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SPATIALLY AVERAGED OPEN-CHANNEL FLOW OVER ROUGH RED
AcJ.

By Vladimir Nikora,, Derek Goring,2 Ian McEwan,: and George Griffiths4

ASSTRACT: !n this paper it is suggested that the double-averaged (in temporal and in spatial domains) mo-
n~entum.equations sho.uld be used as a natural basis for the hydraulies of rough-bed open-channel 11ows, espe-

cialIy with smalJ relative submergence. The relationships for the vertical distribution of the total stress for the
simplest case of 2D, steady, unìform, spatialJy averaged fiow over a rough hed with Hat free surface are derIvecl.
Th~se re~ationships explicilly incJude the form-induced stresses and fonn drag as components of the total stress.
Using this approach,.we define three types of rough-bed flows: (J) Flow with hIgh relative submergence; (2)

flow with smalJ relative submergence; and (3) fiow over a parttalJy Inunclated rough bed. The relattonships for
the doub!e-averaged veJocIty distribution aud hydraulic resistance for alJ three now types are derived and com-
pared with measurements where possIble. The double-averaged turbuJent and forii-Indueed intensittes and
stresses for the case of regular spherical-segment-type roughness show the dominant ro1e of the double-averaged
turbulence stresses and form drag in momentum transfer In the near-bed region.

INTRODUCTION

The turbulence properties of open-channel flows with hy-
draulicaIly smooth beds have been significantly clarified in the
last 20-30 years (Nezu and Nakagawa 1993). Progress was

also achieved in understanding the turbulence structure in
flows wIth hydraulicaIly rough beds and high relative sub-
mergence (e.g., Grinvald and Nikora (1988), Kironoto and
Graf (1994), Song and Graf (1994), Lopez and Garcia (1996),
Dittrich and Koll (1997), Nikora and Smart (1997), and Graf
and Altinakar (1998)). At large ratios of flow deptIHo-rough-
ness scale the flow structure for most of the depth reveals

properties similar to those for flows over smooth boundaries
at least at distances from the bed sufficiently greater than th~
roughness height. For such flows the logarithmic velocily pro-
file was shown to be valid for the inner flow region, away
from the rough bed and water surface. However, the near-bed
flow structure in deep flows over irregular rough beds as well
as the flow structure of shaIlow flows with small relattve sub-
mergence (e.g., gravel-bed rivers, where roughness elements
may protrude the flow up to the surface) is stiIl unc1ear in
many respects (e.g., Lopez and Garcia (1996), and Dittrich
and KoIl (1997)).

Most attempts to c1arify the flow structure in the near-bed
region of such flows have been based on the Reynolds equa-
tions, i.e., time-averaged Navier-Stokes equations, which have
served for both modeling and experimental data interpretatton.
However, the time (or ensemble) averaged flow structure is
highly 3D and spatially heterogeneous near irregular rough
beds, which makes the time-averaged momentum equattons

inconvenient and impracticable, e.g., 2D approximations based
on the Reynolds equations as weIl as similarity considerations
for time-averaged variables are not possible for the near-bed
region. Also, most applications deal with spatiaIly averaged

roughness parameters that cannot be linked explicitly with lo-
cal flow properties provided by the Reynolds equations. Nev-
eiiheless, these conceptual contradictions have been essentiaIly
ignored in most studies. For instance, in some studies the 2D
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Reynolds equatIons were artificiaIly modifìed by introducing
the form drag as an extra body force term and then used to
describe the 3D near-bed flow structure. ln such studies, mean
velocities and turbulence characteristtcs were il1plicItly con-
sidered as somewhat averaged in the space dOl1ain, though the
averaging operation was not defined explicitly and aIl consid-
erations were based on the time-averaged momentum equa-
tions. Such an intuitive approach introe!uces uncertainties in
the interpretation of the l10deling results. A similar argument
applies for interpretatton of turbulence measurements taken
ncar rough surfaces.

1'0 avoie! this problem conceptuaIly the ttme (or ensemble)
averaging of Navier-Stokes equations should be supplementee!

by spattal area (or volume) averaging in the plane parallel to
the averaged bed. As a result, new continuity ane! momentum
conservatton equattons may be obtained which are averaged
in both time and space e!omains. They relate ta the ttme-
averagee! Reynolds equations as the Reynole!s equations relate
to the Navier-Stokes equations for instantaneous flow varia-
bles. VelocIties and pressure as well as their moments in these
double-averagee! equations represent spatiaIly averagee! flow
parameters which now may be relatee! to the roughness param-
eters obtainee! by averaging in the same spatial domain. An-
other important feature in these new equations is that they
inc1ude drag terms ane! fonn-ine!uced momentum fluxes e!ue to
heterogeneity of the time-averagee! flow explicitly. These new
tenns appear naturally as a result of spatial averaging, but not
as additional ad hoc terms. Within this approach, similarity
hypotheses and 2D assumptions may be developed for double-
averagee! variables and applied even for the flow region below
roughness crests (this is impossible using the conventional

Reynolds equations and the time-averaged flow parameters).
ln hydraulics the ie!ea of spatial flow averaging was first

introducee! by Smith and McLean (1977), who considered ve-
locity profiles averaged along lines of constant distance from
a wavy bed. The deve10pment of a new methoe!alogy based

on spatially averagee! equations was initiated by Wilson ane!

Shaw (1977) for e!escribing atmospheric flows within vegeta-
tion canopies. Furter contrbutions have been also made by
atmospheric physicists (Raupach and Shaw 1982; Finnigan
1985; Raupach et aL. 1991) who provie!ee! the mathematical
basis for a new set of equations. Recently, Gimenez-Curto and
Corniero Lera (1996) successfully applied a similar approach
to describe oscillating turbulent flows over very rough SUU-

faces.
The aim of this paper is to consider the potential of this

approach for open-channel flows, e.g., gravel-bed canais and
iivers, with irregular rough bee!s. Pirst, we introe!uce the spa-

tially averagee! momentum equations, and using them, subdi-
vide the flow into specific regions. Secone!, we redefine no-
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tions of the shear stress distribution and bed shear stress for
the case of spatially averaged variables. Finally, we consider
potential applications of this approach for such problems as
flow resistance and the vertical distribution of flow properties
(mean velo city, turbulent, and form-induced intensities and
stresses). AlI our considerations below are for the fixed bed
flows although they can be also extended for the mobile-bed
flows.

SPATIALLY AVERAGED EQUATIONS

To obtain spatially averaged equations for the near-surface
region of the atmospheric boundary layer Wilson and Shaw
(1977) and Raupach and Shaw (1982) considered area aver-
aging over a horizontal plane intersecting the vegetation can-
opy. Later, Finnigan (1985) generalized the area average to a
volume average over any volume within the canopy and de-
rived volume-averaged equations. Both approaches are equiv-
aIent when the averaging volume is an extensive, infinitesi-
mally thin horizontal slab.

