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Abstract

The pre-transport environment of a coastal boulder along with its shape, size and density determines the height of
wave required for it to be transported. Different forces act on sub-aerial boulders as opposed to submerged boulders
when struck by a wave. Boulders derived from joint bounded blocks on shore platforms predominantly experience lift
force and require a wave of greater height to be transported than boulders in other environments. No one equation is
applicable to determine the height of palaeo-waves responsible for depositing a field or ridge of imbricated coastal
boulders. A range of equations and their derivation is presented here which can be applied to the respective pre-
transport environment of a boulder. Such an approach is necessary when attempting to reconstruct the frequency and
magnitude of past coastal wave hazards and for differentiating between tsunami and storm wave deposited boulder
fields.
. 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Coarse-grained coastal deposits such as cobble,
gravel and boulder beaches are common the
world over. Recent investigations have examined
the size and period of waves required to transport
coarse clasts from their resting position on such
beaches [1]. In these situations these clasts are

transported, initially and critically via pivoting,
over a bed of similar clasts. And if transported
inland the clasts generally move upslope. A less
common, but equally important, style of coastal
boulder deposit occurs in the form of boulder
ridges, either as a single ridge or as multiple ridges
parallel to shore, and ¢elds of boulders deposited
on shore platforms. Determining the type and size
of wave responsible for deposition of these fea-
tures requires a separate series of hydrodynamic
equations to those moving across beaches, for
these boulders have not been entrained in a £ow
involving pivoting over a bed of similar clasts.
Rather, they have been overturned and trans-
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ported generally across £at shore surfaces such as
rocky shore platforms.

Boulder ¢elds and ridges are usually character-
ised by a distinct sedimentological signature ^ im-
brication of clasts and parallel to sub-parallel
alignment of the majority of boulder A-axes
with the shore or perpendicular to the direction
of transport [2,3]. It is rare that such a signature
occurs in deposits that have resulted from rock
falls and sea-cli¡ collapse or from deep weather-
ing and exposure of core stones. The size of the
clasts in these deposits is usually much larger (1^
6 m length A-axes and weighing up to 200 tonnes)
than those forming beaches, suggesting they were
deposited by higher magnitude events. Identifying
these mega-clast deposits, and where possible de-
termining an age of deposition, can assist sub-
stantially in elucidating the magnitude and fre-
quency of the waves responsible and thereby
assist in deriving risk assessments of coastal haz-
ards. Furthermore, these deposits can be used, if
the clasts are large enough, to determine what
type of wave was responsible ^ namely tsunami
or storm [4].

Nott [3] developed hydrodynamic equations
that relate the forces required to transport these
types of coastal boulders to wave height and
thereby ascertain the type of wave most likely
responsible. These equations were limited in their
ability to describe all likely boulder transport sce-
narios for they referred only to boulders that were
submerged by water prior to transportation, i.e.
where the boulders lay just o¡shore in shallow
water and were then deposited onshore. Boulders
can also be transported by waves from positions
where they stand as sub-aerial features on shore
platforms and at the base of sea-cli¡s following
rock falls, and where they exist as joint bounded
blocks in shore platforms. In each of these situa-
tions, di¡erent forces are required to initiate
transport and as a consequence the types of equa-
tions necessary to describe the height of the waves
responsible di¡er. Identifying the likely pre-trans-
port location or origin of a boulder is important
for ascertaining which equation is most appropri-
ate and the type of wave most likely responsible.
These equations and their derivation are pre-
sented here.

2. Wave transport equations

Di¡erent forces will act on a boulder impacted
by a wave depending upon that boulder’s pre-
transport position. For example, a boulder sub-
merged by water will experience the forces of drag
and lift when impacted by a wave and it will resist
movement through the force of restraint compen-
sated by buoyancy. On the other hand, a joint
bounded block will only experience lift force
when overtopped by a wave until it is incorpo-
rated into the £ow, after which it will then expe-
rience drag force. Boulders located prior to trans-
port as sub-aerial blocks will, along with drag and
lift force, also experience an inertia or momentum
force in addition to the force of restraint. The
inertia force applies in this situation because un-
like the submerged boulder and joint bounded
block the sub-aerial boulder is not supported by
either water or rock on the lee side of the £ow. As
a consequence the boulder experiences £ow accel-
eration, albeit, as is discussed later, for a brief
time (1^2 s), as the wave ¢rst impacts.

