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ABSTRACT

A method to evaluate the frequency of occurrence of breaking waves in deep water is developed based on
the joint probability distribution of wave excursion and associated time interval for a non-narrow-band random
process. Wave breaking that takes place along an excursion crossing the zero-line as well as that which occurs
along an excursion above the zero-line is considered. The breaking criterion is obtained from measurements
of irregular waves generated in the tank. It is found that the functional relationship between wave height and
period at the time of breaking of the irregular waves is by and large different from that known for regular
waves. Comparisons between computed and observed frequencies of occurrence of wave breaking made for
four different sea conditions generated in the tank show reasonably good agreement. The effect of sea severity
on the frequency of occurrence of breaking waves is obtained by carrying out numerical computations using
a family of wave spectra. The probability of occurrence of breaking waves depends to a great extent on the
shape of the wave spectrum. The probability increases significantly with increase in the fourth moment of the

spectrum irrespective of sea severity.

1. Introduction

The phenomenon of breaking waves in the ocean
occurs whenever a momentarily high crest reaches an
unstable condition. It occurs intermittently, and the
frequency of occurrence depends on the severity of
the sea.

The significance of information on breaking waves
cannot be overemphasized. First of all, breaking waves
are always associated with steep waves that occur in
a given sea; therefore, consideration of breaking waves
cannot be ignored in the statistical prediction of wave
height. Unfortunately, currently available statistical
prediction methods do not consider the concept of
breaking waves. Hence, the largest wave height ex-
pected to occur in a specified period of time (the ex-
treme wave height) in a given sea, when predicted by
using the current prediction methods, is unreasonably
high and is clearly beyond the breaking wave limit.
This situation can be rectified by introducing the con-
cept of breaking waves in the prediction of wave height.

Secondly, breaking waves exert by far the largest
wave-induced force (often in the form of impacts) on
marine systems, which may cause serious safety prob-
lems and structural damage of the systems. Hence, it
is highly desirable to consider the frequency of oc-
currence and severity of breaking waves in evaluating
hydrodynamic forces for the design of marine systems.

The area addressed by the present study is that con-
cerned with information on the frequency of occur-
rence of breaking waves in deep water. Breaking waves
defined here are not those whose tops are blowing off
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by the wind but those whose breaking is associated
with steepness; more precisely, breaking that results
from a steepness for which the wave height exceeds
14.2 percent of the Stokes (1880) limiting wavelength
(Michell 1893). These wave phenomena are extremely
complicated and the times of their occurrences are
usually unpredictable. Hence, they may be most use-
fully evaluated through the probabilistic approach.

Only a few studies have been carried out on the
frequency of occurrence of breaking waves in deep
water. Nath and Ramsey (1976) assumed that the wave
height H and its period squared 72 were statistically
independent and that both follow the Rayleigh prob-
ability law. On the other hand, Houmb and Overvik
(1976) evaluated the probability of breaking using the
joint probability function of wave height and period
applicable for a narrow-band random process.

Although the assumption of the narrow-band ran-
dom process was used in both of the above studies,
the wave records that include very steep waves whose
breaking is imminent indicate that the assumption may
be highly unrealistic. Hence, in the present study, a
method to evaluate the frequency of breaking waves
is developed based on the joint probability distribution
of wave height and period for a non-narrow-band ran-
dom process. The method of approach is outlined in
the following:

In general, for waves with a non-narrow-band spec-
trum, it may be well to consider breaking that occurs
under two different situations: one that takes place
along an excursion above the zero-line, the other that
occurs along an excursion crossing the zero-line. This
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situation is shown in an explanatory sketch in Fig. 1.
In the figure, A and B represent the positive maxima
and minima, respectively, of a non-narrow-band ran-
dom process, while C and D represent the negative
minima and maxima, respectively. Note that possible
occurrences of breaking are expected on the excursion
CA as well as BA. These excursions may be called
Type I and Type II, respectively. Hence, in order to
evaluate the probability of occurrence of breaking, it
is necessary to consider the joint probability distri-
bution of the excursion and its associated time interval
between two peaks as well as the frequency of occur-
rence of each type of excursion.

