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We revisit and extend the description of gravity waves based on a perturbation expansion
in Lagrangian coordinates. A general analytical framework is developed to derive the
second-order Lagrangian solution for the motion of arbitrary gravity surface wave fields in
a compact and vector form. The result is shown to be consistent with the classical second-
order Eulerian expansion by Longuet-Higgins (1963) and is used to improve the original
derivation by Pierson (1961) for long-crested waves. As demonstrated, the Lagrangian
perturbation expansion captures higher degrees of nonlinearities than the corresponding
Eulerian expansion at same order. At second-order, it can account for complex nonlinear
phenomena such as the initial stage of the horse-shoe patterns formation and Benjamin-
Feir modulational instability to shed new light on the origin of these mechanisms.
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1. Introduction

The Lagrangian description of interactions between multiple gravity surface waves was
pioneered by Pierson (1961) half a century ago. Pierson derived explicitly the first-order
solution for two-dimensional surfaces and pushed the calculation to the second-order for
long-crested surfaces. He showed that first-order results include more realistic features
than the Eulerian counterpart, such as sharp crests and flat troughs. In this present work,
we revisit and correct this historical study to provide a general analytical framework,
and to derive a compact and vector form for the second-order Lagrangian description
of arbitrary tri-dimensional gravity wave fields. The analysis of tri-dimensional multiple
wave systems is much richer than long-crested surfaces and monochromatic waves as
some geometrical and dynamical characteristics of the wave field can only be accounted
for by considering interactions between different, non-aligned free wave vectors.

To date, exploration of the numerical and analytical possibilities opened by the La-
grangian formalism have been somehow overlooked. A renewed interest in Lagrangian
approaches and their mathematical (Yakubovich & Zenkovich (2004); Buldakov et al.
(2006); Clamond (2007)) or practical implications (Gjosund (2003); Fouques et al. (2006);
Fouques & Stansberg (2009)) have been further highlighted to provide means to bet-
ter evaluate the statistical and geometrical description of free surface and mass trans-
port (Lindgren (2006); Aberg (2007); Aberg & Lindgren (2008); Nouguier et al. (2009);
Socquet-Juglard et al. (2005); Hsu et al. (2010, 2012)). The underlying reason behind
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these remarkable properties is that the Lagrangian representation is clearly adapted for
describing steep waves and a very useful mathematical tool to correctly evaluate statisti-
cal quantities (such as height, slope and curvature distribution) of random gravity waves
fields at a limited analytical complexity cost.

Our main finding is given by equation (4.45) which summarizes the Lagrangian expres-
sions of the second order displacements of water particles and pressure in the whole fluid
domain. The analysis is restricted to infinite depth but there is no conceptual difficulty
in relaxing this assumption. Full consistency is shown with the second-order Eulerian
expansion of Longuet-Higgins (1963). Pierson’s (1961) original second-order Lagrangian
solution for long-crested waves is discussed and adjusted to agree with Longuet-Higgins
(1963) and our derivations. We further discuss two remarkable phenomena which are not
captured by the second-order Eulerian expansions. Firstly, the formation of horse-shoe
patterns was identified as the result of a non-isotropic drift current. Secondly, Benjamin-
Feir modulational instability is also revealed to be already present in the second-order
Lagrangian framework as a simple beat effect between two neighbor harmonics instead
of an energy exchange between carrier and sideband waves.

2. Eulerian versus Lagrangian expansions

We consider an incompressible fluid of constant density ρ in infinite depth, subject to
the sole restoring force of gravity (surface tension and viscosity are ignored). The pressure
is set to be a constant pa at the free surface of the fluid. We chose a fixed system of axis
(x̂, ŷ, ẑ) with upwards directed vertical vector ẑ.

2.1. Eulerian description

In the Eulerian description, any position in space is identified by its coordinate (x, y, z),
which can be decomposed into its horizontal projection r = (x, y) and vertical elevation
z. The evolving field of gravity waves is described by its elevations η(r, t) and velocity
potential Φ(x, y, z, t) with t being the time variable. In the Eulerian coordinates the
potential solves Laplace equation in the volume together with dynamic and kinematic
conditions at the borders:

∆Φ = 0, z < η(x, y, t)

lim
z→−∞

∇Φ = 0,

Φt + 1
2∇Φ · ∇Φ = −gη, z = η(x, y, t)

Φz = ηt +∇η · ∇Φ, z = η(x, y, t),

(2.1)

where g is the acceleration due to gravity. In the classical perturbation approach (Has-
selmann (1962); Longuet-Higgins (1963); Weber & Barrick (1977)) the field of elevation
η and the velocity potential Φ at position and time (r, t) are sought in the form:

η = η0 + η1 + η2 + ...

Φ = Φ0 + Φ1 + Φ2 + ...
(2.2)

The naught terms, η0 and Φ0, are the reference solutions corresponding to a flat fluid
interface and the following terms, η1 and Φ1, are the solutions provided by the linearized
equations. The successive terms, ηn and Φn, are corrections of order n with respect to a
small parameter. In the general case of multiple waves, this small parameter is not well
identified but can linked to the wave steepness in the case of a monochromatic wave.
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2.2. Lagrangian description

In the Lagrangian approach (Lamb 1932), the fluid evolution is described by the motion
of fluid particles. The spatial coordinates R = (x, y, z) of the particles now depend
on their independent reference labels ζ = (α, β, δ) and time t, that is explicitly x =
x(α, β, δ, t), y = y(α, β, δ, t) and z = z(α, β, δ, t). We choose hereafter ζ as the locus of
particles at rest. For ease of reading we introduce dedicated notations for the horizontal
component of particles labels and positions, ξ = (α, β) and r = (x, y) respectively.

The evolution of particle coordinates is driven by Newton’s law of dynamics:

Rtt + gẑ = −1

ρ
∇Rp (2.3)

where p = p(R) is the local pressure. This dynamical equation is coupled with the
continuity equation:

|J| = 1;
∂

∂t
|J| = 0 with J =

 xα yα zα
xβ yβ zβ
xδ yδ zδ

 . (2.4)

Multiplying equation (2.3) by J leads to

JRtt + g∇(R · ẑ) +
1

ρ
∇p = 0 (2.5)

which is the basic equation given by Lamb (1932). From here on the spatial gradient
relative to the independent Lagrangian variables (α, β, δ) will be noted ∇.

Solutions of these equations need not be irrotational. However, if a function F (ζ, t)
can be found such that

dF = (JRt) · dζ (2.6)

is a perfect differential then there is no vorticity (see appendix A.1). Here dζ = (dα, dβ, dδ)
denotes an infinitesimal label variation. Following the methodology described by Stoker
(1957) we may seek for the solution in the form of a simultaneous perturbation expansion
for position, pressure and the vorticity function:

R = R0 +R1 +R2 + ...

p = pa − ρgδ + p1 + p2 + ...

F = F0 + F1 + F2 + ...

(2.7)

where the naught variables refer to particles at rest.

3. First-order solution: the Gerstner wave

Let us map the fluid domain onto the strip δ 6 0. From now on, δ = 0 corresponds to
the free surface η with pressure pa. The zeroth order solution in the expansion (2.7) is
related to particles at rest and writes :

R0 = ζ,

p0 = pa − ρgδ
F0 = 0

|J| = 1

(3.1)
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First-order quantities are the solution of linearized Lagrangian equations. When taken
at first-order, equation (2.5) writes:

R1tt + g∇(R1 · ẑ) +
1

ρ
∇p1 = 0. (3.2)

and the continuity equation is expressed by:

x1α + y1β + z1δ =∇ ·R1 = 0. (3.3)

In order to simplify the calculations presented in the next section and to ensure an
irrotational solution at first order (see equation (3.9) below), we investigate solutions of
the form R1 = ∇w where w(ζ, t) is a function to be found. This last quantity must
satisfy the following equation:

∇ (wtt + gwδ + p1/ρ) = 0. (3.4)

With p1 = 0 at δ = 0 this leads to the solution:

w = cos(k · ξ − ωt)ekδ; ω2 = gk; p1 = 0. (3.5)

where k = (kα, kβ) is an independent bi-dimensional vector in the (α, β) domain and k
a constant parameter. At first order in ε, the relation of continuity (3.3) writes

∆w = (−k2α − k2β + k2)w = 0 (3.6)

leading to ||k|| = k. As R1 is a spatial displacement, a suitable solution is R1 =
∇(ak−1w) which leads to the first-order solution : r = ξ − ak̂ sin(k · ξ − ωt)ekδ

z = δ + a cos(k · ξ − ωt)ekδ
p = p0 − ρgδ

. (3.7)

From here on, we use the notation k̂ = k/k for the direction of a vector k and k for its
norm. This solution describes water particles trajectories as circles with radius decreasing
exponentially with water depth. The spatial profile of such waves is a trochoid moving
in the direction k with a crest to trough wave amplitude defined by the circle radius a
of particles trajectories at the free surface.

