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Abstract: Comparisons are made between the predictions of two models for 
surface-wave propagation over rapidly-varying bottom topography, one based on 
the extended-maid-slope equation derived by Kirby (Kirby, J T J Flutd 
Mechamcs, 162 (1986) 171-86), l and the other on the successwe-application- 
matrix model described by O'Hare & Davies (O'Hare, T J & Davies A G. 
Coastal Engineering, 18 (1992) 251-66) 2 The models are applied to two types of 
undulating topography, namely sinusoldal and doubly-sinusoidal beds, and 
comparisons are made with existing laboratory data Both models provide 
similar, accurate, predictions for the first-order resonant reflection of surface 
waves having wavelength equal to approximately twice that of the sinusoldal bed 
components Agreement between the models and data is less good for higher- 
order resonances, due to the (different) formulations of the bottom boundary 
condition used in the models_ In particular, some disagreement arises both when 
the surface wavelength is approximately equal to that of a bed component, and 
also when it corresponds to the sub-harmonic 'difference' wavelength. Generally, 
the successive-application-matrix model, which provides a more explicit 
formulation of the wave propagation problem than the extended-mild-slope 
equation model, gives better predictions of the data, but is computatlonally more 
demanding 

1 I N T R O D U C T I O N  

In recent years, considerable interest has been shown m 
the phenomenon of  resonant reflection of surface waves 
by undulating bot tom topography. Theoretical work by 
Davies, 3 and experiments by Davies & Heathershaw, 4 
revealed that waves may be strongly reflected when their 
wavelength is approximately equal to twice that of  the 
bot tom undulations This process, which is analogous to 
the Bragg scattering of  X-rays from crystal planes, may 
have important  consequences for coastal protection. It 
has been suggested (e.g. Heathershaw & Davies, 5 Mel 6) 
that wave reflection by offshore bars may provide a 
mechanism for the formation of new bars in the up-wave 
direction, and may protect a coastline from the full 
impact of  incident waves. The evolution of bars beneath 
partmlly-standmg waves, and the consequent enhance- 
ment of  incident wave reflection has been demonstrated 
m the laboratory (O'Hare  & Davies, 7 0 ' H a r e  8) In 
addmon,  the possible use of man-made bars to protect 
oll platforms and exposed coastlines has been discussed 
by Me~ et al 9 and Baflard et al ,lO respectively. 
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Bars having spacings of  approximately one-half of  
the surface wavelength and amplitudes sufficient to 
cause significant levels of  reflection, represent top- 
ography which is raptdly-varying. It  follows that 
estabhshed methods for predicting the interaction of 
waves and the bed, such as Berkhoff 's  ll mild-slope 
equation, are not apphcable in studies of  such bars, and 
that reliable methods for determining the interaction 
between surface waves and such topography must be 
developed. 

In the present paper, existing laboratory data for the 
reflection of waves by smusoldal beds (Davies & 
Heathershaw 4) and doubly-slnusoidal beds (Guazzelh 
et al. 12) are utlhzed to provide a framework for the 
mtercomparlson of two models for wave propagat ion 
over rapldly-varymg topography.  The models considered 
are the extended-mdd-slope model developed by Kirby 1 
and the successive-apphcatlon-matrix model of  O 'Hare  
& Davies 2 

In the following section, the two models are introduced 
and brief details of  the methods of solution are given In 
SecUon 3, the models are apphed to a series of  test cases 
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and comparisons made with laboratory data The results 
of these tests are discussed in Section 4 

2 DESCRIPTION OF THE WAVE MODELS 

2.1 Introduction 

If the flow IS lrrotatlonal, the velocity field u (x , z  t), 
x -  {x,y}, may be described in terms of the velocity 
potential O(x.z,  t) as follows: 

u = - V 0  

where V ~s the gradient operator 

{00 } 
v g _ , - ' o ) ,  

The continuity equation. Vu = 0. may then be expressed 
in the form of Laplace's equation 

V-'o 0 

and the free-surface and bot tom boundary conditions 
may be written without approximation as 

0~ O¢ Or~ 0¢ 0rl O0 
Ot Ox Ox Oy Ov + 0= = 0  z = rl 

Od 1 _ V q~ 0 = = r  / 

z = - h ( x )  04 ,  0 
On 

where ~l(x, t) is the surface elevation and O/On represents 
differentiation in the direction normal to the bed. 

