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ABSTRACT

Spectra of turbulence have been examined for both temperature gradient and velocity shear. The data
for this comparison are 10-15 m segments of vertical microstructure profiles (at depths of 5~100 m) obtained
during the 1978 Joint Air Sea Interaction experiment (JASIN)., From the simultancous measurement of
these two microstructure quantities, the. universal spectral constant g (the least principal rate of strain of
the velocity spectrum) has been determined to be 3.7 + 1.5. As well, the dissipation rate has been calculated
from the high-wavenumber cut-off of the temperature mlcrostructure spectra (¢p) and from velocity shear
(esw). For a range of values from 8 X 10~ to 5 X 10~7 m? s~ these two measures, €5 and esy, agree to
within a factor of 2 on average. And finally, estimates of x, (temperature dissipation rate), ¢ and mean
temperature gradient have been used to estimate a mixing efficiency, I' = 0.24.

1. Introduction

Many recent papers have described measurements
of either temperature microstructure or velocity mi-
crostructure. These papers have examined the ques-
tions of mixing and turbulence from measured ve-
locity shear on the one hand, and from the resultant
signature of temperature gradients on the other
hand. Very little has been reported on simultaneous
measurement of these quantities. It is the purpose
of this paper to examine several vertical microstruc-
ture profiles in which both velocity shear and tem-
perature gradient variance are well resolved and
measured simultaneously by sensors separated by
only a few centimeters.

It will be necessary as a framework for later dis-
cussions to present some of the formulas derived from
turbulence theory. A detailed description of the uni-
versal spectral forms for isotropic velocity turbulence
is given in the Appendix. A brief summary is given
here. The reciprocal of the Kolmogoroff length scale
is defined here to be a viscous cutoff wavenumber k,,
in cyclic units,

k, = (e7)'* [m™], (1.1)
where ¢ is the turbulent energy dissipation per unit

mass and v the kinematic viscosity. In the present

study the cyclic wavenumber K [m™'] is used
throughout where k£ = k/2x (k is the radian wave-
number). A universal spectrum of velocity shear [ Eq.
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(A9)], 6(k), is defined by .
0K) = kNe*)''Gy(Kk/k,) [s72 (cpm)”']. (1.2)

The universal nondimensional spectrum is defined in
the Appendix and numerical values are given in Ta-
ble Al. These values of G,(k/k,) are derived from
data of Nasmyth (1970, personal communication).
Eq. (1.2) expresses the hypothesis that the amplitude
versus wavenumber of the isotropic velocity-shear
spectrum is determined solely by the rate at which
energy cascades from larger to smaller scales and is
dissipated at a rate e

The dissipation rate is determined from the veloc-
ity-shear spectrum by integration and (including fac-
tors for isotropy) is given by

15 (au'\> .,
€= V(Bz) [m?s™°).

In this expression (3u/dz)’ is the variance in the
vertical gradient of turbulent fluctuations in the x
direction (z down). We could also have used
(av'/dz).

For a scalar (temperature) in a turbulent field the
spectrum of gradient fluctuations in one dimension
can be represented by the Batchelor (1959) form.
This can be written (for cyclic wavenumbers) as

(1.3)

1/2 3
sie = (2) o 8 F1ka) [°C? m? (cpm) ™)
(1.4)

where K is the cyclic wavenumber as defined above.
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The reciprocal of the Batchelor length scale is de-
fined here to be a diffusive cutoff wavenumber

kg = (e/vD*)'/* [m™],

expressed in cyclic units, where v and D are respec-
tively the viscosity and thermal diffusivity; g is a
universal constant related to the least principal rate
of strain of the velocity spectrum and x, is a tem-
perature dissipation rate defined by

5o} N . aTr 2
Xo = wf S(R)dF = 60(7£-> [°C? 51, (1.6)
0 .
where T’ is the temperature fluctuation. The uni-
versal nondimensional spectral form g(q, k/kg) is
given by

glq, k/kg) = 27r[ex'p(—a2/2)

- a fm exp(—x2/2)dx] , (1.7)
where -
a = (29)'*(27k/ k). (1.8)

The universal constant g has been estimated by
Grant et al. (1968) as 3.9 = 1.5. Gibson (1968) ar-
gues theoretically that 3'/2 < g < 2(3'/?).

The stated purpose of this paper can now be readily
defined in terms of the previous formulas. It is: 1)
to determine experimentally the value of ¢ and 2)
to compare the dissipation rate of turbulent energy
as determined directly from velocity shear to that
determined indirectly from the temperature-gradient
data.

To accomplish 1), the value of € from (1.3) is used
to calculate kg; x, is determined from (1.6). Plotting
measured temperature-gradient data in normalized
form, S,.(k)/(xs/ksD), as a function of k/ky allows
one to find the value of ¢ which gives the best fit of
the normalized data to the assumed universal form
(%q)'/2g(q, £/ks).

The alternate (and equivalent) analysis of purpose
2) is akin to the method of Dillon and Caldwell
(1980) and Caldwell et al. (1980) wherein the tur-
bulent dissipation is determined from well-resolved
temperature-gradient spectra. Using a fixed value of
g (in this case a value of ¢ = 4 was selected) the
“best-fit” of the Batchelor spectrum to the high-
wavenumber portion of the temperature-gradient
-spectrum is found. This yields the cutoff wavenumber
kg, from which one can calculate a dissipation rate
ep using Eq. (1.5). These values will be compared to
those determined simultaneously from velocity shear,
esn, using Eq. (1.3).

2. Instrumentation

The data for the present discussion were obtained
using the microstructure profiler OCTUPROBE 11
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(OCeanic TUrbulence PROBE). This instrument
(Oakey, 1977; Qakey and Elliott, 1982) consists of
a cylinder 0.15 m in diameter and 1.6 m long con-
taining electronics and recording components with
forward stings containing preamps and supporting
a variety of microstructure sensors. The vehicle is
ballasted and drag-stabilized to free-fall at a nominal
speed of 0.5-0.6 m s~'. It is recovered and redeployed
using a light, nearly neutrally buoyant tether line.
Using this tethered free-fall method one can easily
obtain five or six vertical profiles of microstructure
to a depth of 100 m during the recording limit of 25
min set by the tape recorder. Data are recorded in-
ternally in multiplexed FM (IRIG) format on a
miniature reel-to-reel NAGRA SN tape recorder.
It is replayed upon recovery of OCTUPROBE for
display, editing and analog-to-digital conversion us-
ing conventional FM-FM telemetry techniques.
During every vertical profile, signals are recorded
from temperature-gradient microstructure and two
perpendicular components of horizontal velocity-
shear microstructure and, as well, pressure and tem-
perature signals. Temperature gradient is obtained
using a DISA model 55R46 thin-film thermometer.
It is used in a transformer-coupled ac bridge which
has a nominal sensitivity of 5°C V™! with. a non-
linearity of +0.1°C. The noise at the bridge output
is equivalent to 2 X 107* °C over the bandwidth of
1-100 Hz. The frequency response of the thin-film
thermometer is limited by the boundary layer. The
equivalent time constant is obtained by examining
the probe’s response to a heated plume at various
speeds using the method described by Fabula (1968).
At the profiling speeds used for OCTUPROBE the
thin-film thermometer has an equivalent time con-
stant of ~2 m s, which means that probe frequency-
response corrections are smaller than they would be
for thermistors. On the other hand, the signal-to-
noise ratio for these two devices heavily favors therm-
istors. Horizontal velocity shear is measured using
a probe designed originally by Siddon (1971) for use
in air and later adapted by Osborn and Siddon
(1975) for use in water; it has been described in
several recent articles (Osborn and Crawford, 1980;
Osborn, 1974; Oakey, 1977, Oakey and Elliott,
1982). The shear probes (as they will be called here)
which were used in the present experiment are sim-
ilar in design to those described by Osborn and Craw-
ford (1980) but were built at the Bedford Institute
of Oceanography. A piezobimorph beam senses lift
fluctuations from velocity u(z) perpendicular to the
axis, as the probe moves axially through the water
at a mean speed V. Two probes are used to measure
two components of velocity shear. The output from
each shear probe as a function of time is given by