Two centuries ago, Gerstner (1809) derived an exact solution of the equation of motion
(2.3) and obtained the same solution (3.7) for water particle trajectories (r, z) with,
however, a slightly different pressure term:

p = p0 − ρgδ + 1
2k
−2ρω2e2kδ. (3.8)

The Gerstner wave has been described in classical textbooks (e.g. Lamb (1932); Kinsman
(1965)) even though its stability was investigated only recently (Naciri & Mei (1992);
Leblanc (2004)). It has always been criticized in view of its non-vanishing vorticity. This
calls for some discussion on the presence of vorticity. Wind waves do in general have
vorticity, although it is indeed small. The main reason for which most of the studies have
been devoted to irrotational waves is the considerable simplification offered by potential
theory in the analytical derivations. It turns out that the predictions of potential theory
agree reasonably well with the observations, which does not mean that real waves are
irrotational but rather that vorticity has only secondary effects. However, discrepancies
are bound to become visible as the quality and accuracy of observations improve and it
will soon become necessary to account for vorticity. The main shortcoming of Gerstner
solution is that it does not address a wide class of solutions with small vorticity. Its
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vorticity has indeed a very special distribution and there is no rationale why it should
be more relevant than any other of the same order. In the present analytical framework,
the construction of a weakly nonlinear solution to the exact inviscid equations is more
general and it is possible to examine arbitrary distributions with small vorticity and
evaluate, at least coarsely, the importance if this effect.

As already derived by Pierson (1961), equation (2.6) writes at first order in ε:

dF = R1t · dζ (3.9)

which is a perfect differential of F1 since dF =∇F1 · dζ with

F1 = ak−1wt =
aω

k
sin(k · ξ − ωt)ekδ. (3.10)

Therefore, there is no vorticity at first order and the Gerstner wave (with the correspond-
ing pressure given by equation (3.7)) is an irrotational solution at the considered order
of the expansion.

Because of the linearity of equation (2.5), we can write an extended solution of the
first-order equations as a continuous superposition of independent harmonics defined by
their wavenumber k in the form:

R1 =∇Φ1 with Φ1 = φ1 + c.c., (3.11)

where “c.c.” designates the complex conjugate of a given quantity and

φ1 =
1

2

∫
<2

A(k)

k
ei(k·ξ−ωt)ekδdk. (3.12)

Here A(k) is the orbital amplitude and the factor 1
2 accounts for the complex plus

conjugate formulation of Φ1. Such an orbital spectrum has been already introduced in
the statistical studies of Lagrangian wave fields (Pierson (1961); Lindgren & Lindgren
(2011); Daemrich & Woltering (2008)) and describes the spectral content of the particle
motion. It is sometimes termed ”undressed” spectrum (Elfouhaily et al. (1999)) when
it refers to a nonlinear transformation of an underlying linear surface (Creamer et al.
(1989)).

In the present state of knowledge, establishing the relationship between the orbital
(Lagrangian) and the surface (Eulerian) spectrum is still an issue. When the amplitude
A(k) is taken to be a complex random variables with independent uniformly distributed
random phases, the resulting function φ1 is a complex random Gaussian process by
virtue of the law of large numbers. However, the random surface η defined by the locus
of particles at the free surface is no longer Gaussian. This implies that the corresponding
distribution of elevation, slopes and curvatures distributions deviate from the Normal
distribution. Statistical properties of such random wave fields have been studied in detail
(e.g. Pierson (1961); Gjosund (2003); Aberg & Lindgren (2008); Nouguier et al. (2009);
Lindgren & Aberg (2009); Lindgren & Lindgren (2011)) and were found to be more
consistent with ocean wave field measurements. A contrario, it should ne noted that
a first-order expansion in the Eulerian framework, which expresses the surface and its
derivatives as a linear superposition of free harmonics, is bound to the Gaussian statistics.

4. Second-order Lagrangian solution

This section is devoted to the second-order Lagrangian expansion. We recall the corre-
sponding equations and detail the calculations to derive the second-order displacements
and the pressure terms as function of the Lagrangian variables. To simplify the notations
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we omit the integration elements (dk, dk′) and domain (<2 and <2×<2) in the following
single and double integrals.

4.1. Second-order equations

Retaining the second-order terms in (2.5) we obtain:

R2tt + g∇z2 +∇p2/ρ = −H(Φ1)∇Φ1tt, (4.1)

where H is the Hessian operator, that is the square matrix built with the second-order
partial derivatives relative to the (α, β, δ) variables:

H(Φ1) =

 ∂2αα ∂2αβ ∂2αδ
∂2βα ∂2ββ ∂2βδ
∂2δα ∂2δβ ∂2δδ

Φ1 (4.2)

For practical purposes we rewrite the right-hand side of (4.1) as:

−H(Φ1)∇Φ1tt = S + T (4.3)

with

S = (Sα, Sβ , Sδ) = −H(φ1)∇φ1tt + c.c. (4.4)

T = (Tα, T β , T δ) = −H(φ1)∇φ∗1tt + c.c. (4.5)

where the superscript ‘∗’ refers to the complex conjugate. Straightforward derivations
given in the appendix A.2 leads to:{

(Sα, Sβ) =
∫∫
N gkk′ i2 (k̂ + k̂′) + c.c.

Sδ =
∫∫
N gkk′ + c.c.

and

{
(Tα, T β) =

∫∫
N gkk′ i2 (k̂ − k̂′) + c.c.

T δ =
∫∫
N gkk′ + c.c.

(4.6)
where the kernels N and N depend on the variables k, k′, ξ, δ and t and are defined as
follows:

N = Be−i(ω+ω
′)t e(k+k

′)δ and N = Be−i(ω−ω
′)t e(k+k

′)δ. (4.7)

with

B(k,k′, ξ) = 1
4 (1− k̂ · k̂

′
)A(k)A(k′)ei(k+k

′)·ξ (4.8)

B(k,k′, ξ) = 1
4 (1 + k̂ · k̂

′
)A(k)A∗(k′)ei(k−k

′)·ξ. (4.9)

Analogously, the continuity equation (2.4) at second-order writes:

x2α + y2β + z2δ + Φ1ααΦ1ββ + Φ1ααΦ1δδ + Φ1ββΦ1δδ − Φ2
1αβ − Φ2

1αδ − Φ2
1βδ = 0 (4.10)

and can be rewritten in the form (see appendix A.3):

∇ ·R2 = V +W (4.11)

with

V =

∫∫
1
2 (kk′ − k · k′)N + c.c. and W =

∫∫
1
2 (kk′ + k · k′)N + c.c. (4.12)

4.2. Second-order expressions

Due to the linearity of (4.1) and (4.11), we first consider the solution of equation (4.1)
with the sole S term on the right-hand side, that is:

R2tt + g∇z2 +∇p2/ρ = S. (4.13)
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We furthermore assume that r2, z2 and p2 can be written as the following integrals:

r2 =

∫∫
N iR+ c.c. (4.14)

z2 =

∫∫
N Z + c.c. (4.15)

p2 = ρg

∫∫
N P + c.c., (4.16)

where R, Z and P are unknown kernels depending on k and k′. Inserting these expres-
sions in (4.13) leads to a set of equations for the kernels:{

−ZΩ+ + (Z + P)(k + k′) = kk′

−Ω+R+ (k + k′)(Z + P) = 1
2kk

′(k̂ + k̂′),
(4.17)

where we have defined:

Ω± =
(√

k ±
√
k′
)2
. (4.18)

Inserting again equations (4.14)-(4.16) in (4.11) and keeping only the terms involving the
kernel N leads to a third equation:

−R · (k + k′) + Z(k + k′) = 1
2 (kk′ − k · k′) (4.19)

Equations (4.17) and (4.19) can easily be solved leading to:
R =

ωk + ω′k′

2(ω + ω′)
Z = 1

4 (k + k′ + Ω−)

P =
√
kk′

(4.20)

Analogously, we solve equation (4.1) with the sole T term on the right-hand side, that
is:

R2tt + g∇z2 +∇p2/ρ = T . (4.21)

Again, we assume that r2, z2 and p2 can be found in the form given in equations (4.14),
(4.15) and (4.16) with some other kernels N ,R, Z and P. Since equation (4.11) involving
the kernel N was already solved, the only remaining terms are those involving N in
equation (4.11). A set of three equations is thus obtained for the unknown kernels:

−ZΩ− + (Z + P)(k + k′) = kk′

−Ω−R+ (k − k′)(Z + P) = 1
2kk

′(k̂ − k̂′
−R · (k − k′) + Z(k + k′) = 1

2 (kk′ + k · k′)
(4.22)

Again, this system can easily be solved leading to:
R =

ωk + ω′k′

2(ω − ω′)
Z = 1

4 (k + k′ + Ω+)

P = −
√
kk′

if ω 6= ω′; (4.23)
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The case ω = ω′ will be discussed in detail in section 4.3. At this point we have found a
solution of the second-order Lagrangian expansion (4.1) in the form:

r2 =

∫∫
i (NR+NR) + c.c. (4.24)

z2 =

∫∫
(NZ +NZ) + c.c. (4.25)

p2 = ρg

∫∫
(NP +NP) + c.c. (4.26)

However, the expression of p2 does not satisfy to the boundary condition p2 = 0
at δ = 0 and needs to be corrected. Noting that N = Be−i(ω+ω′)t e(k+k′)δ and N =
Be−i(ω−ω′)t e(k+k′)δ, a very simple way to satisfy to the boundary condition is to complete
p2 in the form:

p2 = ρg

∫∫
PBe−i(ω+ω

′)t
(
e(k+k

′)δ − eK
+δ
)

+ PBe−i(ω−ω
′)t
(
e(k+k

′)δ − eK
−δ
)

+ c.c.

where the additional kernels K+ and K− must be determined. The pressure at second-
order can thus be written as:

p2 =

∫∫ (
(N −N ′)P + (N −N ′)P

)
+ c.c. (4.27)

where we have introduced the two kernels N ′ and N ′, which only differ from N and N ,
respectively, by the real exponential term:

N ′ = Be−i(ω+ω
′)t eK

+δ and N ′ = Be−i(ω−ω
′)t eK

−δ. (4.28)

It is therefore natural to assume a complete expression of r2 and z2 in the form:

r2 =

∫∫
i
(
NR−N ′R′ +NR−N ′R′)+ c.c. (4.29)

z2 =

∫∫ (
NZ −N ′Z ′ +NZ −N ′Z ′

)
+ c.c., (4.30)

where the primed kernels need to be found. To achieve this, we recall these expressions in
(4.1) and identify the terms pertaining to the N ′ kernel only. This leads to the equations:

−Ω+Z ′ +K+(Z ′ + P ) = 0 (4.31)

−Ω+R′ + (k + k′)(Z ′ + P ) = 0, (4.32)

as well as:

−R′ · (k + k′) +K+Z ′ = 0 (4.33)

from the continuity equation. Inserting (4.31) in (4.32) and multiplying by (k + k′)/Ω+

leads to

−R′ · (k + k′) +
||k + k′||2

K+
Z ′ = 0 (4.34)

which is consistent with (4.33) if and only if:

K+ = ||k + k′|| (4.35)

(we discard the mathematical solution K+ = −||k + k′|| which is nonphysical because
of the asymptotic constraint p2 → 0 when δ → −∞). We can now solve equations (4.31)
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and (4.32) to obtain: 
R′ =

√
kk′(k + k′)

Ω+ − ||k + k′||

Z ′ =

√
kk′||k + k′||

Ω+ − ||k + k′||

(4.36)

Repeating the same procedure with the kernel N ′ leads to another set of equations: −Ω−Z ′ +K−(Z ′ + P ) = 0
−Ω−R′ + (k − k′)(Z ′ + P ) = 0
−R′ · (k − k′) +K−Z ′ = 0

(4.37)

which admit the solution K− = ||k − k′|| and
R′ =

−
√
kk′(k − k′)

Ω− − ||k − k′||

Z ′ =
−
√
kk′||k − k′||

Ω− − ||k − k′||

(4.38)

4.3. Interaction of harmonics with the same frequencies

The complete kernels involved in the integral representation of R2 and p2 have now been
found. However, to complete the solution of the second-order Lagrangian equations we
need to discuss the case ω = ω′ which has first been discarded in equation (4.23).

A generalized expression of the horizontal second-order term corresponding to kernel
solutions (4.23) for the case ω = ω′ would be written as the limit:

r2 = lim
γ→0

∫∫
<4−E

iRN + c.c. (4.39)

where E is the <4 subdomain such as |ω − ω′| < γ and where R, defined at equation
(4.23), contains a singularity at ω = ω′. If this integral admits a finite value, it has to be
defined in the sense of Cauchy Principal Value (PV):

r2 = PV

∫∫
<4

i
ωk + ω′k′

2(ω − ω′)
Be−i(ω−ω

′)te(k+k
′)δ + c.c. (4.40)

The existence of the finite limit (4.39) is shown in appendix B ensuring that equation
(4.40) is the correct expression of r2.

4.4. Second-order vorticity

A complete Lagrangian second-order solution has now been found. We can verify a pos-
teriori that it is indeed irrotational. For this, we have to investigate the second-order
expression of the function dF , that is:

dF2 = [R2t +H(Φ1)∇(Φ1t)] · dζ, (4.41)

which we chose to rewrite in the form:

dF2 =

∫
t

dt [R2tt +H(Φ1)∇(Φ1tt) +H(Φ1t)∇(Φ1t)] · dζ (4.42)

where the symbol
∫
t
dt refers to temporal integration. Inserting (4.1) in this last expres-

sion leads to:

dF2 =∇
[∫

t

dt
(
−(gz2 + p2/ρ) + 1

2 (Φ1t)
2
)]
· dζ. (4.43)
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This provides F2 in the form:

F2 =

∫
t

dt
(
1
2 (Φ1t)

2 − gz2 − p2/ρ
)
. (4.44)

The existence of such a function F2 warrants the absence of vorticity at the second order.

4.5. Second-order solution

To summarize all the expressions established previously, we can write the general solution
of the second-order terms of equation (2.7) as follows:

r2 =

∫∫
i

(
ωk + ω′k′

2(ω + ω′)
e(k+k

′)δ −
√
kk′(k + k′)

Ω+ − ||k + k′||
e||k+k

′||δ

)
Be−i(ω+ω

′)t + c.c.

+PV

∫∫
i

(
ωk + ω′k′

2(ω − ω′)
e(k+k

′)δ +

√
kk′(k − k′)

Ω− − ||k − k′||
e||k−k

′||δ

)
Be−i(ω−ω

′)t + c.c.

z2 =

∫∫ (
k + k′ + Ω−

4
e(k+k

′)δ −
√
kk′||k + k′||

Ω+ − ||k + k′||
e||k+k

′||δ

)
Be−i(ω+ω

′)t + c.c.

+

∫∫ (
k + k′ + Ω+

4
e(k+k

′)δ +

√
kk′||k − k′||

Ω− − ||k − k′||
e||k−k

′||δ

)
Be−i(ω−ω

′)t + c.c.

p2 = ρg

∫∫ √
kk′
(
e(k+k

′)δ − e||k+k
′||δ
)
Be−i(ω+ω

′)t + c.c.

− ρg

∫∫ √
kk′
(
e(k+k

′)δ − e||k−k
′||δ
)
Be−i(ω−ω

′)t + c.c.

(4.45)
where B and B are defined in equations (4.8) and (4.9) and Ω± in equation (4.18).

5. Comparison with classical models

5.1. Consistency with the Eulerian approach of M.S. Longuet-Higgins

Before we investigate the consistency with classical Eulerian models, it is instructive to
establish the correspondence between Eulerian and Lagrangian expansions. We consider
the surface η(r, t) implicitly defined by the locus of particle trajectories (r(t), z(t))
and we denote η = η0 + η1 + η2 + ... as its Eulerian expansion in order of steepness
above some reference plane. Applying successive Taylor expansions and making use of
the correspondence between the (α, β, δ) Lagrangian labels and the (x, y, z) coordinates
system of the Eulerian description, it can be easily shown that:

η0 = z0

η1 = z1 − r1 ·∇ξη0

η2 = z2 − r1 ·∇ξη1 − r2 ·∇ξη0 −
1

2
r1∇ξ∇ξη0r1

ηn = zn − ...

