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A model for the downward transfer of wind momentum is derived for growing waves. It is shown that waves,
which grow due to an uneven pressure distribution on the water surface or a wave-coherent surface shear
stress have horizontal velocities out of phase with the surface elevation. Further, if the waves grow in the x-
direction, while the motion is perhaps time-periodic at any fixed point, the Reynolds stresses associated with
the organizedmotion are positive. This is in agreement with several field and laboratorymeasurements which
were previously unexplained, and the new theory successfully links measured wave growth rates and
measured sub-surface Reynolds stresses. Wave coherent air pressure (and/or surface shear stress) is shown to
change the speed of wave propagation as well as inducing growth or decay. From air pressure variations that
are in phase with the surface elevation, the influence on the waves is simply a phase speed increase. For
pressure variations out of phase with surface elevation, both growth (or decay) and phase speed changes
occur. The theory is initially developed for long waves, after which the velocity potential and dispersion
relation for linear waves in arbitrary depth are given. The model enables a sounder model for the transfer to
storm surges or currents of momentum from breaking waves in that it does not rely entirely on ad-hoc
turbulent diffusion. Futuremodels of atmosphere-ocean exchanges should also acknowledge that momentum
is transferred partly by the organized wave motion, while other species, like heat and gasses, may rely totally
on turbulent diffusion. The fact that growing wind waves do in fact not generally obey the dispersion relation
for free waves may need to be considered in future wind wave development models.
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1. Introduction

In waves which propagate with constant form, the horizontal
water velocity ũ is in phase with the surface elevation η and such
waves generate no Reynolds stresses for downward momentum
transfer because horizontal and vertical velocities are in quadrature, i
e, ũw̃ ≡0. See e g, Nielsen (2009) p 5 resp p 33. Reynolds stresses,
where they occur, transfer horizontal momentum downwards in the
water column, which is instrumental for driving ocean currents and/
or storm surges. In the absence of Reynolds stresses, the only avenue
for substantial downward momentum transfer would be turbulent
diffusion:

τ = ρvt
∂u
∂z = −ρu′w′ ð1Þ

where we are using the notation u(t)=ū+ũ+u′ to distinguish,
steady, periodic and random velocity components.

Waves, even irrotational waves, with ũw̃≠0 are however quite
common. Most familiar are probably standing and partially standing
waves where non-zero Reynolds stresses drive steady circulation cells
half a wave length long, see, e g, Carter et al. (1973). Less well known
perhaps is the fact that in waves, which grow or decay in say the x-
direction, at constant depth, the organized vertical and horizontal
velocities are not in quadrature and hence, ũw̃≠0. The case of long
waves in constant depth decaying due to breakingwas described in detail
by Deigaard and Fredsøe (1989). Simple, growing (or decaying) waves
also have a phase lag (lead) of ũ compared with the surface elevation η.
Cavaleri and Zecchetto (1987) measured both this ũ-η-phase lag and
ũw̃≠0 inwaves thatwere exposed to strongwind in the field. However,
no explanation was offered at the time, probably because no suitable
wave theory was at hand (Cavaleri pers com 2011). That is, while several
authors, e g,Miles (1957), Kinsman(1965), Phillips (1966), Young (1999)
andHolthuijsen (2007) present theories forwhy thewind over the ocean
should generate an uneven pressure distribution on the water surface,
none give a simple explanation for why this should in turn generate ũ-η-
phase lags and ũw̃ b0 as measured in several field and laboratory
experiments. It is clear however that a mechanism, such as ũw̃ b0 is
required in order to distribute windmomentum and energy downwards
in the water column in order for the waves and storm surges to grow.

In the following, we offer an explanation in terms of longwaves that
are growing due to an uneven pressure distribution on the surface.
Under certain simplifyingassumptions, e g, sinusoidal shape, the growth
rate is found to be exponential if the amplitude of the pressure variation
is proportional to the wave amplitude. This is in reasonable agreement
with observations as shown by Holthuijsen (2007) p 180. Miles (1957)
also found exponential growth, but expressed in terms of a complex
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wave speed, while the waves were assumed periodic in x (real-value
wave number k). Such waves have ũw̃ = 0, while they do have a time
lag of u relative to η.

