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Abstract: Comparisons are made between the predictions of two models for
surface-wave propagation over rapidly-varying bottom topography, one based on
the extended-muld-slope equation derived by Kirby (Kurby, JT J Fhad
Mechanics, 162 (1986) 171-86),' and the other on the successive-application-
matnx model described by O’Hare & Davies (O’Hare, T J & Davies A G.
Coastal Engineering, 18 (1992) 251-66) 2 The models are applied to two types of
undulating topography, namely sinusoidal and doubly-sinusoidal beds, and
comparisons are made with existing laboratory data Both models provide
similar, accurate, predictions for the first-order resonant reflection of surface
waves having wavelength equal to approximately twice that of the sinusoidal bed
components Agreement between the models and data 1s less good for higher-
order resonances, due to the (different) formulations of the bottom boundary
condition used in the models. In particular, some disagreement arises both when
the surface wavelength is approximately equal to that of a bed component, and
also when 1t corresponds to the sub-harmonic ‘difference’ wavelength. Generally,
the successive-application-matrix model, which provides a more explicit
formulation of the wave propagation problem than the extended-muld-slope
equation model, gives better predictions of the data, but 1s computationally more

demanding

1 INTRODUCTION

In recent years, considerable interest has been shown 1n
the phenomenon of resonant reflection of surface waves
by undulating bottom topography. Theoretical work by
Davies,3 and experiments by Davies & Heathershaw,4
revealed that waves may be strongly reflected when their
wavelength is approximately equal to twice that of the
bottom undulations This process, which is analogous to
the Bragg scattering of X-rays from crystal planes, may
have important consequences for coastal protection. It
has been suggested (e.g. Heathershaw & Davies,’ Mer®)
that wave reflection by offshore bars may provide a
mechanism for the formation of new bars in the up-wave
direction, and may protect a coastline from the full
mmpact of incident waves. The evolution of bars beneath
partially-standing waves, and the consequent enhance-
ment of incident wave reflection has been demonstrated
m the laboratory (O’Hare & Davies,” O’Hare®) In
addition, the possible use of man-made bars to protect
oil platforms and exposed coastlines has been discussed
by Mei et al ® and Bailard et al ,"° respectively.
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Bars having spacings of approximately one-half of
the surface wavelength and amplitudes sufficient to
cause significant levels of reflection, represent top-
ography which 1s rapidly-varying. 1t follows that
established methods for predicting the interaction of
waves and the bed, such as Berkhoff’s'' muld-slope
equation, are not applicable in studies of such bars, and
that reliable methods for determining the interaction
between surface waves and such topography must be
developed.

In the present paper, existing laboratory data for the
reflection of waves by sinusoidal beds (Davies &
Heathershaw®) and doubly-sinusoidal beds (Guazzell
et al'?) are utilized to provide a framework for the
intercomparison of two models for wave propagation
over rapidly-varying topography. The models considered
are the extended-mild-slope model developed by Kirby'
and the successive-application-matrix model of O’Hare
& Davies ?

In the following section, the two models are introduced
and brief details of the methods of solution are given In
Section 3, the models are applied to a series of test cases
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and comparisons made with laboratory data The results
of these tests are discussed 1n Section 4

2 DESCRIPTION OF THE WAVE MODELS
2.1 Introduction

If the flow 1s irrotational. the velocity field u(x,z, 1),
x = {x,y}, may be described in terms of the velocity
potential ¢(x.z.1) as follows:

u=-Vo

where V 1s the gradient operator

o o 0
V—{a*a'a}

The continuity equation, Vu = 0, may then be expressed
n the form of Laplace’s equation

V=0

and the free-surface and bottom boundary conditions
may be written without approximation as

on 0¢ On 8¢87)+é)_¢_
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where 7(x, t) 1s the surface elevation and 9/0n represents
differentiation 1n the direction normal to the bed.

