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A new computational scheme for calculating the nonlinear energy transfer in finite-depth
gravity wave spectra has been developed by extending the methods established by Ma-
suda (1980) and Komatsu et al. (1993). In this paper, the formulations for the numerical
computation of the nonlinear energy transfer for finite-depth water waves are shown with
the analytical solution around the singular point of the Boltzmann integral. The numerical
computational procedure for the proposed method is described in detail. Some results of
numerical examinations for finite water depth, assuming two different types of directional
spectra, are shown with discussions on the validity of the proposed method.

1. Introduction

Nonlinear wave-wave interactions are one of the most pervasive physical processes
controlling the evolution and attenuation of waves during their propagation along
the ocean surface. This mechanism causes the energy transfer among an infinite
number of component waves, each of which has a different frequency and propagation
direction. Recently, this process has been recognized to be as significant as the energy
transfer from winds to waves and the energy dissipation by wave breaking. For these
reasons, it has become one of the most critical research topics to further understand
this physical process and incorporate this knowledge into wave forecasting and/or
hindcasting models as accurately and efficiently as possible.

This mechanism was originally formulated by Hasselmann (1962} in the form of
Boltzmann’s integral. Boltzmann'’s integral, however, includes a complicated non-
linear kernel function and a singular point which makes the numerical integration
difficult and unstable. Since the computation is very time consuming, there are very
few investigations which have attempted to compute the nonlinear energy transfer
for the realistic cases involving continuous directional spectra.

Among the recent examples, Hasselmann and Hasselmann (1981) reported the
results for deep and finite water depth cases. Those results seem to be numerically
unstable, however. Masuda (1980) developed an accurate computational method by
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analytically deriving approximate solutions around the singular point of the Boltz-
mann integral. Masuda (1980) also presented some reliable computational results
and provided comprehensive explanations on the characteristics of nonlinear wave-
wave interactions of deep water waves.

Recently, Komatsu et al. (1993) developed an efficient computational method by
modifying Masuda’s method to take into consideration the symmetrical nature of
nonlinear wave-wave interactions which were originally introduced by Hasselmann
and Hasselmann (1981). This method makes the computation 300 times faster than
Masuda’s method while retaining most of Masuda’s accuracy. Although Masuda’s
and Komatsu’s methods are very accurate and stable computationally, they are
restricted to deep water wave applications.

Web (1978) developed another accurate computational scheme by introducing
a locus along which Boltzmann’s integral is numerically integrated. Using this lo-
cus, obtained by removing the delta functions from the Boltzmann integral, the
instability created by the singular point can be eliminated. Resio and Perrie (1990)
modified Web’s method by introducing the symmetries of the nonlinear wave-wave
interactions. When both of these methods are incorporated into wave forecast-
ing/hindcasting models, some difficulties arise since they include curvilinear coordi-
nates (locus) rather than the physical coordinates of the time-space and frequency-
direction domain.

Nonlinear interactions are an essential mechanism which always exist during the
propagation of ocean surface waves but are hard to observe since they are usually
compounded with other physical processes such as the evolution and attenuation
of waves. It is, therefore, difficult to discuss the mechanism based solely on the
data obtained by experiments and/or observations. For this reason, the theoretical
approach is still indispensable to discuss the characteristics of the data. Komatsu’s
method seems to be superior to other existing methods such as Hasselmann’s, Web’s
and Resio’s with respect to accuracy, computation time and the ease with which it
is incorporated into wave models. It has a disadvantage in that it is restricted to
applications of deep water waves. Therefore, it is desirable to expand Komatsu’s
method for applications involving finite water depth waves. This new method would
contribute to the understanding of the nonlinear wave-wave interactions and to the
development of a reliable new generation of wave forecasting/hindcasting model.

This paper formulates the expanded theories of Masuda (1980) and Komatsu
et al. (1993). This refined method has the advantage that it can be applied to deep
and finite water depth waves. Some numerical results and discussions on the validity
of the proposed method are also presented.