Each of these forces can be described as fol-
lows:

Fd ðdrag force momentÞ ¼ ½0:5bwCdðacÞu2�c=2 ð1Þ

F l ðlift force momentÞ ¼ ½0:5bwClðbcÞu2�b=2 ð2Þ

Fm ðinertia forceÞ ¼ bwCmðabcÞ€uu ð3Þ

F r ðrestraining force momentÞ ¼ ðb s3bwÞðabcÞgb=2 ð4Þ

where bw =density of water at 1.02 g/ml (this
could increase when sediment such as sand is in-
corporated in the £ow), bs = density of boulder at
2.4 g/cm3, Cd = coe⁄cient of drag= 2, Cl = coef-
¢cient of lift = 0.178, Cm = coe⁄cient of mass = 1,
g=gravitational constant, u« = instantaneous £ow
acceleration, u=£ow velocity/wave celerity, a=
A-axis of boulder, b=B-axis of boulder, c=
C-axis of boulder.

Boulder transport will be initiated when, in the
case of a submerged boulder:

Fd þ F lvF r ð5Þ

and for a sub-aerial boulder when:
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Fd þ F l þ FmvF r ð6Þ

and for a joint bounded block when:

F lvF r ð7Þ

2.1. Submerged boulder scenario

Incorporating Eqs. 1, 2 and 4 into Eq. 5 and
solving for H (height of wave at shore ^ and in
case of storm wave at breaking point) gives:

0:5bwu20:5½Cdðac2Þ þ C lðb2cÞ�v0:5ðb s3bwÞab2cg ð8Þ

Transposing u2 and simplifying gives:

u2v
0:5ðb s3bwÞab2cg

0:5bw0:5½Cdðac2Þ þ Clðb2cÞ�
ð9Þ

u2v
2ðb s3b w=bwÞag

ðac2=b2cÞ þ Clðb2c=b2cÞ
ð10Þ

u2v
2ðb s3bw=bwÞag
Cdðac=b2Þ þ Cl

ð11Þ

as u ¼ N ðgHÞ0:5

where N is wave type parameter, which di¡ers as a
function of the di¡erence in speed between vari-
ous wave types, and H is wave height, and there-
fore:

u2 ¼ N gH

Substituting NgH for u2 gives :

N gHv
ðb s3bw=bwÞ2ag
Cdðac=b2Þ þ C l

ð12Þ

and solving for H and simplifying gives:

Hv
1=N ðb s3bwÞ=bwÞ2a
Cdðac=b2Þ þ C l

ð13Þ

Eq. 13 can be further simpli¢ed for both tsuna-
mi and storm waves as:

H tv
0:25ðb s3bw=bwÞ2a
ðCdðac=b2Þ þ Cl

ð14Þ

where Ht = height of tsunami, u=2 (gH)0:5 and
N=4, and:

Hsv
ðb s3bw=bwÞ2a
Cdðac=b2Þ þ Cl

ð15Þ

where Hs = height of storm wave at breaking
point, u= (gH)0:5 and N=1.

Inherent in the drag force equation is the as-
sumption that velocity refers to depth averaged
velocity whereas the lift force equation refers to
bed velocity. Baker [5] noted that because of £ow
turbulence bed velocity during £oods in stream
channels was probably close to mean velocity.
Costa [6] likewise recognised that the two veloc-
ities were similar but he increased his bed velocity
by 20% to equate it to mean velocity. The highly
turbulent nature of a breaking wave and bore
suggests that the di¡erence between bed and
mean velocity in this situation is likely to be min-
imal. Lift force is also a relatively minor compo-
nent of the ¢nal equations for wave heights hence
the two velocities (bed and mean) are assumed to
be roughly equal in this analysis.