Approaching the problem of wave growth via the simpler case of
long waves, where a simple wave equation exists and can be solved,
automatically delivers the vector for downwards transfer of momen-
tum, namely a non-zero Reynolds stress, ũw̃≠0, due to the oscillatory
motion, which was measured by Cavaleri and Zecchetto (1987), see
Fig. 1.

To the writers' knowledge, this has not previously been used in
wind wave growthmodels although the insight that ũw̃≠0, when the
wave height varies in space, is implicit in the work of Deigaard and
Fredsøe (1989) and Rivero and Arcilla (1995).

In a more or less steady scenario (quasi-equilibrium), the waves
may from time to time break (white-capping) whereby some of the
energy associated with the oscillatory motion is dissipated, while the
time averaged momentum flux is conserved and can contribute to the
generation of storm surge. In the scenario, where thewaves have been
growing in the downwind direction (while perhaps being time-
periodic at fixed points) the Reynolds stresses have distributed the
momentum downwards during the growth process, so that the
vertical distribution of momentum is no longer totally reliant on more
or less ad-hoc turbulent diffusion, see Fig. 2.

An improved understanding of the downwardmomentum transfer
in wind driven waves is clearly needed since several modeling studies
using well documented wind fields and measured surge levels, e g,
Stewart et al. (2010), indicate that the momentum transfer corre-
sponding to standard values (b0.0025) of the wind stress coefficient
(Donelan et al., 2006; Powell et al., 2003) is insufficient to produce the
measured surges. If indeed the actual downward momentum fluxes
are greater than suggested by standard wind stress coefficients, as
indicated by wave growth observations (Belcher and Hunt (1998))
and by the subsurface Reynolds stress measurements of Cavaleri and
Zecchetto (1987), a better understanding and predictive capability of
storm surges can be achieved. The present theory may be a useful step
in this direction.

The paper is organized as follows. Section 2 quantifies the ũ−
η-phase shifts and Reynolds stresses for long waves, which grow
exponentially in the x directionwhile remaining time-periodic at afixed
point. In Section 3, we derive a general wave equation for long waves
exposed to a varying surface pressure, and explore in detail
the special case of water surface and air pressure being phase shifted
sinusoids. We find two categories of solutions: x-periodic waves, which
grow uniformly with time and, time-periodic waves, which grow
exponentially in the x-direction (down wind). Section 4 explores
thefirst categoryandSection5 the second.Wefind that bothdisplayũ−
η-phase shifts, but only the latter have ũw̃≠0. Section 6 is a discussion
Fig. 1. In waves which grow uniformly in space (left), vertical and horizontal water particle
decay) in the x direction, there is a downward transfer of x-momentum due to Reynolds st
in terms of wave growth data from Peirson and Garcia (2008) and
Reynolds stress data from Cavaleri and Zecchetto (1987). The Appendix
extends the shallow water model, giving the velocity potential and
dispersion relation for “sine waves”, growing due to non-uniform air
pressure (or an equivalent wave coherent surface stress), in arbitrary
depth. The equivalence, with respect to wave generation, of a surface
stress shifted 90° compared with a wave coherent non-uniform
pressure, was pointed out by Longuet-Higgins (1969) for sine waves
and generalized to arbitrary wave shapes by Nielsen (2009) p 17.

2. Reynolds stresses in a simple x-growing wave

Consider a “sine wave”, which is growing exponentially in the
x-direction, due to for example wind shear stress and/or uneven
pressure on the surface, but which is time-periodic at any fixed point:

η x; tð Þ = A0e
αx cosk x−ctð Þ = A0e

αxRe eik x−ctð Þn o
= A0Re eαx+ik x−ctð Þn o

ð2Þ

where α, c and k are all real-valued. We will sometimes omit the “Re”
for expediency, i e, simply write

η x; tð Þ = A0e
αx+ik x−ctð Þ ð3Þ

while it is understood that only the real part

η = A0e
αx cosk x−ctð Þ ð4Þ

has physical meaning.