2. Formulation for Finite-Depth Gravity-Waves

The fundamental equation of the nonlinear energy transfer due to resonant wave-
wave interactions was originally derived by Hasselmann (1962) which employed the
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theoretical fifth-order perturbation analysis. This analysis yields a fourth-order effect
comparable in magnitude to the growth and dissipation processes of ocean waves.
‘The equation is known as the Boltzmann integral and is expressed by the following
equation:

ana(i(‘l) =/.../dkldkgdk3G(k1,k27k3vk4)

X6(k1 + ko — k3 — k4)(5(w1 + wy — w3z — w4)
x{nlng(ng + n4) — n3n4(n1 + ng)} (1)

where, n(k;) = ®(k;)/w;, (i = 1,2,3,4), is the action density of the two dimen-
sional wave number spectrum, ®(k;), for wave number k; and angular frequency
wi, G(ki, ko, ks, k) is the coupling coefficient (the nonlinear kernel function) and
0() is the delta function representing the resonant conditions between four wave
components:

ki +ko=k, =ks+ky (2)
w1 twy = we = w3+ wy (3)

The wave number k; and angular frequency w;, (i = 1,2,3,4) of the linear compo-
nent waves satisfy the following dispersion relationship for the case of finite water
depths.

w? = gk; tanh k;h (4)

where, g is the gravitational acceleration and h is the water depth. The nonlinear
kernel function G(k;i, ko, k3, k4) is defined by:

212
G = 9ng*D (5)
4p2wwowswy
The quantity D has symmetries and has a very complicated form. The modification
to the quantity D for the case of finite water depths was made by Herterich and
Hasselmann (1980). The reader can refer to Hasselmann (1962) and Herterich and
Hasselmann (1980) for details.

In the following, we expand on Masuda’s formulation for deep water waves to the
finite-depth gravity waves according to Masuda’s derivation (1980). The symmetry
of Eq. (1) with respect to k; and ko permits us to replace the integration over
the entire (kj, ko) space by that over the half-space where |k;| < |kz|. This results

/Cﬂ(g //dk1de = 2/dk3 //[k.|5|k2| dk;dka (6)
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Hereafter, for simplicity, we will not explicitly write the conditions |k;| < |ka|,
w1 < wy. Integration over ko yields:

On(ks)

En = 2/dk3 / dklc(kl,kz,k3,k4)5(w1 4wy —w3 — w4)

x{nina(ng + na) — nang(ny + na)} (7)

where ko = k3 + k4 — k; and ws = +/gks tanh koh. For practical applications, we can
transform the above formula to that based on the frequency w and the propagation
direction 6. By use of the following relations:

k
and
(I’(: 29 40d6 = n(Kk)dk, (9)
we have

8<I>(w4,94 2(4)4]64 // / { k1k3 }
dwsdf duwdfy { —————G
8t Cylka) o PP Cokr)Cy (ks)

x6(w1 + wy — w3 — w4){n1n2(n3 + n4) - n3n4(n1 + ng)} (10)

In order to clearly express the meaning of the resonant four wave interactions,
a projection of the family of resonant loops in three dimensions of (k,w) onto the
wave-number plane is often utilized as shown in Fig. 1. This specifies the sets of
wave-numbers for surface waves capable of undergoing resonant interactions. If kg
and ky are fixed, the resonant conditions determine k; and kj except for one degree
of freedom from the resonant conditions, Egs. (2) and (3). Although Longuet-Higgins
(1962) specified the four resonant waves using the parameter v = w,/1/gk,, Masuda
(1980) redefined it as ¥ = v/gkq/wa— 1/+/2 so that  would be zero on the loop which
passes through the center of the resonant interaction chart. It is clearly understood
from Fig. 1 that for a given ks and k4, k; (or k) must lie on a curve where vy =
constant. Using this parameter v, Masuda skillfully derived the approximate solution
around the singular point (7 = 0) of the Boltzmann integral to develop an accurate
computational scheme for determining the nonlinear energy transfer for deep water
gravity waves.