(5.1)

where∇ξ is the horizontal bi-dimensional gradient and∇ξ∇ξ the corresponding Hessian.
The expansion can in principle be pursued at arbitrary order even though it becomes
algebraically more complex. From this it is seen than any nth-order term in surface
elevation (ηn) can be obtained from the combination of an nth-order term in vertical
particle position (zn) and lower-order terms (rp, zp), p 6 n− 1. Hence, any given order
of the Lagrangian expansion provides the complete corresponding Eulerian order and, is
moreover involved in higher-order Eulerian terms.
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The classical Eulerian approach (Hasselmann (1962); Longuet-Higgins (1963)) to the
non-linear theory of gravity waves consist in seeking both the elevation η and the velocity
potential Φ at the free surface in a perturbation series (2.2). The expansion is usually
performed about the mean horizontal plane of the leading order η0 so that no zeroth-order
term is present:

η(ξ, t) =η1(ξ, t) + η2(ξ, t) + ... (5.2)

Φ(ξ, t) =Φ1(ξ, t) + Φ2(ξ, t) + ... (5.3)

In these two equations and the rest of this section, the fixed Eulerian coordinates system
(x, y) has been simply replaced by the (α, β) one. The first-order terms are given by the
classical spectral representation,

η1(ξ, t) =

N∑
j=1

aj cosψj , ψj = kj · ξ − ωjt+ ϕj (5.4)

Φ1(ξ, t) =

N∑
j=1

bj cosψj , (5.5)

where ϕj is the phase associated to the kj component. The higher-order terms in the ex-
pansion involve nth order multiplicative combinations of these spectral components. The
perturbation expansions of elevation and velocity potential are identified simultaneously
by injecting the successive Fourier expansions in Navier-Stokes equations. The leading,
quadratic, non-linear term for elevation was provided by Longuet-Higgins (1963) in the
form†:

η2(ξ, t) =
1

2

N∑
i,j=1

aiaj
[
Kij cosψi cosψj +K ′ij sinψi sinψj

]
, (5.6)

Kij =(kikj)
− 1

2

[
B−ij +B+

ij − ki · kj
]

+ ki + kj

K ′ij =(kikj)
− 1

2

[
B−ij −B

+
ij − kikj

]
(5.7)

B±ij =
Ω±ij(ki · kj ∓ kikj)
Ω±ij − ||ki ± kj ||

Ω±ij =(
√
ki ±

√
kj)

2

and as usual k = ||k||. The first-order Lagrangian expansion was shown to be close
but not perfectly consistent with the second-order Eulerian perturbation expansion of
Longuet-Higgins (see Nouguier et al. (2009)). We will now show that full consistency is
achieved with the second-order Lagrangian expansion at the surface, that is:

η1 = z1

η2 = z2 − r1 ·∇ξz1
(5.8)

where, again, ∇ξ is the horizontal bi-dimensional gradient. We can note from (5.8) that
r2 is absent emphasizing that the second-order Eulerian formalism misses all effects
related to r2 contribution.

† The factor 1/2 is missing in the original paper by Longuet-Higgins, as was later acknowl-
edged by the author himself
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From (4.45), we have at the free surface (δ = 0) :

z2 =
1

2

∫∫ {(
k + k′ + Ω−

4
−
√
kk′||k + k′||

Ω+ − ||k + k′||

)
(1− k̂ · k̂

′
)akak′ cos(ψ + ψ′)

+

(
k + k′ + Ω+

4
+

√
kk′||k − k′||

Ω− − ||k − k′||

)
(1 + k̂ · k̂

′
)akak′ cos(ψ − ψ′)

}
with ak = ||A(k)|| and ψ = k · ξ − ωt + ϕk where ϕk is the phase of A(k). After some
basic algebra we can rewrite z2 in the form:

z2 =
1

2

∫∫
akak′

[
K cos(ψ) cos(ψ′) +

(
K ′ + k′ · k̂ + k · k̂

′)
sin(ψ) sin(ψ′)

]
(5.9)

where kernels K and K ′ are the continuous version of kernels Kij and K ′ij of (5.7) wherein
the indexes i and j are related to non-primed and primed variables.

To complete the expression (5.8) we observe that:

− r1 ·∇ξη1|δ=0 = −∇ξ(Φ1) ·∇ξ(Φ1δ)|δ=0

= −
∫∫

(k′ · k̂) akak′ sin(ψ) sin(ψ′)

= −
∫∫

1

2
(k′ · k̂ + k · k̂

′
)akak′ sin(ψ) sin(ψ′). (5.10)

The combination of (5.9) and (5.10) yields to:

η2 =
1

2

∫∫
akak′ [K cos(ψ) cos(ψ′) +K ′ sin(ψ) sin(ψ′)] , (5.11)

which is the continuous version of the equation (5.6) derived by Longuet-Higgins (1963).

5.2. Consistency with the Lagrangian derivation of W.J. Pierson

In 1961 W.J. Pierson derived a Lagrangian second-order solution of the discrete long-
crested problem. He considered waves traveling in the positive α direction only and found
the solutions in the form (equations (27) and (28) in Pierson (1961)):

x(α, δ, t) = α−
∑
i

aie
kiδ sin(ψi)−

∑
j>i

∑
i

aiaj
g

(
ω3
i + ω3

j

ωj − ωi

)
e(kj+ki)δ sin(ψj − ψi)

+
∑
j>i

∑
i

aiaj
g

(ωj + ωi)ωje
(kj−ki)δ sin(ψj − ψi) +

∑
i

a2iωikie
2kiδt (5.12)

z(α, δ, t) = δ +
∑
i

aie
kiδ cos(ψi) +

∑
j>i

∑
i

aiaj
g

(
ω2
i + ωiωj + ω2

j

)
e(kj+ki)δ cos(ψj − ψi)

−
∑
j>i

∑
i

aiaj
g

(ωj + ωi)ωje
(kj−ki)δ cos(ψj − ψi) (5.13)

p(α, δ, t) = pa − ρgδ + ρg
∑
i

a2i ki
2

(
e2kiδ − 1

)
− 2ρ

∑
j>i

∑
i

aiajωiωje
(kj+ki)δ cos(ψj − ψi)

+2ρ
∑
j>i

∑
i

aiajωiωje
(kj−ki)δ cos(ψj − ψi) (5.14)

with ψi = kiα− ωit+ ϕi.
The comparison of our continuous solution with the discrete formulation of Pierson is
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not straightforward due to the principal value formulation of one of the terms. However,
we can note that within a small subspace D of <4 around the singularity domain (|ω −
ω′| < ε) we have:

PV

∫∫
D

i

(
ωk + ω′k′

2(ω − ω′)
e(k+k

′)δe−i(ω−ω
′)t

)
B + c.c. '

∫∫
D

1
2ωk(k̂ + k̂

′
)e(k+k

′)δB t (5.15)

This result corresponds to a temporal secular term. More detailed comments on this term
can be found in section 6.1.

Moreover, we can note that (see equation (4.38)):

R′ −−−−→
k→k′

k(̂̂k − k̂′) (5.16)

Within a small subspace D′ of <4 defined by ||k − k′|| < ε and due to the symmetry of
the previous limit we have:

∫∫
D′

i

√
kk′(k − k′)

Ω− − ||k − k′||
e||k−k

′||δBe−i(ω−ω
′)t + c.c −−−→

ε→0
0 (5.17)

since integration is realized over all k and k′.

Restricting solution (4.45) to the discrete case of long-crested waves traveling in the

same positive α direction (k̂ · k̂
′

= 1, ||k − k′|| = s(k − k′) where s is the sign of k − k′)
we obtain the following expressions for the second-order displacements and pressure:

x2 = −
∑
i,j
i 6=j

[
ωiki + ωjkj
2(ωi − ωj)

e(ki+kj)δ +

√
kikj(ki − kj)

Ω−ij − s(ki − kj)
es(ki−kj)δ

]
aiaj sin(ψi − ψj)

+
∑
i

a2iωikie
2kiδt

z2 =
∑
i,j

[
ki + kj + Ω+

ij

4
e(ki+kj)δ +

√
kikjs(ki − kj)

Ω−ij − s(ki − kj)
es(ki−kj)δ

]
aiaj cos(ψi − ψj)

p2 = −ρg
∑
i,j

√
kikj

(
e(ki+kj)δ − es(ki−kj)δ

)
aiaj cos(ψi − ψj) (5.18)

where non-primed and primed variables of (4.45) are related to the indexes i and j,
respectively. Making use of the dispersion relationship ω2 = gk we can rewrite after
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straightforward manipulations:

x2 = −
∑
j>i

∑
i

aiaj
g

(
ω3
i + ω3

j

ωj − ωi

)
e(kj+ki)δ sin(ψj − ψi)

+
∑
j>i

∑
i

aiaj
g

(ωj + ωi)ωje
(kj−ki)δ sin(ψj − ψi) +

∑
i

a2iωikie
2kiδt (5.19)

z2 =
∑
j>i

∑
i

aiaj
g

(
ω2
i + ωiωj + ω2

j

)
e(kj+ki)δ cos(ψj − ψi)

−
∑
j>i

∑
i

aiaj
g

(ωj + ωi)ωje
(kj−ki)δ cos(ψj − ψi) +

∑
i

1
2a

2
i kie

2kiδ (5.20)

p2 = ρg
∑
i

a2i ki
2

(
e2kiδ − 1

)
− 2ρ

∑
j>i

∑
i

aiajωiωje
(kj+ki)δ cos(ψj − ψi)

+2ρ
∑
j>i

∑
i

aiajωiωje
(kj−ki)δ cos(ψj − ψi) (5.21)

which differs from the original derivation by Pierson (5.12)-(5.14) by the constant term∑
i
1
2a

2
i kie

2kiδ in the vertical displacement corresponding to the mean of z2. A closer
inspection of Pierson (1961) original derivation shows that he used ∂|J|/∂t = 0 as its
basic continuity equation. However, this does not necessarily implies |J| = 1 and can
lead to erroneous solutions. Using equation ∂|J|/∂t = 0 instead of |J| = 1 allows the
cancellation of all the time-independent terms in the solutions. This is the reason why
the mean level of z2 is absent in Pierson (1961) derivations which must be rectified as
equations (5.19)-(5.21).