2.1. Horizontal velocities in time periodic, x-growing waves

Starting with the shallow water case, which is simple while
qualitatively representative, the horizontal velocities are obtained from
the simple continuity equation:

∂η
∂t = −∂q

∂x = −h
∂ũ
∂x ð5Þ

which, with η given by Eq. (3) becomes

∂ũ
∂x = −1

h
∂
∂t A0e

αx+ik x−ct½ � =
1
h
ikcA0e

αx+ik x−ctð Þ ð6Þ
velocities are in quadrature and deliver no Reynolds stresses. In waves, which grow (or
resses associated with the organized wave motion.



Fig. 2. In waves that grow in the down-wind direction, x-momentum is transferred downwards by Reynolds stresses as the waves grow. If the wave growth is not limited (left hand

scenario) there can be a balance between radiation stress, locally ρ ũ
2
, and the Reynolds stress. If the waves are limited by breaking (right hand scenario) at the down-wind side, the

Radiation stress is reduced on that side and part of the “wave-momentum” becomes ocean current. Wind and wave propagation are from left to right.
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and by ∫dx

ũ =
ik

α + ik
cA0

h
eαx+ik x−ctð Þ =

1

1−i
α
k

cA0

h
eαx+ik x−ctð Þ

=
cA0

h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +

α2

k2

s eαx+ik x−ctð Þeitan
−1 α =kð Þ

=
cA0

h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +

α2

k2

s e
αx+ik x−c t− 1

kc
tan−1α

k

h i� �
ð7Þ

or

ũ =
cA0e

αx

h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +

α2

k2

s cos k x−c t− 1
kc

tan
−1 α

k

� �� �� �
ð8Þ

which, by comparison with Eq. (4), shows that for x-growing waves,
there is a time lag of ũ relative to η, of magnitude

δt;η−u =
1
kc

tan−1 α
k
→
α =k→0

α
k2c

ð9Þ

while the steady long wave result ũ =
η
h
c is recovered for α=0.

Cavaleri and Zecchetto (1987), measuring in waves exposed to
strong wind, found corresponding phase lags φηu≈35o for frequen-
cies up to 0.23 Hz and φηu growing towards 60° for frequencies
approaching 0.25 Hz see their Fig. 5. These very substantial phase
shifts which correspond to α≈k and, in some cases, even α>k
definitely call for further theoretical and experimental investigation.

For decaying waves, which correspond to αb0, the corresponding
phase-lead of ũ over η is well known as for the decaying tidal
oscillations shown by Dronkers (1964) p173.

2.2. Vertical velocities

The vertical velocities can now be obtained from the horizontal
ones via the local continuity equation

∂ũ
∂x +

∂w̃
∂z = 0 ð10Þ
with w̃ = 0 at the impermeable bed, z=0, i e:

w̃ = ∫
z

0

−∂ũ
∂x dz = −∫

z

0

∂
∂x

ikc
α + ikð ÞhA0e

αx+ik x−ctð Þ
� �

dz

= − ikcz
h

A0e
αx+ik x−ctð Þ = − ikcz

h
η

ð11Þ

or in terms of real-valued functions

w̃ = −kc
z
h
A0 sink x−ctð Þ ð12Þ

The 90° phase lead of w̃ over η indicated by these results, by
comparing with Eq. (4), corresponds to the situation in free sine
waves and was almost matched by the data of Cavaleri and Zecchetto
(1987). They measured a fairly consistent lead of 80°.

2.3. Reynolds stresses in time periodic, x-growing waves

The (time averaged) Reynolds stresses can now be evaluated from
the above expressions for ũ and w̃:

−ρ ũ w̃ = −ρ
c
h
A0e

αx cos k x−ct½ �− tan−1 α
k

� �
− z

h
kcA0e

αx sink x−ctð Þ
� �

=
ρkc2A2

0e
2αxz

2h2
sin tan−1 α

k

� �
≈ ραc2A2

0e
2αxz

2h2
for α >>k

ð13Þ

that is, in a growing wave of the form (3), the organized motion
generates a downward flux of horizontal momentum as observed by
Shonting (1970) and Cavaleri and Zecchetto (1987) and others in
waves exposed to strong following wind. If the waves are decaying
due to surface wind stress and/or air pressure, these stresses simply
change signs with α. For a thorough discussion of this case see
Deigaard and Fredsøe (1989). If the dissipation is due to bottom
friction, the Reynolds stress is maximum at the bed (at the top of the
bottom boundary layer), decaying to zero at the surface, balancing the
decay of the radiation stress in the x-direction in analogy with the
growth scenario in Fig. 1, left hand panel.