Now, we redefine the parameter v by taking into consideration the effect of finite

water depth as
/ kq
= 1/ gkq tanh ?h/wa - 1/\/5 (11)

so that the parameter  is zero at the singular points to be discussed later. When A
is infinity, v is identical to Masuda’s definition.
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Fig. 1. Longuet-Higgins’ interaction chart: contours of v defined in Masuda (1980) for deep-water
waves. (Masuda, 1980).

Following Masuda, we adopt 6, — 6, as a parameter representing the remaining
one degree of freedom, where 6, is the direction of k, in Eq. (2). Then the frequency
w is obtained by numerically solving Egs. (2) and (3). By virtue of the condition
lki| £ |k2| or w; < wa, the frequency w; is determined uniquely. Details of the
computation to obtain w; will be discussed later. Note that for v < 0 the condition
|ki| < |kz| restricts the range of 8; — 6, (see Fig. 1) as:

6 =cos™! (Zk—I;) <61 -6, <m (12)

Integrating Eq. (10) over w; yields:

8¢(w4,04) _ 2(4)4/64 /
5 = outry | [ s [ a0

kiks G
{emicm s | (rmatrs +n —monatma+ma)) 13

where the denominator S, arising from §(w; + w2 — w3 — wy), is given by:

_ Cylk2) [ k1 — kg cos(f) — 6,)
5=+ G (=) -

For convenience, we can write:

01 =0, —0,, 0:=0,-0, 03=05—0, (15)
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Q

log3 [:g

Gs
Fig. 2. A schmatic graph of the region over which the integration (17) is performed. (Masuda,
1980).

and
Q= lnwg (16)

Equation (13) can be transformed to the final formula to calculate the nonlinear

energy transfer:
a¢(¢;;,94) 2“"‘"“ / dés / dQ / df,

xzzz{ e

x{ning(ng + ng) — ngna(n1 + n2)} (17)

™ - oo w
/ dfs / s dth (18)
-7 -0 -7
has been replaced by:

/Oﬂdég/owdﬂfoﬂdalx;;g (19)

Figure 2 schematically shows the domain of integration in the (0.1, Q,ég) space. It
is an infinitely long rectangular prism excluding a lower region resulting from the
condition wy < wy. This excluded volume is bounded by three planes; 63 =7, Q =0,
6; =0, and a curved surface 8; = 9(53,9).

where:



Numerical Computations of the Nonlinear Energy Transfer of ... 29

G
Fig. 3. A schematic graph of a cross section (53 = constant) of the rectangular prism in Fig. 2.
(Masuda, 1980).

As Masuda noted, the singularity in Eq. (17) comes from S only. Simple manip-
ulation yields:

5 (20)

k 2 - 1/2
1+ Calke) {1 - Esin"’ol}
k2

By virtue of the condition of wy < ws, S vanishes only when w; = ws and 6, = 0.
That is, the singular points are located along a curve ¥ = 0 on the plane 6, =0
(see Fig. 2). Therefore, special treatment is necessary to perform the integration of
Eq. (17) around the singular point v = 0.

Although we introduced the transformation in terms of direction, €, only in
Eq. (15) for the convenience of numerical computations, Masuda also introduced
the transformation for frequency, w, by dividing w by the target frequency, wy, at
which the nonlinear energy transfer is to be calculated. Although Masuda’s trans-
formation can reduce the computational time to a large degree for deep water
waves, this benefit is not valid for finite water waves. This issue will be discussed
presently.