Eo(1) = S.oVu(?), (2.1)

where S, is a calibration factor, p is the density
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FiG. 1. A vertical profile (Station 34/1) showing velocity shear, temperature
gradient and temperature. For the section, delineated by two horizontal bars, be-
tween 17 and 32 m, e = 7 X 107 m?s™3, x, = 1.9 X 1077 °C?s”! and dT/dz = 5.7

X 1072°C m™,

of water, and ¥ is the mean vertical drop speed. The
sensor is calibrated by measuring the output response
obtained by oscillating the probe sinusoidally through
a known angle in a laminar water jet of mean
speed V.

The signals for both temperature and velocity
shear are recorded in the derivative form as well as
the direct form. Making use of the nearly constant
vertical drop speed V and using Taylor’s hypothesis
give the temperature gradient as-

dT _ 1dT(t)
dz V dt ‘(.2'2)
Similarly, for velocity shear one obtains
du _ 1du(t) 1 dE() (2.3)

dz V dt V%S, di

A thorough description of the calibration errors and
noise is deferred to the section on error analysis.

3. Selection of data for analysis

During the Joint Air Sea Interaction experiment
(JASIN) in August-September 1978, in the Rockall
Trough area northwest of Scotland ~250 vertical
profiles of microstructure were obtained to depths of
50-100 m under a variety of wind-wave conditions
and temperature-salinity structures. From these pro-
files ~600 10-15 m segments were analyzed to ob-
tain estimates of turbulent energy dissipation. The
data for the present discussion are a subset of ~25
of these segments chosen according to the following
criteria. The basic considerations were that the spec-
tra selected must be those with the best signal-to-
noise ratio for the velocity spectrum while still re-

solving “all” of the temperature spectral variance..
The analysis cut-off frequency was 100 Hz set by
filters and discriminators within OCTUPROBE. The
instrument drop speed was 0.6-0.8 m s™' during
much of the experiment, which meant that although
the shear spectrum was resolved, the temperature-
gradient spectrum, particularly at higher dissipation
levels, was often cut off at high wavenumbers. Three -
representative time-series segments are shown in
Figs. 1-3. These three stations indicate the vari-
ability of both (du'/dz) and (dT'/dz) with depth.
There is a lack of a one-to-one correspondence of
velocity to temperature (e.g., A, Fig. 1). The 10-15
m depth interval was selected before the present
study was anticipated and the source data were un-
available for what might have been a more appro-
priate choice. Sixteen blocks of data similar to those
of Figs. 1-3 with dissipation ¢ ranging from 8 X 107°-
1077 m? 573, each resolving nearly all of the temper-
ature gradient variance, were selected for the first
part of the analysis to determine the universal con-
stant q. For the second part of the analysis, where
dissipation was estimated by fitting a Batchelor curve
to the temperature-gradient spectrum, five others
were included which had dissipation levels up to 5
X 1077 m? 572 but which resolved only ~75-80% of
the temperature gradient variance. This was done in
an attempt to extend the range of comparison of the
two methods of determining e.

4. Spectral computation

The first step in the data analysis was to compute
power spectra for each component of velocity shear
and temperature-gradient microstructure. This was
accomplished by replaying the FM-multiplexed data
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FiG. 2. A vertical profile for Station 36/1 similar to Fig. 1. In this case ¢ = 4.2
X107 m?s73, xp = 1.33 X 1074 °C? 5! and dT/dz = 8.4 X 1072°C m™".

tape through a bank of filters and discriminators to
reproduce the analog record. This analog time series
was digitized at 200 Hz (Nyquist frequency of 100
Hz). This digital time series was converted to phys-
ical units by applying appropriate calibrations and
scaling factors. Spectra were computed using blocks
of 1024 points corresponding to a depth interval of
~3 m for a vehicle drop speed of 0.5-0.6 m s,
Several (usually five) blocks were averaged to pro-
vide the power spectrum for a depth interval of 10-
15 m. Frequency response corrections were applied
at the spectral stage to correct for the assumed ideal
response of the differentiator circuits in OCTU-
PROBE, the response of filters and discriminators,

and the frequency response of the sensors. The re-
sultant power spectra [(physical units)®? Hz™! versus
frequency (Hz)] were calculated in the one-third
octave band-averaged form. )

Fig. 4 illustrates a representative spectrum for ve-
locity shear. The ordinate and abscissa have been
converted to power (s72 cpm ') and wavenumber
(cpm) using the mean instrument drop speed V [e.g.,
k = f/V and ¢(k) = #(f)V']. The correction for
electronic response increases with frequency, being
~10(+6%) at 100 cpm. The shear-probe-response
correction is applied assuming that the sensor has a
response function equivalent to a single-pole filter
with a cutoff scale A.. The correction is thus a mul-
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FiG. 3. A vertic;il profile for Station 44/5 similar to Fig. 1. In this case ¢ = 1.37
X 1078 m? s, x, = 2.5 X 1077 °C? 57" and dT/dz = 3.98 X 1072°C m~".
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F1G. 4. The power spectrum of velocity shear for Station 34/1.
The spectrum for shear sensor number one is shown as a solid
circle, and for the perpendicular component measured by shear
sensor number two as a solid square. The error bars reflect the
corrections for noise (indicated as a band between the upper and
lower noise estimate) and for electronic response. The magnitude
and errors associated with the electronic response correction are
shown below. The probe correction used (A = 2 cm) is shown as
the bold curve in the bottom figure. The corresponding corrections
for A = 1 cm and A = 3 cm are indicated for comparison. The
solid curve through the spectral estimates is Nasmyth’s universal
curve for e = 7 X 107 m? 573,

tiplier [1 + (kX.)?]. The value of A, is poorly known
but our best estimate is A, = 0.02 m which is the
value we have used. More detail leading to this choice
is deferred to Section 7. The final.correction applied
to the spectrum is to subtract the noise. The noise
curve was estimated from those sections of data
where the signal was the lowest. The noise curve
obtained from many very-low-noise blocks is consis-
tent with the curve shown within a factor of 2 and
is shown as two limiting curves, twice the curve used
and one-half the curve used. The resultant spectral
estimates for two components of shear (SH1 = solid
circle, SH2 = solid square) are shown in Fig. 4 where
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the error bars include only the uncertainty in noise
subtraction and electronic correction. Dissipation is
obtained by integrating the corrected spectrum, and
¢ is calculated using this variance and the expression
given in Eq. (1.3). The solid curve is the “universal”
turbulence curve of Eq. (1.2) based on Nasmyth’s
data of Table Al and ¢ from Eq. (1.3).