We will show in the following section that the speed of the
growing waves is different from the free-wave speed. However, the
differences are small enough that the long wave expression, using
c =

ffiffiffiffiffiffi
gh

p
,

−ũw̃ =
gH2 xð Þz

2h
α ð14Þ

is a useful long-wave approximation.

image of Fig.�2
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The dispersion relation for growing waves and Reynolds stress
formulae for arbitrary depth are given in the Appendix.

3. Waves growing due to non-uniform surface pressure

We will now derive a wave equation for linear long waves of
arbitrary shape, acted upon by an uneven surface pressure. Subse-
quently, considering the special case of sinusoid surface elevation and
pressure variation, we show that there are solutions, which exhibit
the features measured by Shonting (1970) and by Cavaleri and
Zecchetto (1987), namely a phase lag of ũ behind η and ũw̃b0. To this
end, consider the scenario in Fig. 3.

3.1. Waves of arbitrary shape

A long-wave equation for this scenario can be derived from
Newton II and the Continuity equation in the same way as the usual
linear long wave equation is derived see, e g, Nielsen (2009) p 6. That
is:

Newton II gives ρ
∂u
∂t = −ρg

∂η
∂x−

∂pa
∂x ð15Þ

While Continuity gives
∂η
∂t = −h

∂u
∂x ð16Þ

and between these, u is elliminated, to give

∂2η
∂t2

= gh
∂2η
∂x2

+
h
ρ
∂2pa
∂x2

: ð17Þ

Both transient and steady solutions to this equations have been
explored in Nielsen (2009) pp 16, 151 for arbitrary pa-shapes. For the
present case of a pressure field which travels with the wave speed,
Nielsen's resonant solution (p 23) for arbitrary pressure shape, but
constant pressure-strength, gives time-linear wave growth.

3.2. Sine waves exposed to sinusoid pressure

For the purpose of getting the simplest possible illustration of the
observed ũ−η-phase shifts, and finite Reynolds stresses, ˜u˜w≠0, we
shall consider a less general scenario, namely, that where both surface
elevation and air pressure are sinusoids as in the figure below, and the
surface pressure is proportional to the wave amplitude. In that case
we have

pa =
P0
A0

eik δη ð18Þ

so, after assuming sinusoids, the wave Eq. (16) can be written

∂2η
∂t2

= gh 1 +
P0

ρgA0
eikδ

� � ∂2η
∂x2

ð19Þ

which becomes the well known linear long wave equation for free
waves, when P0=0.
Fig. 3. Sine wave growing due to sinusoid air pressure which peaks up-wind of the
crest. The waves propagate from left to right.
The present formulation relates to the sheltering parameter S of
Jeffreys (1925) by P0=kA0ρairUr

2S and δ=L/4, where Ur is the wind
speed relative to the wave form. With the present formulation,

Phillips' normalized growth parameter is β =
P0 sinkδ
ρairU2

r kA
, see e g, Young

(1999), pp 49–50.
For P0>0, the character of the solutions to Eq. (19) depends on δ.

That is, for δ=0, there are steady solutions analogous to the free long

waves but propagating with the enhanced speed

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gh 1 +

P0
ρgA0

� �s
.

This reflects the fact that a pressure distribution, which peaks at the
wave crest, does no work on the water surface and hence doesn't
make the waves grow. It does however make the waves propagate
faster because it is equivalent to a “stiffening of the water surface” by
applying a larger restoring force. See Lighthill (1978), p 223 for the
analogous speed increase due to surface tension.