The averaging procedure (for area averaging at level z) is
defined as

(V)(x, y, Z, t) =.. r l V(x', y,' Z, t) dx' dy'Af Li

where V = flow variable defined in the fluid but not at points
occupied by the roughness elements; angle brackets denote
spatial (area) averaging; and Af = area occupied by fluid within
a fixed region on the x,y-plane at level z with the total area
Aa. ln our considerations we use the right-handed coordinate

system (Fig. l)-x-axis is oriented along the main flow par-

allel to the averaged bed (u = velocity component), y-axis is
oriented to the left bank (v = velocity component), and z-axis
is pointing toward the water surface (w = velocity component)
-with an arbitrary origin. Below roughness crests the aver-

. aging region is multiply connected, since it is intersected by
roughness elements. The square root of the area Aa may be

z l¿~Water surface

V u
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bed
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x

z
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Wl¿
Water suiface

u
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FIG. 1. Sketch for Coordinate Axes: (a) Impermeable Bed; (b)
Permeable Bed
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interpreted as a scale of a spatial rectangular window smooth-
ing inegularities with a linear scale oGg.5. More precisely, two

linear scales should be considered, longitudinal La and trans-
verse Wa, Aa = La Wa. A convenient choice for scales La and

Wo are longitudinal and transverse correlation lengths of rough

bed elevations.
ln their considerations, Wilson and Shaw (1977), Raupach

and Shaw (1982), and Finnigan (1985) assumed that the veg-
etation canopy is homogeneous. This means that the averaging
area Af does not depend on the coordinates. However, this
assumption, being reasonable for vegetation canopies, is not
valid wh en one considers rough surfaces like gravel beds. For
such rough surfaces the ratio AfjAo is not constant and usually
decreases from roughness crests downward. A variable Af was
incorporated by Gimenez-Curto and Corniero Lera (1996) in
their derivation of spatially averaged conti nuit y and momen-
tum conservation equations. When the ratio Af/Aa = const their
equations reduce to those derived by Raupach and Shaw
(1982) and Finnigan (1985). The averaging procedure for the
flow region over crests of rough elements does not present any
difficulties and simply follows the Reynolds procedure (Monin
and Yaglom 1971). The operation of averaging for the flow
region below roughness crests is not trivial because operator
(1) do es not commute with spatial differentiation. Detailed
mathematical analysis as well as derivation of the spatially
averaged momentum equations are presented by Raupach and
Shaw (1982), Finnigan (1985), and Gimenez-Curto and Cor-
niero Lera (1996). ln this paper we prefer to use Gimenez-
Curto and Corniero Lera's (1996) equations (in a slightly mod-
ified form) as more suitable for the purposes of our study.

Applying (1) to the conventional Reynolds equations, i.e.,

au, - aUj i ap au:uJ a2u,
- + u, - = g, - - - - - + v -,at ax, pax, aXj aXj (2)

au~=o
ax,

(3)

one can obtain the double-averaged (in time and then in the
x,y-plane) momentum and mass conservation equations as

Flow region above the crests of roughness elements Z ;: Ze:

a(U;) + (u;) a(u) = g, - ~ a(p) - a(u: uJ) - a(ü,Üj) + v a2(~)

at ax¡ p ax¡ aXj aXj aXj (4)

a(U;) = 0

ax¡ (5)

Flow region below the crests of roughness elements Z .ç Ze:

a(u;) + (u¡) a(u) = g, - ~ a(p) - .! aA(ug) - .! aA(ü¡üj)

at ax¡ pax, A aXj A aXj
a2(u;) (a2ü¡) i (aß)+v-+v - -- -axJ axJ p ax¡ (6)

aA (u¡)-=0
ax¡ (7)

where Ze = e1evation of the highest lOughness crests. ln the
above equations the straight overbar and angle brackets denote
the time and spatial average of flow variables, respectively;
the wavy overbar denotes the disturbance in the flow variables,
i.e., the difference between time averaged (V) and double-
averaged ((V)) values ev = V - (V)), similar to the Reynolds
decomposition (V' = V - V); g¡ = ith component of the gravity
acceleration; p = fluid density; v = kknematic viscosity; and A

= ratio of the area Af occupied by fluid to the total area Aoof-: --
the averaging region. Tensor notation is used for velocity sub-
scripts. Eqs. (4) and (6) describe relations between spatially
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averaged flow properties and contain some additional terms in
comparison with (2). These terms are form-induced stresses,
form drag, and vis cous drag on the bed. The form-induced
stresses (u;Íi.) appear as a result of spatial averaging like tur-
bulent stresses u: u; appear in the Reynolds equations as a re-
sult of time averaging of the Navier-Stokes equations, I.e.,
(uiu) are due to spatial disturbances in time-averaged flow. To
identify (u¡u) Wilson and Shaw (1977) used the term "dis-
persive stresses" while Gimenez-Curto and Corniero Lera
(1996) prefer the term "form-induced stresses." ln this paper
we wil use the latter term. The form drag (l/p)(aft/ax;) and
viscous drag v(a2u;!axf) on the bed appear only in equations
for the flow region below roughness crests ((6)). Also, the
equations of motion for the flow region below the roughness
crests ((6) and (7)), demonstrate dependence on the roughness
geometry, i.e., on the parameter A. This parameter is important
if the roughness elements change their density and cross sec-
tions with coordinates; it disappears if they do not. The only
difference between equations (4)-(7) and those derived by Gi-
menez-Curto and Corniero Lera (1996) is that instead of area
Ai we use the normalized parameter A = A¡!Ao which we eaU
a roughness geometry function A = F(x, y, z).

ln this paper We consider the simplest case of 2D, steady,

uniform, spatially averaged flow over a rough bed with flat
free surface. Such a flow possesses the following properties:
(1) The time-averaged flow variables do not change in time
(i.e., there are no long-term trends in flow properties, and aU
variations are due to turbulence only); (2) the vertical change
in spatially averaged flow properties is significantly stronger
than longitudinal and transverse ones; (3) the spatially aver-
aged vertical (w), and transverse (0), velocities are equal to
zero, and there is no correlation between u and v and between
v and w; (4) the water surface is flat; (5) the bed roughness
(i.e., the field of bed elevations Zb(X, y)) is "frozen" and sta-
tistically homogeneous in the x,y-plane, i.e., the roughness ge-
ometr function A depends only on the vertical coordinate z,
i.e., A = A(z). For high Reynolds number 2D flows (4) and (6)
reduce to (see sketch in Fig. 1 for symbols)

Flow region above the roughness crests Z ;: ze:

a(u'w') a(uw)gSb----=Oaz az (8a)

1 a(p) a(w'2) a (w2)g cos (X + - - + - + - = 0p az az az
Flow region below the roughness crests z -: ze:

(8b)

gSb - !: / aß) - 1: aA(uu) - 1: aA(uw) = 0p \ ax A az A az
i a(p) 1 (aß) 1 aA(w'2) i aA(w2)gcos(X+--+- - +--+--=0p az p az A az A az

(9b)

(9a)

Eqs. (8a) and (9a) are for the longitudinal velo city component
while (8b) and (9b) are for the vertical one. Equations for the
transverse velocity disappear. We also neglect viscous terms
in' (8a)-(9b) because of the high Reynolds number. The pa-
rameter Sb is the slope of the averaged bed, Sb "' sin (X (Fig.
1), which is equal to the downgradient slope of thewater sur-
face. We use (8a)-(9b) in our following considerations. Before
ptoc~eding further, we fÌst consider some properties of the
loughness geometry function A.