Fig. 5 illustrates a spectrum of temperature gra-
dient corrected in a fashion similar to that previously
described for velocity shear. The corrections for dif-
ferentiator and filter-discriminator have been dis-
played as *“‘electronic” spectral corrections and have
an error of 6% at 100 cpm. The thin-film-probe
frequency response is deterrmined by finding its re-
sponse to a heated plume at several speeds (Fabula,
1968). The measured quantity in the calibration is
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F1G. 5. The teinperature gradient power spectrum for Station
44/5. The error bars include the indicated uncertainties in noise
subtraction (indicated by the upper and lower estimates of the
noise curve) and for electronic frequency response and probe cor-
rection. The correction for the transfer function of the electronic
circuits is shown and, as well, the probe correction which was
based on the calibration method of Fabula. The solid curve through
the data is the Batchelor curve for ¢ measured using simultaneous
velocity shear measurement and x, from the integral of the tem-
perature gradient spectrum. S
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where ¥V is the speed at which the probe is driven

through the plume, A is related to the boundary layer
thickness, and D is the thermal diffusivity; (A?/D),
which has the dimensions of time, is measured using
Fabula’s theory at many (i) speeds and the quantity

C= n—l 2 C,'
1

is found to be constant within +15% for speeds from
0.20 to 1.5 m s~'. The value of

T = AzD—l = C/VO'“,

where V is now the mean drop speed of OCTU-
PROBE for the section of data analyzed is used as
the thin-film-probe correction parameter in the for-

mula
4.1)

The +15% error in 7 translates to a +5% error at 1
cpm and +25% at 100 cpm. A noise curve was ob-
tained from the quietest blocks of data measured,
and the indicated noise region represents the uncer-
tainty in this curve (from twice to one-half the curve
used in the analysis).

The solid dots in Fig. 5 are the corrected spectral
estimates with the error bars including the electronic
correction, probe correction and noise subtraction.

A(k) = Aueas(k) exp(nkV7)'/2,
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FI1G. 6. The variance conserving spectral plot for Station 34/1.
Two components of velocity shear are shown as shear one (solid
dot) with ¢ = 7.7 X 1078 m? 573, shear two (solid triangle) with
€& = 6.2 X 107® m? 57 and temperature gradient (solid square)
with x, = 1.91 X 1077 °C? 5™\, The variance is the integral under
these spectra and is used to determine € and x,.
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FIG. 7. The variance-conserving spectral plot for Station 36/1
similar to Fig. 6 with ¢, = 3.9 X 10 m? s>, ¢; = 4.5 X 107 m?
s73, xe = 1.33 X 1076 °C2s7,

From this curve we obtain, by integration, the tem-
perature-gradient variance and from this, calculate
X using Eq. (1.6). The solid curve is the Batchelor
spectrum computed using the value of ¢ from the
simultaneous shear measurement to calculate kg, the
value of x, from integrating the curve of Fig. 5. The
value ¢ = 4.15 was used in Fig. 5, which gave the
best fit to the data above 10 cpm.

To illustrate the extent to which the spectra are
resolved, three examples of data are shown in Figs.
6, 7 and 8, the variance-conserving plots of two com-
ponents of velocity shear and temperature gradient
for the three time series of Figs. 1, 2 and 3 respec-
tively. In this presentation equal areas represent
equal variance. There are differences in detail be-
tween du'/dz and dv'/dz, but the integral property
€ agrees within ~ £20%. In all cases the total vari-
ance is well resolved. Spectra such as these have been
used in the analysis to estimate q.

5. Determination of ¢

Each of the 16 spectra selected to estimate the
parameter g were normalized and plotted as
[Smeas(k:)/(xg/ksD)] versus the non-dimensional
wavenumber k;/kg. The wavenumber k; is a discrete
value of k; x, was obtained from the integral of the
temperature variance, and k; was determined from
Eq. (1.5) with e determined from the average vari-
ance for the two measured spectra of velocity shear.



262

STATION 44/5

T | “ Ll e
1.6 2.4
124 b8
s ] Eow
b / £
3 b4 E O
» A <
o 3 ¢\ E -
s 08 wd A 12 7
<5 7 l' A — [] g =
@ ] e
8 ] =
x -1 ta / R\ r wn
I\ .§|< =
3 H \ E
! \
3 ! 1 -
04 N ,' ‘x\‘ .\ 0.6
3 -, L] -
. \
o\ o
"\nfr /.,- \\:_/.o b
0 = T - -0
| 10 N 100 1000
k (cpm)

FI1G. 8. The variance-conserving spectral plot for Station 44/5
similar to Fig. 6 with ¢, = 1.4, X 108 m?s73, ¢, = 1.32 X 1078
m?s~* and xo = 2.5 X 1077 °C? 57,

A scatter plot of these data is shown in Fig. 9a. A
similar plot of the same data in variance-conserving
form is shown in Fig. 10a. The best estimate of g
was obtained by finding the least-square residual
defined by '

R(q = 21: é: [SMEAs(kl)/(Xo/kBD)

- (4/2)‘/24?(4, EI/kB)]za (5.1)

where SMEAS(E,)/(x,/kBD) is the normalized mea-
sured spectral 1ntens1ty at a wavenumber k,
(q/2)%g(q, k,/ kg) is the value computed from Eq.
(1.4), and N is the number of spectra. R(q) was
determined for values of 1 < ¢ < 10 in intervals of
= 0.05. The values of / were chosen to include
data for values of k between 10 and 150 cpm (ex-
cluding the last temperature-gradient spectral esti-
mate which often has a large error bar because of
the noise subtraction). This corresponds to 0.01
< k/kg < 0.15. A plot of R(q) vs g is shown in Fig.
11. It shows a minimum at g = 3.7. To illustrate the
quality of the fit, the points of the scatter plot in Fig.
* 10a have been grouped in one-third octave bands and
the mean and standard deviation determined. These
are plotted for the variance-conserving form in Fig.
10b. Superimposed on these data in Fig. 10b are the
Batchelor curves for g = 1, 2, 3.7, 8 with the curve
for g = 3.7 the best fit, indicated as a bold solid line.
A similar grouping for the points in Fig. 9a is shown
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in 9b along with the Batchelor curve for ¢ = 3.7.
Discrepancies between the curve and the data are
evident and will be discussed later.

An alternate determination of the mean g was
achieved by finding the best value for each spectrum
by applying Eq. (5.1) to each spectrum individually
[e.g., N = 1 in Eq. (5.1)]. The results of this com-
putation are shown in Table 1. There is a wide vari-
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F1G. 9. (a) The scatter plot for temperature gradient data nor-
malized to (xg/ksD) versus the non-dimensional wavenumber
(k/ks). The plot includes for 16 spectra. The region over which
a fit to the universal Batchelor form is indicated. (b) As in (a)
except grouped into one-third octave bands with the mean in a
band shown as a solid dot and where the error bars are the standard
deviation within the band. The solid curve is the Batchelor curve
which best fits the data for g = 3.7,
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ation in the value of ¢ which best fits individual spec-
tra, from g = 1.55 for station 42/3(21-36 m) to
g = 6.95 for station 34/1(17-32 m). The mean ¢
= 3.67 is, not surprisingly, the same as the value
obtained above for the ensemble and the standard
deviation is 1.52.