Computations of the probability of occurrence of
breaking are made in various sea severities using a
family of wave spectra developed from an analysis of
wave data measured in the North Atlantic. From the
results of the computations, the limiting sea severity
is obtained below which no wave breaking is expected
to occur. It is also found that the probability of oc-
currence of breaking increases significantly with in-
crease in the fourth moment of the wave spectrum
irrespective of sea severity.

2. Wave-breaking criterion

Prior to developing a formulation for evaluating the
frequency of occurrence of wave breaking in irregular
seas, it may be well to discuss the criterion of the wave
breaking phenomenon that will be used in the pre-
diction.

The criterion for breaking of regular waves in deep
water has been addressed from various viewpoints.
These include those of Stokes (1880), Mitchell (1893),
Longuet-Higgins (1963, 1969, 1974, 1976), Cokelet
(1977), etc. The most commonly known breaking cri-
terion is that the wave height should exceed 14.2 per-
cent of the Stokes limiting wavelength which is 20
percent greater than that of ordinary sinusoidal waves
of the same frequency. That is, the breaking criterion
is given by,

H=>0.142L,, )

where
H  wave height

L, Stokes limiting wave length = 1.2g/(27f?)
f  frequency in Hz.
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FIG. 1. Explanatory sketch of a non-narrow band random process.

MICHEL K. OCHI AND CHENG-HAN TSAIl

2009

Hence, in terms of wave period, wave breaking oc-
curs when the wave height—period relationship be-
comes,

H=0.027¢T> 2

Dean (1968) gives a value of 0.033 for the magnitude
of the constant in Eq. (2) based on his computational
results using the stream function representation of
nonlinear waves. On the other hand, the results of
laboratory tests carried out by Van Dorn and Pazan
(1975) show that all steep regular waves generated in
deep water break at some lower wave height than that
given in Eq. (2).

Since there are no specific criteria for breaking of
irregular waves, the condition given in Eq. (2) was first
used in this study for evaluating the frequency of wave
breaking occurrences. However, the results of tests on
the frequency of breaking of irregular waves generated
in the tank have shown that the observed number of
breakings during a specified time period is several times
greater than that theoretically computed based on the
criterion given in Eq. (2). In order to clarify this dif-
ference, an experimental study was carried out on the
wave height—period relationship when irregular waves
break. It was found that the breaking criterion for
irregular waves is substantially different from that
known for regular waves. The details of the tests on
the breaking criterion applicable for irregular waves
are discussed below. :

Several series of irregular waves with different wave
spectra were generated in the 40-m tank in the Coastal
and Oceanographic Engineering Laboratory. Waves
were generated by using pre-programmed tapes which
yield relatively severe waves leading to breaking. A
capacitance-type wave height probe was installed at a
fixed point in the tank, and the height and period of
incident waves that were expected to break right at
that location were measured. Waves that were already
broken before they reached the probe were excluded
in establishing the breaking criterion. Examples of in-
cident waves for which breaking was imminent are
shown in Fig. 2. Included also in the figure are the
wave height H, and period T, defined for establishing
the criterion.

The wave height-period relationship was obtained
from measurements of over 40 incident waves about
to break and the results are plotted in Fig. 3. As can
be seen in the figure, the functional relationship be-
tween wave height and period at the time of breaking
of irregular waves is by and large different from that
known for regular waves. By drawing the average line
of the observed results plotted in Fig. 3, the following
relationship is obtained as the criterion for breaking
of irregular waves:

H > 0.020gT°. 3)

Let us express the criterion given in Eq. (3) in di-
mensionless form. As stated in the previous section,
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FIG. 2. Examples of irregular waves imminent to breaking.

two different types of breaking are considered in the
present study. For this, consider H in Eq. (3) as the
Type I as well as Type II excursions, denoted by ¢,
and T as the time interval. Then, { and T are non-
dimensionalized by dividing by m{ (where, my is the
area under the wave spectrum), and 7,,, where T, is
the average time interval between positive maxima,
respectively. This results in the following breaking cri-
terion in dimensionless form:

72
v= a(L"-))\Z, “

md?
where

dimensionless excursion (= {/my'"/?)

dimensionless time interval between positive
maxima (=7/T,,)

excursion

time interval between positive maxima

average time interval between successive positive
maxima A (=4z{(1 — &)/
[L+ (1 ~ A mofm;))

band-width parameter of the spectrum
(={1 — [m3/(mem4)1}'7?)

m; the jth moment of the wave spectral density func-

tion
a 0.196ms.