Different mathematical representations of surface
waves arise from the different approximations which
are made for the free-surface and bottom boundary
conditions. In the following two sections the assump-
tions underlying the models of Kirby' and O'Hare &
Davies® are discussed, and the different approaches
adopted to satisfy the bottom boundary condition for
rapidly varying depth are explammed Both models are
then applied to an 1solated one-dimensional region of
topography, as shown in Fig 1

2.2 The extended-mild-slope equation model

Kirby' derived a general wave equation, applicable to
linear water waves inintermediate or shallow water, which
extended the ‘mild-slope’ approximation of Berkhoff'
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Fig. 1. Schematic diagram of the model configuration
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to include rapidly varying, small-amplitude deviations
trom the slowly varying mean depth In his formulation,
the total still-water depth #'(x) 1s written as

K (x) = h(x) — 6(x)
where A(x) 1s a slowly-varying depth satisfying the mild-
slope assumption
)
VH = 4((_ i}

Vih < kh .
H < i v

in which k 1s the wavenumber of the surface waves, and
8(x) represents rapid variations of the depth about the
mean level

At the free surface, the boundary condition 1s linearized
in respect of the wave amplhtude. but at the bed it
incorporates terms to first-order in the amphtude of the
bed undulations, such that the boundary conditions are
written as

by +gp.=0 z=0
Q); — —VHl’l - VHQ) + VH(bVH@)

-=—h

To leading order, the velocity potential may then be
expressed as
(X, z,1) = f(x.2)d(x, 1) + non-propagating modes
where the potential ¢ refers to propagating wave modes.
and
__coshk(z + h)
~ coshkh

1s a slowly-varying function of x on account of the
slowly-varyig water depth /4, and wavenumber k. The
angular frequency w 1s related to 4 and k by the linear
wave dispersion equation

W~ = gk tanh kh (1)

where g 1s the acceleration due to gravity

On this basis, Kirby' derived the following general,
time-dependent, ‘extended” mild-slope equation for two
horizontal dimensions

Oy — Vy(CCgVyo) + (™ — K CCg)o

g
* cosh” kh
where C 1s the wave celerity (w/k) and C, 1s the group
velocity (dw/dk) of the waves
In the case of constant mean depth h. and with the
velocity potential ¢(x. 1) expressed 1n the form o(x. t) =
o(x) exp (—wwt) for one horizontal direction (x) only, the
following simpler equation is obtained

Viu(6Vy0) = O(k6)

5 - o
mw+k“o—4(—>(bgpv)‘:0 (2)
Gy
where Q' 1s a slowly-varymg parameter defined by
oh
- —_
4w cosh- kh
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Solution of eqn (2) may be accomplished numerically
in finite difference form, subject to the following
radiating boundary conditions at the ends of the region
of undulating bed (shown mn Fig 1)

I —ik(qB - 2¢3,) up-wave of the computational grd
where ¢; = exp (ikx) 1s the mncident wave of unit amph-
tude, and, assuming a purely progressive wave on the
down-wave side

O = 1k
The resulting tri-diagonal matrix may be inverted using
a double-sweep algorithm

The reflection coefficient R, defined as the ratio of the

reflected to incident wave amplitudes, may be evaluated
by writing the reflected wave as

down-wave of the computational grid

$r = Rexp (—1kx)
and using the expression
b = ¢y + g = exp (ikx) + Rexp (—ikx)

up-wave of the computational grid.

2.3 The successive-application-matrix model

The successive-application-matrix model of O’Hare &
Davies® 1s based on a model developed by Devillard
et al.’® for the propagation of monochromatic surface
waves 1n one horizontal direction over a bottom profile
comprising a succession of horizontal shelves separated
by abrupt steps

Over the ith shelf, the water depth 1s denoted by 4,
and the waves are characterized by their local wave-
number k, obtained from eqn (1). Since the bed 1s
horizontal between steps, the bottom boundary condition
reduces to the simple form

¢:=0 (Z:_h)

but the solution must be matched (approximately) from
step to step. This 1s the essential difference between
Kirby’s' extended-mild-slope equation model and the
successive-application-matrix model In the former, the
topography appears explicitly in the bottom boundary
condrtion, whereas 1n the latter, the bottom boundary
condition on any shelf 1s independent of changes in the
bed topography.

At each step discontinuity (x = x,), two ‘wavefield
parameters’ (the velocity potential at the water surface
and 1ts horizontal gradient) are defined by the following
equations

U, = [A4, exp (ik, x,) + B, exp (—ik, x,)]x,(0)

ov
_
0, = -k ( 8)

where 4, and B, are the (complex) amplitudes of the

forward and backward waves respectively, and
x.(z) = (2K/(Kh, + sinh® k,h,))"/? cosh [k,(z + h,)]

in which K = w?/g is the deep-water wavenumber of
waves having angular frequency w.