6. Determination of ¢ from temperature gradient

An alternative but equivalent approach to the data
is to assume that the value of ¢ is a constant, and
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Fi1G. 10. (a) The scatter plot of the data of Fig. 9 is shown in
variance-conserving form. The region over which the data was fit
to the Batchelor form is indicated. (b) As in (a) except grouped
in one-third octave bands with the band mean shown as a solid

_dot and the error bars are the standard deviation within the band.
The curves for (g/2)/*k/ksg(q, k/kg) are shown for different
values ¢ spanning the “best fit” curve for ¢ = 3.7 shown more
boldly. :
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F1G. 11. The plot of the least-squares residual curve R(g) shown
as a solid curve plotted versus ¢g. The minimum at g = 3.7 rep-
resents the “best fit.” (a) The sensitivity of the calculation of
R(g)hn to the estimated maximum random errors: 8V = 0.05,
de = 0.30, dx, = 0.20 obtained from a Monte Carlo calculation
which gives ¢ = 3.65 + 0.20. (b) A similar test of the sensitivity
of R(g)min to systematic errors: de = 0.32, 6X = 0.17 which gives
g = 3.6 £0.59.

is known, and to find the Batchelor spectrum which
best fits each measured spectrum. From this best fit
we obtain a cutoff scale k; from which we can es-
timate e since

e = k;*vD?2 (6.1)

As before, v = 1.27 X 107® m? s™! is the kinematic
viscosity and D = 1.39 X 107° m? s™! is the thermal

TABLE 1. Determination of ¢ for individual spectra.

Station q Station q
18/5 (46-66)* 1.70 38/1 (19-34) 4.55
32/1 (67-84) 5.65 38/4 (27-45) 2.15
34/1 (17-32) 6.95 42/3 (21-36) 2.35
34/2 (17-31) 3.00 42/3 (36-51) 1.55
36/1 (25-35) 4.70 44/2 (20-30) 5.00
36/2 (25-35) 2.80 44/5 (18-33) 4.15
36/3 (25-37) 3.90 48/3 (16-23) 4.15
36/4 (24-34) 4.00 48/9 (24-30) 2.15
Mean ¢ 3.67 £ 1.52

* Depth interval (m) shown in parentheses.
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TABLE 2. Summary of experimental data.
Depth dT/dz Xs Cox esH €z
Station (m) (°Cm™) (°C?*s™) Number (m?s7%) (m?s7%) €s/esn r
18/5 46-66 10.6 28.6 30 6.8 23.6 3.47 0.259
24/3 44-55 4.17 13.6 94 10.0 8.3 0.83 0.213
24/5 8-12 311 73.4 910 80.4 31.0* 0.39 0.192
28/4 38-55 8.1 79.7 146 20.0 70.5 3.53 0.321
30/1 5-21 0.487 140. 71000 315. 433.0* 1.37 0.59
32/1 67-84 1.97 22.1 685 27.4 16.8 0.61 0.267
34/t 17-32 5.7 19.1 69 69.8 27.2 0.39 0.031
34/2 17-31 5.7 70.5 256 80.8 121. 1.49 0.100
34/4 18-33 4.7 108. 586 133. 158. 1.19 0.113
34/5 18-33 5.7 40.1 146 130. 77.1 0.59 0.035
36/1 25-35 8.4 133. 224 42.1 38.1 091 0.246
36/2 25-35 159 183. 86 3.5 68.0 -2.16 0.239
36/3 25-37 7.6 134. 281 75.2 96.5 1.29 0.153
36/4 24-34 8.9 142. 216 153. 170. 1.11 0.068
38/1 19-34 11.2 572. 548 69.5 68.6 0.99 0.480
38/3 11-27 2.55 144. 2662 362. 161.0* 0.45 0.102
38/4 27-45 13.2 168. 115 27.4 77.2 2.82 0.303
42/3 21-36 6.45 73.9 213 32.5 52.5 1.62 0.230
42/3 36-51 2.06 104 2930 31.8 38.9 1.22 1.037
42/4 4-21 0.463 36.4 20300 392. 320.0* 0.82 0.131
42/5 4-20 0.243 29.3 59300 516. 333.0* 0.65 0.153
4472 20-30 3.5 70.2 116 49.5 28.8 0.58 0.109
44/5 18-33 3.98 25.0 190 13.7 11.6 0.85 0.300
48/3 16-23 1.3 229 1720 30.6 20.4 . 0.67 0.376
48/9 24-30 9.0 178. 260 30.8 433 1.41 0.420
‘ X102 X107 X107° X107°
Mean 1.26 0.259
+0.88 +0.214

* Temperature variance not fully resolved.

conductivity. This calculation has been done using
a value of g = 4 for each of the data sets listed in
Table 2. The value of ¢ = 4 was chosen for conve-
nience. [t could be any reasonable value, but is con-
sistent with the value determined here and the value
3.9 = 1.5 reported by Grant et al. (1968). An error
in the choice of g represents a systematic error in the
derived values of ¢ from Eq. (6.1) since € «c g%
The graphical method of fitting “universal” curves
is described by Stewart and Grant (1962). The ref-
erence curve, in this case the Batchelor curve,
(g/2)'%g(q, k/kz), for ¢ = 4 is plotted on log-log
paper, versus the nondimensional wavenumber
k/kp and a convenient reference point marked. The
data [ Smeas(k) vs k] are plotted on log-log paper of
the same size. A line of slope —1 through the point

[(VDZ)"/‘?, z (vDZ)‘/“]

is drawn on the experimental curve. This is illustrated
in Fig. 12 for station 36/1. The “universal” curve
is aligned to give the best fit to the experimental data
with the constraint that the reference mark (-i;) on
the universal curve must be on the line of slope —1.
This method provides a ratio of the axes of the uni-
versal curve and the data since both are plotted in

log-log form. The reference k/kz which corre-
sponds to a wavenumber k for the data is obtained
and from this, by ratio, the experimental value of kj
is determined. Dissipation ez is calculated from Eq.
(6.1) where the subscript B denotes that it is deter-
mined from the Batchelor spectral fit to temperature-
gradient data. For the sample shown in Fig. 12 the
reference point is k/kz = 0.1 and the value of K
= 112 cpm. From this, kg 1120 m™" and ¢
= (1120)* X (1.27 X 107%) X (1.39 X 1077) = 3.8
X 1078 m? 573, The corresponding value obtained
from the shear-probe measurements was esy = 4.2
X 1078 m? 57, Only a few examples agree this well!

The previous graphical analysis was done for 20
examples where the temperature variance was well
resolved. These data are listed in Table 2 which also
includes the essential specifications of each profile
analyzed including depth interval, mean gradient,
xs and, in particular, the values of esy and €. The
agreement between the two methods is illustrated in
Fig. 13 which shows the 20 values of ¢; plotted as
solid circles against the corresponding values of egy.
The solid line represents “perfect” agreement. Five
other spectra were used for which only 70-80% of
the temperature-gradient variance was resolved.
These were analyzed with the previously described
graphical method with the relaxed constraint that
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the reference mark could be moved above the line
of slope —1 (by up to 20%). These estimates of e,
which are higher than the previous 20 (and thereby
explain the cutoff of the temperature spectrum), are
plotted as solid squares on Fig. 13.