In this study changes have been made to the
velocity equations incorporated into the hydrody-
namic transport equations used by Nott [3]. Nott,
in line with Massel and Done [7], used:

u ¼ 0:5ðgHÞ0:5 ð16Þ

as the average velocity equation for a broken os-
cillatory wind (storm) generated wave. This equa-
tion is similar to FredsOe and Diegaard’s [8] equa-
tion for maximum near-bed wave-orbital velocity,
however as noted by these authors, this equation
does not hold in the surf zone. Because the move-
ment of boulders takes place in the surf zone, or is
assumed to be initiated at the point of commence-
ment of wave breaking, and also because it is
di⁄cult to derive an average orbital-wave veloc-
ity, a conservative approach is adopted and the
wave velocity/celerity for unbroken orbital-waves:

u ¼ ðgHÞ0:5 ð17Þ

is used. This is probably an overestimate of the
velocity of a broken wave for these waves de-
crease their velocity considerably after breaking.
Eq. 17 therefore really only applies when the wave
commences to break and transport of the boulder
is initiated. Once the boulder is entrained the ve-
locity of the broken wave will approach that de-
scribed in Eq. 16.
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In the development of Eq. 13 consideration was
given to Fukui et al.’s [9] analysis of tsunami bore
velocity. Fukui et al.’s equation for a tsunami
bore is :

u ¼ j ½gðH þ hÞ�0:5
2HðH3R j Þ ð18Þ

where H=height of bore, h=depth of ‘still’ water
in front of bore, j=H3h, R= friction factor.

The friction factor R was determined empiri-
cally by Fukui et al. (¢g. 7, p. 75). This factor
varies between V0.82 and V1.02 with increasing
h/H. Using this equation R is a critical variable in
determining the velocity of a tsunami bore and
the relationship between R and u where u=
N (gH)0:5 is given by:

N ¼ 1
½2ð13R Þ�0:5 ð19Þ

The most appropriate value for R is suggested
here to occur between these two ¢gures of
RW0.82 when h/H=0 and RW1.02 when h/
H=0.5. When boulders have been transported
well above sea level, and if a tsunami was respon-
sible, the wave would have transported the bould-
ers over dry land or where h=0 and therefore h/
Hs 0.5 and Rs 1.02. As shown by Eq. 19 where
Rs 1.02 and Ns 2 the tsunami velocity would be
greater than u=2(gH)0:5. A conservative value of
R=0.875 or where N=2, being the same as that
used by Nott [3], is therefore recommended. By
incorporating Eq. 17 into Eq. 15 the di¡erence in
wave height between tsunami and storm waves
required to move a given size boulder is reduced
substantially compared to the equations proposed
by Nott [3].

Eq. 13 is particularly sensitive to changes in the
value of the drag coe⁄cient (Cd). Noji et al. [10]
observed that Cd varies substantially with time
(during passage of wave) and that it decreased
as the Froude number approached 1. Noji et al.
[10] determined Cd for a block shaped object
(cube), which is similar in shape to many boulders
that have been transported by waves. In their ex-
periment, Cd varied between approximately 5 and
1.5 and attained its lowest value when h/H was

between 1.2 and 2. The coe⁄cient of drag (Cd)
has been given a value of 2 in this study because
Noji et al. [10] found that Cd = 2 when h/H was
less 1.2. This value appears therefore to be most
appropriate for boulders transported from a sub-
aerial position and from a shallow water setting
where the wave height and water depth are close
to equal.

Fig. 1 shows the relationship between Cd and
wave heights required to move both submerged
and sub-aerial boulders. The equation for sub-
merged boulders (Eq. 13) is considerably more
sensitive to changes in Cd than the equation for
sub-aerial boulders. This suggests that there is a
di¡erence in wave height necessary to transport
boulders that are submerged compared to those
standing initially in a sub-aerial position (Fig. 1).
In reality there is likely to be a range of wave
heights that could transport a given size and
shape of boulder depending upon the depth of
water above a submerged boulder and the nature
(Froude number) of the wave/bore.