3. Integration Around the Singular Point

In this section an analytical integral of Eq. (17) around the singular point is derived
according to Masuda (1980). Equation (17) is carried out successively in the order
of 61, 2, 03. Therefore, we must integrate Eq. (17) first on the plane 63 = constant.
The singular point is denoted by P in Fig. 3. The integration over the area A
surrounding P is to be calculated analytically, where A is defined by © < 6, < 4,



30 N. Hashimoto, H. Tsuruya & Y. Nakagawa

and —e_ < Q — Qp < £4. We can rewrite the integration as:

- R 1
dQdo,—= =~ R // dQdf, — (21)
//A 1g ®Ip || Sgs
where
klkzwsc
~ Colk1)Colks) - 22
R Cg(kl)cg(ks){nmz(ns-f-m) nana(ny + n2)} (22)

is the numerator, Rp is the value of R at the singular point P, and Sp is given by

_ | _2kuDy(ka/2) 5, _ 4V2waDg(ka/2)
SP_\/— Co(ka/2) 1 - {Cg(kag/g)}z (2 - @) (23)

where Dy(k) = 0Cy(k)/0k, and

(o) _ (.2
F=\8a)p ~ \Pbws)

w3 {Cg(ka/2) k3+k4COSé3 _ 1}

T V2w, | Colks) ka 24

Equation (23) can be derived after some manipulation of Eq. (14) using the condi-
tions of k1 /ka =1 - A, |A| « 1, and |61]| < 1, |02] < 1 around the singular point
P.

Referring to Fig. 3, the integration of Eq. (21) can be performed by separating
the area A as

-1 0 0 _ 1 £ 6 1
dQdo, — =/ dQ/ df —+/ dﬂ/ déy — 25
//A 5y = L e P5 Ty B s (25)

Since the lower limit © of the integral in terms of 6, in the first term of the right
hand side of Eq. (25) can be approximated around v = 0 by

2\/§wa
6= \/—mﬂ(ﬂ — ), (26)

then, the integration of Eq. (25) can be obtained

s 1 ey |Vad+ad® +bei| \/56— \/adé? + be
dQddo) — = In
A Sp Va lV/be+| b

|v/ad + /ad? — be_ | —y/adé? — be_ 27)
va' |(¢<‘z‘c+¢ac—b \/e—-l b

+



Numerical Computations of the Nonlinear Energy Transfer of ... 31

where
_ 2kyDy(ka/2) b _ 4V2w,Dy(ka/2)
Cylka/2) ~ ~  {Cylka/2)}?
(28)
2\/§wa
©% kaCylka/)"

The above argument ceases to be valid near the zero-point of u = (8v/99)p,
which is found at the origin, 63 = Q = 6, = 0. This kind of singularity can be
treated only by calculating a triple integral as Masuda derived for deep water waves.
However, when the computation method discussed in the following section is utilized,
it is not necessary to take into consideration this singularity since the contribution
from this singularity is canceled out at the point where the resonant four waves have
the same wave number vectors.

The derivation of the extended computational method of Masuda (1980) was
described for finite-depth gravity waves. It is easily confirmed that all the equations
and variables derived above are identical to Masuda’s derivations when the water
depth h is infinity.

4. Methodology of the Numerical Computation of Nonlinear
Energy Transfer

In order to carry out the numerical computations using the equations derived in the
previous sections, we utilized Komatsu’s method. Komatsu et al. (1993) made use of
the resonant interaction symmetries, as in Hasselmann and Hasselmann (1981) and
Resio and Perrie (1991), and truncated less significant configurations of resonance
to achieve shorter computational time without serious loss of accuracy.

As Komatsu et al. (1993) mentioned, there are two kinds of symmetries in
the resonant interaction. The first is based on the well-known nature of nonlin-
ear resonant interactions among gravity waves expressed by the integral formula of
Eq. (1). Consider a particular combination of four resonant waves with wave num-
ber vector k;(i = 1,2,3,4). As explained in Hasselmann and Hasselmann (1981),
on(k;)dk;/dt(i = 1,2,3,4) have the following relationship:

g 0, S,
where dn(k)/dt indicates the action transfer that is due to this particular resonance
combination. As shown in Eq. (29), én(k;)dk;/ét(i = 1,2,3,4) are of equal magni-
tude but are different in sign. The outer pair of frequencies consist of the highest and
lowest frequencies of the four resonant wave components. The inner pair of frequen-
cies consist of the remaining two components. The resonance interaction deprives
energy from the inner pair to supply it to the outer pair, and vice versa (Masuda,
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1986). Accordingly, if we calculate dn(k)/8t for one component of the resonant four
waves, then we immediately know én(k)/ét for the other three components.