6. Second-order inspection

6.1. Stokes drift

We will now investigate some remarkable properties of the second-order Lagrangian so-
lution. The first one is the customary Stokes drift, first introduced in the celebrated work
by Stokes (1847) and extended to the tri-dimensional case by Kenyon (1969) and Phillips
(1977). The Stokes drift manifests in a net horizontal displacement after one wave pe-
riod or, more generally, after time averaging. The net mass transport can be evaluated
using the horizontal velocity r2t estimation. As shown in the derivation below, only the
third integral term r2 (see equation (4.40)) in the expression of r2 has a non-vanishing
temporal mean. Equation (6.1) gives the horizontal velocity for this term only (note that
the apparent singularity disappears after differentiation).

r2t =

∫∫
1
2 (ωk + ω′k′)e(k+k

′)δBe−i(ω−ω
′)t + c.c. (6.1)

We now consider the time average of this quantity:

〈r2t〉t = lim
T→∞

1

T

∫ T/2

−T/2
dt

∫∫
<4

1
2 (ωk + ω′k′)Be−i(ω−ω

′)te(k+k
′)δ + c.c. (6.2)

Inverting time and space integrals and using:

lim
T→∞

1

T

∫ T/2

−T/2
cos [(ω − ω′)t] dt = ð(ω − ω′) (6.3)
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where ð is the Dirac distribution, we obtain:

〈r2t〉t =

∫∫
<4

ð(ω − ω′) 1
2ωk(k̂ + k̂

′
)Be2kδ + c.c. (6.4)

All other terms in r2t have a vanishing temporal mean due to their ω − ω′ dependency
which appears after temporal differentiation and due to the Dirac function. This is why
r2t is replaced by r2t in equation (6.4). Equation (6.4) is thus the total mean average of
particles horizontal displacement. Using again (6.3) in the space domain, we derive the
spatial mean of (6.4) which writes:

〈r2t〉ξt =

∫∫
<4

ð(ω − ω′)ð(k̂ − k̂
′
) 1
2ωk(k̂ + k̂

′
) 1
4 (1 + k̂ · k̂

′
)A(k)A∗(k′)e2kδ + c.c. (6.5)

Simplified as:

〈r2t〉ξt =

∫
ωk||A(k)||2e2kδ (6.6)

we easily identify the classical Stokes drift velocity. The mean Stokes drift 〈r2〉ξt is thus
already included as a part of r2 expression (4.45) and is the results of the self-interaction
of the different harmonics. Clamond (2007) derived this result for a monochromatic wave
and noted that after subtraction of this mass transport component, the orbits of water
particles remain closed and symmetric even for steep waves (see also Longuet-Higgins
(1987)). As noted before in section 5.1 equation (5.8), the contribution of r2 is absent
in the Eulerian expansion leading to the absence of the Stokes drift in the second order
Eulerian expansion.

6.2. Horse-shoe patterns

In the case of tri-dimensional multiple wave interactions, a residual spatial Stokes drift
pattern, namely 〈r2t〉t − 〈r2t〉ξt, remains. It results from the interaction of harmonics
having the same time frequency but different propagation directions. This phenomena
which cannot exist in the bi-dimensional case (because ω = ω′ implies k = k′) is respon-
sible for the increase of the wave shape asymmetry with time. An example is shown on
Figure 1. Two harmonics with the same frequency but propagating in different directions
create a spatially varying shear over the sea surface (figure 1(b)). This shear tends to
slow down the troughs relatively to the crests leading to an asymmetric wave shape that
can be related to the first stage of the formation of the well-known horse shoe patterns
(see figure 1(c)). It nevertheless preserves the front back symmetry of the waves and no
slope skewness.

Shrira et al. (1996) and later Annenkov & Shrira (1999) proposed a mathematical so-
lution to explain the apparition and the persistence of the horse shoe pattern by quintet
resonant interactions coupled with wind and dissipation and noted that they develop
front-back asymmetries. However, horse shoe patterns can be generated even in the ab-
sence of wind (e.g. Su et al. (1982)) which means that nonlinear interactions of gravity
waves can account for their existence. In any case, two main characteristics of the horse-
shoe patterns are a) a life time largely exceeding the associated wave period and b) a
persistent shape with front-back asymmetry.

For clarity, in the explanations below, the term harmonic is used for a Lagrangian
wave vector component and the term wave is used for an Eulerian (surface) wave vector
component. Even though it does not seem easy to cross-compare harmonic-interactions
and wave-interactions we can try to guess which harmonics are involved in such horse-
shoe pattern. Bi-harmonic interactions terms are present in both horizontal (x2, y2) and
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(b) α component of the Stokes drift velocity: 〈r2t〉t (β component
vanish). It is independent of α. We can see a mean Stokes drift
of about 3 cm.s−1 and its spatial variations leading to increasing
crescent shape patterns.
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(c) Sea surface elevation after a large time lag of 30 seconds. Surface has developed horse shoe
patterns.

Figure 1. Interaction of two harmonics with same amplitudes (A = 0.08 m) and wavenumbers
(k = 1.104 rad.m−1) with different directions of propagation: + and − 48.2 degrees relative to
α direction.
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vertical (z2) second order Lagrangian displacements. Thus, four-waves interactions in
the Eulerian framework should be a priori available, at least partially, with bi-harmonic
Lagrangian interactions only. Horse-shoe patterns observed by Collard & Caulliez (1999)
presents peculiar features that can be compared with the presented model. Their exper-
iment starts from an almost monochromatic wave with wavenumber k0. Then, the wave
field degenerate and gives rise to crescent shape patterns. Their spatiotemporal analysis
shows that a pair of harmonics (k1,k2) are created such as :

k1 + k2 = 3k0 and ω1 + ω2 = 3ω0 (6.7)

The case called “steady pattern” in Collard & Caulliez (1999) is defined with k1 = k2
and consequently ω1 = ω2. In that specific case, the results presented on figure 1 suggests
that no k0 component is necessary to obtain horse-shoe patterns since the secular term
in 〈r2t〉t − 〈r2t〉ξt is generated by the k1 and k2 component interaction only. However,
since the k0 component is obviously present in Collard & Caulliez (1999) experiment, it
was not experimentally possible to check its necessity for the horse-shoe generation. Yet,
we could invoke that it was indirectly necessary to give rise to the perfectly symmetric
pair of wave vector (k1,k2) through the resonant interaction defined by equation (6.7).
It should thus be interesting to experimentally show that a unique bi-harmonic structure
such as presented in figure 1 is sufficient to create horse-shoe patterns.

However, for comparison purposes, we added a k0 component in the orbital spectrum
used in the simulation presented on figure 1 chosen such as k1 + k2 = 3k0, ϕ0 = −π/2
and ϕ1 = ϕ2 = 0 (but obviously ω1 + ω2 6= 3ω0). We were capable to reproduce the
“steady” horse-shoe patterns presented in Collard & Caulliez (1999). Figure 2(a) shows
the wave field obtained after 30 seconds and figures 2(b) and 2(c) show the temporal
record of the water surface elevation and its Fourier transform. As pointed out by Collard
& Caulliez (1999), it contains a 3

2ω0 harmonic (0.524 Hz) coming from the simple first
order contribution of k1 and k2. We believe that the front-back asymmetry observed in
real conditions in the horse-shoe pattern comes from higher-order interaction (Lagrangian
cubic order) that would create a k0 component with an angular frequency of ω0 but with
a slightly different phase.