2.2. Sub-aerial boulder scenario

Inertia force must be incorporated into an
equation to describe the impact of a wave upon
a boulder that is not submerged or buttressed. Eq.
6 which incorporates the inertia force can be re-
arranged and expressed as:

Fd þ F lvF r3Fm ð20Þ

Incorporating Eqs. 1^4 into Eq. 20 gives:

1.2 1.4 1.6 1.8 2 2.2

20

16

12

8

4

0

Storm waves

Tsunami

Sub-aerial boulder

Submerged boulder

Coefficient of drag (Cd)

Wave
height
(m)

Fig. 1. Relationship between coe⁄cient of drag, wave height
and pre-transport setting of boulder.
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0:5bwu20:5½Cdðac2Þ þ C lðb2cÞ�v

0:5ðb s3bwÞab2cg3Cmbwabc€uu ð21Þ

Transposing u2 and simplifying gives:

u2v
0:5ðb s3bwÞab2cg32Cmbwabc€uu
0:5bw0:5½Cdðac2Þ þ Clðb2cÞ�

ð22Þ

u2v
2½ðb s3bw=bwÞab2cg32Cmðabc=b2cÞ€uu�

Cdðac=b2Þ þ Cl
ð23Þ

u2v
2½ðb s3bw=bwÞag32Cma=b€uu�

Cdðac=b2Þ þ Cl
ð24Þ

as u= N(gH)0:5, u2 = NgH, substituting u2 for NgH
gives:

N gHv
ðb s3bw=bwÞ2ag34Cma=b€uu

Cdðac=b2Þ þ C l
ð25Þ

and solving for H (height of wave at shore ^ and
in case of storm wave at breaking point) gives :

Hv
1=N ½ðb s3bw=bwÞ2a34Cmða=bÞð€uu=gÞ�

Cdðac=b2Þ þ Cl
ð26Þ

Eq. 26 can be further simpli¢ed for both tsuna-
mi and storm waves as:

H tv
0:25ðb s3bw=bwÞ½ð2a3Cmða=bÞð€uu=gÞ�

Cdðac=b2Þ þ Cl
ð27Þ

where Ht = height of tsunami, u=2 (gH)0:5 and
N=4, and:

Hsv
ðb s3bw=bwÞ½ð2a34Cmða=bÞð€uu=gÞ�

Cdðac=b2Þ þ Cl
ð28Þ

where Hs = height of storm wave at breaking
point, u= (gH)0:5 and N=1.

By incorporating the inertia force, Eqs. 27 and
28 acknowledge that £ow acceleration occurs
when a boulder is standing as a sub-aerial feature
prior to impact by a wave. Flow acceleration oc-
curs when the wave initially strikes the boulder
after which the acceleration diminishes rapidly
to be negligible once the wave front passes and
boulder motion commences. As discussed by Noji
et al. [10], the value for acceleration is di⁄cult to
ascertain. Acceleration (u«) is relatively insigni¢-
cant in Eq. 26 because variations in this value
have little e¡ect on the total force applied to the

boulder and hence the wave height at the shore.
Noji et al. [10] noted that, despite the insigni¢cant
change in total force resulting from variations in
acceleration, it is nonetheless important to include
the acceleration term in the inertia force equation
otherwise the computation becomes unstable.

The coe⁄cient of mass (Cm) was determined
empirically by Noji et al. [10] and expressed by
the equation:

Cm ¼ 1:15þ 1:15tanh½ð32:0þ 2:5h=HÞZ�

for h=H61:0 ð29Þ

Noji et al. [10] observed that Cm is a function of
relative water depth (h/H) and it increases dra-
matically when an object is initially impacted by
a wave (bore), i.e. during the ¢rst second. After
this Cm diminishes rapidly to approach zero. Once
the object is completely submerged in the £ow the
value of Cm does not make any di¡erence to the
total force because acceleration becomes negli-
gible [10]. Noji et al. used a value of Cm =2 rep-
resenting the time when the boulder is completely
submerged, but they noted that the adopted value
should not make any di¡erence to the total force
because by this time the acceleration is negligible.