Different mathematical representations of  surface 
waves arise from the different approximations which 
are made for the free-surface and bot tom boundary 
conditions. In the following two sections the assump- 
tions underlying the models of  Kirby 1 and 0 ' H a r e  & 
Davies 2 are discussed, and the different approaches 
adopted to satisfy the bottom boundary condition for 
rapidly varying depth are explained Both models are 
then applied to an isolated one-dimensional region of 
topography, as shown In Fig 1 

2.2 The extended-mild-slope equation model 

Kirby I derived a general wave equation, applicable to 
linear water waves in Intermediate or shallow water, which 
extended the 'mild-slope' approximation of BerkhoffI J 

0 I X ~ I 

Incdent wave e. I I Transmltted~ wave 

I I 

Reflected wa~e i , I(Beac~-rei~tected. wav~ 
~---~,, . . \ .  ~k / . ~ f , - . L  . . . . . . . . . .  

I 
Computationat Domain 

FiR. 1. Schematic diagram of the model configuration 

to include rapidly varying, small-amphtude devlaUons 
(rom the slowly varying mean depth In Ms formulation. 
the total still-water depth if(x) ~s written as 

h'(x) - h ( x )  - ~ ( x )  

where h(x) IS a slowly-varying depth satisfying the mild- 
slope assumption 

( / T ~ ' ~ '  'j 0 }  v.h <</.h v .  !, 

in which k is the wavenumber of the surface waves, and 
6(x) represents rapM variations of  the depth about  the 
mean level 

At the free surface, the boundary condition IS hnearlzed 
in respect of the wave amphtude, but at the bed it 
incorporates terms to first-order in the amplitude of the 
bed undulations, such that the boundary condmons are 
written as 

O, +gO: = 0 : -  0 

Oz - V H h "  VH• q- VH(~VHO ) Z -- - h  

To leading order, the velocity potential may then be 
expressed as 

o(x. z. t) - / ( x .  z)~(x, t) + non-propagating modes 

where the potential ~ refers to propagating wave modes. 
and 

/ _  coshk(z + h) 

cosh kh 

is a slowly-varying function of x on account of the 
slowly-varying water depth h. and wavenumber k_ The 
angular frequency w is related to h and k by the linear 
wave dispersion equation 

~,,2 -- gk tanh kh ( 1 ) 

where g is the acceleration due to gravity 
On this basis, Kirby 1 derived the following general, 

time-dependent, 'extended" mild-slope equation for two 
horizontal dimensions 

o,, - v . ( c c g v . ? ~ )  + (~ :  - k2CCg)d ,  

cosh 2 kh 

where C is the wave celerity (w./k) and C¢ is the group 
velocity (dw/dk) of  the waves 

In the case of constant mean depth h. and with the 
velocity potential ¢;(x. t) expressed in the form o(x. t) 
o(x)  exp (-lWt) for one horizontal direction (x) only. the 
following simpler equauon is obtained 

o , r + k 2 g  4 ([~"~ ( b 0 ~ ) = 0  '?)  
- k c #  ' ' -  

where ~'  is a slowly-varying parameter  defined by 

~, ,'4/, 
4~ cosh 2 kh 
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Solution of  eqn (2) may be accomplished numerically 
in finite difference form, subject to the following 
radiating boundary conditions at the ends of  the region 
of undulating bed (shown in Fig 1)' 

~ = - i k ( ~  - 2~,) up-wave of  the computational  grid 

where ~1 = exp (tkx) is the incident wave of unit ampli- 
tude, and, assuming a purely progressive wave on the 
down-wave side 

~x = tk~ down-wave of the computational  grid 

The resulting tri-diagonal matrix may be inverted using 
a double-sweep algorithm 

The reflection coefficient R, defined as the ratio of  the 
reflected to incident wave amplitudes, may be evaluated 
by writing the reflected wave as 

~R = R exp ( - l kx )  

and using the expression 

= ~1 + ~R = exp (ikx) + Rexp ( - i kx )  

up-wave of the computational  grid. 

