H(K
p
) is the amplitude spectrum for the function

where the wave bottom pressure is appreciable enough to
contribute significantly to the generation of microseisms in theA 2

pRB1/2∑
K
CA √K

∂F/∂KB d(K−K
p
)D . (6.5)

shallow-water zone.

Figure 3. The ratio of the energy spectrum of microseisms and sea waves as a function of wave period. (a) Observed values Darbyshire & Okeke

(1969); (b) theoretical calculations Darbyshire & Okeke (1969); (c) theoretical calculations Okeke (1972); (d) theoretical calculations (this paper);

(e) variation of shelf width with wave period.
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significantly to the spectral distortions observed in the inter-
8 DISCUSSION

mediate frequency range of the spectrum. However, it should be
noted that the data and subsequent calculations in Fig. 3 wereThe relative energies of microseisms and associated sea waves
based on far-field microseismic events. Those of Trevorroware computed from eq. (6.4). R is now assigned a value of
et al. (1989) were from seafloor microseismic records. Although13 km. This represents the average distance of a seismometer
fairly similar, the two studies were based on two differenton the land measured from the ocean bottom seismic source
Earth structures.near the coastline. In previous calculations, R

f
was taken to

Finally, this theoretical modelling concerned the problembe 1/30, corresponding to the value found by Savarensky and
of the microseismic wavefield generated by the activities ofcolleagues for Lake Yussi-Kul (Darbyshire & Okeke 1969).
random pressure waves acting on the fluid/solid interface. TheIn their investigation, the coastline was assumed to be rocky.
microseisms originating from this process propagate to theHowever, calculations based on wave reflection theory (Jackson
far-field recording station in the form of guided elastic surface1962) gave a mean value of R

f
=1/38. This value allows for the

waves as expressed by eq. (4.8). Along this guide, it is assumedfinite angle of incidence and reflection, thus it seems more realistic.
that the mean elastic parameters are generally constant.

The calculations from this study are displayed in Fig. 3(d)
However, any slight variation associated with these is reason-

together with the following.
ably well accounted for by the introduction of damping factors
in the governing equations for the elastic modes.(a) Those computed from the simultaneous records of micro-

In addition, the denominators each eqs (6.1) and (6.6)seisms and sea waves. These records were from the sea wave
contain r

s
(z) and b0 (z), hence the energy ratio of microseismicand microseism database collected from Rhosneigr and the

and gravity waves will depend on the depth below the Earth’sMenai Bridge, Anglesey. The data previously reported in
surface. Thus, we now divide the region below the Earth’sDarbyshire & Okeke (1969) originated from the same source.
surface into 20 parallel subdivisions. These are given by(b) Those computed using the normal incident theory of
z=1.2, 5, 10, … , 100 m. Using the vertical Earth structureDarbyshire & Okeke (1969) from their eq. (4.23).
given in Fig. 1 as input data and the finite difference method,(c) Those computed from eq. (44) of Okeke (1972).
the calculations that resulted in the energy ratio shown

On the whole, the present model represents an improvement Fig. 3(d) are repeated at each subdivision for the specified
over our two previous investigations. Furthermore, Fig. 3(d) wave periods. The calculations were simplified by the replace-
gives results that are comparable with those from more recent ment of the quantity ∂F/∂V in eq. (5.3) by (∂F/∂z)/(∂V /∂z) and
analyses (Trevorrow et al. 1989), thus suggesting that the the assumption that the layer between two subdivisions is

homogeneous.phenomenon of wave reflection along coastlines contributes

Figure 4. Vertical profiles of the energy ratio for waves of periods 7, 8 and 9 s.
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The results are shown in Fig. 4. From this figure, the layers of this paper. A large volume of material used in the review

stage was obtained from Mark Trevorrow and we are verywith low shear strength generally corresponds to those with
high energy ratio. The energy ratios are thus apparently a grateful for his assistance.
decreasing function of the depth below the Earth’s surface.

The decrease is more rapid at depths below 70 m. Our calcu-
lations further suggests that the energy ratio is vanishingly
small at depths of about 100 m and below.
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