Devillard et al ' related the values of ¥ and Q on
either side of a step by a series of matching conditions,
the form of which depends upon the step geometry (1.e
the bottom topography). They derived a matrix equation
which relates the wavefield parameters at neighbouring
steps:

o= ] <3>

mm which R, 18 a ‘matrix of rotation’ accounting for
propagation of the forward and backward waves over
the (1 + 1)th shelf

[cos ® —-sm@
sIn © cos©

:| 6= kz+1(xt+l - xl)

and M, 1s a ‘transfer matrix’ which represents the
interaction between the surface waves on either side of
the vertical step discontinuity at x = x,, and 1s based on
Miles'™* variational approximation The form of this
transfer matrix depends not only upon the propagating
plane-wave modes but also on the non-propagating
modes generated at the discontinuity. Devillard et al
applied their matrix equation to the case of large steps
separated by Jong shelves, for which the amphtudes of
the non-propagating modes generated at one step were
negligible at the neighbouring steps. For shorter shelf
widths, these non-propagating modes have non-negligible
amplitudes at neighbouring steps if the step discontinuity
1s large, and the variational approximation of Miles!®
breaks down.

By comparing the predictions of the successive-
application-matrix model with the results of an exact
potential solution for singly- and doubly-stepped beds,
O'Hare & Davies’ demonstrated that if smoothly-
varying bottom topography 1s discretized into a series
of narrow horizontal shelves separated by steps of small
height, then the propagation of monochromatic surface
waves over the topography may still be evaluated using
the model of Devillard et al'® Despite therr close
spacing, the shelves remain effectively uncoupled in
respect of the non-propagating modes, 1f the step heights
are sufficiently small.

The method of solution relies upon a knowledge of
the wavefield at any one point in the computational
domain It 1s usually possible to make some assumption
about the wavefield at the down-wave end of the
undulating bed region. For example, 1if there is perfect
absorption of the forward wave at a beach, then the
amplitude of the backward wave at the down-wave end
of the computational domain will be zero Alternatively,
there may be a known amount of reflection due to the
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presence of a sloping beach. In the absence of energy
dissipation, the matrices R, and M, are independent of
the absolute values of the forward and backward waves.
Hence 1t 1s possible to make an arbitrary choice (ar) for
the amplitude of the forward (transmutted) wave at the
down-wave end of the computational domain, and to
assign to the backward wave an amplitude (= Rgar)
and a relative phase angle (©5), where Ry 1s the beach
reflection coefficient. Thus the wavefield parameters ¥
and () may be specified at the right-hand end of the
computational domain (x = xy) using the relations

Ay = gar/w
By = garRgexp (i0p)/w

Computation of the surface wavefield across the
region of interest then involves the successive appli-
cation of the matrix equation (3) at each position X,
between x, and x;. The amplitude of the forward
(incident) wave at the up-wave end of the computational
domain (x = xg) 18 given finally by

_ w|4|
g

ap

This incident amphtude may be re-scaled to coimcide
with, for example, a measured value (a;) by multiplying
the calculated wave amplitudes by the factor a;/qq
O'Hare & Davies’ showed that the successive-
application-matrix method may be applied to smoothly-
varying topography provided that the height of each
vertical step (Ah) relative to the local water depth (/)
does not exceed about Ah/h =0 02. If this condition is
satisfied, the matrix M, reduces from a complicated
form including a term involving the sum of all the non-
propagating wave modes, to a simple plane-wave form

M[ _ Xi+1 ( kl >l/2 (NI)J' 0
Xo \Kkig 0 (N)

where

N, = 2K(kiky)'? sinh [ky(hy — hy)](kT — K3) "

x (Khy + sinh® ki) '2(Khy + sinh? kyhy) 12
—1 lf hl+| > h,
J, =
+1

if h,+1 < h,
in which the smaller of 4, and A, .| plays the role of #;
and the larger the role of 4,

The reflection coefficient associated with a region of
topography may be evaluated from R = |By|/|4y| with
the velocity potential amplitudes |4y| and |By| given
by

| 4ol = 1[¥§ + QF + 2Im ¥y Re ) — 2 Re ¥ Im ]'/*

1
2
1
2

|By| = 1[¥3 + Q3 — 21m ¥y Re O + 2 Re ¥y Im £2]'/2

3 MODEL PREDICTIONS
3.1 Sinusoidal beds

Both Kirby' and O’Hare & Davies® have separately
compared their modelresults with the laboratory measure-
ments of Davies & Heathershaw* for the reflection of
monochromatic waves by a region of fixed sinusoidal
bottom undulations on an otherwise flat bed. The
measurements were made with conductivity-type wave
gaugesinawave tank of dimensions46 m x 0-9m x 0-9m.
Initially, an inter-comparison of results from the two
models 1s discussed for this case.