2.3 The successive-application-matrix model 

The successive-apphcation-matrix model of  O 'Hare  & 
Davies 2 is based on a model developed by Devlllard 
et al. 13 for the propagation of monochromatic  surface 
waves in one horizontal direction over a bot tom profile 
comprising a succession of horizontal shelves separated 
by abrupt  steps 

Over the ith shelf, the water depth is denoted by h, 
and the waves are characterized by their local wave- 
number k, obtained from eqn (1). Since the bed is 
horizontal between steps, the bot tom boundary condition 
reduces to the simple form 

~ = 0 (z = - h )  

but the solution must be matched (approximately) from 
step to step. This IS the essential difference between 
Klrby 's  I extended-mild-slope equation model and the 
successive-application-matrix model In the former, the 
topography appears explicitly in the bot tom boundary 
condition, whereas in the latter, the bot tom boundary 
condition on any shelf is independent of changes in the 
bed topography. 

At each step discontinuity (x = x,), two 'wavefield 
parameters '  (the velocity potential at the water surface 
and its horizontal gradient) are defined by the following 
equations 

• , = [A, exp (tk, x,) + B, exp ( - tk ,  x,)]X,(0) 

where A, and B, are the (complex) amplitudes of  the 

forward and backward waves respectively, and 

X,(z) = (2K/(Kh, + sinh 2 k,h,)) L/2 cosh [k,(z + h,)] 

in which K =  2 / g  is the deep-water wavenumber of  
waves having angular frequency aJ. 

Devtllard et a113 related the values of • and f~ on 
either side of  a step by a series of  matching conditions, 
the form of which depends upon the step geometry (1.e 
the bot tom topography).  They derived a matrix equation 
which relates the wavefield parameters at neighbourlng 
steps: 

~ t + l  .1 

in which R, is a "matrix of  rotation'  accounting for 
propagation of the forward and backward waves over 
the (t + 1)th shelf 

[cos e - sin O]  
RI = {_ S l n O  c o s ( ~ J  0 = k t + l ( X , +  1 - x , )  

and M, is a ' transfer matrix '  which represents the 
interaction between the surface waves on either side of  
the vertical step discontinuity at x = x,, and is based on 
Miles '14 variational approximation The form of th~s 
transfer matrix depends not only upon the propagating 
plane-wave modes but also on the non-propagating 
modes generated at the discontinuity. Devlllard et a113 
applied their matrix equation to the case of large steps 
separated by long shelves, for which the amplitudes of  
the non-propagating modes generated at one step were 
negligible at the nelghbourlng steps. For  shorter shelf 
widths, these non-propagating modes have non-negligible 
amplitudes at neighbouring steps if the step dlscontlnmty 
is large, and the variational approxxmation of Miles 14 
breaks down. 

By comparing the predictions of  the successive- 
application-matrix model with the results of an exact 
potential solution for singly- and doubly-stepped beds, 
O 'Hare  & Davies 2 demonstrated that If smoothly- 
varying bot tom topography is dlscretlzed into a series 
of  narrow horizontal shelves separated by steps of  small 
height, then the propagation of monochromatic  surface 
waves over the topography may still be evaluated using 
the model of  Devlllard et a113 Despite their close 
spacing, the shelves remain effectively uncoupled in 
respect of  the non-propagating modes, if the step heights 
are sufficiently small. 