In any case, even if the spatial drift we have found tends to slowly twist the wave shape
and let it tend to the horse-shoe pattern, it leads to a constant increase of the surface
deformation with time giving rise to unrealistic shape at large time lags. Moreover, as
already noted by Shrira et al. (1996), steady wave solutions of inviscid equations do not
present front back asymmetries. Hence, the secular term can only belong to a transitory
state of the surface and cannot be used for large time lags as suggested by the domain
of validity of the series expansion. As already mentioned, the Stokes drift manifests
itself through a secular term which is undesirable in a perturbation expansion. Indeed,
as commented by Buldakov et al. (2006), third order solutions will make the secular
term interact with the leading order creating unrealistic diverging secular terms in both
horizontal and vertical particles expansion. As a result, the second-order solution cannot
be valid at arbitrary large time. Furthermore, any attempt to pursue the Lagrangian
expansion beyond the order two should be accompanied with a particles relabeling as
suggested by Clamond (2007). He indeed claimed that a steady solution with Stokes
drift cannot be found without adapting the Lagrangian references. The apparition of the
mean secular term in a Lagrangian expansion comes from a misrepresentation of steady
waves and can be avoided, at least for a monochromatic wave, by a correct time and
space dependent water particles relabeling leading to a valid solution at all time and
orders. However, as this paper deals with tri-dimensional multiple wave system and is
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Figure 2. Surface elevation obtained with three harmonics: k0 = 0.491 rad.m−1,
k1 = k2 = 1.104 rad.m−1, respective amplitudes: a0 = 0.24 m and a1 = a2 = 0.06 m, directions
of propagation relative to α: θ0 = 0, θ1 = −θ2 = arccos( 2

3
) and phases ϕ0 = −π

2
, ϕ1 = ϕ2 = 0.
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Figure 3. Slices along an equi-α contour (perpendicular to the mean direction of wave) of the
first- and second-order Lagrangian surface. The slices pass through a wave crest. The different
second-order contributions are superimposed as well as their combined effects (arrows).

restricted to the second-order expansion, we will not enter into such details and leave
these considerations for further studies.

6.3. Sharp crests, mean elevation and skewness coefficient

For the temporal mean of the second-order vertical displacement at the surface we have:

〈z2〉t, δ=0 =

∫∫
<4

ð(ω − ω′) 1
2kB + c.c. (6.8)

This shows that the second-order vertical displacement has a non-vanishing mean due to

the interaction of waves with the same frequency. The (k̂− k̂
′
) phase term in B describes

a spatial oscillating pattern perpendicular to the mean direction of wave and is the main
contributor to the vertical second-order displacement. To illustrate this statement, we
use the same bi-harmonic system as described above. Figure 3 displays first- and second-
order surface slices along an equi-α contour corresponding to a crest position. As can be
plainly seen, the second-order vertical term tends to permanently sharpen the crests and
flatten the troughs by a positive vertical shift relative to z2 mean level. Contrarily to the
Lagrangian first-order terms, the sharpening and flattening effects apply in the direction
perpendicular to the wave direction leading to a more “short-crested” wave pattern. The
horizontal term y2 has the same effect even though it is in quadrature with the vertical
motion. The combination of the two effects is represented with arrows on Figure 3.

It was shown by Pierson (1961) equation (45) that the first order Lagrangian surface
has a relative mean level :

η1 = −
∫
k||A(k)||2 (6.9)

The mean sea level is affected by the non-vanishing mean of the second-order elevation
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term (see mean level of z2 on figure 3). At the surface :

〈z2〉ξ,t =

∫
1
2k||A(k)||2 (6.10)

is the unique second order contributor to the mean surface elevation at the leading order
giving the global sea level:

η2 = −
∫

1
2k||A(k)||2 (6.11)

When this mean level is naturally tared by a Lagrangian sensor (free-floating buoys, ...),
it gives a greater mean sea level than an Eulerian measuring system (fixed probes, ...)
by the amount of |η2|. This conclusion was already raised by Longuet-Higgins (1986)
(see equation (3.7)) via a different route. He emphasized its importance in particular for
ocean surface remote sensing applications. However, as already stated by Longuet-Higgins
(1987), Lagrangian orbits are highly symmetric to the second order leading to a vanishing
skewness. In random ocean wave fields, such second-order dynamical effects have strong
impacts on waves height, slope and curvature distributions and are responsible for their
deviation from the Gaussian law. These statistical properties are of great interest in the
ocean remote sensing community but a systematic study goes beyond the scope of this
paper and is left for further developments.

6.4. Modulational Benjamin-Feir instability, a simple beat effect

It is now well known that Benjamin & Feir (1967) (BF) instability results from a nonlinear
quartet-wave resonant phenomenon. An initial uniform monochromatic Stokes wave of
moderate amplitude degenerates and develops side-band harmonics with an exponential
rate of growth. This phenomenon is usually acknowledged as the first main contributor
to the spreading of the spectrum energy. Due to an asymmetric evolution of the two side-
band harmonics (when aligned with the carrier wave) induced by an unequal dissipation,
the BF instability is one of the indirect contributors of the well-known frequency down-
shift (Lake et al. (1977); Hara & Mei (1991)). A large number of studies have been
dedicated to this phenomenon and we refer to Dias & Kharif (1999) for an exhaustive
bibliography on the subject. Zakharov (1968) has shown that this phenomenon appears
at third order with respect to the non-linearity parameter of the Zakharov equations
which are developed in an Eulerian framework.

Recent analytical and experimental studies (e.g. Shemer (2010); Segur et al. (2005))
have shown that an initially monochromatic carrier wave is periodically and alternatively
exchanging energy with its two side-band harmonics. The latter are rapidly generated
at the beginning of the propagation and their exponential growth coefficient is con-
trolled by the carrier characteristics. As rigorously shown by Segur et al. (2005) with
the Schrödinger equations, the temporal limit of the exponential period of growth of
sideband harmonics can be explained by a damping coefficient that limits the growth of
the perturbations. In the absence of this damping coefficient, the apparition of stronger
nonlinear interactions (up to breaking) is responsible of the limited growth. In both cases,
after a short limited period of growth, a stabilized regime of modulation-demodulation
is established.

In this section we do not wish to enter into a complex analytical analysis but would
like to show, on the basis of theoretical and numerical considerations, that the periodic
regime of BF instability is already present (at least partly) and symmetric (i.e with no
frequency down-shift) in the Lagrangian second-order solution.

We do not study the period of growth since we only look at periodic solutions but we
show that, at second order in the nonlinear Lagrangian parameter, a periodic modula-
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k k2 − k0 2k0 − k2 k0 k2 2k2 − k0
|A(k)| 0 0 0.2228 0.0178 0
|x̂(k)| 0.2785 0 0.2228 0.0178 0
|ẑ(k)| 0.0062 0 0.2228 0.0178 0
|η̂(k)| 0.0018 0.04627 0.1979 0.0598 0.0093

Table 1. Orbital |A(k)|, horizontal |x̂|, vertical |ẑ| motions and surface |η̂| spectral amplitudes
obtained from a two-wave orbital system : (k0, k2) = π/2×(1, 1+p) and (a0, a2) = s/k0×(1, c)
with s = 0.35, p = 0.1 and c = 0.08.

tion process exists between the carrier and two existing sideband harmonics and can be
interpreted as a Lagrangian Benjamin-Feir modulation. We show that, surprisingly, what
is considered as a periodical exchange of energy between waves in an Eulerian point of
view is in fact a simple beat effect which appears naturally when a two-wave system has
close frequencies in the Lagrangian framework. The same initial sea state is used in the
Eulerian framework and show that this phenomenon is clearly absent up to the second
order.

6.4.1. System of three aligned harmonics

In order to illustrate this statement, we consider a bi-dimensional and unidirectional
case defined up to the second-order by equations (5.12)-(5.13). We focus on a bi-harmonics
system defined by its wavenumbers k0 and k2 (0 < k0 < k2) where k0 is the carrier
wavenumber, k2 the satellite wavenumber and ϕ0 and ϕ2 their respective phases. The
carrier wave is chosen with wavenumber k0 = π/2 rad.m−1 propagating in the α direction
and corresponding to a 4 m wavelength and a 1.6 s time period. Its orbital amplitude
a0 = 0.2228 m is chosen such as s = k0a0 = 0.35. It must however be emphasized that a0
is the orbital spectral amplitude and that the real amplitude of the carrier never exceed
0.2 m leading to a maximum steepness of 0.3. The satellite wavenumber is k2 = k0×(1+p)
with p = 0.1. Its orbital amplitude is a2 = a0 × c with c = 0.08.