The vaniation of water depth along the tank (see Fig
2) may be expressed as

h(x) = h[) x<0
h(x) =hy—bsin(lx) 0<0<2mn/l (4)
h(x) = hy x> 2mn/l

where Ay 1s the (constant) mean water depth, n is the
number of sinusoidal bars in the undulating region, b 1s
the bar amplitude and / 1s their wavenumber Down-
wave of the bars, a wave-absorbing beach minimzed
back-reflection onto the bars. Measurements of the
reflection coeflicient up-wave of the bars were made for
a range of wave periods In their experiments, Davies &
Heathershaw® examined three bed configurations,
namely-

(@) n=2 b/hy=032
(b) n=4 b/hy=032
() n=10 b/hy =016

In each experiment, the surface wavenumber k& was
varied 1n the range 0 5 < 2k// <2 5 chosen on the basis
of the theoretical analysis of Davies > This had indicated
the hkelthood of constructive nterference between
waves back-reflected from individual bars when the
surface wavelength 1s equal to twice the bar spacing (1.¢
2k/l = 1), giving r1se to high reflection coefficients
Both models were run for each of the above bed
configurations, using a grid spacing corresponding to
one-hundredth of the bar wavelength, and assuming
that only an outgoing progressive wave was present
down-wave of the bars The results of these tests are
shown m Figs 3a, 3b and 3c together with Davies &
Heathershaw's* data. Both models give good agreement
with the data, with the widths of the resonant peaks at
2k/l ~ 1 being well predicted Most of the discrepancy

!
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Fig. 2. Schematic diagram of sinusoidal bottom topography
used 1n the laboratory experiments of Davies & Heathershaw
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Fig. 3. (a) Wave reflection from sinusoidal bottom topography with n = 2: b/hy = 0-32, successive-application-matrix model,
— — — extended-mild-slope equation model, (@) expenimental data (b) As Fig 3a but withn =4 b/h; = 0-32 (c) As Fig 3a but
with n =10 b/hy =0 16.

between the model predictions and laboratory data may absorbing beach was measured (the reflection coefficient
be attributed to the assumption 1n the models of a purely Ry being typically less than 0-1), leading to a possible
outgoing wave on the down-wave side of the bars In error in the range +Rjy 1n the reflection coefficients

the experiments, a small amount of reflection from the measured up-wave of the bars. In addition, the models
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take no account of frictional dissipation at the bed and
side-walls of the channel, the effect of which 1s to reduce
slightly the measured reflection coefficients from their
theoretical values

Despite the generally close agreement between the
predictions of the models, two main differences are
evident 1n the results. Firstly, the matrix model predicts
a greater reflection coefficient when 2k// =~ 2 (1 e surface
wavelength = bar spacing), compared with the extended
mild-slope model which predicts a zero in the reflection
coeflicient 1n each case when 2k//= 2. This 1s most
clearly evident 1n Fig. 3c Secondly, the predictions of
the matrix model are shifted shightly towards the left
(1e to lower wavenumber) This 1s most pronounced 1n
Fig 3b

3.2 Doubly-sinusoidal beds

A more complicated situation arises when the bed
consists of the superposition of two sinusoidal compo-
nents (chosen here to be of equal amplitude) By
extension of eqn (4), the vaniation of the water depth
may be written 1n this case as follows

h(x) = hy x<0
h(x) = hy — bsin (Ix) + sin (mix)] 0 < x < 2mn/!
h(x) = hy x> 2mn/l

(5)
Here, n 1s the number of sinusoidal bars having the
larger bed wavelength (27//) and m 1s the ratio of the
larger and smaller bed wavelengths.