For δ>0, i e, with the pressure peaking up-wind of the wave crest,
there are two kinds of growing solutions, namely:

Time-periodic waves, which grow in the x-direction: η(x, t)=
A0eαxcos k(x−ct)and, x-periodic solutons which grow uniformly
with time: η(x, t)=A0eIm{c}t cos k(x−Re{c}t). Miles (1957) and
subsequent authors chose to consider the latter form, which perhaps
explains that Cavaleri et al's Reynolds stress observations have
remained unexplained because these waves have ũw̃≡0.

For δb0 there are analogous decaying solutions. The quantitative
details are given in the following.

4. x-periodic waves growing exponentially with time

First we consider solutions to Eq. (18), which grow with time, but
are periodic in the x-direction and find that while u lags behind η,
there are no wave related Reynols stresses.

Eq. (18) has x-periodic solutions of the form

η x; tð Þ = A0e
ik x�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gh 1 +

P0
ρgA0

eikδ
� �r

t

� �
ð20Þ

of which the one that propagates in the positive x-direction can be
expressed in terms of real-valued functions as

η x; tð Þ = A0 cos k x−Re

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gh 1 +

P0
ρgA0

eikδ
� �s( )

t

" # !
e
k Im

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gh 1 + P0

ρgA0
eikδ

� �r	 

t

= A0 cos k x−Re cf gt½ �ð Þek Im cf g t

ð21Þ

4.1. Horizontal water particle velocities in x-periodic, growing sine waves

The horizontal water particle velocities corresponding to this wave
motion can be derived from the long-wave continuity equation, i e,

ũ = −1
h
∫∂η
∂t dx = −1

h
∫ ∂

∂t A0e
ik x−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gh 1 + P0

ρgA0
eikδ

� �r
t

� �
dx

= − 1
ik
1
h

−ik

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gh 1 +

P0
ρgA0

eikδ
� �s !

A0e
ik x−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gh 1 + P0

ρgA0
eikδ

� �r
t

� �

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gh 1 +

P0
ρgA0

eikδ
� �s

h
A0e

ik x−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gh 1 + P0

ρgA0
eikδ

� �r
t

� �
=

c
h
η

ð22Þ

from which the usual expression for steady long waves ũ =
ffiffiffi
g
h

r
η is

recovered for P0=0, while P0, δ>0 leads to a time lag of ũ behind η.

image of Fig.�3


1122 P. Nielsen et al. / Coastal Engineering 58 (2011) 1118–1124
4.2. Vertical water particle velocities in x-periodic, growing sine waves

The vertical water particle velocities w̃ x; z; tð Þ are derived from ũ(x,

z, t) through the continuity equation
∂ũ
∂x +

∂w̃
∂z = 0. We find

w̃ = −∫∂ũ
∂x dz = −∫ ∂

∂x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gh 1 +

P0
ρgA0

eikδ
� �s

h
A0e

ik x−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gh 1 + P0

ρgA0
eikδ

� �r
t

� �
dz

= ik

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gh 1 +

P0
ρgA0

eikδ
� �s

z
h
η:

ð23Þ

4.3. Reynolds stresses in x-periodic, growing sine waves

For these waves ũ and w̃ are seen to be in quadrature, w̃∝ iũ, so
ũw̃ = 0, as indicated by Fig. 1. This is consistent with Rivero and
Arcilla (1995) who found that, non-zero Reynolds stresses require
spatial variation of the wave amplitude at constant depth.

5. Time periodic sine waves growing in the x-direction

We now seek solutions to the wave equation

∂2η
∂t2

= gh 1 +
P0

ρgA0
eikδ

� � ∂2η
∂x2

ð19Þ

which are time-periodic at any fixed point but growing exponentially
in the x-direction, i e, we seek solutions in the form

η x; tð Þ = A0e
αxeik x−ctð Þ ð24Þ

where α, k and c are all real-valued. We find that these display non-
zero Reynolds stresses as well as the η-u phase-lag. These are the type
of waves observed in a laboratory wind wave flume after a steady
state has been reached.