;.ﬂ"‘r > w

L]

3. Probability of occurrence of breaking waves

As was shown in the previous section, the breaking
criterion consists of two random variables, the di-
mensionless excursion » and time interval A. Hence,
the probability of occurrence of wave breaking can be
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evaluated from the joint probability density function
of excursion and associated time interval.

The joint-probability density function of Type I ex-
cursion defined in the Introduction (CA in Fig. 1) and
the associated time interval T is essentially the same
as that for the positive maxima A and the associated
time interval, which was derived by researchers at the
Centre National Pour L’Exploitation des Océans
(CNEXO) (Arhan et al., 1976). Let us assume the wave
profile x(¢) illustrated in Fig. 1 to be a stationary
Gaussian process which has an arbitrary spectral band-
width. It is also assumed that x(¢) has zero mean, and
the derivatives with respect to time, x(7) and X(), both
exist with probability one. By considering twice the
magnitude of the positive maxima, the joint probability
density function can be written as follows:

1 [1 + (1 — €2)1/2]3 y_2

VG REN7? (- N
y <_ 112 {L [1 + (1 _ 62)1/2]4
P\ T 3N 16 - &
- % [1+(1—&)7PN+ x‘}) , (5)
where

v=¢my"? with ¢ =2¢,, 0<v<ow

¢4 = magnitude of the positive maxima, 0 < A < o0.

It should be noted that Eq. (5) includes the positive
maxima belonging to both Type I and Type II excur-
sions. Hence, in evaluating the probabiity of occurrence
of wave breaking associated with Type I excursions,

20 —
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FIG. 3. Relationship between wave height and period
for breaking occurrences in irregular waves.
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the maxima belonging to Type II excursions have to
be deleted. This can be done by taking into consid-
eration the frequency of occurrence of each excursion.
That is, the expected number of the positive maxima
and minima, denoted by N4 and N, respectively, are
given by (Cartwright and Longuet-Higgins, 1956),

_ 1+(1 - (_) 2
S [ )

. 1-(1-&"” 2
No = 4«[ (1= eyn ](n_zo) '

The expected number of the excursion BA, denoted
by N3, is equal to Np. On the other hand, the expected
number of the excursion CA, denoted by N, is equal
to the difference of N4 and Np, which in turn is equal
to the expected number of the positive zero-crossings.
Then, the expected number of occurrences of Type 1
and Type II excursions, respectively, is given by,

B 1 12
R
2% \my

1—-(1- 2\1/2 1/2
S o=z [Srmam ) - @

Hence, the frequency of occurrence of Type I and
Type II excursions, denoted by p; and p;; becomes

(6)

NCA = NA -

k(e) [1+ @1~ &P v?

Ju, N = 16 1= D + 21 — AN

2(1!')1/2(1 _ 62)1/2 2

(1 + )32 v[1 = Ble, V] -exp{

0<v<oo,

where v = §‘/m”2 with { = £, — £5, £5 = magnitude
of the positive minima and

1+(1 -~ 1)2
A

6(@ A) = ( 2(2)1/2

The derivation of the joint probability density func-
tion is presented in Appendix A.
The probability of breaking waves can be evaluated

from Eq. (11) by a procedure similar to that given in
Eq. (10). That is,

Pr{Breaking waves, Type II}

= p%i”p” f L a0 NN, (12)
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X exp<
exp{4"_; [1 — B, x)]z}. <1 - @{(Z)L,,ZE [1+ B(e, A)]}) +

v
——l
2(1 + é)é {

2011
NCA 2(1 - 62)1/2
pr= NA 1+(1 - 62)1/2 ’ ®)
% 1-(1 =&
bu= NA 1+ — e2)1/2 .

Thus, the conditional probability of breaking waves
given that Type I excursion has occurred can be eval-
uated from (5) and (8) taking into consideration of
the breaking condition given in (4). That is,

Pr{breaking wave, Type 1 excursion}

= fo Lm 10> N, 9)