With this form of bed, the possibility exists not only
for first-order resonances to occur at 2k//= 1 and
2k/l~m, but also for higher-order resonances at
2k/I~ (m—1) and 2k/I~(m+1) (eg Mattiol,"
Guazzelll et al'?) These additional resonances are
referred to as the ‘difference’ and ‘sum’ interactions
respectively (There is also the possibility of second-order
resonances, due to the individual sinusoidal components,
which may occur when 2k/l~2 and 2k/l=~2m as
discussed by Davies et al '®)

Kirby' applied his model to two doubly sinusordal
beds

(@) n=4 m=2 b/hy =032
(b)y n=4 m=15/8 b/hy=032

In these tests, the first sinusoidal component corre-
sponded to case (b) of the earlier sinusoidal bed tests
(Section 3.1) The significance of Kirby’s' choice for m
15 that n case (a) the zeros of the (oscillatory) reflection
coefficient for each bed component occur at the same
values of 2k// (according to Davies & Heathershaw’s’
analytical treatment), whereas 1n case (b) they occur at
different values.

To examine the correspondence between the model
results for this more complicated topography, the two

models were run for each of the bed configurations
listed above Again, the grid spacing corresponded to
one-hundredth of the larger bed wavelength. Compari-
sons between the predictions of the two models are
shown 1n Figs 4a and 4b As in the cases involving
purely sinusoidal beds, the models give very similar
predictions, with the results from the matrix model again
being shifted slightly to lower wavenumbers compared
with the results from the extended-mild-slope model In
Fig 4a, zeros 1n R are predicted by both models whereas
in Fig 4b, R 1s always positive, for the reason given
above

Similar doubly sinusoidal bed configurations have
been examined experimentally by Guazzelli ef a/ '* Therr
experiments were of the same type as those of Davies &
Heathershaw,4 but were performed in a smaller lume
using a laser system for measuring the surface wave
envelope and, hence, determining the reflection coef-
ficient up-wave of the bars

Both models were run for three of the bed configur-
ations examined by Guazzelli er a/ '* 1n which m = 2,
namely

(a) n=4 m=2 b/hy=025
(b)y n=4 m=2 b/hy=0233
(c)n=4 m=2 b/hy =040

In these runs, the grid spacing corresponded to one-
hundredth of the smaller bed wavelength. The model
predictions are shown i Figs 5a, 5b and 5c together
with the laboratory data. Again, the model predictions
are generally similar to each other, and also show
reasonable agreement with the data in the vicinity of the
first-order peaks

The data reveal that as b/hg increases, the first-order
peaks are shifted to lower wavenumbers. This shift 1s
better predicted by the matrix model than by the
extended-mild-slope model When b/hy =04 (Fig Sc),
the extended-mild-slope model predictions show a
considerable discrepancy in the positioning of the peak
in reflection coefficient at 2k//~2 (1e the first-order
resonance associated with the smaller bed wavelength
and also, possibly, the second-order resonance associ-
ated with the larger bed wavelength). In addition, the
experimental data suggest some enhancement of the
reflection coefficient when 2k//~ 3 due to the sum
mteraction, and when 2k// ~ 4 due to the second-order
resonance associated with the smaller bed wavelength
The matnx model predicts peaks in the reflection coef-
fictent at these values of 2k//, whereas the extended-
mild-slope model does not, though these peaks are too
large

For all the doubly sinusoidal beds considered above,
the value of m is such that the difference interaction
occurs at the same value of 2k// as the first-order
resonance associated with the larger wavelength (1.e
2k/I=1) Thus 1t 1s not clear how well the models
perform in the wvicinity of the difference interaction
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Fig. 4. (a) Wave reflection from doubly sinusoidal bottom topography with n=4 m=2 b/hy =032, —— successive-
application-matnx model; — — — extended-mild-slope equation model. (b) As Fig 4a but withn=4 m=15/8 b/hy = 0-32.