7. Error analysis

This section will attempt to describe as quantita-
tively as possible the sources of error associated with
the determined spectral shapes, the magnitude of the
errors in integral quantities such as e and x,, and an
estimate of the confidence limits associated with the

“determination of g. The errors have been categorized

into “random” errors associated with measurement
uncertainties from data block to data block and
“systematic” errors which are non-random in the
sense that the errors apply equally to all sets of data.
These errors are summarized in Table 3, and the
discussion to follow will describe the methods used
to estimate these errors.

a. Mean drop speed

The mean drop speed V is determined from the
change in the measured pressure signal over the time
interval of the analysis block of data. Uncertainties
in the measured voltage, time interval and sensor

STATION 36/}
P R V. | Al s | SV

107 s

2m™2/cpm

s(k) (¢

k {cpm)

FIG. 12. lllustrates the method of obtaining a cutoff scale £ for
temperature gradient. The reference mark (+) at 13/ kg = 0.1 of
the universal curve indicated in Fig. 9b is constrained to the line
of slope —1 in obtaining the best fit to the data. In this case, the
best fit is at 112 cpm indicated by an arrow. This graphical tech-
nique of fitting the Batchelor curve to an experimental data set
allows one to estimate kg (in this case 1120 m™') and hence the
dissipation e.
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Fi1G. 13. Dissipation obtained from temperature gradient mea-
surements plotted versus the simultaneously obtained quantity
from shear probe measurements. The solid line represents perfect
agreement, the two dashed lines the factor 1.8, and (1.8)7" rep-
resent the estimated measurement uncertainties in ez and egyy (ex-
clusive of questions of isotropy).

calibration contribute 1-2%. The difference in actual
speed ¥(z) at any point in the block of data may
vary from the mean by as much as +2% as a result
of non-constant drop speed. A further uncertainty
in the water speed relative to the probe as a result
of wave motion or blockage is difficult to estimate.
Combining these sources, the best estimate of the
error in V is £5%.

b. Velocity shear and dissipation

An error in the mean speed V will cause an error
four times as large in the calculated dissipation, as
is shown by Eq. (2.3) since the power spectrum is
(dv'/dz)*. This error occurs randomly in our mea-
surements and contributes +20%. Shear probes are
calibrated by sinusoidally changing their angle of
attack to a mean flow of speed ¥ which is generated
by a laminar free jet. The repeatability between cal-
ibrations is always better than +5% and the rms scat-
ter for several calibrations of many probes is +2.5%.
The systematic errors associated with probe calibra-
tion are difficult to estimate but, to acknowledge
them, the above error has been (optimistically) dou-
bled, yielding a calibration error of £5% in amplitude
or +10% in power. The uncertainty in the gain of
electronic amplifiers, filters and other components of
the data-recording playback system of +2% can con-
tribute another +4% error to the measured e. The
transfer function for filters and differentiator circuits
is shown in Fig. 4. The correction factor at 100 cpm
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TABLE 3. Error summary.

Variable Error source Random Systematic Qualifiers
vV Mean drop speed +5%
€ ' vV +20%
Probe calibration +10%
Electronic calibration +4%
Electronic frequency response +3%
Probe frequency response +15% +10% at ¢ = 107* m? s
+20% at ¢ = 107" m? s
Noise subtraction +7%
max error +27% +32%
rms error +21% +19%
Xo | 4 +10%
Probe calibration +1.6%
Electronic calibration +4%
Electronic and probe
frequency response +11%
Noise subtraction +10%
max error +20% +17%
rms error +15% +12%

may be as large as 10 in power with an uncertainty
of 6% and progressively smaller at lower wavenum-
bers where, for example, at 15 cpm the correction
is ~1.2 and the error +2%. The spectral shape is
affected at these levels by this error source. In the
integral sense where the majority of the variance
occurs at wavenumbers <50 cpm the contribution to
the error in the determination of the variance is +3%.
The spatial response of the sensor is very poorly
known. From geometrical considerations (Osborn
and Crawford, 1980), with the sensitive length-of-
. probe-tip of 1 cm, a cutoff equivalent to A, = 2 cm
is not unreasonable. A preliminary study at the Bed-
ford Institute indicated that A\, = 2 + 1 cm by com-
paring the shear probe to a thin-film X-probe. A com-
parison of the spectral shape using a correction of
A, = 2 cm agrees reasonably with the universal curve
of Nasmyth (Oakey and Elliott, 1982). The lack of
a definitive experiment to define A, precisely has led
to the caveat that because of the probe’s size it cannot
have a value of A, < 1 cm and a variety of circum-
stantial evidence indicates it to be <3 cm. The choice
of A, = 2 cm is the compromise chosen. Spectral
shapes will be affected more at high wavenumbers
than at low and with the assumption of a simple
single-pole form will have a range of corrections
shown in Fig. 4. Because this is a log-log plot, an
error in the value of . from the assumed value of
2 will add to or subtract from the curve presented
within the limits of the error band shown below. In
the determination of ¢, the error resulting from A,
at each wavenumber is weighted by the variance at
that wavenumber. Since the peak of the dissipation
curve is at a higher wavenumber for higher dissi-
pation levels, the integrated error is larger at higher
values of ¢. Using the probe correction curve of Fig.

4 and the “universal” turbulence spectrum of Table
A1l one finds the error in € (from A.) to be 4% for
e=10"°m?s3 10% for e = 107® m? s73, 20% at
= 107" m?s% and 36% at ¢ = 107 m? s™>. Since the
data for this experiment are mostly between 107® and
1077 m? s73, the number quoted in the table is +£15%.
The final source of error is that due to the uncertainty
of the noise curve estimated from many blocks of
data with the lowest measured signals. The curve
selected had points scattered above and below it by
a factor of 2 which was accepted as the estimate of
this noise curve shown in Fig. 4. The error bars on
the data points reflect this noise uncertainty. The
scatter in estimates of variance using this noise curve
produced a value of +7% for the data presented in
this paper.

In summarizing the combined effects of these er-
rors, random errors may contribute a maximum error
of +27% (and an rms error of 21%). The systematic
errors contribute a maximum of *32% (or an rms
of £19%). The combination may yield a maximum
of £59% (or an rms of £30%). There is the further
consideration of the accuracy of the determination
of e from Eq. (1.3) and assumptions of isotropy which
alone may introduce an error of +50% into our values
of €. The conclusion is (optimistically) that e is mea-
sured to within a factor of 2.

il

¢. Temperature gradient and x,

For temperature-gradient measurements the un-
certainty in the mean drop speed ¥ causes a random
error twice as large in the calculation of variance or,
alternately, x,, as indicated by Eq. (1.6). The probe
calibration is accurate to £0.2°C for 25°C full scale
which provides a systematic error in the determi-
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nation of x, since the same probe and electronics
were used throughout this experiment. The calibra-
tion of electronic bridges, filters and discriminators
can lead to a further +4% uncertainty in the vari-
ance. The spectral data are corrected for the elec-
tronic transfer function as indicated in Fig. 5. The
error in this correction increases with wavenumber
(or frequency) to +6% at 100 cpm. To correct the
spectral intensities for the response of the thin-film
probe the measured spectral intensities are multi-
plied by a factor