Then, the probability of breaking waves associated
with Type I excursion can be obtained by multiplying
Eq. (9) by the probability of occurrence of Type I
excursion. By taking account of the fact that the sum
of the probabilities of Type I and Type II breaking
waves is equal to unity when all waves have broken,
we have,

Pr{breaking waves, Type I}

f f st 1 NvdX. (10)

P2 +P11

For evaluating the breaking waves associated with
Type II excursions, the joint probability density func-
tion of the excursion BA and the time interval is re-
quired. It is given in a dimensionless form as follows:

e[l +( -7 1)
RaTias))

2
xp{z”—ez [ — &) — 26, A)]}

([1—5( NP + {

[2(1 _ 62)]1/2
1+ ¢

- fle M1} x (1 = #f s 10+ st Wi

0<A<oo,

(1

The total probability of breaking waves is the sum
of the probabilities given in (10) and (12).

4. Computation of breaking waves in various sea
severities

It is of interest to examine the effect of sea severity
on the frequency of occurrence of breaking waves. For
this, computations are carried out using a family of
wave spectra for a specified sea severity. The family
of wave spectra consists of eleven members including
the one that is most likely to occur for a specified
significant wave height, and it represents a variety of
shapes of wave spectra observed in the North Atlantic
Ocean (Ochi and Hubble, 1976).
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FIG. 4. Joint probability density function of the
excursion and time interval for Type I excursion.

DIMENSIONLESS EXCURSION V = [ //mg

Prior to presenting the results of the computation,
it may be well to show an example of the joint prob-
ability density function of the excursion and time in-
terval used for evaluating the probability of breaking
waves. Figs. 4 and 5 show the joint probability density
functions for Type I and Type II excursions, respec-
tively, of waves of significant height 12.2 m (40 ft)
whose spectrum is shown in Fig. 6. Included also in
each figure is the line indicating the breaking condition
given in Eq. (4). If the wave excursion exceeds this
line for a given time interval (this region is denoted
by the breaking zone in the figure), then breaking takes
place.

As shown in Eq. (10), the probability of breaking
waves asscciated with Type I excursion is the product
of the volume of the joint probability density function
in the breaking zone indicated in Fig. 4 and the square
of the frequency of occurrence of Type I excursion,
which is equal to 40.66% for this example. On the
other hand, the probability of breaking waves associated
with Type II excursion is the product of the volume
in the breaking zone indicated in Fig. 5 and the fre-
quency of occurrence of Type II excursion, which is
equal to 10.95% for this example. Thus, it appears that
the probability of breaking waves of Type II excursion
is approximately 26.9% of that associated with Type
I excursion.
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HG. 5. Joint probability density function of the excursion
and time interval for Type II excursion.
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FIG. 6. Wave spectrum used for computation of the joint probability
density functions shown in Figs. 4 and 5. Significant wave height
122 m.

Figure 7 shows the results of computation indicating
the probabilities of occurrence of breaking in various
sea severities. As can be seen in the figure, the prob-
ability of breaking increases significantly with increase
in sea severity, in general, and no wave breaking is
expected in seas of significant wave height less than
approximately 4 m (13.1 ft) for this family of wave
spectra. '

It is noted in Fig. 7 that the probability of breaking
waves varies considerably in a given sea severity de-
pending on the shape of the wave spectrum. For ex-
ample, in a sea of significant wave height 10.7 m (35
ft), the probability ranges from 3.97 to 22.92% with a
most probable of 10.38% which is computed by using
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FIG. 7. Probability of occurrence of breaking waves
using the six-parameter wave spectrum family.
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the most probable wave spectrum of the family. Fig.
8 shows three spectra of the family for the sea of sig-
nificant wave height 10.7 m which yield the largest,
most probable, and smallest probability of breaking
identified as Spectra I, II, and III, respectively.

The results of computations in various sea severities
show that the frequency of occurrence of breaking
waves is a function of the fourth moment my of the
wave spectrum. In order to elaborate on this statement,
Fig. 9 shows the probabilities of occurrence of breaking
in six different sea states of the six-parameter wave
spectra family plotted against the dimensionless fourth
moment of each spectrum. As can be seen in the figure,
the frequency of breaking increases significantly with
increase in the fourth moment of the wave spectrum.