We generate a 90 m length surface with a 12.5 cm label spatial sampling over a thousand
periods of the carrier wave and evaluate, at each time step, the spectral amplitude of
the surface η(α, t) (a numerical interpolation of the surface profile on a regular grid
was realized prior to its Fourier Transform), the horizontal x(α, t) and vertical z(α, t)
particle displacement processes at the surface δ = 0. We therefore evaluate the Fourier
Transforms η̂(k, t), x̂(k, t) and ẑ(k, t) defined by:

Ψ̂(k, t) =

∫
(Ψ(α, t)−Ψ)eikαdα, (6.12)

where Ψ stands for any of the three quantities η, x or z and where the upper line Ψ refers
to the spatial average. These quantities are constant in time and are given on Table 1
together with the orbital spectral amplitudes |A(k)|. We have selected the wavenum-
bers associated to non-vanishing amplitudes. All harmonics of the orbital spectrum are
aligned and produce a unique temporal secular term corresponding to a global horizontal
translation of the sea surface profile. This main constant drift can easily be removed by
adapting the frame of reference ensuring the validity of the second order expansion, in
this case only, even for large time lag.

Even though neither the vertical (|ẑ|) or horizontal (|x̂|) displacement spectra contain
a 2k0−k2 component, the surface does. The k2−k0 component is important contributor
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Figure 4. Spectral repartition of the orbital spectrum components. k1 + k2 = 2k0

to the second-order horizontal displacement:

−a0a2
g

(
ω3
0 + ω3

2

ω2 − ω0

)
sin [(k2 − k0)x− (ω2 − ω0)t+ ϕ2 − ϕ0] (6.13)

Table 1 clearly shows a k0 − (k2 − k0) = 2k0 − k2 harmonic in the surface spectra due to
the combination of the horizontal k2−k0 term and the k0 one. We can thus easily deduce
that the angular frequency and phase of this term write 2ω0−ω2 and 2ϕ0−ϕ2. The other
interaction term with wavenumber k0 + (k2 − k0) = k2 have the same frequency ω2 and
phase ϕ2 than the orbital first-order k2 component of the orbital spectrum and simply
affects its amplitude. The case presented on Table 1 shows that the k2 component of the
surface (0.0598) is permanently increased relative to the orbital spectrum (0.0178). The
same effect is visible on the k2− (k2−k0) = k0 component, leading to a small decrease of
the carrier amplitude relative to the orbital spectrum. As expected, the surface spectrum
also contains a very small 2k2−k0 term arising from the combination term k2 +(k2−k0).

Now, let us suppose that an extra k1 component is added to the orbital spectrum
in such a way that k1 = 2k0 − k2 as shown on figure 4 and denote ω1 and ϕ1 as the
associated angular frequency and phase. This component will thus have the same spatial
wavenumber than the k0 − (k2 − k0) term presented above with a slightly different tem-
poral frequency. These two terms will thus generate a temporal beat effect with angular
frequency ∆ω such as:

∆ω = ω1 − (2ω0 − ω2) (6.14)

and the phase of k1 amplitude temporal evolution will thus only depends on the global
phase:

θ = ϕ1 − (2ϕ0 − ϕ2). (6.15)

Inverting k1 and k2 in the previous considerations we obtain the same behavior for the
k2 component. Now, letting the tri-harmonics structure system evolve in time leads to a
periodical evolution of the two side band harmonic amplitudes with the same period :

T =
2π

∆ω
(6.16)

and the same evolution phase depending on the unique value θ. The time evolution
of the carrier, high frequency (HF) and low frequency (LF) side-band amplitudes is
presented on Figure 5. The corresponding Eulerian case is presented for comparison
purposes and clearly shows that the Benjamin Feir modulation is absent up to the second
order. Shemer (2010) already derived these two results with a different technique in the
Eulerian framework by pushing the non-linearity at order three and considering quartet
interaction of waves.

It should be noted that the mean level and the variations of a satellite amplitude
are not fully controlled by the ratio c = a2/a0 and depends on the carrier charac-
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Figure 5. Time evolution of the spectral amplitudes of the carrier wave (ω0 = 3.93 rad.s−1),
the Low and High Frequency sidebands (ω1 = 3.74 and ω2 = 4.11 rad.s−1). Solid lines are for
the Lagrangian expansion and dashed ones for the Eulerian expansion. Period defined equation
(6.16) is 726 s.
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Figure 6. Spectral repartition of the orbital spectrum components. k1 + k2 = 2k0

teristics and the other satellite. This makes the quantitative comparison between the
two approaches complicated. However, it does not change the conclusion that a strong
modulation-demodulation of the carrier wave and the two satellites is present at second
order in the Lagrangian framework while the Eulerian one does not show any interaction
even if the sea surface spectrum present new harmonics relative to the first order.

6.4.2. Carrier harmonic with two lateral side-bands harmonics

Let us now consider a symmetric tri-harmonics structure such as 2k0 = k1 + k2 with
ω1 − ω0 > 0 and ω2 − ω0 > 0. This configuration is possible in the 3-dimensional case
only and is represented on figure 6. Figure 7 show surfaces profile derived with second-
order solutions of the Eulerian (Longuet-Higgins (1963)) and Lagrangian (equation (2.7))
expansion with (3.7) and (4.45) with the same three harmonics structure. The carrier
wave is chosen with amplitude a0 = 0.2 m and propagates in the α direction with
wavenumber k0 = 1.58 rad.m−1 corresponding to a 3.97 m wavelength and a 1.58 s
time period. Two satellites of same amplitude a1 = a2 = 0.04 m with wavenumbers
k1 = k2 = k0/[cos(37.08◦)] rad.m−1 propagate with angles +37.08◦ and −37.08◦ relative
to the α direction. Phases of the three harmonics are set to zero. Spatial sampling is 25
cm.

We generate a 8 m × 8 m surface with a 25 cm spatial sampling over ten periods of the
carrier wave and a time evolution process is realized by increasing the time variable. A bi-
dimensional spectral analysis of the surfaces is realized at each time step by Fast Fourier
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Transform. Again, a numerical interpolation of the Lagrangian surface on a regular grid
is realized prior to the Fourier Transform. Figure 8 shows the surfaces spectra obtained
at t = 17 s showing the three-wave pattern. As expected, the Lagrangian surface contains
more harmonics than the Eulerian one due to the multiple possible combinations between
horizontal and vertical particles harmonics. Figure 9 shows the time evolution of the three
harmonics amplitudes. Again, the Eulerian case is presented for comparison purpose
showing that the BF modulation is absent.

In the presented tri-dimensional structure, we can see that sideband harmonics mod-
ulations are synchronous leading to strong opposite modulation between carrier and
harmonics amplitudes. We can also see that the mean amplitude of the carrier in the
Lagrangian framework is always notably smaller than the prescribed value (0.2) which
is the consequence of constructive harmonics interactions. This constant decrease of the
carrier amplitude is amplified by the fact that the prescribed amplitude is the orbital
spectrum amplitude and not the sea surface spectrum amplitude. On the contrary, the
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two sideband harmonics take advantages of positive interaction permanently increasing
their mean amplitudes.

Here, we have focused on the modulation-demodulation resonance that can be related
to a Benjamin-Feir modulational instability. We have shown that, from a Lagrangian
point of view, no energy is exchanged between the involved orbital harmonics. On the
contrary, the Eulerian interpretation of this phenomenon, based on the surface spectrum
analysis instead of the orbital one, is a permanent and periodical energy exchange be-
tween the carrier wave and its two sideband harmonics. This shows that the Lagrangian
formulation is in a certain way a more natural and easier point of view. Moreover, in
the Lagrangian framework, the time invariability of the harmonics amplitudes suggests
that the side-band generation process (the instability itself) can be clearly separated
from the modulational part (beating phenomena). However, it is known that asymmetric
evolution of the sideband harmonics, responsible of the frequency down-shift effect, is
obtained when the modulation increases and when stronger nonlinear effects or dissi-
pation are taken into account. These phenomena are clearly absent at the Lagrangian
second-order and are to be considered for future studies together with the derivation of
the instability domain of an initial monochromatic Stokes wave.

7. Conclusion

In this paper, the second-order perturbation expansion in Lagrangian coordinates has
been derived to study the interactions between deep-water gravity surface waves. In
its compact and vector form, the proposed solution extends initial investigations (Pier-
son, 1961), fully recovers the classical second-order Eulerian expansion (Longuet-Higgins,
1963), and naturally includes the well-known Stokes drift velocity. As further illustrated
in the case of tri-dimensional wave interactions, a residual spatial Stokes drift shall re-
sult from harmonics having the same frequency but different propagation directions. This
phenomenon leads to an increase of the wave shape asymmetry along the propagation,
and can be related to the development of short-crested wave patterns, as a possible first
stage of formation of horse-shoe patterns. Indeed, Lagrangian second order terms shall
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contribute to sharpening and flattening effects, but, contrary to the first-order correction,
these effects are applied in the direction perpendicular to the wave direction.