C = exp[(xkV7)"?], (7.1)

as defined in (4.1). The equivalent time constant 7
determined by Fabula’s method (Fabula, 1968) as
defined earlier has an uncertainty of +15%. From
(7.1), for a fractional error 7 of d7/7 there is a cor-
responding fractional error in C given by

dC _ (xkVr)' or
c 2 T

Thus, at 1 cpm the error in the correction is 1.4%,
while at 100 cpm it is 15%. This is shown in Fig. 5.
Using these error estimates for electronic and probe
corrections and computing the variance-weighted
error in the value of x, for many of the spectra lead
to an estimate of =11% in the value of x, from this
source. The noise “curve’ shown in Fig. 5 was ob-
tained by examining the lowest-temperature-gra-
dient blocks available. The upper limit is twice the
curve used, and the lower limit is one-half the curve
- used. Data points for low-noise blocks analyzed were
between these limits. The error bars on the plotted
points of Fig. 5 reflect the uncertainty from noise,
probe and electronic frequency response. The vari-
ance under the noise curve integrated to 100 cpm
was equivalent to a xnosg =~ 2 X 1078 °C? s7!. The
associated factor-of-2 uncertainty in this quantity
leads to an rms error of £10% in x, resulting from
errors in noise subtraction for the 16 sets of data in
Table 2.

In summary, random analysis errors lead to an
estimate of +20%, systematic sources to +£17% for
a maximum error of £37% in the values of x,. There
is, of course, the question of applicability of Eq. (1.6)
for turbulence which is not isotropic, and an un-
specified but possibly large error depending on the
deviation from isotropy. '

d. The determination of q

The determination of ¢ by Eq. (5.1) has been dis-
cussed previously. The results of R(g) vs g for the
whole data set shown in Fig. 11 indicate that (in the
least-square sense) ¢ = 3.7. The results of a similar
analysis for individual spectra using Eq. (5.1) are
listed in Table 2. From this table g = 3.67 + 1.52.
If g is a constant and the error in its determination
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is a result of random and systematic errors in V, e
and x,, it is instructive to assess the effect of these
errors. This has been done by finding the sensitivity
of the minimum in R(g) to both random and sys-
tematic errors using a simple Monte Carlo technique.
For the maximum random errors, 6V = +5%, ée¢
= +30%, d6xy = +20%, the computation was made
by ascribing a random Gaussian-distributed error to
each ¥V, € and x, of the 16 sets of data used in the
computation. This was done 100 times to yield the
histogram of ¢ values shown in Fig. 11A. The his-
togram with mean ¢ = 3.65 indicates that random
errors yield a standard deviation o = 0.20.

A similar computation was made for the system-
atic errors in e and x,. However, in this case the same
random Gaussian-distributed error was applied uni-
formly to each ¢ and x; for the 16 spectra used in
the calculation. For 100 determinations using the
maximum systematic error ée = 32% and 6x, = 17%,
the histogram in Fig. 11B indicates a mean-g = 3.6
and a contribution to the standard deviation ¢ = 0.59.
The determination of ¢ is less dependent on the ran-
dom error sources than on the systematic errors.

The sum of errors in ¢ which may arise from ran-
dom and systematic sources according to this Monte
Carlo sensitivity analysis indicate ¢ = 3.65 + 0.8.
This is much less than the observed scatter from
Table 2 of g = 3.67 + 1.52 and indicates a variability
not ascribable to experimental errors.

e. Graphical determination of ¢

The largest source of error is the determination
of the best fit of the “universal” Batchelor curve to
the data curve. The graphical method is subjective
and may have an associated error of £10%, which
by Eq. (6.1) results in £40% in €z. An error in x,
(if it is fully resolved) should cause little error in
¢ because it is essentially included, then divided out.
An error in ¥V of +5% can yield an error in k of .
+5% and therefore from Eq. (6.1) an error in ¢z of
+20%. However, an equal error occurs in egy from
Eq. (2.3) so that in the ratio of €5/ esy this error drops
out. Accepting the error as +40% in ¢z and using the
sum of the rms random and systematic errors (21%
+ 19%) as the probable error in the measurement
of esy (£40%) yields the error in the ratio R
= GB/GSH of

6—Ig=
R

dep| . |Oesu

= 0.80. (7.2)

€p €SH

In Fig. 13 the solid line (R = 1) is bracketed by
dashed parallel lines of R = 1.8 and R = 1.87! rep-
resenting the error limit of Eq. (7.2). The majority
of the observed ratios fall within these limits. As
shown in Table 3, the mean and standard deviation
of the observed ez/esy ratios is 1.26 + 0.88.
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8. Discussion and conclusions

Several questions can be addressed on the basis
of the results presented. One can examine the extent
to which ¢ is a universal constant. Second, it is pos-
sible to discuss how well the shape of temperature-
gradient spectra is described by the Batchelor spec-
trum. And finally, one can ask whether dissipation
rates can be estimated from temperature-gradient
microstructure alone.

The least principal rate of strain ¢ of the Kol-
mogoroff velocity spectrum has been considered to
be a universal constant. Batchelor’s derivation
(Batchelor, 1959) was done in terms of a three-di-
mensional spectrum and the present analysis assumes
isotropy and uses the derived one-dimensional form.
If there is considerable anisotropy, ¢ may vary as a
result. From a practical point of view, it may be
difficult to distinguished experimental errors from
anisotropy effects. The values of ¢ which were ob-
tained for each spectrum individually are listed in
Table 2. These values indicate that ¢ = 3.67 £ 1.52.
The estimated error in g resulting from the sensitivity
of the technique to errors in V, € and x, was deter-
mined by a simple Monte Carlo method. This yielded
the result that g = 3.7 + 0.8, based on the estimates
of maximum error in Table 3. Thus the measured
scatter.in g is larger than that expected from com-
bined random and systematic errors (i.e., 1.52 com-
pared to 0.8). It must be emphasized that the error
estimates do not include deviations from isotropy in
the calculation of x, and e. One may then speculate
that the difference between the standard deviation
of measured values of g and the estimated experi-
mental errors results from anisotropy. The difference
is £1.28 [in the rms sense, i.e., (1.5 — 0.82)/2]. The
effect of systematic errors in € (32%) and x, (17%)
yielded an error in g of £0.59 (16%) as indicated in
Fig. 11b. Thus an error due to anisotropy of the order
of £75% would be sufficient to explain the additional
scatter of +1.28 (35%) observed in q.

The shapes of the individual temperature-micro-
structure spectra are consistent with the Batchelor
spectral form when normalized using the indepen-
dently measured dissipation to determine the cutoff
wavenumber kz. An example is shown in Fig. 5 for
Station 44/5 where the fit is achieved with g = 4.15.
The agreement is in a sense surprising because re-
gions of large temperature gradients are not in one-
to-one correspondence to regions of large velocity
microstructure. This is evident in Fig. 1 at the level
marked A. If a follow-on analysis were done it might
benefit from selecting data in shorter records and
examining the statistics on a scale more character-
istic of the generation scales of microstructure.