The conclusion given in the above paragraph can
be verified from the breaking condition given in Eq.
(4). That is, from the definition of the average time
interval 7T,,, Eq. (4) can be expressed in the following

form:
(1 _ 62)1/2 2 m(n)/z
2 2
v = (47) a[l Y0 -2 m, A
1 _2\172 AZ
- (4mypa —L =€) (13)

[1+(1-&72Pmy?"

It is noted that (1 — €)"2/[1 + (1 — €)'’} in the
above equation is almost constant for the practical
range of e-value of ocean waves, say 0.3-0.8. Therefore,
the v-value reduces in proportion to the square of the
increase in the fourth moment m, of the wave spec-
trum. This implies that a significant increase of the
probability of breaking is expected with increase in the
fourth moment.

In order to substantiate the conclusion given above,
computations of the probability of occurrence of
breaking as well as the joint probability function of
wave excursion and time interval are carried out for

a

3 8
S

RSN SEN U VRPN W——

Q \
pre}
@ \
o \ - SPECTRUM 1
s ¥ I
z | W
E ] | I
D\ di ] 1
z | T
W i
o HAN W
i
2 o ' ,’ v
o !
E TN
Y i i \
@ 5 7
f -
! \\\~\‘ —
! I s S

va
0o 02 10 1.2 14 1.6 18

04 06 08
FREQUENCY IN RPS
FI1G. 8. Spectra which yield the largest (I), most probable (II) and
the smallest (IIT) probability of breaking in seas of significant wave
height 10.7 m of the six-parameter wave spectra family.



2014

26 ,I
SIGNIFICANT HEIGHT /
e 22m (4011

A 4 orm (3B
e 92m (30ft)

20l ° 76m (251
5 6.1m (20 )

°o 46m (I5ft)

/|
LT
/

0O 000 002 003 004 005 006
DIMENSIONLESS 4th MOMENT, my/g2

[+:]

PROBABILITY OF BREAKING IN PERCENT

0

007

FIG. 9. Probabilities of occurrence of breaking waves plotted against
the dimensionless fourth moment of each spectrum.

four spectra measured in the North Atlantic. Two of
the spectra, NW 1 and NW 154 shown in Fig. 10, are
those in a sea of significant wave height 4.6 m, while
the other two spectra, NW 314 and JHC 75 shown in
Fig. 11, are those in a sea of 10.8 ‘m. The results of
the computation show that there is almost no wave
breaking for the two spectra in the sea of significant
wave height 4.6 m (1.1 percent for NW 1 and none
for NW 154). On the other hand, the probability of
breaking is 11.90 and 13.05% for the spectrum NW
134 and JHC 75, respectively, in the sea of significant
wave height 10.8 m. A comparison of the joint prob-
ability function of Type I excursion and time interval
Sy, A) for the spectrum NW 154 (significant wave
height 4.6 m) and JHC 75 (significant wave height
10.8 m) is shown in Fig. 12. Included also in the figure
is the line indicating the breaking condition. As can
be seen in the example shown in Fig. 12, the shapes
of the dimensionless joint probability density function
of excursion and time interval are nearly equal for
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FI1G. 10. Spectra of significant wave height 4.6 m
measured in the North Atlantic.
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F1G. 11. Spectra of significant wave height 10.8 m
measured in the North Atlantic. -

these sea states. However, the location of the line in-
dicating the breaking condition differs substantially as
shown in the figure depending on the magnitude of
the fourth moment of the spectrum. This in turn yields
the difference in the probability of breaking according
to the formulation given in Eq. (13).

It is of interest to note that the relationship between
the probability of breaking and the fourth moment of
the spectrum evaluated for various spectra measured
in the North Atlantic agrees very well with the func-
tional relationship given in Fig. 9 which is obtained
using the six-parameter family of wave spectra.