Insertion of the form (24) into Eq. (19) leads to

−c2 =
α
k

+ i
� �2

gh 1 +
P0

ρgA0
eikδ

� �
ð25Þ

where the growth parameter α must be determined so that c is real-
valued corresponding to time-periodic waves. For the present purposes
of qualitative insight, we pursue a simplified solution, corresponding to
the practical range αbbk in which case we have

c2≈ 1−2i
α
k

� �
gh 1 +

P0
ρgA0

eikδ
� �

ð26Þ

where c is real-valued if

2
α
k

=

P0
ρgA0

sinkδ

1 +
P0

ρgA0
coskδ

: ð27Þ

That is

α =
k
2

P0
ρgA0

sinkδ

1 +
P0

ρgA0
coskδ
→

P0→0

k
2

P0
ρgA0

sin kδ: ð28Þ

So, wind generated uneven air pressure may make sine waves
grow in accordance with η(x, t)=A0eαxeik(x− ct) and, we showed in
Section 2 that, waveswith this form have a phase lag of ũ behind η and
have ũw̃ b0 as measured in both field and laboratory experiments
with waves exposed to following winds. This result can be re-written
in the formulations of Jeffreys (1925) and Miles (1957) as detailed
below Eq. (19).

6. Discussion

The theory for x-growing waves brings experimental data on wave
growth rates and on sub-surface Reynolds stresses nicely together,
while the agreement is less perfect when simultaneous measure-
ments of Reynolds stresses and η-u phase lags are compared.

6.1. Reconciling growth rates and sub-surface Reynolds stresses

According to Peirson and Garcia (2008) Fig. 6, Miles' normalized
wind wave growth parameter β, takes values in the range 10bβb107,
which with

α =
ρairk

2U2
r

2ρg
β ð29Þ

and typical values like (ρair,k,Ur)=(1.2kg/m3,0.1m−1,15m/s) gives
α≈0.00014β and the expected range

0:0015 m−1
b α >0:015 m−1 ð30Þ

This range includes the, Reynolds stress measurements by Cavaleri
and Zecchetto. That is, for the data in their Fig. 6, they found
−ũw̃≈0:03m2=s2, which through the long-wave approximation (14)
corresponds to

α =
2h

H2
rmsgz

− ũ w̃
� �

=
2 × 16

1:42 × 9:8 × 12
0:03 = 0:0042m−1 ð31Þ

For comparison, the corresponding deep water expression, with z’
measured from themean surface level, using the deepwater free-wave

speed: c0 =
gT
2π

gives

α =
2e−2k0z′

k0H
2
rmsc

2
0

− ũ w̃
� �

=
2e−2k0z′

H2
rmsg

− ũ w̃
� �

=
2e−2 ×0:124 × −4ð Þ

1:42 × 9:8
0:03 = 0:0084m−1

ð32Þ

The latter result is the more appropriate since Cavaleri and
Zecchetto's experimental conditions, (T,h)=(5.7 s, 16 m) were almost
deep water.

The α-value can be interpreted in terms of a pressure amplitude P0
through Eq. (28), e g:

P0 =
2ρgA0α
k2δ

=
2 × 1025 × 9:8 × 0:7 × 0:0086

0:127
= 952Pa ð33Þ

where we have taken δ=L/6 corresponding to kδ≈1. A sinusoid
surface pressure with these (P0,δ) is, in terms of horizontal force on
the surface, equivalent to a uniform surface shear stress of

τw =
1
L

∫
x0 +L

x0

pa
∂η
∂x dx¼

1
L

∫
x0 +L

x0

P0 cos k x + δð Þ −k sin kxð Þdx

=
1
2
P0 sin kδ =

1
2

× 952 ×

ffiffiffi
3

p

2
= 412Pa:

ð34Þ

In comparison, the wind shear stress corresponding to C10=
0.0025 and U10=15 m/s is

τw =
1
2
ρairC10u

2
10 =

1
2

× 1:2 × 0:0025 × 152 = 0:34Pa ð35Þ

i e, smaller by a factor 1220!
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So, while Cavaleri and Zecchetto's Reynolds stresses are two or
three orders of magnitude greater than the estimated wind stresses,
they agree, through the present theory, with the wave growth data
presented by Peirson and Garcia (2008). This discrepancy between
wind shear stresses and wave growth rates has previously been
commented upon by van Duin (1996) and by Belcher and Hunt
(1998).