The composite spectrum of Fig. 9b is compared
to the Batchelor form for ¢ = 3.7, the value which
was the “best-fit” to the data from the sixteen spectra
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used in the calculation. The fit is not as good as for
individual spectra as a result of both random and
systematic errors in ¥, € and x, and, as discussed
previously, the possible variations in g as a result of
anisotropy. The errors in ¥ and ¢ will result in im-
properly normalizing the spectra to the correct non-
dimensional wavenumber k/ ks. This effectively
broadens the peak in the variance-conserving spectra
k¢(k) of Fig. 10b (or flattens the spectrum in the
#(k) form of Fig. 9). This may explain part of the
disagreement between the universal Batchelor form
and the measured data. It is interesting to note, how-
ever, that Williams and Paulson (1977) observed a
similar spectral form (their Fig. 11) in measurements
in air. Using the standard deviation of the data points
as a measure of ¢ the data are low near the peak of
the Batchelor curve and high ‘above. In the “roll-off ”
portion of the spectrum (k/kg > 0.01) the Batchelor
curve is consistent with the data at +2 standard de-
viations.

In the +1 portion of the spectrum, the data are
higher than the Batchelor curve. This is in agreement
with previous work of Dillon and Caldwell (1980)
who showed similar results for Cox numbers <500.
In the present study the median Cox number is
~250. In this low wavenumber region effects such
as stratification may be important in defining the
spectral shape even though at high wavenumbers the
spectral roll-off depends only on the local dissipation
rate.

The final question posed in the opening paragraph
of the discussion is whether dissipation levels can be
estimated by temperature-gradient microstructure
measurements alone. This technique has been ex-
plored extensively by Dillon and Caldwell (1980) and
Caldwell er al. (1980). Caldwell er al. (1981) have
shown that, consistent with their method, the Batch-
elor wavenumber determines the cutoff wavenumber
in vertical temperature gradient spectra in a con-
stant-stress bottom boundary layer. The results of
the present experiment, summarized in Fig. 13, show
that when dissipation ¢ is determined from well-re-
solved temperature-gradient spectra it agrees within
a factor of 2 to the direct measurement of dissipation
from velocity shear, esy. It is tempting to apply these
results to oceanic studies under a wide variety of
regimes. While the results are applicable to active
microstructure patches such as those chosen here,
others which may be in a decaying state and more
anisotropic may show less consistent agreement.
More proof will be required before this generaliza-
tion can be made.

Lilly et al. (1974) and Weinstock (1978) have used
a scaling for vertical diffusivity which has the form .

K, =T¢/N? (8.1)

where N is the Brunt-Viisild frequency. Lilly ez al.
(1974) found T = 0.33 from atmospheric measure-
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ments. Weinstock (1980) proposed that I' = 0.8 on
theoretical grounds. It is this latter value which is
used by Caldwell et al. (1980) in their calculation
of dissipation from temperature-gradient measure-
ments. On energy arguments Osborn (1980) pro-
posed a vertical eddy coefficient for density of

K, < 0.2¢/N2. (8.2)

If the eddy coefficients for different scalar variables
are the same (Munk, 1966) then there are three ap-
proaches with different values of T

The factor T' can be estimated from the data of
Table 2 in the following way. The arguments of
Osborn and Cox (1972) lead to the vertical eddy
diffusivity
(8T'/9z)?
(8T /3z)*°

where D is the thermal diffusivity, d7'/dz* the tem-
perature gradient variance, d7/9z the mean tem-
perature gradient, and the factor (2 = 1) allows for
departures from isotropy. Making the assumption
that the Brunt-Viisdld frequency can be obtained
from the temperature gradient, one can write

gdp oT
=&8%_

p Oz £ %2
where a = 2 X 107 °C! is the coefficient of thermal

expansion. Expressing the variance in Eq. (8.3) in
terms of x,; one can write

N2
r=NK

K.=Q2x1)D (8.3)

N? (8.4)

= ga(% = V) —’g‘; (8.5)

‘oz

An alternate derivation of this equation was provided
the author by Greg Holloway (personal commu-
nication, 1981). These values I' (ignoring the uncer-
tainty + ') are calculated and listed in Table 2. The
mean and standard deviation are 0.259 + 0.21 (or
0.235 + 0.14 ignoring the largest and smallest). This

FiG. 14. Histogram of the number of occurrences of the mixing
coefficient T. The mean is indicated by an arrow.
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TABLE Al. Universal velocity spectra.

K/k, F(K/k,) Falk/ky) Go(k/k,)
2.83 X 107* 1.254 X 10° 1.671 X 10° 0.5285
5.03; 4.799 X 10* 6.397 X 10* 0.6397
8.95¢ 1.842 X 10* 2.455 X 10* 0.7763
+1.59, X 1073 7.050 X 10° 9.404 X 10° 0.9404
2.83 2.699 X 10? 3.598 X 10* 1.138
5.03, 1.036 X 10° 1.380 X 10° 1.380
8.95, 3.964 X 10? 5.320 x 10? 1.682
1.59;, X 1072 1.490 x 102 2.302 X 10? 2.302
2.83 3.574 X 10! 6.880 X 10! 2.176
5.03, 5.600 X 10° 1.373 X 10! 1.373
797, 7.214 X 107" 2.101 X 10° 0.5278
1.26, X 107 6.580 X 1072 2127 X 107! 0.1342
1.59, 1.812 X 1072 6.161 X 1072 0.0616
2.00, 4.552 X 107 1.570 X 1072 0.0249
2.52, 1.197 X 1072 4,011 X 107 0.0101

L= (™ K= fv
Velocity spectra
dulk) = (%) *F(k/k,)  [(ms™') (cpm)™']
én(k) = () /*Fylk/k;) [(ms™') (cpm)™]
Shear or gradient spectrum
(2mEYen(K) = kX e*)*Golk/k,) [s7? (cpm)~']

value is consistent with the values 0.20 and 0.33 used
by Osborn (1980) and Lilly er al. (1974), respec-
tively, but is not consistent with that proposed by
Weinstock (1980). The scaling can be represented
by the measurements of this experiment as

K, = (1 £0.5)(0.24)¢/N2. (8.6)

The quantity I' is a mixing coefficient representing
the ratio of potential energy to kinetic energy dis-
sipation. To show more clearly the distribution of
T a histogram of the values in Table 2 is presented
in Fig. 14. It would be most interesting to examine
the variability of this quantity in a much larger range
of oceanic regimes.

Acknowledgments. The author wishes to thank the
Applied Physics Laboratory, University of Washing-
ton for their financial assistance and hospitality dur-
ing a stimulating sabbatical year spent in their lab-
oratory. Mike Gregg, Terry Ewart and Tom Sanford
of the Ocean Physics Division deserve special thanks.
I would like to acknowledge the special contribution
of Greg Holloway who suggested the comparison
of potential energy and kinetic energy dissipation and
the calculation of T.