Since breaking increases significantly with increase
in the fourth moment of the wave spectrum, in general,
breaking is very sensitive to the existence of high-fre-
quency energy. In other words, breaking is more likely
to occur in high-frequency waves, and this agrees with
the concept of the equilibrium range of a spectrum -
(Phillips, 1958).
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FG. 12. Comparison of the joint probability density function of
Type I excursion and time interval for spectrum NW 154 (significant

~ height 4.6 m) and JHC 75 (significant height 10.8 m).
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5. Experiments on the frequency of breaking waves

An experimental study was carried out in which
irregular waves were generated in the tank to examine
whether or not the observed frequencies of occurrence
of breaking waves agree with theoretical results. Un-
fortunately, because of the limitation in the capability
of the wave-maker, it was difficult to generate high-
frequency component waves that were sufficiently steep
to produce breaking associated with Type II excursions.
Although records taken during the tests showed a
number of Type Il excursions in the generated waves,
their steepness was insufficient to result in breaking.
This is in agreement with the results of computations
carried out on the generated waves which indicate the
probability of breaking of Type II excursions is ex-
tremely small.

In order to compare the computed and observed
frequencies of wave breaking, two wave probes were
installed in the tank separated by a distance of 14.6
m (48 ft). An example of wave spectra measured at
these two locations is shown in Fig. 13. As can be seen
in the figure, wave energy was substantially reduced
because of wave breaking that took place while the
waves were traveling between the two locations, and
this results in a reduction in the magnitude of signif-
icant wave height from 8.96 cm to 7.32 cm. The prob-
ability of breaking waves at each location was computed
by using the spectrum measured at that location. The
probability of breaking waves thus computed was
compared with that obtained experimentally. The latter
was evaluated by dividing the number of waves visually
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F1G. 13. Examples of spectra measured at two locations in the tank.
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observed to break between these two locations during
the tests by the total number of waves. The results of
the comparisons made for four (4) different sea con-
ditions generated in the tank are tabulated as follows:

Sea condition I I III v

Experimentally
obtained
probability
of breaking

Computed
probability
of breaking

0.060 0.015 0.051 0.040

0.048 0.021 0.043 0.045

As can be seen in the above table, reasonably good
agreement is obtained between the theoretical and ex-
perimentally obtained results.

6. Conclusions

This paper discusses a method to evaluate the fre-
quency of occurrence of breaking waves in deep water.
Breaking waves defined in the present study are those
associated with steepness, and the breaking criterion
was obtained from measurements of irregular waves
generated in the tank. It was found that the functional
relationship between wave height and period at the
time of breaking of the irregular waves is by and large
different from that known for regular waves. From the
results of the experimental study, the following rela-
tionship is obtained as the criterion for breaking of
irregular waves:

H = 0.020gT>.

In the derivation of the prediction formula, the joint
probability distribution of wave excursion and asso-
ciated time interval for a non-narrow-band random
process is used. Wave breaking that takes place along
an excursion crossing the zero-line (Type I excursion)
as well as that which occurs along an excursion above
the zero-line (Type II excursion) is considered.

Comparisons between computed and observed fre-
quencies of occurrence of wave breaking made for four
different sea conditions generated in the tank show
reasonably good agreement.

Computations of the probability of occurrence of
breaking are made in various sea severities using a
family of wave spectra developed from analysis of wave
data measured in the North Atlantic Ocean. From
results of computations, the following conclusions may
be drawn:

1) In evaluating the probability of breaking waves,
the frequencies of occurrence of Type I and Type II -
excursions have to be taken into consideration. The
probability of breaking waves associated with Type II
excursion cannot be neglected; for some wave spectra,
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the probability is approximately 27% of that associated
with the Type I excursion.

2) The results of computations indicate that no wave
breaking is expected in seas of significant wave height
less than 4 m for this family of spectra.

3) The probability of occurrence of breaking waves
depends to a great extent on the shape of the wave
spectrum. The fourth moment of the spectrum is a
dominant parameter which influences the occurrence
of breaking. The probability increases significantly with
increase in the fourth moment of the spectrum irre-
spective of sea severity.
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APPENDIX A

Joint Probability Density Function of Type II
Excursion and Associated Time Interval

In order to derive the joint probability density func-
tion of Type II excursion (BA in Fig. 1) and the as-
sociated time interval 7 we may first consider the joint
probability density function of the positive minima B
and the associated acceleration. The joint probability
density function will then be transformed to the joint
probability density function of the positive minima
and the time interval, 7.