ROUGHNESS GEOMETRY FUNCTION A(z)

An importt feature of (6), (7), (9a), and (9b) is the de-
pendence on the roughness geometry which is taken into ac-

count by the function A(z), 1 2: A(z) 2: Amin 2: O. ln the region

above roughness crests A "" 1. Wh en the lower limit A . = 0
we have an impe~meable bed (F!g. 2(a)) while for per~'~able
beds A'~in ;: 0 (Fig. 2(b)). For irregular impenneable rough
beds (Fig. 2(a)) we can define the function A(z) as the cu-
mulative probability distribution of bed elevations, i.e., the
probabilty for a bed elevation Z/, to be less than a given ele-
vation z. The interpretation of A(z) as A(z) = P(Zb -: z) is valid
only if Z/,(x, y) is a single-valued function. lt is worth noLLng

that G. Parker (personal communication, 1999) uses a similar
appraach to describe bed topography in his revis 

ion of Hir-
ano's concept of the active layer. ln his considerations he used
the cumulative distribution Ps = P(Zb ;: z), which relates to
A(z) as P.,.(z) = 1 - A(z). For granular surfaces, single-valued
bed topography can be expected if the partic1e size D is small
enough so that any micromotions of the interstitial fluid may
be neglected, at least for the purposes of this study. Typical
examples from fluvial hydraulics are sand wave surfaces (rip-
pIes and dunes) and the rough surfaces of cohesive soils. For
such surfaces the partic1e size D is mu ch smaller than the
height 11 of roughness elements created fram these partic1es,
i.e., (D/I1) -:-: 1. At the other extreme, when partic1es are large,
interstitial motions are not negligible, and (D/I1) = 1, we have
permeable beds (Fig. 2(b)) whose topography Z/,(x, y) is not
single-valued anymore. A typical example is a gravel surface
where the roughness elements are presented by partic1es with
a narrow unimodal size distribution, or by assemblages of a
few gravel partic1es. From these considerations, the roughness
geometr function A(z) is a statistical measure of both the
random geometry of the bed surface and the permeability. ln
the case of permeable beds, at z below the surface partic1es,
the function A(z) is analogous to the porosity coefficient of
the granular material.

Fig. 3 shows examples of A(z) for water-worked gravel beds
(New Zealand rivers) and unworked gravel beds created man-
ually in two flumes (Nikora et aL. 1998a). Detailed analysis of
measured gravel-bed profiles using the random field approach
is presented in Nikora et al. (1998a). Here we use results of
that study to show that empirical functions A(z) for both nat-
ural rivers and flumes behave similarly and are fairly c10se to

z
Water surface

Zws

ZL - - - -
Oiiter layer--------------------

Logarithmic layer
ZR = = = = Ï!¿m~n~u~d s0:177y~' (id - = - - R-;u--i;;,e;s i
Z c -- Inter aciaT subTayer 7c5¡) layer JOA=l UR

~~ - - - - - - - - - - - - - - - - - - - - - - lZi

(a) 0 A (z) 1 Rough impermeable bed

z
Water suiface

Zws

ZL
Outer layer- ----------- -- --------

ZR

Z - --c
Zi

Zf

(b) 0 Amin 1 A(z)
FIG. 2. Flow Subdivision ¡nto Specifie Regions: (a) Imperme-
able Bed; (b) Permeable Bed

Rough permeable bed
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FIG. 3. Roughness Geometry Function A(z) for Water-Worked
and Unworked Gravel Beds,;Averaged Functions A(z) Are Pre-
sented, Zb Is Bed Elevation, Zb Is Average Bed Elevation, and eT z

Is Standard Deviation of Bed Elevations (Data from Nikora et aL.
1998a)

the cumulative probability function for the normal distribution.
Unfortunately, the applied measurement procedure did not per-
mit us to get information about A(z) at z 10wer than those for

particles lying on the bed surface. Therefore, the empirical

functions A(z) in Fig. 3 characterize only an interfacial sub-
layer (Fig. 2(b)) between the flow and the gravel bed, and
present no information about the gravel-bed porosity. ln the
subsurface gravel layer the function A(z) changes insignifi-
cantly and does not exceed the range 0.2-0.3 (Linsley et aL.
1975). ln some cases, when the interstitial space between large
particles (e.g., gravel) is fiUed with much smaUer particles
(e.g., sand), we can assume Amin = 0 and the bed may be fairly
considered as "impermeable," with single-valued topography.

. SUBDIVISION OF FLOW INTO SPECIFIC LAYERS

Eqs. (8a)-(9b) are written for two flow regions, above and

below roughness crests. The main reason for such a subdivi-
sion was the appearance of the additional terms and variables
in: the equations for the flow region below z~'. However, a fur-
ther subdivision is also possible when one considers the sig-
nificance of some terms in (8a)-(9b). For the puu-poses of this

paper we suggest the' foUowing flow subdivision (Fig. 2), as-

sumig H;;;; Li, where H is the maximum depth equal to the

distance between water surace and troughs of roughness el-
ements, i.e., H = Zws - z, (Fig. 2).

1. Outer layer: ln ths region the viscous effects and form-

induced fluxes are negligible and the spatiaUy averaged equa-
tions are identical to the time-averaged equations. Character-
istic scales for this layer are the shear velo city U*, the

maxmum flow ve10city Umm the distancefrom the bed, and
the flow depth H, where u* = (To/p)O.5 and 1'0 is the bed shear
stress. This layer includes the near-surface and intermediate
regions, in the sense of Nezu and Nakagawa (1993), and is
similar to the outer layer for open-channel flows over hydrau-
licaUy smooth beds. The velo city distribution in this layer may
be described by the velo city defect law (Nezu and Nakagawa
1993).

2. Logarthmic layer: ln this flow region the viscous effects
and form-induced fluxes are negligible and the spatia1y av-
eraged equations are identical to the time-averaged equations,
as for the outer layer. However, the characteristic scales for
the logarithmic layer are different from those for the outer
layer. These scales are the shear velocity u*, the distance from
the bed, and characteristic scales of the bed topography. The
appropriate candidates for such scales, for iregular bed rough-
ness, are the standard deviation of bed elevations and longi-

tudinal and transverse cOITe1ation lengths (Nikora et. aL.
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1998a). This layer is similar to the logarithinic layer for flows
with hydraulically sinooth beds, and may be identified as the
equilibrium layer in Townsends (1998) sense. Note that for
rough-bed flows this layer has been defined in tenTIS of time-
averaged velocities (Raupach et aL. 1991), i.e., the distribution
of il in this layer follows the logarithmic formula. A crucial
condition for the existence of this layer is H;;;; Li. The log-

arithmic layer occupies the flow region (2 - 5)Li -c (z - z,) -c
O.2H (Raupach et aL. 1991; Nezu and Nakagawa 1993).

3. Form-induced sublayer: The flow in this region is influ-
enced by individual roughness elements and a11 the terms in
(8a) and (8b) may be important. The form-induced sublayer
occupies the region just above the roughness crests, subject to
(8a) and (8b). The name "form-induced" reftects the appear-
ance of a new feature in this sublayer, in comparison with the
logarithmic layer, namely the fonn-induced stresses which are
due to flow separation from the roughness elements (Gimenez-
Curto and Corniero Lera 1996). According to Raupach et aL.
(1991) the roughness elements may influence the local flow
structure within a -c Z - Ze -c (1 - 4)Ll, Le., the thickness of

the form-induced sublayer, 5F = ZR - Ze (Fig. 2), may be up
to (1 - 4)Ll.