The method of solution relies upon a knowledge of 
the wavefield at any one point in the computational  
domain It is usually possible to make some assumption 
about the wavefield at the down-wave end of the 
undulating bed region_ For  example, if there is perfect 
absorption of the forward wave at a beach, then the 
amplitude of the backward wave at the down-wave end 
of the computational domain will be zero Alternatively, 
there may be a known amount  of  reflection due to the 
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presence of a sloping beach_ In the absence of energy 
dissipation, the matrices R, and M, are Independent of 
the absolute values of the forward and backward waves. 
Hence it is possible to make an arbitrary choice (aT) for 
the amphtude of the forward (transmitted) wave at the 
down-wave end of the computational domain, and to 
assign to the backward wave an amphtude (--RBaT) 
and a relative phase angle (OB), where R~ is the beach 
reflection coefficient. Thus the wavefield parameters 
and f~ may be specified at the right-hand end of the 
computauonal domain (x = Xu) using the relations 

A N - -  g a r / ~ v  

B N : gaTRn exp (i6)B)/cv 

Computation of the surface wavefield across the 
region of interest then involves the successive appli- 
cation of the matrix equation (3) at each position x, 
between Xu and x 0. The amphtude of the forward 
(incident) wave at the up-wave end of the computational 
domain (x = x0) is given finally by 

4A01 
a 0 - -  g 

Th~s incident amphtude may be re-scaled to coincide 
with, for example, a measured value (at) by multiplying 
the calculated wave amplitudes by the factor al/a o 

O'Hare & Davies 2 showed that the successive- 
applicatmn-matrix method may be applied to smoothly- 
varying topography provided that the height of each 
vertical step (Ah) relative to the local water depth (h) 
does not exceed about A h / h  = 0 02. If  this condition is 
satisfied, the matrix M, reduces from a complicated 
form including a term involving the sum of all the non- 
propagating wave modes, to a s~mple plane-wave form 

o,:"+'Ck--' r['? 01 
x, \k,+~/ (N,) J' 

where 

N, = 2K(k,k2) 1/2 sInh [kz(h2 - hl)](k~ - k~) ' 

× (Kh l+s lnhZk lh l )  UZ(Kh2+smh2k2h2 ) 1/2 

= ~ - 1  lfh,+l >h ,  
J t  [ +1 if h,+ 1 <h ,  

in which the smaller of h, and h,+l plays the role of hi 
and the larger the role of  h2 

The reflection coefficient associated with a region of 
topography may be evaluated from R = IBol/lAol with 
the velocity potential amplitudes IA0[ and IB0l given 
by 

1 4 o l  ~ 2 --  5[~ o + ~o 2 + 2Im kl' o Re{2 o - 2 Re ~o Im~o] 1/2 

iBol = _~l [~o2 + ~o: 2 lm ~o Re 9to + 2 Re ~o Im f'/o] 1/2 

3 M O D E L  P R E D I C T I O N S  

3.1 S inuso ida l  beds 

Both Kirby I and O'Hare & Davies 2 have separately 
compared their model results with the laboratory measure- 
ments of Davies & Heathershaw 4 for the reflection of 
monochromatic waves by a region of fixed slnusoldal 
bottom undulations on an otherwise flat bed. The 
measurements were made with conductivity-type wave 
gauges in a wave tank of dimensions 46 m × 0-9 m × 0.9 m. 
Initially, an Inter-comparison of results from the two 
models is discussed for this case. 

The variation of water depth along the tank (see Fig 
2) may be expressed as 

h(x) = ho x < 0 

h(x) - ho - bs in( lx)  0 < 0 < 2 7 r n / l  

h(x) - tlo x > 27rn/l 

(4) 

where h 0 is the (constant) mean water depth, n is the 
number of sinusoldal bars in the undulating region, b is 
the bar amplitude and l is their wavenumber Down- 
wave of the bars, a wave-absorbing beach minimized 
back-reflection onto the bars_ Measurements of the 
reflection coefficient up-wave of the bars were made for 
a range of wave periods In their experiments, Davies & 
Heathershaw 4 examined three bed configurations, 
namely 

(a) n = 2 
(b) n - 4 
(c) n -  10 

b/ho = 0 32 
b/ho = 0 32 
b/ho = 0 16 

In each experiment, the surface wavenumber k was 
vaned in the range 0 5 < 2k/ l  _< 2 5 chosen on the basis 
of the theoretical analysis of Davies 3 This had indicated 
the hkehhood of constructive interference between 
waves back-reflected from individual bars when the 
surface wavelength is equal to twice the bar spacing (i.e 
2k/I  ~ 1), giving rise to high reflection coefficients 