Let Ny be the expected number of positive minima
per unit time, and let me % be the expected number of
positive minima per unit time above a level £z with
its associated acceleration X. These are given as follows:

Ny = fo B fo " $fx, 0, Ddsdsx, an

Neys = f #(x, 0, Hdx,
£

B

where f(x, x, X) is the joint probability density function
of the displacement, velocity and acceleration of a
Gaussian random process with zero mean and the co-

variance matrix,
my 0 —my
0 my 0 .
-my; 0 my

Then, the joint probability density function of the
positive minima £ and the associated acceleration X
is given by

Y =
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N v
= x:f(EB ) 0, -'x)
fo fo Xf(x, 0, X)dxXdx

By carrying out the integration involved in the de-
nominator of (A2), we have,

o 2 172 %
f(EB’ x) _ (;l'_) (Am4)l/2[1 - (1 — e2)1/2]

X (/28X magh+ 2magiie mo i)

(A2)

O0<ép<ow, 0<X¥<o0 (A3)

where A = mom, — m3.

Next, consider the joint probability density function
of the positive maxima £, the positive minima £5 and
associated acceleration X. Since it may be safely as-
sumed that the positive maxima and the positive min-
ima are statistically independent, the joint probability
density function is given simply by the product of two
probability density functions, f(£,) and f(£z, X). Here,
the probability density function of the positive maxima
is given by [Ochi, 1973],

2

mi? € 1 [ &4\
=TT —am ((21:)"2 e""[“ 28 (m—(:)‘,;) ]
£ 1 ’
=)l 1]
(=2 (¢
o= Gl
0< &4 < oo, (A4)
where

U

= ; —12/2
®(u) = a0 f_w e dt.

Hence, from (A3) and (A4), we have,
.f(EA, £B ’ X)

} isrz))']: 5 <(21:)l/z exp[“ 2 (%)2]
+(1 - e,2)1/2(;%) exp[_%(%zn)z]
)

1 .
X ex,p[— N (mad + 2mykpkx + mo)‘c'z):l . (AS)

In order to facilitate the integration involved in fur-
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ther analysis, the following approximation is made in
Eq. (A5);

(1—e) &, )
Y (S v g 2 PORY
1 @( L

This assumption results in Eq. (AS5) no longer being
the probability density function. In order to maintain
the condition required for (A5) to be a probability
density function, it should be multiplied by a factor
which is derived from the condition given by

J:o J;w J:" fEa, Ep, X)dE(dEpdX = 1. (AT)

(A6)

The above approximation does not cause any serious
effect on the joint probability density function of waves
whose dimensionless height is less than unity. Thus,
the approximate joint probability density function of
&4, 8, and X becomes,

.f(sA s £B9 X)

1+ = &P 22) (memy)
- & + 2(1 — e2)1/2 (W)I/Z A32

X"{(z %z e""[ 28 (Efﬂ)]
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o) sl -3 ()]

X exp[— — (mat% + 2m2£Bx + moxz)] . (A8)

Next, let us consider the excursion BA, denoted by
¢ = &4 — &5, and derive the joint probability density
function of £, {, and X. This can be simply obtained
by substituting (£, — ¢) for £z in (A8). Then, the joint
probability density function of the excursion { and the
acceleration X can be obtained as the margmal prob-
ability density function of f(£,, {, %). That is,

769 = [ g e - & Dak

+ [ g0 e - & ks,
¢

—wo<{=§—- 0<xX<o. (A9

The first term of Eq. (A9) is for { < 0, and the
second term is for { > 0. Since wave breaking is as-
sociated with £, > £, namely { > 0, we consider only
the second term for the present problem. The inte-
gration of the second term of (A9) yields,

£B<w’

3

1+(1—62)'/2) 2

f SE) Sfles— & X)dEg = ( 7121 =

™7 (amgy2 P

1
~5A (maf? — 2my8% + moff'z)]

0<{< o0,

B |:(m4§' mzx)z]{ [(2m4)”2( _ maf — mzjc')T} 4 [2(1 — é)]'2 [_ 1+é (_"B) ) h
P T 4 Am, S m ) Tve "7 \a)f
1 M2 =P ml —mk [ 1 (maf — mpX)
X (m4s“ M2x)§':| TTAT 7 (amy” MPlTTEé 2am, ] ’
_LJa+ 2o 1 me—mpX }
! R R G e e |