The second type of symmetry is associated with the geometrical similarity of
resonance configurations. One is the mirror image of a resonance combination which
has the same interaction coefficient as the original one. The other is a rotation of a
resonance combination which also gives the same interaction coefficient.

Masuda (1980) and Komatsu et al. (1993) made use of another symmetry, a scale
transform of wave numbers, which preserves the resonance condition. As mentioned
in Masuda (1980) for the case of deep water waves, if we specify a particular wave
number vector kq(ws and 84) at which the nonlinear energy transfer is to be evalu-
ated, and normalize the variables such as G, S,w,... in the Boltzmann integral by
the specific wave number k4, those variables do not depend on the magnitude or the
direction of the wave number vector k4. They are determined by the configuration
of wave vectors of resonant waves regardless of the specific wave k4. In other words,
they are functions of O3 = 03 — 04, Q = In(w3/w4) and 6, =6, — 6, only. There-
fore, this normalization makes it sufficient to calculate the complicated functions
G, S,w1,... only once in advance, which reduces the computational time to a large
extent. Conversely, for finite-depth gravity waves, the above normalization is not
valid, and the variables G, S, ... depend not only on 6, 2,6, but also on wy. This
is a reason why we have introduced the normalization only for the direction 8 in
Eq. (15). This property for finite water waves makes it time consuming to numeri-
cally integrate Boltzmann’s integral since those variables are needed to be calculated
for each specific frequency wy for the target directional wave spectrum ®(wq,84).

In order to make use of the symmetries mentioned above, the (w,8) space is
divided into bins of nonuniform finite areas in the same way as Masuda (1980) and
Komatsu et al. (1993). The central frequency w; of each bin is distributed on a
logarithmic scale from the minimum frequency, wmin, to the maximum frequency,
Wmax, at a constant ratio

R, = exp{A(Inw)} (30)

wiy1 = Rywy (31)
while the central direction, 6, of the bin is distributed as
041 =6+ A6 (32)

with the directional increment A€ kept constant. By virtue of this distribution
of bins, the second kind of symmetry is expressed as follows. If a combination of
any four bins satisfies the resonance condition, so do any combinations of the four
bins that are obtained from the original combination through (1) mirror transform
and (2) rotational transform. The scale transform utilized in Masuda (1980) and
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Komatsu et al. (1993) for deep water waves cannot be used in finite-depth water
waves as mentioned before. In the following, bin (wy,8;) are referred to as (I, J).

Now, we specify a particular wave number vector k4(ws and 64) at which the
nonlinear energy transfer is to be evaluated, and assume the order of magnitude
of frequencies as follows considering the first kind of symmetry of the nonlinear
wave-wave interaction.

w3 Swy Swy Swy (33)

For the computation of realistic continuous energy transfer On(ws,6,)/0t, the com-
putation must be carried out with the loops of frequency w4 and direction 6,4, where
the outer loop is w4 and inner loop is ;. Between the two loops, the computation of
the configuration of resonant interactions for each frequency are performed with the
computation of variables such as G, 5, ... in the Boltzmann integral for both regular
and singular points. In the inner loop of direction 64, the computation of nonlinear
energy transfer for each direction 4 is carried out using the resonant configuration
with the symmetries of the configuration.

Since the efficient method utilizing symmetries is described in Komatsu et al.
(1993) and Komatsu and Masuda (1996) in detail, the outline of the computation
procedure is described in the following section for finite-depth water waves.