4. Interfacial sublayer: This sublayer is also influenced by
individual roughness elements and occupies the flow region
between roughness crests and troughs, i.e., where the rough-
ness geometry function A(z) changes from 1 to a for imper-
meable beds, or from 1 to Am;n for permeable beds (Fig. 2),
subject to (9a) and (9b). A new important feature in this sub-
layer is that associated with form drag. The thickness of the
interfacial sublayer is defined as 51 = Ze - Zr (Fig. 2).

The form-induced and interfacial sublayers together may be
identified as the roughness layer. We prefer the term "rough-
ness layer" instead of the "roughness sublayer" from Raupach
et aL. (1991) as we subdivide this layer into two sublayers, the
fonn-induced and inteifacial sublayers. The main characteristic
scales of the roughness layer are the shear velocity u* and
characteristic lengths of the bed topography. Similar to bound-
ary layers with hydraulically smooth beds, we can identify the
flow region occupied by the logarthmc and roughness layers
as the waU or inner layer. The same analogy suggests that the
role of the roughness layer for hydraulically rough beds is

similar to that of the viscous and buffer sublayers for smooth
beds (Nikitin 1963, 1980; Raupach et al. 1991). The inteifacial
sublayer can be interpreted in a manner simiar to the viscous
sublayer while the form-induced sublayer is analogous to the
buffer sublayer.

The above four regions cover the whole open-channel flow
over an impermeable rough bed. When the bed is permeable
an additional, subsuiface, layer should be also considered.

5. Subsuiface layer: The flow in this layer occupies pores
between granular particles and is driven by the gravit y force

and momentum fluxes from the above layers. The upper
boundar of the subsuiface layer (lower boundary of the in-
teifacial sublayer) may be identified at Z where dA/dz = 0 (Fig.
2(b)). The characteristic scales of the subsuiface layer are the
shear velocity u* and pore characteristic lengths.

The foUowing flow types, depending on the relative smooth-
ness (flow depth H/roughness height Ll, may be deduced from
the above subdivision: (1) Flow with high relative submer-

gence (H ;;;; Ll), which contains aU the above sublayers; (2)
flow with small relative submergence ((2 - 5)Li ;; H ~ Ll),
with the form-induced sublayer as the upper flow region; and
(3) flow over partially inundated rough bed (H -c Li), with the
inteifacial sublayer as the upper flow region. We use the above
flow subdivision and flow types in our foUowing considera-

tions.



TOTAL SHEAR STRESS AND PRESSURE

The vertical distribution of spatially averaged pressure in
the flow region above the roughness crests can be determined
by integrating (8b) from z to the water surface. This yields

Outer and logarithmic layers:

(p)(z) = p(z) = pg cos a(z",s - zJ + p((W'2)(zws) - (W'2)(Z))

= pg cos a(zws - z) - p(W'2)(Z) = pg cos a(zws - zJ

- pW'2(Z)

Form-induced sublayer:

(p)(z) = pg cos a(zws - zJ + p((W'2)(Z",.,) - (W'2)(Z))

+ p((w2)(zws) - (w2)(z)J = pg cos a(zws - zJ

- p(W'2)(Z) + (w2)(z)J

where Z"'S = elevation of the water surface (Fig. 2). (Please

note that parentheses are used for arguments.) Eq. (10) is sim-
ilar to that for the time-averaged flow. ln (Il) an additional
term, (w2), appears that increases the deviation from the hy-
drostatic distribution, compared to the logarithmic layer. This
term is negligible in the region far from the bed surface but
can be important in the region close to the roughness crests,
i.e., in the form-induced sublayer. The analytical integration
of (9b) for the region below the roughness crests (i.e., for the
interfacial sublayer and subsurface layer) is not possible. ln
general, (9b) suggests that the pressure distrbution in this flow
region should strongly depend on the bed surface geometr
and particle composition, and may significantly deviate from
the hydrostatic distrbution. Experimental and numerical in-
vestigations of this problem would be useful to clarfy the
potential pressure contrbution to the initiation of bed paricle
motion.

ln similar fashion, integration of (8a) and (9a) produces the
following relationships for the total stress distrbution:

Outer and logarthc layers7(Z) --
- = gSb(Z",s - z) = -(u'w')(z) = -u'w'(z)

p
(12)

Form-induced sublayer7~) -
-; = gSb(Z",s - z) = (-(u'w')(z) - (uw)(z))

p

Interfacial sublayer

(13)

() r L'e 17 pZ = gSb r"'s - Ze + , A(z) dz r = (-A(u'w')(z) - A(uw)(z))

L'e A(z) (ai)
+ --dz, p ax (14)

Subsurface layer

:z = gSb r Z"'S - Ze + Le A(z) dz + Amin(z, - z) J

= Amin( -(u'w')(z) - (uw)(z)) + re A(z) / ai) dz

Jz, p \az

+ Amin Lz, / ai) dz

p z \ ax (15)

where z, = lower boundar of the Interfacial sublayer (Fig. 2).
From (12) and (13) it follows that for the region above the

(10)

roughness crests the gravit y force gSb(Z",., - z) is balanced by
the turbulent .shear stress (the outer and logarithmic layers),
and the form-induced shear stress (form-induced sublayer). To
balance the gravit y force below the roughness crests (the in-
terfacial sublayer and subsurface layer) the turbulent and form-
induced stresses are supplemented with additional stresses due
to the form drag ((14) and (15)).

For impermeable rough beds (15) is not relevant and the
bed shear stress 70 can be defined from (14) as

~ - 7(Z,) - l', A(z) (cJj))- - gSJ,(Z"", - z,. + h",) = -:- dz (16)p p z, P dx
where h", = n~ A(z) dz = (1/Ao) J~~ Ar(z) dz = thickness of water
layer with the base area Ao and volume equivalent to water
volume in the interfacial sublayer. The turbulent and form in-
duced stresses disappear in (16); since at Z = z, they are bath
zero. Similarly, for permeable rough beds (Fig 2(b)) we can
obtain from (14) the following:(Il)
70 7(Z,) -
- = - = gSJ,(Z",., - Ze + h",) = (-A(u'w')(Z,) - A(uw)(z,))p p

Lze A(z) (ai)
+ --dz

z, p ax (17)

Eq. (17) differs from that for impermeable beds ((16)) by
nonzero turbulent and form-induced fluxes at z = z,. These
fluxes reflect momentum exchange between the channel flow
and the subsurface flow. Also, comparing (16) and (17) one
can see that at the same flow depth and bed geometry the drag
term for permeable beds may be different from that for im-
permeable beds. This means that the actual forces acting on
the roughness elements within the interfacial sublayer of the
flow over permeable beds may be changed at the expense of
turbulent and form-induced fluxes. The shear stress at Zf, I.e.,
at the impermeable floor supporting paricles (e.g., the valley
floor bedrock of a gravel-bed stream), can be defined from

(15) as

7f 7(Zf)
- = - = gSbfz",s - Ze + h" + Amin(z, - za)p p .