Both models were run for each of the above bed 
configurations, using a grid spacing corresponding to 
one-hundredth of the bar wavelength, and assuming 
that only an outgoing progressive wave was present 
down-wave of the bars The results of these tests are 
shown in Figs 3a, 3b and 3c together with Davies & 
Heathershaw's 4 data. Both models gwe good agreement 
with the data, with the widths of the resonant peaks at 
2k/ l  ~ 1 being well predicted Most of the discrepancy 

2~1  

F- - "I 
2~ n/t 

Fig. 2. Schematic diagram of smusoldal bottom topography 4 
used m the laboratory experiments of Davies & Heathershaw 
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Fig. 3. (a) Wave reflectxon from smusoldal bottom topography with n = 2: b/h o = 0-32, - -  successlve-appllcanon-matr:x model, 
- - - extended-mdd-slope equation model, (O) experimental data (b) As Fig 3a but with n = 4 b/ho = 0-32 (c) As Fig 3a but 

w i t h n =  10 b/ho=016. 

between the mode l  p red ic t ions  and  l a b o r a t o r y  da t a  may  absorb ing  beach was measu red  (the reflection coefficient 
be a t t r ibu ted  to the a s s u m p n o n  m the models  o f  a pure ly  Rs being typical ly  less than  0-1), leading to a possible  
ou tgo ing  wave on the down-wave  side o f  the bars  In e r ror  in the range +Rs in the ref lecnon coefficients 
the exper iments ,  a small  a m o u n t  of  reflection f rom the measured  up-wave  o f  the bars.  In add lnon ,  the models  
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take no account of frictional dissipation at the bed and 
side-walls of the channel, the effect of which is to reduce 
slightly the measured reflection coefficients from their 
theoretical values 

Despite the generally close agreement between the 
predictions of the models, two mare differences are 
evident in the results. Firstly, the matrix model predicts 
a greater reflection coefficient when 2k/l  ~ 2 (i e surface 
wavelength = bar spacing), compared with the extended 
mild-slope model which predicts a zero in the reflection 
coefficient in each case when 2 k / l ~  2. This as most 
clearly evident in Fig. 3c Secondly, the predictions of 
the matrix model are shifted slightly towards the left 
(l e to lower wavenumber) This is most pronounced in 
Fig 3b 

3.2 Doubly-sinusoidai beds 

A more comphcated situation arises when the bed 
consists of the superposltlOn of two slnusoldal compo- 
nents (chosen here to be of equal amplitude) By 
extension of eqn (4), the variation of the water depth 
may be written in this case as follows 

h(x) = ho 

h(x) = ho - b[sin (lx) + sin (mlx)] 

h(x) = ho 

x < 0  

0 < x < 27rn/l 

x > 27rn/l 

(5) 

Here, n IS the number of slnusoldal bars having the 
larger bed wavelength (27r/l) and m as the ratio of the 
larger and smaller bed wavelengths_ 

With this form of bed, the possibility exists not only 
for first-order resonances to occur at 2 k / l ~ l  and 
2 k / l ~  m, but also for higher-order resonances at 
2k/I,,~ (m - 1) and 2 k / l ~  (m+ 1) (eg Matt loh]  5 
Guazzelh et a112) These addmonal resonances are 
referred to as the 'difference' and 'sum' interactions 
respectively (There is also the possibility of second-order 
resonances, due to the individual slnusoldal components, 
which may occur when 2 k / l ~  2 and 2 k / l ~  2m as 
discussed by Davies et a116) 

Kirby I applied his model to two doubly sinusoldal 
beds 

(a) n - 4  m - 2  b/h o = 0 3 2  
(b) n = 4  m =  15/8 b / h o = 0 3 2  

In these tests, the first slnusoldal component corre- 
sponded to case (b) of the earlier slnusoidal bed tests 
(Section 3.1) The significance of Klrby's I choice for m 
is that in case (a) the zeros of the (oscillatory) reflection 
coefficient for each bed component occur at the same 
values of 2k/l  (according to Davies & Heathershaw's 4 
analytical treatment), whereas in case (b) they occur at 
different values. 