4.1. Computation around the singular point

This computation is to be carried out between the loop of frequency w4 and that
of direction 64. Choose the variable 83 as a parameter of the loop computation. By
making use of the mirror image symmetry, the range of 05 is assumed as 0 < 05 < .
Also, by making use of the rotational symmetry, 84 is assumed to be zero. Then, the
following computation is carried out in the loop of 6.

(1) Search for Qp(= Inws) which satisfies ¥ = 0 and the condition of Eq. (33). This
solution can be obtained by the iterative computation applying regula falsi (rule
of false position) for Fy(k3) = 0, where

2 kah
Fi(ks) = % — gkq tanh =2 (34)
wq = v/ gks tanh k3h + \/gks tanh kqh (35)
ka = /K2 + k2 + 2kakq cos G (36)

From the above computations, k3, ws, k, and w, can be obtained from the known
values of wy, k4,04 and 6.

(2) From the resonant condition, w; = wp = w,/2 and 6, = 65 = 0 are obtained.
From the computation of Steps (1) to (2), the resonant configuration at the
singular point can be determined.
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(3) Compute Qp = |Qp/AQ|—[|Qp/AQ|], where AQ = A(lnw) and [] is the Gaus-
sian notation of the maximum integer which does not exceed the real argument.
When Qp < 0.5, the width of  of the infinitesimal area A in Fig. 3 is defined
as:

e+ =(05—0p)x AQ and e_ = ({1p+0.5) x AQ (37)

When Qp > 0.5, the point P is dealt with as a regular point.
(4) Using the analytical solution of Eq. (27), compute the following kernel function
P

P = kiksG/{Cy(k1)C, (k3)} / /A d0df, (1/Sp) (38)

where 4 in Eq. (27) is set to be 1.5 A# according to Masuda (1980).

(5) By utilizing the second kind of symmetry, compute the relative coordinate
(I, Ji) of the bin for the resonant three other waves (wi, 6;)(@ = 1,2,3) to
the target wave (w,,64) by

Jo=Jp~ Ja(k=1,2,3). (39)

The relative coordinates of the bins for each symmetry configuration are re-
lated to the original configuration and are preserved with the value of the ker-
nel function P for the computation of the nonlinear energy transfer discussed
presently.

It should be noted that, in order to limit the number of resonance combina-
tions, we discard the resonance configurations for which the ratio of the higher and
lower frequencies of ws/w3 exceeds a prescribed value of Cr(= 3.0) according to
Komatsu et al. (1993). As mentioned previously, it is not necessary to take into
consideration the singularity at the origin since the contribution from this singular-
ity is canceled out at the point where the resonant four waves have the same wave
numbers.

4.2. Computation at the regular point

This computation is to be carried out between the loop of frequency w, and that of
direction 8,. Choose the variables ég,w;;, and 6, as parameters of the loop compu-
tations. By making use of the mirror image symmetry, the ranges of 63 and 6, are
assumed as 0 < 63 < 7 and © < 6, < m, respectively. Also, by making use of the
rotational symmetry, 8,, is assumed to be zero. Then, the following computation is
carried out in the loops of 9.3, w3 and 51 in this order.

(1) Search for w;,w; and @, satisfying the condition of Eq. (33). The solutions can
be obtained by the iterative computation applying regula falsi for Fy(k;) = 0,
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where
Fy(k1) = wq — v/gk) tanh k1h — \/gk; tanh koh (40)
ks = \/k2 + k2 — 2ok cosfy (41)
6y = tan-1 { ——msinf1_ (42)
ko — k1 cos by

By the above computatlon k1, ko and 6, can be obtained from the known values
of wy, kg, 04, 03,&)3 and 6, to get the resonant configuration at the regular point.
(2) Compute the following kernel function K

K= klkgng/{Cg(kl)Cg(kg)S} (43)

(3) Compute the relative coordinate (Iy,Ji) of the bin for the remaining three
resonant waves (wj, 6;)(i = 1,2,3) to the target wave (w4,04) by Eq. (39). The
relative coordinates of the bins for each symmetry configuration are related to
the original configuration and are preserved with the value of the kernel function
K for the computation of the nonlinear energy transfer discussed presently.