= re A(z) / ai) dz + Amin r' / ai) dz
L, p \az p JZf \ax (18)

VELOCITY DISTRIBUTION AND
HYDRAULIC RESISTANCE

At the beginnig of our considerations we have accepted

the coordinate system with an arbitrar origin. However, in

many cases it is useful to deal with a physically based origin
sInce distance from ths datum may serve as an inherent char-
acteristic scale, e.g., in some situations the miing length is
proportional to this distance that leads to the semilogarithmic
velocity distrbution. For flows over smooth impermeable flat
beds It Is not a problem as the natual choice for such an origin
is the surface of the flat bed. However, for rough beds the
position of the reference bed (or the zero-plane) has to be

defined and a displaced coordInate Z = (z - dp) instead of z
should be considered. The length dp is known as the displace-
ment length or the zero-plane displacement. For flow over a
smooth flat bed we have u = a and 7 = 70 at z = 0 correspond-
ing to the bed elevation. By analogy, we can define the ref-
erence level for imermeable rough-bed flows at z, where (u)
= a and 7 = 70' Thus, we have dp = z, and assume that A(z,) =
0, as in Fig. 2(a). However, in general A(z,) may be nonzero
as weIl as the position of the reference bed may be higher,

i.e., dp ). z,. One also may argue that for rough bed flows the
conditions u = a and 7 = 70 at z = a may be reduced to only
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u = O. Analytical or numerical solutions of (8a)-(9b) are not

possible without parameterization of the spatially averaged tur-
bulent stresses, p(u'w'), form-induced stresses, p(uw), and the
form drag, p(JßIJx). Specifically designed experiments are re-

quired to properly develop such physically based parameteri-
zations. Here we consider this problem at the heuristic level
only, i.e., using some reasonable assumptions and scaling con-
siderations.

Flow Type 1 (H;:;: Â.)

The velocity distribution in the outer layer is similar to that
for flows over hydraulically smooth beds (Nezu and Nakagawa
1993; Graf and Altinakar 1998) and is not considered here.
Applying reformulation of Izakson's (1937) overlap approach
(also described by Milikan (1939)), for spatially averaged ve-
locity (u), we obtain for the logarithmic layer

(u)(Z) = .! ln ( Z J + (U)(OR)

U* K OR U* (19)

where K = von Kármán constant; Z = Z - z,; and OR = ZR -
z, with ZR as a lower bound of the logarithmc layer (Fig. 2).
Izakson's (1937) approach was initially developed for the
time-averaged velocity u and is formally extended here to the
spatially averaged velocity (u). To parameterize velocity dis-
tribution in the interfacial sublayer we use an analogy with
the viscous sublayer. ln this sublayer, the contribution of vis-
cous stresses to the total stress increases toward the bed while
that of turbulent stresses decreases. ln the interfacial sublayer,

the form-induced stresses and the form drag play a role similar
to the vis cous stresses in the viscous sublayer. Using this anal-
ogy we can formaly propose for the interfacial sublayer

T(Z) d(u)
P = VI dZ (20)

where V) = generalized viscosity that represents a joint effect
of the form-induced stresses and form drag, just as v represents
the molecular viscosity of the fluid in the viscous sublayer.

Assuming, as a first approxiation, that VI does not change

with Z, T(Z)/p = To/p = u¡, and bearng in mind that (u) = 0
at Z = 0, we can obtain from (20)

(u)(Z) = U* Z = r (U)(O/) 1. ~
u* Vi 1. u* J 01

where Vi = (u*/(u)(o/))u*o); and 01 = Zc - z, (Fig. 2). The role
of the form-induced sublayer, with the thickness OF = ZR - Zc

= OR - 010 is simIlar to that of the buffer sublayer for flows
over hydraulically smooth beds. Here, as a fust approxiation,
we neglect the potential transition effects in the form-induced
sublayer and assume that ZR = Zi, i.e., OF ~ O. This leads to
OR = 01 = 0, where 0 is the boundary between the logarthmc
and linear flow regions when the coordinate Z = Z - z, is used.
One can note that this approximation is similar to the two-
layer Prandtl's model for smooth-bed flows (Monin and Yag-
lom 1971), which neglects the transition effects in the buffer
sublayer. As a result of the above consideration we arive at a
simplified thee-layer model for open-chanel flow over a hy-
draulically rough bed, which inc1udes (1) An outer layer (not
considered here), (2) a logarithmic layer, and (3) a linear or
interfacial sublayer. The velocity distrbution for the latter two
caii beexpressed as

(21)

(u) = .! ln (~J + C for (ZL - Zr) ~ Z ~ °
U* K ° (22)

(u) Z- = C - for 0:: Z :: °U* ° (23)
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where C = (u)(o)lu* should depend on the roughness geome-
try; and ZL = upper boundary of the logarithmic layer (Fig. 2).
Note that relationship (22) for the double-averaged velocity

(u) extends the logarithmic layer for u, as specified in the
section" Subdivision of Flow into Specific Layers," up to the
roughness crests. The validity of relationship (22) above the
roughness sublayer (where (u) = u) has been confirmee! in
many studies (Grinvald and Nikora 1988; Raupach et aL. 1991;
Nezu and Nakagawa 1993). To test the valie!ity of the as-
sumption OR = 0) = 0 and relationship (23) one would require
measurements of (u) as u cannot be a substitute for (u) in the
form-induced and inteifacial sublayers. Unfortunately, direct
velocity measurements in the roughness layer are rare, and,
moreover, mainly relate to U. We are aware of only one set of
measurements that provides information of (u). This set was
obtained in a small gravel-bed flume by Nikitin (1963), who
glued gravel particles, with the size distribution similar to that
in natural streams, to the flat flume bed. Nikitin's (1963) tech-
nique was based on the analyses of flow photographs and mi-
crophotographs and al10wed him to obtain time- and spatially
averaged velocities within the roughness layer and above il.
From Nikitin's (1963) measurements it fol1ows that the
(u)-velocity distribution below roughness tops is linear with C
= 5.6 (he confirmed this value in a laer work (Nikitin 1980)).

Similar results were also reported by Dittrich and Koll (1997)
who measured velocities below roughness tops using laser
Doppler anemometer. The flume bed in their experiments was
densely covered by gravel partic1es with very narow size dis-
tribution. The data of Dittrich and Koll (1997, p. 30) show
that the velocity distribution below roughness tops was fair1y
linear with C = 5.3. The flume experiments of Shimizu et aL.
(1990,p. 71) with glass beads on the bed show very similar
results, i.e., linearity of the velocity distribution within the
interfacial sublayer with C = 5.7-6.0. Our laboratory data
also support the validity of (23) as well as provide some sup-
port for OR = 01 = O. The measurements, using SonTek's

Acoustic Doppler Velocimeters (ADV) (Kraus et al. 1994;
Lohrann et aL. 1994; Nikora and Goring 1998), were made
in a 12-m-long and 0.75-m-wide flume (Nikora et aL. 1998b).
The flume bed was covered by 1.2-mm-thick styrene sheets
with thin (0.3-0.4 mm) flocked ("velvet") coating with spher-
ical segments (diameter of a sphere = 63.8 mm, segment
height = 21 mm; Fig. 4(a)). The roughness geometry function
A(Z) for this arificial bed is shown in Fig. 4(b). The mea-
surements were made at two flow rates, 10w (#1) and high
(#2) (Table 1). Two identical patterns (Fig. 4(a)) were mea-
sured synchronously by two ADV probes with a distance be-
tween them of 350 mm. Each pattern inc1uded 16 measure-
ment verticals (crosses and diamonds in Fig. 4(a)) for the low
flow, and seven verticals (crosses in Fig. 4(a)) for the high
flow. At each vertical, 3D velocities were measured at 10-14
points. Although the measured data set has insuffcient spatial
coverage to obtain very accurate values of (u), it stil can be
used for a test of relationships (22) and (23). Fig. 4(c) shows
the distrbutions of time-averaged longitudinal velocities as

well as the curves representing relationships (22) and (23) with
parameters from Table 1. These solid lies approximate the

data quite well, supportng both relationships (22) and (23),
and the assumption OR = 01 = Ù. It is remarkable that the
distribution of the double-averaged velo city reveals logarth-
mie behavior even at modest ratios of HIß = 6.4-8.7 (as be-

fore, H = Zws - z, and ß is the height of spherical segments;