6.2. Discrepancies between the theory and observed φη−u; ũ w̃
� �

data
sets

The data in Fig. 6 of Cavaleri and Zecchetto (1987), indicate that ũ
lags η by

φη�u = 1:001� 0:294 radians ð36Þ

which in terms of growth rates α=kφη−u corresponds to

α = 0:13� 0:07: ð37Þ

This range for α disagrees with Eq. (32) and is well above the range
reported by Peirson and Garcia (2008). Perhaps Cavaleri and
Zecchetto's measurements of η were time-biased due to the surface
gage reacting to foam on the front of the waves? However, similar
phase differences φη−u≈T/6 are indicated for the decaying tidal
wave of Dronkers (1964) p173, and Peirson et al. (2003) measured
decay of laboratory waves in opposing wind corresponding to α=
−0.42, see the 15 m/s case in their Fig. 4.

6.3. Future experimental investigations

In order to verify and/or refine the present theory, new experiments
should be carried out where details of the sub-surface pressure is
measured as well as the surface elevation and the water particle
velocities.

6.4. Implications for atmosphere–ocean exchange models

As a first approximation, the transfer between atmosphere and
ocean is often quantified in terms of gradient diffusion:

Fluxi = −Ki ×
→
grad cið Þ ð38Þ

for the i-th species, e g, momentum, heat, CO2 and other gasses. The
simplest hypothesis is then that all species diffuse with the same
turbulent diffusion coefficient, Ki≡K, meaning that flux and concen-
Fig. 4. Suggested new experimental setup where the sub surface pressure is measured
as well as the previously measured quantities. From this data, the wind induced, wave-
coherent surface pressure can then be inferred from pa(t)≈p(z

0
, t)−ρg(η−z

0
). It

seems that this procedure is much easier than trying to measure the air pressure just
above the water surface.
tration gradient need only be measured for one species in order to
provide all necessary Ki. However, when one or more species are
transferred partly by the organized wave motion, as described above
for momentum, different species must be expected to have different
diffusion coefficients if their total flux is written in the form of (38).

7. Conclusions

A theory has been provided to explain why waves, exposed to
uneven surface pressure (or an equivalent wave coherent shear
stress) generated by winds display two important features which are
not found in waves that propagate with constant form.

Firstly, if the wind induces an uneven pressure distribution on the
water surface, this alters the phase relation between ũ and η. If the
pressure does positive work on the water surface so that the wave
amplitude grows as A(x)=A0e

αx, ũ is found to be lagging behind η by
the phase angle φη−u=α/k [radians].

Secondly, with ũ lagging behind η while w̃ is in phase with
∂η
∂t , we

find ũw̃ b0, in agreement with the measurements of Cavaleri and
Zecchetto (1987), representing a non-turbulent flux of wind driven
momentum downward into the water column. The distribution of
these “organized Reynolds stresses” is linear in a long wave,
corresponding to the wind momentum being deposited uniformly
in the water column. In a deep water wave the distribution will be
decaying exponentially downwards on the scale of the wave length.

The wave related Reynolds stresses measured by Cavaleri and
Zecchetto (1987), which were, in the absence of relevant theory,
previously considered unrealistically large, are shown to fit within the
experimental range for wave growth via the present theory.

A quasi-steady sea state can be thought of as a scenario, where the
waves alternately grow in accordance with the model above,
alternately break (white capping) whereby some of the oscillatory
energy is dissipated while the steady momentum flux is conserved.
The momentum which, through the white-capping, becomes avail-
able to drive currents or storm surge is by this model already
distributed through the water column, see Fig. 1, while previous
models with ũw̃ = 0 had to rely entirely on turbulent diffusion for the
downward distribution of this momentum.

For simplicity, the theory was derived in detail for long waves.
However, the corresponding velocity potential and dispersion relation
for wind-driven “sine waves” at arbitrary depths, which explains the
same features, are given in the Appendix.