To examine the correspondence between the model 
results for this more complicated topography, the two 

models were run for each of the bed configurations 
listed above Again, the grid spacing corresponded to 
one-hundredth of the larger bed wavelength. Compari- 
sons between the predictions of the two mode[s are 
shown in Figs 4a and 4b As m the cases involving 
purely slnusoldal beds, the models give very similar 
predictions, with the results from the matrix model again 
being shifted shghtly to lower wavenumbers compared 
with the results from the extended-mild-slope model In 
Fig 4a, zeros m R are predicted by both models whereas 
m Fig 4b, R Is always positive, for the reason given 
above 

Similar doubly sxnusoldal bed configurations have 
been examined experimentally by Guazzelh et a112 Their 
experiments were of the same type as those of Davies & 
Heathershaw, 4 but were performed in a smaller flume 
using a laser system for measuring the surface wave 
envelope and, hence, determining the reflection coef- 
ficient up-wave of the bars 

Both models were run for three of the bed configur- 
ations examined by Guazzelh et a112 in which m 2, 
namely 

(a) n = 4  m - 2  b / h o - 0 2 5  
(b) n = 4  m = 2 b/ho - 0 33 
(c) n = 4  m = 2  b / h o = 0 4 0  

In these runs, the grid spacing corresponded to one- 
hundredth of the smaller bed wavelength. The model 
predictions are shown in Figs 5a, 5b and 5c together 
with the laboratory data. Again, the model predictions 
are generally similar to each other, and also show 
reasonable agreement with the data in the V|Clnlty of the 
first-order peaks 

The data reveal that as b/ho increases, the first-order 
peaks are shifted to lower wavenumbers_ This shift is 
better predicted by the matrix model than by the 
extended-mild-slope model When b/ho - 0 4 (Fig 5c), 
the extended-mild-slope model predictions show a 
considerable discrepancy in the positioning of the peak 
In reflection coefficient at 2k/l  ~ 2 (1 e the first-order 
resonance associated with the smaller bed wavelength 
and also, possibly, the second-order resonance associ- 
ated with the larger bed wavelength). In addition, the 
experimental data suggest some enhancement of the 
reflection coefficient when 2k/ l ,~  3 due to the sum 
interaction, and when 2k/l  ~ 4 due to the second-order 
resonance associated with the smaller bed wavelength 
The matrix model predicts peaks in the reflection coef- 
ficient at these values of 2k/l, whereas the extended- 
mild-slope model does not, though these peaks are too 
large 

For all the doubly sinusoldal beds considered above, 
the value of m is such that the difference lnteracUon 
occurs at the same value of 2k/l  as the first-order 
resonance associated with the larger wavelength (l_e 
2 k / l - 1 )  Thus it as not clear how well the models 
perform in the vicinity of the difference interaction 
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Fig. 4. (a) Wave reflection from doubly smusoldal bottom topography with n = 4 

apphcatlon-matnx model; - - - 

m = 2 b/h o=032, - -  
extended-mild-slope equatxon model_ (b) As Fig 4a but with n = 4 m = 15/8 

s u c c e s s i v e -  

b/ho = 0-32_ 

Guazzelh et al_ ]2 performed a further set of  experiments 
with m - - 1  5, m which the first-order resonances 
occurred at 2k/l  ~ 1 and 2k/l  ~ 1-5, the sum interaction 
occurred at 2k/l  ~ 2 5 and the difference interactaon at 
the clearly distinct value of 2k/l  ~ 0 5 

The two models were run for three of  the bed 
configurations of  this kind examined experimentally by 
Guazzelh et al., 12 namely 