Table 1). Also, Fig. 4(c) c1early shows that the deviation of
time-averaged ve10cities from the logarthmic curve, i.e., u =
u - (u), decreases with increase in distance from the bed,_aa-

one would expect from our theoretical considerations. The-pa-
rameter C = 7.1 (Table 1) appeared to be diferent from C =
5.3-6.0 for Niktin's (1963, 1980) and Dittrich and Koll's
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(1997) gravel-bed data, and Shimizu et al.'s (1990) glass-bead
bed data, which is probably due to differences in the roughness
geometry.

Additional estimates for C can be made using the existing
log-based formulas for hydraulic resistance for rough-bed

flows over homogeneous sand roughness and nonhomoge-
neOUS gravel roughness. Tllese formulas allow one to make

approximate estimates for 0 and C using five assumptions: (1)
The thickness of the interfacial sublayer 0) of homogeneous
sand roughness is equal to the sand diameter D,OR"" 0) == 0
"" ~ "" D, as was assumed by Nikuradse (Monin and Yaglom
1971); (2) the thickness 0 of the inteifacial sublayer of water-
worked gravel beds is approximately equal to 4o-b "" 1 .5Dso,
where o-b is the standard deviation of bed elevations and Dso
is the 50th percentile of particle size distribution of the surface

G-- -
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FIG. 4. Position of (a) Measurement Verticals; (b) Roughness
Geometry Function; (c) Velocity Distribution for Flow Measure-
ments over Spherical Segment-Type Bed (Table 1)

material (Nikora et aL. 1998a); (3) the resistance of water-

worked gravel beds is due to gravel particles, i.e., bed-fonn
effects are negligib1e; (4) for the How region above the rough-
ncss layer we have Cu) == u, and therefore, formulas for hy-
draulic resistance, based on U, are also valid for (u); and (5)
for í10ws with H ;:;: ~ the contribution from the roughness

layer to the vertically-mean velocity is negligible as well as

the difference between the maximum and mean depths.
Ta define C for the homogeneous sand roughness one can

use Nikuradse's formula U!u* == 2.5 In(HIDJ + 6.0 (Monin
and Yaglom 1971), which gives C"" 8.5 comparable with our
C "" 7.1 for spherical segment-type bed (U is the depth-

averaged velocity). For the water-worked gravel roughness the
parameters 0 and C should depend on particle size distribution,
particle shape, and spatial arrangements, which are known to
be similar for different rivers (Bathurst 1985a; Bray 1985; Ni-
kora et aL. 1998a). This similarity suggests that the range of
C for natural gravel-bed flows should be fairly narrow. For our
estimates we have selected two formulas: (1) U!u* == 2.434.

In(H/DsoJ + 2.15, developed by Griffiths (1981) for New Zea-
land rivers; and (2) U!u* == 2.5' (HIDsoJ + 1.46, developed by
Bray (1985) for Canadian rivers. The obtained esttmates are
C == 5.6 (from Griffiths' formula) and C == 5.0 (from Bray's
formula). The value C == 5.6 for the New Zealand data is re-
markably close to those that follow from laboratory experi-
ments of Nikitin (1963) and Dittrch and Koll (1997). The

latter value, C == 5.0, is less reliable as we have used the re-
lationship 4o-b "" 1.5Dso derived from the New Zealand data
(Nikora et aL. 1998a) to obtain C for the Canadian data. Thus,
we can accept, as a first approximation, C "" 8.5 for the ho-
mogeneous sand roughness and C "" 5.3-5.6 for the natural
and arificial gravel beds. The above estimates provide quite
encouraging support for our three-layer model. However, we
consider it as a first approximation only.

AlI three layers (outer, logarithmic, and interfacial) in our
simplified model have smooth-bed flow counterparts with sim-
ilar behavior. This suggests that our considerations may be
equally valid for both rough- and smooth-bed flows if applied
for double-averaged (in spatial and time domains) velocities.
Indeed, for smooth-flat-bed flows the double-averaged veloc-

ities are equivalent to the time-averaged velocities, wbile 0 ""
ll.l(vlu*J and C "" 11.1 which follow from the smooth-wall

logarithmic law ulu* == 2.5 ln(u*zlvJ + 5.1 (Monin and Yag-
lom 1971). It should be noted that Nikitin (1963) was the first
who suggested such an analogy between smooth-bed and

rough-bed flows (bis main argument was the linearity in ve-
locity distribution near the rough bed). Unfortunately, aIl bis
interpretations were based on the conventional time-averaged
Reynolds equations wbich cannot be used as a basis for scaling
or phenomenological considerations for the near-bed region in
rough-bed flows.

TABLE 1. Hydraulic Conditions and Parameters of Relationships (22) and (23) for Experiments with Flows over BedCovered with
Spherical Segments of Height .. == 2.1 cm

,

Parameters of Relationships
(22) and (23)

Flow rate Q H u*sa U*bb U*Lc
Õ u.d

number (Us) Sb (cm) (cm/s) (cm/s) (cm/s) K C (cm) (cm/s) u./1lv
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

1 48.9 0.0032 13.5 6.5 6.6 604 DAO 7.1 2.1 6.5 1,3652- 92.0 0.0031 18.2 7.6 7.8 7.7 0040 7.1 2.1 7.7 1,617- -
.u*, = v; is shear velocity obtained by extrapolation of near-bed valnes of -(u'w') to mean bed leveJ Zb = Zc - f:; A(z) dz, according to Eqs.

(12)-(14), (16), and Fig. 7, assumng that form-induced stresses are negligible (Fig. 8 confs that in fonn-induced snblayer (IIW') ;:;: (ülv)), Zc = zc
- z, with z, corresponding to flume bed.

bU*b is shear velocity from slope-depth relationship cOITected for sidewall effect accordig to Nezu and Nakagawa (1993, pp. 94, 95).
cU*L is shear velocity from Jogarithmic fonnuJa (22) assuming K = 0040.
dU* = (u*, + U*L + u*b)/3.
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Flow Type 2 ((2 - 5).i ,. H 2: .i ~ ù)

We can reasonably postulate that the linear relationship (23)
is valid over the whole depth for this fiow type, with the samc
o and C as for the fiow type 1. This is because there is no
overlap region and the fiow above the roughness elements is
heavily infiuenced by eddies of scale 0 generated in the wakes
of roughness elements. These eddies strongly dominate over
eddies which scale with Z. The depth-averaged velocity (u)"
for this fiow type may be defined as either (u)" := (l/H)
J~ (u)(Z) dZ or (u)" := (1/Ha) J~ (u)(Z)A(Z) dZ, where Ha :=