The fact that wind driven waves in general obey a different
dispersion relation from that of free waves, and hence have different,
generally complex, wave numbers, may need to be considered in new
wind–wave development models.

Acknowledgements

The authors would like to thank Professor Tony Bracken for
mathematical guidance and Dr Rolf Deigaard for incisive comments.

Appendix. Wind-driven sine waves in arbitrary depths

A1. The velocity potential

We now seek the velocity potential ϕ(x, z, t) corresponding to the
surface form (24):

η x; tð Þ = A0e
αx cosk x−ctð Þ

= A0e
αxRe eik x−ctð Þn o

= A0Re e α+ikð Þx−ikctÞn o

ðA1Þ

where α, k and c are all real-valued.

image of Fig.�4
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The velocity potential is tied to η(x, t) through the free surface
boundary condition, which in its linearised form, for free waves with
unifom air pressure reads.

gη =
∂ϕ
∂t j

z=η
ðA2Þ

cf Le Mehaute (1976) p 214 or Lighthill (1978) p208. Replacing g by

g 1 +
P0

ρgA0
eikδ

� �
as suggested by Eq. (19) leads to the revised surface

condition.

g 1 +
P0

ρgA0
eikδ

� �
η =

∂ϕ
∂t j

z=η
ðA3Þ

and then to the potential.

ϕ x; z; tð Þ = Re i
g
kc

1 +
P0

ρgA0
eikδ

� �
A0e

α+ikð Þx−ikctÞf zð Þ
	 


ðA4Þ

where the function f(z) should be 1 at the water surface and of such a
form that ϕ satisfies the Laplace Equation. For deep water the analogy
with free sine waves is.

ϕ x; z; tð Þ = Re i
g
kc

1 +
P0

ρgA0
eikδ

� �
A0e

α+ikð Þxe α+ikð Þize−ikct
	 


= Re i
g
kc

1 +
P0

ρgA0
eikδ

� �
A0e

α + ikð Þ x+izð Þe−ikct
	 
 ðA5Þ

where z=0 at the mean surface level.
For intermediate depths, the analogy with free sine waves gives.

ϕ x; z; tð Þ = Re i
g
kc

1 +
P0

ρgA0
eikδ

� �
A0e

α+ikð Þx cosh k−iαð Þ z + hð Þ½ �
cosh k−iαð Þh½ � e−ikct

	 

ðA6Þ

and the corresponding water particle velocities given by ũ = −∂ϕ
∂x

respectively, w̃ = −∂ϕ
∂z .

A2. The dispersion relation for wind driven waves

The influence of the surface pressure on the wave speed and/or the
wave length is analogous to the longwave results inferred fromEq. (19).
That is, the relevant dispersion relation is obtained by replacing g by

g 1 +
P0

ρgA0
eikδ

� �
in the dispersion relation for free sine waves:

ksin tanhksinh =
ω2

g
ðA5Þ

That is, the complex wave number k-iα for wind driven “sine
waves” (ref Fig. 3) is determined from.

k−iαð Þ tanh k−iαð Þh =
ω2

g 1 +
P0

ρgA0
eikδ

� � ðA6Þ

For the analogous dispersion relation for waves with significant
“surface stiffening” due to surface tension, see e g, Longuet-Higgins and
Stewart (1964), Eq. (10) or Lighthill (1978), p 226. For the surface tension
case, thewave numbers are still real valued (α=0), corresponding to the
special case of δ=0, L/2 in (A6).

The magnitude of deviations from the free-wave wave numbers

depends on the size of
P0

ρgA0
eikδ, which can be judged from

P0
ρgA0

sinkδ =
ρairkU2

r

ρg
β and the experimental range [10;107] for β,

Peirson and Garcia (2008) Fig. 6. With typical values like (ρair,k,Ur)=
(1.2kg/m3,0.1m−1,15m/s) this leads to

P0
ρgA0

sinkδ∈ 0:028;0:29�½ ðA7Þ

The fact that growing waves thus have a different dispersion
relation from free waves, and in general have complex wave numbers
may need to be incorporated into the next generation of (spectral)
wind wave development models.
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