(a) n = 8  m =  1-5 b/ho=0"25 
(b) n = 8  r n =  1-5 b/ho=0-33 
(c) n = 8  m =  1 5 b / h o = 0 4 0  

with a grid spacing corresponding to one-hundredth of 
the larger bed wavelength The results of  these com- 
parisons are shown in Figs 6a, 6b and 6c. Again, both 
models show reasonable agreement with each other and 
with the data in the vicinity of  the first-order resonances 
The matrix model better predxcts the observed shift of  
the peaks in reflection coeffiment to lower wavenumbers 
as b/ho Increases As before, a sum interaction (at 
2k/l  ~ 2-5) IS predicted by the matrix model, but not by 

the extended-mild-slope model, though in this region 
there are no experimental data to validate either set 
of  model predictions Both models predict enhanced 
reflection associated with the difference lnterachon at 
2k/l  ~ 0-5, but tend to underestimate the experimental 
data (except for case (c)). The matrix model performs 
slightly better than the extended-mild-slope model, but 
the agreement between both models and the data gets 
worse as b/ho decreases (i.e. in deeper water). 

4 D I S C U S S I O N  

The results of  the model comparisons described in 
Section 3 may be summarized as follows: 

(1) Both models perform well m the VlClmty of the 
first-order resonances (i.e. when the surface 
wavelength is approximately equal to twice the 
wavelength of a sinusoidal bed component)  with 
larger peak values predicted by the matrix model 
than by the extended-mild-slope model. 
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(2) Only the matrix model predicts enhanced reflec- 
tion assoc.ated with second-order resonances (1 c 
when the surface wavelength is approximately 
equal to the wavelength of a slnusoldal bed 
component) 

(3) The matrix model predicts the shift of the 
resonant peaks towards lower wavenumbers, as 
the ratio b/h o increases, better than the extended- 
mild-slope model 

(4) The matrix model predicts the presence of the 
sum interaction, but overestimates the experi- 
mental values_ The extended-mild-slope model 
pre&cts no enhancement of reflection due to the 
sum mteracuon 

(5) Both models predict enhanced reflection due to 
the difference interaction but tend to under- 
estimate the experimental values, especially for 
lower values of h/ho The matrix model J~ 
generally closer to the experimental data than 
the extended-mild-slope mode] 

The reflection ot waves from doubly slnusoldal beds 
has also been modelled by Mattlol115'17 (who also 
considered rectangular submerged bar systems), and 
by Guazzelh et a112 (see Rey is for a full description of 
the model used) These models are essentially identical, 
and are based on the approach of Takano w in whmh the 
bed Is dlscretlzed into a series of horizontal shelves 
However, the models differ from that of O'Hare & 
Davies, 2 which also divides the bed into horizontal 
shelves, by the inclusion of the effects of the mteraction,, 
of non-propagating (or evanescent) wave modes gener- 
ated at each discontinuity with nelghbourlng steps 

If the region Is &vlded into N steps, and P non- 
propagating modes are included in the calculation, the 
problem ultimately reduces to the solution of a system 
of 2 N ( P  + 1) simultaneous equations, with terms corre- 
sponding to the Interactions of both propagating (i.e 
forward and backward) and all the non-propagating 
wave modes, with each of the N steps Solutmn of 
the system of equations reims on the inversion of a 
2 N ( P  + 1) x 2 N ( P  + 1 ) complex matrix, a task which is 
Impractical for all but the simplest topographies Both 
Mattlol115'17 and Guazzelli et al 12 slmphfy the algebra 
by considering usually just one, and no more than three, 
non-propagating modes, but have different approaches 
to hmltlng the number of steps used in their compu- 
tations MattlohlS 17 dlscretlzes the entire undulating 
bed profile into relatively few shelves (14 per bar 
wavelength), whereas Guazzelh et al p" sub-divide the 
full profile into four smaller 'patches', each dlscretlzed 
into 61 shelves (with at least 20 per bar wavelength), and 
then combine the solutions for the ln&vidual patches. In 
this approach, it is assumed that the patches are not 
coupled by the non-propagating modes 

Both these models provide good approximations to 
the full qolutlon for snrface wave propagation over 

rapidly-varying topography, but require large amounts 
of computational effort and are thus not suitable for 
general use However, the results presented by Mattxoh j517 
and Guazzelh et a112 provide good insight into certain 
failings of both the successlve-appllcatmn-matrlx model 
and the extended-mild-slope model 