J~'" A(Z) dZ and A := A¡lAo is nondimensional area. The second
definition is more appropriate as it satisfies the mass conser-
vation condition, i.e., the specific fiow rate q := (u)"Ha. Fol-
lowing this second definition for (u)a, we can obtain using (23)

Æ := Cu)" == Cm!i or f:= 8~~ == ~ (~J2
"Vi u* 8 (u)" C m H (24)

wheref:= Darcy-Weisbach friction factor; H:= z"" - z,:= max-
imum depth; and m := (l/HaH) J~ ZA(Z) dZ := parameter that
depends on the roughness geometry function A(Z). For A(Z)
from Fig. 3 the parameter m is weakly dependent on H, and,
as a first approximation, may be considered as a constant, m
"" 0.6. To test relationship (24) we use the hydraulic resistance
data for shallow gravel-bed fiows reported by Bathurst et aL.
(1981). TheII experiments were conducted in a fiume with a
bed covered by one layer of gravel particles. Fig. 5 shows
Bathurst et al.'s (1981) data as well as a curve presenting re-
lationship (24) with M := (8/C2m2) := 1.2. The thickness 8 in

Fig. 5 is defined as the appropriate maximum size of the short
particle axis. One can see from Fig. 5 that relationship (24)
agrees with Bathurst et al.'s (1981) data faily well, at least in
the range of o/H from approximately 0.4 to 1.25, which is
equivalent to the range of H/o from approximately 0.8 to 2.5.
The parameter M := (8/C2m2) for this data set ranges from 0.4
to 2.5. For comparson, we have also plotted in Fig. 5 field
data reported in Bathurst (l985b), assuming that o/H "" DS4/

Hmea", where Hmean is the cross section mean depth. An addi-

tional support for relationships (24) may be found in Day
(1978) and Bathurst (1994) who reported laboratory and field
data covering the range 0.6 :: H/D90 :: 5. ln most cases theII
graphs U!u* := F(H!Ds4) 

"and U!u* := F(H/D90) may be approx-
imated as (u),,u* ~ U!u* := K(H/Ds4or90J with K in the range

from 1.8 to 4.0. Assuming that 0 "" DS4 "" D90, m "" 0.6, and

using (24) we can estimate the range of C from 3 to 7.

Flow Type 3 (H c: .i ~ ù)

The thickness of 01 of the interfacial sublayer as well as
relationship (23) become IIelevant for this fiow type. How-

1.0

"-

Bathurst et aL. (1981)
(Jaboratory data)
+ 12.7
~ 19.05

C 38.1 å(mm)
. 50.8

D. 63.5

0.1
o Bathurst (1985b)

(gravel-bed rivers)

0.1 1.0

u/H
10.0

FIG. 5. Comparison of Eq. (24) with Laboratory Data of Bath-
urst et al. (1981) and with Field Data of Bathurst (1985b)
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Il

ever, relationship (20) is still applicable, though it requires a
new formulation for vi. We accept in our consideration a sim-
ple relationship vi := (l/a)Hau*, where a is a coefficient (sim-
ilar to C) which depends on bed geometry. Assuming that T(Z)I
P "" To/p := ut (u) := 0 at Z := 0, and also, that a does not
change with Z, we can obtain from (20)

(u) u* Z-==-Z==a-u* vi Ha (25)

Comparing (23) and (25) one can obtain a relationship be-
tween C and a as C := a(oIH,,. The hydraulic resistance re-
lationships follow from relationship (25) as

Æ:= Cu)" == am H or f== 8u~ == ~ (HaJ2 (26)
"Vi u* H" Cu)" a m H

where m has a similar meaning as in relationship (24). Unfor-
tunately, the appropriate data sets that could be used to test
relationships (25) and (26) are not available. However, some
speculations based on (26) are possible. As an example, for a
range of rough surfaces the function H" := F(H) grows faster
than Ha OC H that gives an increase in f with increase in H. If

we further assume that Ha "" 'YH2//1 where /1 "" 81 := 0 and 'Y
"" 0.6, which are suggested by Bathurst et al.'s (1981) data,
relationships (26) may be rewritten as

Æ - CU)a - am ~ or f - 8u¡ - 8'l (!iJ2

"V i - u* - -y H - (u)~ - a2m2 8
(27)

Comparng (24) and (27) one can obtain relationships between
C, a, and -y as C := a(o/Ha) := a/-y and -y := H,,o. Relationships
(27) have the same arguments as those for fiow types 1 and
2. This makes it possible to combine all three relationships for
f := F(H/o) for a wide range of H/o as shown in Fig. 6. A
notice able property of f:= F(H/8) in Fig. 6 is a maximum at
H/8 "" 1 whose approximate value can be evaluated from (24)
as 8/C2m2. There is also a transition region between fiow types
1 and 2. This region is a result of superposition of wake ed-

dies, separated from roughness elements, and eddies generated
due to velocity shear and scaled with Z. The functionf:= F(H/
8) in Fig. 6 is supported by data for overland fiows compiled
by Lawrence (1997) from different sources and presented as
plots off:= F(H/11 for the range 0.01 c: H//1 c: 300. Lawrence
(1997) also provided some support for such a behavior of f:=
F(H/ Å) though, unfortnately, her considerations were based

on time-averaged velocities as in Nikitin's (1963) study.
The bed permeability should modif the above considera-

tions as the nonslip condition becomes invalid. However, it is
believed that the strctue of the relationships suggested for

impermeable beds should still apply.

1.00 Flow type 3 Flow type 1

1 (the logformula)- - - --
1

"- 0.10

0.01

0.10 1.00
H/u

10.00 100.00

FIG. 6. Sketch Showing Friction Factor As Function of Rela-
tive Submergence, As Follows from Eqs. (24)-(27); Note th at'- .
Peak Value of f and Boundaries of Transition Region May De-
pend on Roughness Geometry

l



TURBULENCE CHARACTERISTICS

The methodology based on the spatially averaged flow var-
iables should be also used in characterizing turbulence prop-

erties near rough beds. Convention al time-averaged velocity
moments Uf"UJßuP (e.g., the turbulence intensity or Reynolds
stresses) will be strongly influenced by local conditions within
the roughness layer, and therefore, cannot be representative.
Instead, double-averaged moments, (uf"uJßuP), should be
used, as suggested by (4)-(7). Also, for a more complete flow
description these double-averaged turbulence moments should
be supplemented with fomm-induced moments (ù~ùrùl), which
characterize disturbances in the time-averaged flow. To ilus-
trate this approach we use our ADV measurements in the
spherical segment-bed flume described above (Table l; Fig.
4). These measurements provide estimates for some of the ve-
locity moments, i.e., (0), (0), (W/2), (u/w'), (íl), (il), (11;2),
and (ùw). Fig. 7 shows the vertcal distribution of the nor-
malized time-averaged turbulence intensities u,2/u1, v/2/u~,
w,2/u1, and the Reynolds stress -u'w'/u1 at several neigh-
boring horizontal locations shown in Fig. 4(a), as well as poly-
nommal fits to these data (solid curves) which represent the
corresponding double-averaged parameters (u'2)/u1, r-)/u1,

(w'2)/u1, and -(u'w')/u1. The deviations of the normalized
time-averaged values from theIr double-averaged counterpars
in Fig. 7 reduce with increase in Z, being the largest, up to
50- 100%, in the range Z/O -: 2.0. These deviations may be
interpreted as fomm-induced fluctuations due to the influence
of local conditions. To evaluate the fomm-induced intensities

(ù2)/u¡, (ii)/u;", and (w2)/u;", and the fomm-induced stress

-(ùw)/u"i we use the same procedure as in Fig. 7, i.e., the
polynomial fitting of point values ù2/u¡, il/ut w2/u¡' and
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-ùw/u"i (Fig. 8). As one would expect, the form-induced in-

tensities attain maximum values withhn the interfacial sublayer
(Zlò -: 1.0), then reduce with increase in Z, and become
negligible at Z/O ;: 2.0. AlI fonn-induced intensities are
significantly smaller than theIr turbulent counterpars. The
fonn-induced stress -(uw)/u"i is negligible within the fomm-

induced sublayer, and becomes comparable (though less) with
-(u'w')/u"i in the interfacial sublayer (Fig. 8). The above es-

timates of double-averaged intensities and stresses characterize
the near-bed fiow structure for the regular spherical segment-
type lOughness and may not be applicable for nonunifomm

gravel beds.