0<%< oo, (A10)

It is noted that Eq. (A10) is derived by truncating the probability density function given in (A9) at { = 0.
Hence, (A 10) has to be multiplied by a constant such that it satisfies the condition required to being a probability
density function. Taking this condition into consideration, (A 10) can be expressed in the following dimensionless

form:
— ¢
S, 1) = KO 3 )

2
62 + 2(1 2)1/2] (1‘,)1/2

_ 2)1/2

( €
X | X expi—ss—

— g2

_..._.__f_.._._[,,
2(1 + €)é
0=7<o00,

X exp{

0=v= o0,

explais b~ (1 - e2>‘/2112}<1 - <1>{(7)‘,7€ b+ - e2)1/211}> '

[(1 —“62)'/21!2 - 2111']} +

-1 - 62)1/21']2} X <1 - Q{m‘l‘“;)‘;ﬁ [év+ (1 — 62)]/21’]}>

e p{ 62 [ - 231 — &Vr + 12]}

201 — &))'2
1+ ¢
2(m)(1 — €
(1 + €2)*2

2)1/2
= (1~ &) :

(Al1)
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where v = dimensionless excursion = {/m{? with
§ = &4 — £, 7 = dimensionless acceleration = x/
1/2
mg'-.
The function k(e) in the above equation is associated
with the truncation of the probability density function

at { = 0, and it is given by,
1

J; " J:o fv, T)dvdr ‘

The results of computations using Eq. (A12) for
various e-values have shown that k(¢) can be approx-
imately expressed by the following function of ¢ with
sufficient accuracy in the practical range of e-values
for wind-generated seas, say, 0.3 < ¢ < 0.9:

k(e) =

(A12)

k(e) = 1.13 + 0.01156804 (A13)

Next, the joint probability density function given
in (A11) can be converted from an acceleration to a
time interval by the same procedure as was used for
the derivation of the joint probability density function
of Type I excursion and the associated time interval
(Arhan et al.,, 1976; Cavanié et al., 1976; Ezraty et al,

1977). | i

In the dimensionless form, Eq. (A14) yields,

(A14)

11+ - v
8 (1-é)y2 N’

T =

(Al5)

where X is defined in (4).

From Eq. (A11) and (A15) the joint probability den-
sity function of » and 7 can be transformed to that of
v and A which is the desired joint probability density
function of the Type II excursion given in (11).

APPENDIX B
Nomenclature

f wave frequency in Hz,

Jlx, x, %) joint probability function of the d1s-
placement, velocity and acceleration
of a Gaussian random process,

joint probability function of the excur-
sion and the associated acceleration,

joint probability density function of the
positive maxima, the positive minima
and the associated acceleration,

joint probability function of the positive
minima and the associated accelera-
tion,

S8, X)
f(EA’ EB’ .f)

f(gB: X')
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fED probability density function of the positive
maxima,
Ji(w, N), fuv, \)  joint probability density function for
the dimensionless Type I or Type
I1 excursion and the associated
time interval,

g gravitational acceleration,
H wave height,
L, Stokes limiting wave length,
m; the jth moment of the wave spectral density
L function,
Ny, Ng expected number of the positive maxima
_ and minima per unit time, respectively,
Ncy4, Npy  expected number of Type I and Type 11
_ excursion per unit time, respectively,
Ne, % the expected number of positive minima
per unit time above a specified level £5
. with its associated acceleration X,
P, P probability of occurrence of Type I or Type

II excursion, respectively,
T wave period or time interval between suc-
cessive positive maxima,

T, - average time interval between successive
positive maxima,

X, X, X displacement, velocity and acceleration of
the water surface,

a constant associated -with dimensionless
wave breakmg condition,

A Mmomy — m3, .

2 covariance matrix of the Gaussian random
process,

€ band-width parameter of the spectrum,

e excursion,

A dimensionless time 1nterva1 between pos-
itive maxima, 7/T,,,

v dimensionless excursion {/m}/?

£ Ep positive maxima and positive minima, re-
spectively,

T dimensionless acceleration, X/m}/?,
1 “ o,

(1) W f—w e "dr.
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