APPENDIX
Universal Velocity Spectrum

This diversion is included in an effort to present
what is commonly referred to as the “Nasmyth Uni-
versal Spectrum.” It has been presented graphically
in a thesis by Nasmyth (1970), but numerical values
have been circulated by “personal communication”
among those people interested. The formulas are in-
cluded as a framework for the numerical data pre-
sented in Table Al.
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The Kolmogoroff description of isotropic turbu-
lence is usually presented in terms of the wavenum-
ber k of the Fourier decomposition of the field. The
three-dimensional energy spectral density is defined
as

J E()dk = ha? = %t + 1 + ud), (A1)
Q

where u,, u, and u; are turbulent velocity compo-
nents. Experimentally we can only measure a one-
dimensional spectrum of the form

o«

7 outkar, =z, (A2)
where ¢,,(k,) represents energy density of the u,
component with all fluctuations having a wavenum-
ber component k, in the x, direction. Such a mea-
surement might be made with a heated film moving
in the x,; direction. Alternatively, the spectrum

J; ¢l ky)dk, = i > (A3)
where $,,(k,) represents the energy density of the
u, component of velocity associated with all fluctu-
ations having a wavenumber component k, in the x,
direction. In a locally isotropic wavenumber space

(Monin and Yaglom, 1975) one finds that ¢,,(k,)
and ¢,,(k,) are related by

Seu)]

¢l(k) = VZ[d’n(kl) -k ok,

with units of [(m s7')(rad m™')™']. (A4)

It is the spectrum of ¢,,(k;) which is measured by
the velocity-shear sensors described in the present
study. Dissipation of turbulent kinetic energy is ob-
tained from the measured spectrum of ¢,,(k,) by

15 ©
€= —2' VJ; k%¢22(kl)dk1 [m2 5—3], (AS)

where v is the kinematic viscosity and e the dissi-
pation per unit mass. At sufficiently high Reynolds
numbers the statistical properties of turbulence at
small scales are independent of the large-scale flow
and depend only on the rate ¢ at which energy is
passed from larger to smaller scales, on the kinematic
viscosity v, and on the wavenumber k. A character-
istic wavenumber k, can be defined as

k_, = (GV—S)RM

[m™'] (A6)

and dimensional analysis gives

(k) = (@®)/*F(k,/k,) [(m?s™?)(rad m™")7],
(A7)
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BF(kx/ks)]
8k1

= (e”)*Foki/k;) [(m®s7%)(rad m™')™']. (A8)

Both F(k/k,) and F,(k/k,) are functions of the
nondimensional wavenumber k/k,. In the present
study one is concerned with measurements of ¢,,(%,)
and considers the “universal” form Fy(k/k,) deriv-
able from F(k/k) (k is used rather than k, where
no confusion arises).

Velocity shear can be represented as a dissipation
spectrum given by

k) = (em'/‘*vz[F(kl/ks) —k

K’¢yy(k) = kX (e®)' *Gk/k;) [s72 (rad m™')7'],
(A9)
where
GZ(k/ks) = (k/ks)ZFZ(k/ks)7 (AIO)

which is another “universal” spectral form. Neither
F(k/k,), Fy(k/k;) or G)(k/k,) are represented ana-
lytically. The experimentally determined form of
Nasmyth (1970; also personal communication) has
been used. A summary derived from his spectrum
of F(k/k) vs k/k, is given in Table Al. In the anal-
ysis of this paper, the cyclic wavenumber k has been
used rather than the radian wavenumber k, where
k = k/2. This introduces a factor of 2+ in the uni-
versal forms and, for example, $2,(K) is expressed

" as

b2 K) = kX e®)V*F(K/k) [(ms™)? (cpm™)],

where FZ(E/ k,) = 2xFy(k/k,). Table A1 reflects this
conversion to cyclic wavenumber, and the compu-
tation of Fy(k/k,) from F(l?/k) has been done
using Eq. (A8) and a three-point quadratic fit to
log,oF(k/k ) versus logm(k/k ).

REFERENCES

Batchelor, G. K., 1959: Small-scale variation in convected quan-
tities like temperature in a turbulent fluid. J. Fluid Mech.,
5, 113-133.

Caldwell, D. R., T. M. Chriss, P. A. Newberger and T. M. Dillon,
1981: The thinness of oceanic gradients. J. Geophys. Res.,
86, 4290-4292.

——, T. M. Dillon, J. M. Brubaker, P. A. Newberger and C. A.
Paulson, 1980: The scaling of vertical gradient spectra. J.
Geophys. Res., 85, 1917-1924.

Dillon, T. M., and D. R. Caldwell, 1980: The Batchelor spectrum
and dissipation in the upper ocean. J. Geophys. Res., 85,
1910-1916.

Fabula, A. G., 1968: The dynamic response of towed thermome-
ters. J. Fluid Mech., 34, 449-464.

Gibson, C. H., 1968: Finestructure of scalar fields mixed by tur-
bulence, 1, 2. Phys. Fluids, 11, 2305-2327.

Grant, H. L., B. A. Hughes, N. M. Vogel and A. Molliet, 1968:
The spectrum of temperature fluctuations in a turbulent flow.
J. Fluid Mech., 34, 423-442.

Lilly, D. K., D. E. Waco and S. I. Adelfang, 1974: Stratospheric



MARCH 1982

mixing estimated from high-altitude turbulence measure-
ments. J. Appl. Meteor., 13, 488-493.

Monin, A. S., and A. M. Yaglom, 1975: Statistical Fluid Me-
chanics: Mechanics of Turbulence. Vol. 2, J. L. Lumley, Ed.,
MIT Press, 874 pp.

Munk, W. J.,, 1966: Abyssal recipes. Deep-Sea Res., 13, 707-780.

Nasmyth, P., 1970: Oceanic turbulence. Ph.D. thesis, Institute of
Oceanography, University of British Columbia, 69 pp.

Oakey, N. S., 1977: An instrument to measure oceanic turbulence
and microstructure. Bedford Institute of Oceanography, Rep.
Ser. BI-R-77-3, 52 pp.

-——, and J. A. Elliott, 1982: Dissipation within the surface mixed
layer. J. Phys. Oceanogr., 14, 171-185.

Osborn, T. R., 1974: Vertical profiling of velocity microstructure.
J. Phys. Oceanogr., 4, 109-115.

——, 1980: Estimates of the local rate of vertical diffusion from
dissipation measurements. J. Phys. Oceanogr., 10, 83-89.
——, and C. S. Cox, 1972: Oceanic finestructure. Geophys. Fluid

Dyn., 3, 321-345.

N. S. OAKEY

271

——, and W. R. Crawford, 1980: An airfoil probe for measuring
velocity fluctuations in the water. Air-Sea Interaction: In-
struments and Methods, F. W. Dobson, L. Hasse and R.
Davis, Eds., Plenum, 369-386.

——, and T. E. Siddon, 1975: Oceanic shear measurements using
the airfoil probe. Proc. Third Biennial Symposium on Tur-
bulence in Liquids, G. K. Patterson and J. L. Zaken, Eds.,
University of Missouri-Rolla.

Siddon, T. E., 1971: A miniature turbulence gauge utilizing aero-
dynamic lift. Rev. Sci. Instrum., 42, 653-656.

Stewart, R. W, and H. L. Grant, 1962: Determination of the rate
of dissipation of turbulent energy near the sea surface in the
presence of waves. J. Geophys. Res., 62, 3177-3180.

Weinstock, J., 1978: Vertical turbulent diffusion in a stably strat-
ified fluid. J. Atmos. Sci., 35, 1022-1027.

Williams, R. M., and C. A. Paulson, 1977: Microscale temperature
and velocity spectra in the atmospheric boundary layer. J.
Fluid Mech., 83, 547-567.