CONCLUSIONS

ln ths paper we suggest that the double-averaged (in tem-

poral and in spatial domains) momentum equations should be
used as a natual basis for hydraulics of rough-bed open-chan-
nel flows, especially with small relative submergence. The
main advantages of thhs approach inc1ude: (1) a consistent li

between spatially averaged roughness parameters and double-
averaged flow varables; (2) the appearance of a fomm drag

term and fomm-induced stresses in the momenttm equations as
a result of rigorous derivation rather than intuitive reasoning;

(3) the possibility for scalng considerations and parameterI-
zations based on double-averaged varables whhch may cover
aIl flow regions inc1uding the interfacial sublayer; and (4) the
possibility for the consistent scale paritioning of the rough-
ness parameters and flow properties, for the case of multiscale
roughnesses (e.g., grain and bed-fomm roughnesses). The dif-
ference between the double-averaged equations and the tIme-
averaged Reynolds equations is as fundamental as that be-
tween Reynolds equations and Navier-Stokes equations for

JOURNAL OF HYDRAULIC ENGINEERING / FEBRUARY 2001 1131



instantaneous velocities and pressure. The results of our anal-
ysis of the double-averaged momentum equations and scaling
and phenomenological considerations of the double-averaged
variables may be summarized as follows:

1. Five specifie ftow regions with qualitatively different
properties are suggested, subject to H ;";, Ll: (1) the outer
layer; (2) the logarithmic layer; (3) the form-induced

sublayer; (4) the interfacial sublayer (the sum of the latter
two is the roughness layer); and, for the case of perme-
able beds, (5) the subsurface layer.

2. Three ftow types may be distinguished from the above

ftow subdivision: (1) ftow with high relative submer-

gence (H ;";, Ll), which contains all the above ftow
regions; (2) ftow with small relative submergence ((2 -
5)Ll ;" H 2: Ll), with the form-induced sublayer as the
upper flow region; and (3) ftow over a partially inundated
rough bed (H -: Ll), with the interfacial sublayer as the
upper ftow region.

3. The relationships for the vertical distribution of the total
stress for the simplest case of 2D, steady, unifonn, spa-
tially-averaged flow over a rough bed with ftat free sur-
face are derived. These relationships explicitly inc1ude
the fonn-induced stresses and form drag as components
of the total stress.

4. The relationships for the double-averaged velocity dis-

tribution and hydraulic resistance for the ftow types i, 2,
and 3 have been derived and compared with the mea-

surements where possible. These relationships, though
promising, should be considered as preliminar approx-
imations that need addition al tests.

5. The double-averaged turbulence and form-induced inten-
sities and stresses have been evaluated for the case of
regular spherical segment-type roughness. They show the
dominant role of the double-averaged turbulence stresses
and the form drag in the momentum transfer in the near-
bed region.

6. Most existing data sets of rough-bed ftows are based on
point measurements for a selected vertical, and therefore,
are not sufficient to characterize double-averaged ftow
properties. We be1ieve that new experimental studies of
rough-bed ftows should be designed to get double-aver-
aged ftowvarables. Newly developed measurement
technologies (e.g., paric1e image velocimetry, etc.) make
such a task realstic.

ln ths paper we have considered the simplest case of 2D,

steady, uniform, spatially averaged ftow over a rough bed with
ftat free surface. ln fLii-er studies our analysis could be ex-
tended to cover the more realistic case of nonunifonn rough-
bed flows with nonftat water surface. For this case, a water
surace geometry function Aws(Z), analogous to the roughness
geometr function A(Z), should be taken into consideration.
Another issue that still requires attention is definition for the
referencebed and the thickness of the interfacial sublayer o.
The definition of these parameters may depend on bed rough-
ness geometr and should be developed on a wider experi-
mental data base involving different roughness types.
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APPENDIX Ii. NOTATION

The following symbols are used in this paper:

A = ratio of area Af occupied by fluid within fixed re-
gion on x,y-plane to total area Ao of region;

Ar = area occupied by ftuid within fixed region on x,y-
plane with total area Ao;

C = parameter of velocity distrbution, C = (u)(o)/u*;
D = particle size;
f = Darcy- Weisbach friction factor;

H = maximum flow depth equal to distance between
water surface and troughs of roughness elements,

i.e., H = Zws - z, (Fig. 2);
Ha = mean depth;
M = (8/C2m2);
m = parameter depending on roughness geometry;
Sb = bed slope;
U = depth-averaged flow velocity for ftow type 1;

u, v, w = instantaneous longitudinal, transverse, and verti-
cal velocity components, respectively;

u, v, w - time-averaged longitudinal, transverse, and verti-
cal velocity components, respectively;

-_.-~---- -- ----- ---

(u), (v), (w) = double-averaged (in time and spatial dOllains) ve-
locities;

u, V, w = form-induced velocity components, i.e., Ul = U, -
(u,);

(U)a = depth-averaged velocity for flow types 2 and 3;
uluj = time-averaged Reynolds (turbulent) stress;

(U¡Uj) = double-averaged Reynolds (turbulent) stress;
(u¡u) = form-induced stress;

u* = shear velocity, Le., u* = (To/p)0.5;

(Ui) = form-induced velocity moments;
U¡aujßup = time-averaged velocity moments;

(U¡aujßup) - double-averaged velocity moments;
x, y, Z = coordinate axes oriented along main ftow parallel

to averaged bed, to left bank, and toward water
surface, respectively;

Zb = bed elevation;
Zb = mean bed eJevation;
Ze = elevation of highest roughness crests;
z'r = eJevation of impeimeable floor supporting parti-

des;
ZL = elevation of upper bound of Jogarithllic layer;
ZR = elevation of lower bound of logarithmic layer or

upper bound of roughness layer;
z, = elevation roughness troughs where A = 0 (imper-

meabJe bed) or dAldz = 0 (pemieable bed);
Zws = eJevation of water surface;

!: = roughness height;

a = boundary between Jogarithmic and linear flow
regions when coordinate Z = Z - z, is used;

OF = thickness of form-induced sublayer, OF = ZR - Ze;

AL = thickness of interfacial sublayer, AL = Ze - Z,;
OR = thickness of roughness layer OR = ZR - Z,;
K = von Kállán constant; and

To = bed shear stress.
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