Guazzell et al.'? performed a further set of experniments

with m=15, in which the first-order resonances
occurred at 2k /! = 1 and 2k/I = 1-5, the sum interaction
occurred at 2k/l~ 2 5 and the difference interaction at
the clearly distinct value of 2k//~= 05

The two models were run for three of the bed
configurations of this kind examined experimentally by
Guazzell et al.,"? namely

(a) n=8 m=15 b/hy=025
(b) n=8 m=15 b/hy=033
(c)n=8 m=15 b/hy=040

with a grid spacing corresponding to one-hundredth of
the larger bed wavelength The results of these com-
parisons are shown in Figs 6a, 6b and 6c. Again, both
models show reasonable agreement with each other and
with the data in the vicinity of the first-order resonances
The matrix model better predicts the observed shift of
the peaks 1n reflection coefficient to lower wavenumbers
as b/hy mcreases As before, a sum interaction (at
2k /1 = 2-5) 1s predicted by the matrix model, but not by

the extended-mild-slope model, though n this region
there are no experimental data to validate either set
of model predictions Both models predict enhanced
reflection associated with the difference interaction at
2k/1 = 0-5, but tend to underestimate the expenmental
data (except for case (c)). The matrix model performs
shightly better than the extended-mild-slope model, but
the agreement between both models and the data gets
worse as b/hy decreases (i.e. in deeper water).

4 DISCUSSION

The results of the model comparisons described in
Section 3 may be summarized as follows:

(1) Both models perform well 1n the vicinity of the
first-order resonances (1.e. when the surface
wavelength 1s approximately equal to twice the
wavelength of a sinusoidal bed component) with
larger peak values predicted by the matrix model
than by the extended-mild-slope model.
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(c) As Fig 5a but with

equation model, (@) expenmental data (b) As Fig 5a but with n=4:m=2 b/hy =033
n=4 m=2 b/hy=04,



Two models for surface-wave propagation over rapidly varying topography

104

0.8

064

< i
25 3.0
LOW
084
06+ 4 ;
! oy
@ . ;.
04 A Pob 7
¢ . o i
AN |
!1 H i ;l: 'I' .
0.2 acf EYHH \ T
) FE T A AL
00 T - A * | T 1
0.0 05 10 15 20 25 3.0
2k /|

Fig. 6. (a) Wave reflection from doubly sinusoidal bottom topography with difference interaction distinct from the first-order
resonances. Parameter settings: n=8 m=15 b/hy =025, —— successive-application-matrix model, — — — extended-mild-

slope equation model; (@) expernimental data (b) As Fig 6a but with n=4 m=15 b/hy =033 (c) As Fig. 6a but with

15
2K/t
(c)

n=4 m=15 b/hy=04



10 TJ O'Hare, 4 G Davies

(2) Only the matrix model predicts enhanced reflec-
tion associated with second-order resonances (1 ¢
when the surface wavelength 1s approximately
equal to the wavelength of a sinusoidal bed
component)

(3) The matrix model predicts the shift of the
resonant peaks towards lower wavenumbers. as
the ratio b/hy increases, better than the extended-
mild-slope mode!

(4) The matrnix model predicts the presence of the
sum 1nteraction, but overestimates the experi-
mental values. The extended-mild-slope model
predicts no enhancement of reflection due to the
sum interaction

(5) Both models predict enhanced reflection due (o
the difference interaction but tend to under-
esimate the experimental values, especially for
lower values of b/h, The matrix model 1s
generally closer to the experimental data than
the extended-mild-slope mode!

The reflection of waves from doubly sinusoidal beds
has also been modelled by Mattioli'>!’ (who also
considered rectangular submerged bar systems). and
by Guazzelli e al '* (see Rey'® for a full description of
the model used) These models are essentially 1dentical,
and are based on the approach of Takano'? in which the
bed 1s discretized into a series of horizontal shelves
However, the models differ from that of O’Hare &
Davies,” which also divides the bed nto horizontal
shelves, by the inclusion of the effects of the wnteractions
of non-propagating (or evanescent) wave modes gener-
ated at each discontinuity with neighbouring steps

If the region 1s divided into N steps. and P non-
propagating modes are included in the calculation, the
problem ultimately reduces to the solution of a system
of 2N(P + 1) simultaneous equations, with terms corre-
sponding to the interactions of both propagating (i.e
forward and backward) and all the non-propagating
wave modes, with each of the N steps Solution of
the system of equations relies on the inversion of a
2N(P + 1) x 2N(P + 1) complex matrix, a task which 1s
impractical for all but the simplest topographies Both
Mattioh'>'” and Guazzelli er al * simplify the algebra
by considering usually just one, and no more than three,
non-propagating modes, but have different approaches
to lmiting the number of steps used in their compu-
tations Mattioh'®!” discretizes the entire undulating
bed profile into relatively few shelves (14 per bar
wavelength), whereas Guazzelh er al '? sub-divide the
full profile into four smaller ‘patches’, each discretized
mnto 61 shelves (with at least 20 per bar wavelength), and
then combine the solutions for the individual patches. In
this approach, 1t 1s assumed that the patches are not
coupled by the non-propagating modes