In all cases, the numerical results of Guazzelh et a/L2 
agree well with thmr experimental data Not only are 
the first-order peaks predicted correctly, but also the 
sum and difference resonances are accurately described 
Moreover, the model works well for all of the h/ho 
values examined Detailed examination of the role of 
the non-propagating modes by Mattloh Is indicates that 
their inclusion has the eft\-cl oI 

(1) reducing the size of the second-order resonance 
predicted for slnusoldal beds, 

(2) increasing the size of the first-order resonances 
oredlcted for both smusoldal and doubly smus- 
oldal beds, 

(3j shifting first-order resonances further towalds 
Jower wavenumOer-, 

(4) reducing the size ol the sum resonance, 
(5) increasing the size of the difference resonance 

Thus the Inclusion of the non-propagating wave 
modes has the general effect of shifting the resonances 
towards lower wavenumbers and reducing the size o! 
all the higher-order resonances, except for the &fference 
Interaction whmh is enhanced This is exactly the change 
required to bring the mamx model predictions, described 
in Section 3, into agreement with the experimental data 
of Guazzelh et al. '2 This result is not surprising, since 
the successlve-apphcatlon-matrlx model is simply an 
implementation of the "exact" model of Guazzelll et 
al 1: but without the mcluslon of any non-propagating 
modes Belzons et al 2o discuss this shortcoming of the 
successlve-apphcatlon-matrlx model and describe how 
the amplitudes and phases of the propagating waves 
over the patch must be continually renormahzed by the 
non-propagating modes if accurate predlctmns are to be 
obtained 

The extended-mild-slope model derived by Kirby 1 
would not be expected to predict the higher-order 
resonances, smce Klrby's equation only mcludes terms 
to Brsl-order in the amphtude of the bed undulations 
However, since these higher-order resonances are 
mhlblted in the full solution by the inclusion of the 
non-propagating modes, this deficiency may not be too 
serious m many practical applications 

In addition to the accuracy of the model predictions, 
there are a number of other Important factors which 
need to be considered m choosing the most appropriate 
model for a pamcular  appllcatmn Perhaps the most 
important of these is the computational efficiency of 
the method Both of the models compared earlier are 
simple to implement, and Klrby's I model provides a 
small speed advantage over the mamx model for a 
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given grid spacing However, the successlve-apphcatlon- 
matrix model provides a more exphcit formulation of 
the wave propagation problem, through its division of 
the surface wavefield into forward and backward 
components_ 

Both models have been extended to allow for the 
effects of  bottom friction (Tsay et al., 21 O'HareS), but 
only the extended-mild-slope model has been applied 
to cases where variations in topography occur in two 
horizontal directions However, for studies involving 
erodible beds, the dlscretlzation of the bottom profile 
into a series of horizontal shelves in the matrix model 
has the advantage of allowing it to be linked easily with 
bottom boundary layer and sediment transport models 
to provide predictions of both surface wave and bed 
evolution (O'HareS). 

5 CONCLUSI ONS 

Both Klrby's I extended-mild-slope equation model and 
O'Hare & Davies 2 successlve-apphcatlon-matrlx model 
provide reasonable predictions of  the reflection charac- 
teristics for slnusoldal and doubly sinusoidal bottom 
topographies The models perform less well in the 
vicinity of the higher-order resonance which occurs at 
the difference wavenumber of  the two bed components 
in the latter case In general, the predictions of the 
matrix model show slightly better agreement with the 
experimental data, but at a somewhat higher cost in 
terms of  computational effort The matrix model is more 
generally applicable than the extended-mild-slope model 
in one-dimensional problems, as it may be applied to 
rectangularly shaped beds as well as to smoothly varying 
topography 

The use of either of these models for wave propa- 
gation over rapidly varying topography would appear to 
be justified on the basis of the comparisons presented 
here However, there is room for improvement in the 
predictions of  both models, and further work is required 
if an accurate and rehable, simple model for wave 
propagation over rapidly varying bottom topography is 
to be produced 
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