It should be noted that we also discard the resonance configurations for which
the ratio of the higher and lower frequencies of w4/ws exceeds a prescribed value of
C,(= 3.0) according to Komatsu et al. (1993). This convention is the same as that
adopted for the computation around the singular point.

4.3. Computation of the nonlinear energy transfer

The action density, n(I, J) = ®(I, J)Cy/(wk), is obtained from the directional spec-
trum ®(I, J) = ®(w, §). Using the relative configuration (I, J;) to the wave (I3, Jy)
previously obtained, the following computation is to be carried out for each (wy,84)
in the inner loop of direction 4. That is, in the inner loop of direction 6,4, the com-
putations of the following steps (1) to (3) are repeated for all the configurations
including the symmetries of both the singular and the regular points.

(1) Compute the coordinates of waves (I, Ji)(k = 1,2,3) by
Je=Je+ Ja(k =1,2,3). (44)

(2) Using the action density, ny = n(lg, Ji)(k = 1,2,3), compute the following
integrand for the regular point and singular point, respectively.

AW = 2wakq P/Cy(ks){n1n2(ns + na) — nans(ni + n2)}AG3AQAG, (45)
AW}, = 2waka K/Cy(ks){nina(ns + n4) — nana(ng +n2)} A6 (46)
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(3) Accumulate the rate of the action density, Any, for each related bin of the wave
component (I, Ji)(k =1,2,3,4) by

An, -1
A -1 dw,
n2 — K (47)
An3 1 de
An4 1

5. Analysis of Result

Since the proposed method derived herein is a generalized method including the
methods of Masuda (1980) and Komatsu et al. (1993), it can accurately and smooth-
ly simulatc the nonlinear energy transfer for deep water waves even when a rough
mesh size is applied such as 24 x 36 in the frequency and direction domain, re-
spectively. No significant difference can be seen between the results of the proposed
method and those of Masuda (1980) and Komatsu et al. (1993) for deep water waves.

However, for the case of finite-depth gravity waves, especially kph =~ 1, where kp
is the wave number corresponding to the peak frequency of the power spectrum, such
rough mesh sizes make the computational results unstable and produce a “zigzag”
shape in the nonlinear energy transfer.

In the following, the characteristics of nonlinear energy transfer are examined in
one dimensional form T (w) defined by:

Ti(w) = / 00(w,6) 4 (48)
ot

Figure 4 shows examples of the nonlinear energy transfer for kph = 10.0, 1.0 and
0.8, where the wave spectra examined are the Pierson-Moskowitz spectrum (which
will be abbreviated as the PM spectrum hereafter) and the JONSWAP spectrum,
respectively, with a cos? directional spreading function. The peak frequency of
each power spectrum is chosen as wp = 1, and the mesh size for the numerical
computation is 72 x 96 in the frequency and direction domains, respectively.

As shown in Fig. 4, the characteristics of the nonlinear energy transfer are differ-
ent in each case depending on the shape of the directional spectrum and the mag-
nitude of the relative water depth kph. For the case of the PM spectrum, the result
for kph = 10.0 shows the maximum value of the nonlinear energy transfer around
the peak frequency, wp, of the spectrum, and the minimum value around 1.5wp.
However, when kyh decreases to smaller values of finite water depth, i.e. smaller
than kph = 1, the location of the maximum and the minimum value of the non-
linear energy transfer shifts toward the lower frequency side and the magnitude of
their absolute values are increased.