Both these models provide good approximations to
the full solution for surface wave propagation over

rapidly-varying topography, but require lurge amounts
of computational effort and are thus not suitable for
generaluse However, theresults presented by Mattioh'> !’
and Guazzelli et al ' provide good insight mto certam
failings of both the successive-application-matrix model
and the extended-mild-slope model

In all cases. the numerical results of Guazzelh ez af '
agree well with their experimental data Not only are
the first-order peaks predicted correctly, but also the
sum and difference resonances are accurately described
Moreover, the model works well for ali of the &/,
values examined Detailed examination of the role of
the non-propagating modes by Mattioli'” indicates that
their inclusion has the etfect of

(1) reducing the size of the second-order resonance
predicted for sinusoidal beds.

(2) increasing the size of the first-order resonances
nredicted for both sinusoidal and doubly sinus-
oidal beds.,

(3) shifting first-order resonances further towards
lower wavenumber-,

(4) reducing the size of the sum resonance,

(5) increasing the size of the difference resonance

Thus the inclusion of the non-propagaung wave
modes has the general effect of shifting the resonances
towards lower wavenumbers and reducing the size of
all the higher-order resonances. except for the difference
interaction which 1s enhanced This 1s exactly the change
required to bring the matrix model predictions, described
1n Section 3, into agreement with the experimental data
of Guazzellt er al.'® This result 1s not surprising, since
the successive-application-matrix model 1s simply an
implementation of the ‘exact’ model of Guazzelli er
al '* but without the inclusion of any non-propagating
modes Belzons er al  discuss this shortcoming of the
successive-application-matrix model and describe how
the amplitudes and phases of the propagating waves
over the patch must be continually renormalized by the
non-propagating modes 1if accurate predictions are to be
obtained

The extended-muld-slope model derived by Kirby'
would not be expected to predict the higher-order
resonances, since Kirby’s equation only includes terms
to first-order 1n the amplitude of the bed undulations
However, since these higher-order resonances are
immhibited 1n the full solution by the inclusion of the
non-propagating modes, this deficiency may not be too
serious In many practical applications

In addition to the accuracy of the model predictions,
there are a number of other important factors which
need to be considered 1n choosing the most appropriate
model for a particular application Perhaps the most
important of these 1s the computational efficiency of
the method Both of the models compared earlier are
simple to implement, and Kirby's' model provides a
small speed advantage over the matrix model for a



Two models for surface-wave propagation over rapidly varying topography 11

given grid spacing However, the successive-application-
matrix model provides a more explicit formulation of
the wave propagation problem, through its division of
the surface wavefield into forward and backward
components.

Both models have been extended to allow for the
effects of bottom friction (Tsay e al.”' O’Hare?), but
only the extended-mild-slope model has been applied
to cases where variations 1n topography occur in two
horizontal directions However, for studies nvolving
erodible beds, the discretization of the bottom profile
into a series of horizontal shelves in the matrix model
has the advantage of allowing it to be linked easily with
bottom boundary layer and sediment transport models
to provide predictions of both surface wave and bed
evolution (O'Hare®),

5 CONCLUSIONS

Both Kirby’s' extended-mild-slope equation model and
O’Hare & Davies’ successive-application-matrix model
provide reasonable predictions of the reflection charac-
teristics for sinusoirdal and doubly sinusoidal bottom
topographies The models perform less well in the
vicinity of the higher-order resonance which occurs at
the difference wavenumber of the two bed components
in the latter case In general, the predictions of the
matrix model show slightly better agreement with the
experimental data, but at a somewhat higher cost in
terms of computational effort The matrix model 1s more
generally applicable than the extended-mild-slope model
in one-dimensional problems, as it may be applied to
rectangularly shaped beds as well as to smoothly varying
topography

The use of either of these models for wave propa-
gation over rapidly varying topography would appear to
be justified on the basis of the comparisons presented
here However, there 1s room for improvement in the
predictions of both models, and further work 1s required
if an accurate and reliable, simple model for wave
propagation over rapidly varying bottom topography 1s
to be produced
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