Like acceleration (u«), Cd and Cm appear to in-
crease dramatically during the ¢rst second of im-
pact by the wave front and diminish rapidly after
this time. Such high values, when incorporated
into Eqs. 27 and 28, show that considerably less
force is required to move boulders during the ¢rst
second of wave impact due to the rapid change in
momentum, which is related to water depth. This
change in momentum initiates boulder movement,
but considerably more force is then required to
transport the boulder some distance inland. Be-
cause it is highly unlikely for a wave of given
height to increase its force or height following
the ¢rst second of impact with a boulder at the
shore, more conservative values of Cd = 1.5,
Cm =2 and u« =1 m/s2 are recommended.

Eqs. 27 and 28 suggest that a wave of greater
height is required to transport a boulder some
distance inland than that required to initiate
movement of a boulder during the ¢rst second
of wave impact. After the boulder is submerged
by the wave, and providing that the water or £ow
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depth is at least 0.35 grain diameters above the
boulder, lift force will also act upon the boulder
[11].

2.3. Joint bounded block scenario

To initiate motion of a joint bounded block,
the lift force must overcome the force of restraint
less buoyancy providing the block has weathered
completely free from its substrate. Eq. 7 can be
expressed as follows:

½0:5bwClðbcÞu2�b=2vðb s3bwÞðabcÞgb=2 ð30Þ

Solving for H gives:

u2v
0:5ðb s3bwÞab2cg
0:5bwClðb2cÞ

ð31Þ

u2v
ðb s3bw=bwÞag

Cl
ð32Þ

N gHv
ðb s3bw=bwÞag

Cl
ð33Þ

Hv
1=N ½ðb s3bw=bwÞa�

Cl
ð34Þ

Eq. 14 can be further simpli¢ed for both tsuna-
mi and storm waves as:

H tv
0:25ðb s3bw=bwÞa

Cl
ð35Þ

where Ht = height of tsunami, u=2 (gH)0:5 and
N=4, and:

Hs ¼
ðb s3bw=bwÞa

Cl
ð36Þ

where Hs = height of storm wave at breaking
point, u= (gH)0:5 and N=1.

As shown in Table 1 the height of a wave re-
quired solely to lift a lithic block from its joint
bounded position on a shore platform is much
greater than that required to move boulders that
are either submerged or sub-aerial. This is because
the latter two experience drag force. In some set-
tings, it is obvious that the boulders that comprise
the deposit must have come from joint bounded

Fig. 2. Shore platform showing ‘excavations’. Here joint
bounded blocks have been lifted and deposited as a ridge of
imbricated boulders that extend for over 1 km adjacent to
the platform near Exmouth, northwest Western Australia.
Ridge can be seen in top left corner of photo.

Table 1
Wave heights (m) calculated using submerged boulder, sub-aerial boulder and joint bounded block hydrodynamic transport equa-
tions

bs bw Cd Cl a b c Vol. Cm Acc. T (sm) S (sm) T (sa) S (sa) T (lift) S (lift)

2.1 1.02 2 0.178 3 2.1 0.7 4.4 2 1 1.4 6 1.3 5.3 4.6 18.5
2.1 1.02 2 0.178 2.4 1.8 0.7 3.0 2 1 1.0 4 1.1 4.2 3.7 14.8
2.1 1.02 2 0.178 2.8 1.8 0.6 3.0 2 1 1.2 5 1.2 4.9 4.3 17.3
2.1 1.02 2 0.178 2.2 1.5 0.5 1.7 2 1 1.0 4 0.9 3.6 3.4 13.6
2.1 1.02 2 0.178 2 1.2 0.7 1.7 2 1 0.5 2 0.9 3.6 3.1 12.4
2.4 1.02 2 0.178 3.15 1.22 0.23 0.9 2 1 2.2 8.6