The modulation aspect of Benjamin-Feir instability is further shown to be captured
as a beat effect in the Lagrangian framework. A periodic modulation emerges between
the carrier and two sideband harmonics. As demonstrated, the orbital spectrum remains
unchanged as the waves evolve in time, while the corresponding surface Eulerian spectrum
exhibits periodical variations for the carrier and sideband harmonic amplitudes. It should
be noted that the asymmetric evolution of the sideband harmonics, and the associated
frequency downshift, are not recovered at this second Lagrangian order.

The extension of the proposed expansion to the case of varying depth and surface
current could also follow the same formalism, and are to be considered for future inves-
tigations.

F. Nouguier would like to thank the Centre National de la Recherche Scientifique (CNRS)
and Université de Toulon (chaire mixte) for their support. Part of this work was done
during a long-time visit at the Laboratoire d’Oceanographie Spatiale, Ifremer Brest.

Appendix A

A.1. Perfect differential and vorticity

There is no vorticity if the velocity field Rt can be written in the form:

Rt =∇F. (A 1)

where F is any scalar function. Noting that dF =∇F · dR, we thus have:

dF = xt dx+ yt dy + zt dz. (A 2)

Replacing terms dx, dy and dz by their respective particle label dependent expressions:

dx = xαdα+ xβdβ + xδdδ (A 3)

dy = yαdα+ yβdβ + yδdδ (A 4)

dz = zαdα+ zβdβ + zδdδ (A 5)

where dζ = (dα, dβ, dδ) denotes an infinitesimal label variation, we can rewrite

dF = (JRt) · dζ (A 6)

where J is defined equation (2.4). Thereby, if a function F (ζ, t) can be found such that
dF is a perfect differential, there is no vorticity.

A.2. Combination of first-order terms in Newton’s law

Consider the right-hand side of equation (4.1), −H(Φ1)∇Φ1tt, where H and ∇ are re-
spectively the Hessian and the gradient operator :

H(Φ1) =

 φ1αα φ1αβ φ1αδ
φ1αβ φ1ββ φ1βδ
φ1αδ φ1βδ φ1δδ

+ c.c. and ∇Φ1tt =

 φ1αtt
φ1βtt
φ1δtt

+ c.c. (A 7)

We can write −H(Φ1)∇Φ1tt = S + T where S = (Sα, Sβ , Sδ) and T = (Tα, T β , T δ) are
tri-dimensional vectors :

S = −H(φ1)∇φ1tt + c.c. (A 8)

T = −H(φ1)∇φ∗1tt + c.c. (A 9)
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where the star superscript ‘∗’ means the complex conjugate. We will investigate succes-
sively the explicit form of S and T . Introducing the two kernels:

K =
1

4

A(k)A(k′)

kk′
ei(k+k

′)·ξ−i(ω+ω′)te(k+k
′)δ (A 10)

K =
1

4

A(k)A∗(k′)

kk′
ei(k−k

′)·ξ−i(ω−ω′)te(k+k
′)δ (A 11)

and using φ1 expression, the α component of S writes :

Sα = −
∫∫ [

(ikα)2(ik′α)(−iω′)2 + (ikα)(ikβ)(ik′β)(−iω′)2 + (ikα)kk′(−iω′)2
]
K + c.c.

= −
∫∫

ikαgk
′ [kαk′α + kβk

′
β − kk′

]
K + c.c.

=

∫∫
ikαgk

′(kk′ − k · k′)K + c.c. (A 12)

Making use of the symmetric integration over k and k′ in the second-term we can rewrite:

Sα =

∫∫
g
ikk′

2

(
kα
k

+
k′α
k′

)
(kk′ − k · k′)K + c.c.. (A 13)

The same procedure can be applied to the β component, leading to:

(Sα, Sβ) =

∫∫
N gkk′

i(k̂ + k̂′)

2
+ c.c. (A 14)

where N is defined equation (4.7). As to the δ component of S, it is found to be:

Sδ = −
∫∫ [

(ikα)k(ik′α)(−iω′)2 + (ikβ)k(ik′β)(−iω′)2 + k2k′(−iω′)2
]
K + c.c.

=

∫∫
N gkk′ + c.c. (A 15)

For the α component of T ,

Tα =

∫∫
ikαgk

′(k · k′ + kk′)K + c.c, (A 16)

we invert k and k′ in the c.c. expression to obtain:

Tα =

∫∫
g
ikk′

2

(
kα
k
− k′α
k′

)
(kk′ + k · k′)K + c.c. (A 17)

Applying the same technique to the β component we come up with equation (4.6) which
can be written :

(Tα, T β) =

∫∫
i(k̂ − k̂′)

2
gkk′(k · k′ + kk′)K + c.c. (A 18)

=

∫∫
i(k̂ − k̂′)

2
gkk′N + c.c. (A 19)

At last, the δ component of T can easily be derived as :

T δ =

∫∫
gkk′(kk′ + k · k′)K + c.c. (A 20)

=

∫∫
gkk′N + c.c. (A 21)
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A.3. Combination of first-order terms in conservation law

The combination of first-order terms in the conservation law (4.11) writes:

Φ1ααΦ1ββ + Φ1ααΦ1δδ + Φ1ββΦ1δδ − Φ2
1αβ − Φ2

1αδ − Φ2
1βδ (A 22)

where Φ1 = φ1 + φ∗1. After combination of all the terms in the form φ1mnφ1pq and
φ∗1mnφ

∗
1pq where m,n, p, q can be any of the variables α, β or δ we obtain:∫∫ [

(ikα)2(ik′β)2 + (ikα)2k′2 + (ikβ)2k′2 − (ikα)(ikβ)(ik′α)(ik′β)

−(ikα)k(ik′α)k′ − (ikβ)k(ik′β)k′
]
K + c.c.

=

∫∫ [
1
2 (kαk

′
β − kβk′α)2 + kk′(k · k′ − kk′)

]
K + c.c.

= −
∫∫ [

kk′(1− k̂ · k̂
′
)
kk′ − k · k′

2

]
K + c.c.

= −
∫∫

kk′ − k · k′

2
N + c.c. (A 23)

In the same manner, the combination of the terms φ1mnφ
∗
1pq gives:

−
∫∫

kk′ + k · k′

2
N + c.c. (A 24)

Appendix B

In this section we prove the existence of the following integral in the sense of the
Cauchy principal value:

r2 = PV

∫∫
<4

i
ωk + ω′k′

2(ω − ω′)
Be−i(ω−ω

′)te(k+k
′)δ + c.c. (B 1)

By definition, this can be rewritten:

r2 = lim
γ→0

∫∫
<4−E

− H(k,k′)

4(ω − ω′)
e(k+k

′)δ (B 2)

where E is the domain such as |ω − ω′| < γ and

H(k,k′) = (ωk + ω′k′)(1 + k̂ · k̂
′
)|A(k)||A(k′)| sin

[
(k − k′) · ξ − (ω − ω′)t+ ϕk − ϕk′

]
(B 3)

where ϕk and ϕk′ are respectively the phases of A(k) and A(k′). We denote H0(k, k̂, k̂
′
)

the value of (B 3) when k = k′ (ω = ω′) :

H0(k, k̂, k̂
′
) = H(k, kk̂

′
) = ωk(k̂+k̂

′
)(1+k̂·k̂

′
)|A(k)||A(kk̂

′
)| sin

[
k(k̂ − k̂

′
) · ξ + ϕk − ϕkk̂′

]
(B 4)

Focusing now on the integral:

r02 = lim
γ→0

∫∫
<4−E

−H
0(k, k̂, k̂

′
)

4(ω − ω′)
e(k+k

′)δ (B 5)

and noting that H0(k, k̂
′
, k̂) = −H0(k, k̂, k̂

′
) leads to a a vanishing value of r02 since
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integration is realized over all directions of k and k′. We can thus rewrite (B 2) in the
form:

r2 = lim
γ→0

∫∫
<4−E

−H(k,k′)−H0(k, k̂, k̂
′
)

4(ω − ω′)
e(k+k

′)δ (B 6)

or more explicitly:

r2 = lim
γ→0

∫∫
<4−E

i

4
(1 + k̂ · k̂

′
)e(k+k

′)δ × (B 7)

[
(ωk + ω′k′)A(k)A∗(k′)ei(k−k

′)·ξ−i(ω−ω′)t − kω(k̂ + k̂
′
)A(k)A∗(kk̂

′
)eik(k̂−k̂

′
)·ξ

ω − ω′

]
+ c.c.

The limit when ω → ω′ of the term between brackets writes:

−ikω(k̂ + k̂
′
)A(k)A∗(kk̂

′
)eik(k̂−k̂

′
)·ξ t (B 8)

ensuring (B 2) to be a finite limit and that r2 is integrable in the Cauchy principal value
sense.
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