For the case of the JONSWAP spectrum, the result for kph = 10.0 shows the
maximum value of the nonlinear energy transfer around 0.95wp, and the minimum
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Fig. 4. Comparison of the one dimensional nonlinear energy transfer, T} (w), calculated for various
kph as a parameter: (a) PM Spectrum, (b) JONSWAP Spectrum.
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Fig. 5. Examples of the one dimensional nonlinear energy transfer. T (w). calculated for kph = 0.35:
(a) PM Spectrum, (b) JONSWAP Spectrum.

value around 1.lwp. These results are different from the case of the PM spec-
trum. In finite water depths, where kph =~ 1, the locations of the maximum and
the minimum values appear to be at the same location as that of kph = 10.0.
Their magnitudes, however, are also increased while maintaining the similar shape
of kph = 10.0.
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Fig. 6. Amplification factor R of the nonlinear energy transfer for finite-depth and infinite-depth
wave spectra.

As Hasselmann and Hasselmann (1985) noted, for kph < 0.4, the nonlinear en-
ergy transfer exceeds the deep water values by more than an order of magnitude,
and the weakly nonlinear approximation becomes questionable. For reference, how-
ever, Figs. 5 (a) and (b) show examples for kph = 0.35. The smooth shapes of
the nonlinear energy transfer and the remarkable increases in their absolute values,
which have different shapes depending on the assumed directional spectra, can be
easily seen.

Figure 6 shows the comparison of the amplification factor of the nonlinear energy
transfer for the finite-depth and the deep water waves. The circles in Fig. 6 are
calculated by the following definition as a function of kph.

R(kph) = Snl(kph)peak/snl(oo)peak (49)

where, Spi(kph)peak is the maximum (peak) value of the nonlinear energy transfer cal-
culated for a parameter of k,h with a specified directional spectrum. In Fig. 6, e and
o show the differences of the assumed power spectrum, i.e., the PM spectrum and the
JONSWAP spectrum, respectively. The solid and broken lines in Fig. 6 are results
obtained from Hasselmann and Hasselmann (1981, 1985). Although Hasselmann and
Hasselmann (1981, 1985) obtained these lines through numerical computations by
assuming a Mitsuyasu-Hasselmann type directional spreading function, and they are
different from our computational conditions, the results in Fig. 6 are generally in
good agreement. The third generation wave forecasting/hindcasting model (WAM
model; WAMDI Group, 1988) utilizes the amplification factor shown by the solid line
in Fig. 6. The WAM calculates the nonlinear energy transfer in finite water depths
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by simply multiplying the amplification factor by the result for deep water waves.
Although the amplification factor in Fig. 6 seems to have no significant difference for
the two types of power spectra (the PM and JONSWAP spectrum), we should note
that there are actually significant differences in the shapes and the peak locations
of the nonlinear energy transfer depending on the two assumed directional spectra.

Comparing the difference between the results of the proposed method and those
of Hasselmann and Hasselmann (1981), the proposed method seems to have equiva-
lent or better accuracy than that of Hasselmann and Hasselmann, since their results
includes unstable “zigzag” shapes even for the case of deep water waves.

6. Concluding Remarks

The physical processes involved with the evolution and attenuation of waves propa-
gating on the sea surface are very complicated. One of the most important processes
is the nonlinear energy transfer among an infinite number of component waves. The
formulation of this process was originally established by Hasselmann (1962) more
than 30 years ago. However, the complexity and difficulty associated with numerical
computations prevent us from fully understanding the mechanisms of the nonlinear
energy transfer for various real sea conditions.

In this paper, we expanded Masuda's rigorous theory (1980) and Komatsu’s effi-
cient method (1993) for the cases of finite-depth gravity water waves. This method
can be applied for various realistic sea conditions. The method was applied to some
examples of common wave spectra in finite water depths. Some characteristics of
the nonlinear energy transfer in finite water depths were clarified. Future research
will include applying this method to various directional wave spectra in different
water depths and investigating the characteristics of the nonlinear energy transfer
more closely. We hope this paper will contribute to the understanding of the non-
lincar energy transfer, and to the development of a new generation wave forecasting
/hindcasting model.
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