Examples given are for Exmouth beach rock platform and last row for 1998 PNG (Sissano) tsunami.
bs = density of boulder (beach rock) at 2.1 g/cm3 (note that bs is only 2.1 g/cm3 as the ‘beach rock’ is less dense than typical
sandstone), bw =density of water at 1.02 g/ml, Cd = coe⁄cient of drag= 2, Cl = coe⁄cient of lift = 0.178, a=A-axis of boulder
(m), b=B-axis of boulder (m), c=C-axis of boulder (m), Vol. = volume of boulder (m3), Cm = coe⁄cient of mass= 2, Acc. = in-
stantaneous £ow acceleration, T= tsunami, S = storm wave, (sm)= submerged boulder, (sa)= sub-aerial boulder, (lift) = boulder
lifted from joint bounded block position through lift force only.
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blocks on platforms. Such an example occurs near
Exmouth in northwest Western Australia where a
ridge of imbricated boulders, shaped as slabs or
rectangular prisms, rises up to 2.5 m above the
mean high tide level and extends along more
than a kilometre of shoreline at the rear of the
beach (Fig. 2). The boulders have been derived
from the carbonate-cemented platform of ‘beach
rock’ at the toe of the beach and the ridge only
occurs adjacent to the outcrop of this stratum. In
many instances it is obvious that the boulders
were derived from the landward side of the out-
crop for ‘cavities’ of the same shape and size as
the boulders in the ridge occur here. It is likely
that there is a component of drag force involved
in initiating movement of the boulders from this
position because of turbulence in the £ow which
could act against the C-axis if there has been suf-
¢cient weathering and separation of the block
from the surrounding strata. Hence, Eq. 34 may
slightly overestimate the height of wave required
to transport boulders from such a setting.

It is worth noting that the sub-aerial tsunami
equation was tested against the 1998 Sissano tsu-
nami in Papua New Guinea. Here a concrete slab
measuring 3.15U1.22U0.23 m was overturned
and transported inland by the tsunami. At this
location, being 400 m inland from the shore, the
tsunami height or £ow depth was 5 m as deter-
mined from debris left in trees [12]. The sub-aerial
tsunami equation states that only a 2.2 m tsunami
was required to overturn this slab (Table 1).
Hence the 5 m tsunami was easily able to trans-
port the slab and could have transported a much
larger slab if one was available.

The equations presented here refer only to
those situations where boulders are entrained
within the £ow. In some situations, it is possible
that a block of rock may be ‘blasted’ by a wave
impacting on the vertical seaward face of a shore
platform at low tide. Here wave turbulence and
cavitation may play a role in initiating transport
of that boulder and it may be ‘tossed’ landward.
This mode of transport, however, is unlikely to
result in a ¢eld or series of imbricated boulders
but rather would leave the boulder standing as an
isolated feature. If that boulder is entrained in the
£ow after being ‘tossed’, or during some subse-

quent event, the same forces described here in
the equations will apply.

3. Conclusion

Along with shape, size and density, the pre-
transport environment of a coastal boulder deter-
mines the height of wave required for it to be
transported. Boulders resting on a bed of similar
clasts experience pivoting during entrainment and
require a separate set of hydrodynamic equations
to describe their transport mechanism than that
described here. Boulders resting in a sub-aerial
position on a bare rock shore platform experience
the force of inertia as well as drag and lift force,
whereas submerged boulders only experience the
latter two forces. Boulders derived from joint
bounded blocks on shore platforms are largely
in£uenced by lift force alone and require much
higher waves to initiate transport. The depth of
water above a submerged boulder is also an im-
portant determinant of the size of the transport-
ing wave as is the Froude number of the wave or
onshore £ow. Because of the di⁄culty in deter-
mining these two factors for submerged boulders,
only a range of possible transporting wave heights
can be estimated. Recognising these conditions is
important when attempting to reconstruct both
the magnitude and frequency of coastal wave haz-
ards and for di¡erentiating between boulders
transported by tsunami and storm waves.[RV]
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