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Abstract

Reliable estimation of the on-site sea state parameters is essential to decision support systems for safe navigation of ships. The wave

spectrum can be estimated from procedures based on measured ship responses. The paper deals with two procedures—Bayesian

Modelling and Parametric Modelling—which both use complex-valued frequency response functions (FRF) to estimate the wave

spectrum. It is therefore interesting to investigate how the filtering aspect, introduced by FRF, affects the final outcome of the estimation

procedures. In order to do this, extensive numerical simulations—with known wave parameters—are carried out for a large container

vessel. The study shows that filtering has an influence on the estimations, since high-frequency components of the wave excitations are

not estimated as accurately as lower frequency components.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

1.1. Decision support systems

Decision support systems based on in-service monitoring
systems can be applied to increase the operational safety of
ships, e.g. Huss and Olander (1994) and Nielsen (2004).
The on-site sea state is paramount for the decision support
system to give reliable guidance. The literature contains
several studies on the estimation of (directional) wave
spectra based on measured ship responses. Conceptually,
two methods are considered: (1) Parametric Modelling
which assumes the wave spectrum to be composed of
parameterised wave spectra, so that the underlying wave
parameters are sought for from an optimisation, e.g.
Tannuri et al. (2003), Aschehoug (2003) and Nielsen
(2006), or (2) Bayesian Modelling where the directional
wave spectrum is found directly as the values in a
completely discretised frequency-directional domain, e.g.
Iseki and Terada (2002), Waals et al. (2002) and Nielsen
e front matter r 2007 Elsevier Ltd. All rights reserved.
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(2006). In general, the methods are based on linear spectral
analysis which assumes a linear relationship between the
wave excitations and the ship responses. This assumption
facilitates the use of complex-valued frequency response
functions established by measurements, closed-form
(analytical) expressions, strip theories or three-dimensional
time domain codes.
1.2. Background

Independently of the calculation procedure, the use of
complex-valued frequency response functions introduces,
or illustrates, the aspect of filtering, which means that ship
responses, in general, are only sensitive to wave excitations
characterised by wave lengths in a certain interval, e.g.
Pascoal et al. (2005) and Tannuri et al. (2003). In the view
of response-based estimation of wave spectra, this means
that a model, in principle, cannot predict values of
components in the entire frequency band of a wave
spectrum. Therefore, the estimations will always be
characterised by some uncertainty, no matter how accurate
the hydrodynamic behaviour of the ship is described by the
complex-valued frequency response functions.
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1.3. The study

This paper contains an extensive study of numerical
simulations of time histories with an overall focus on the
estimation of sea state parameters. Thus, a large amount of
wave estimations are carried out from numerical simula-
tions, with exact known underlying wave excitations, i.e.
wave spectrum parameters. In this way it is possible to
evaluate the influence of the filtering aspect on the
estimation model, given that the hydrodynamic model of
the ship is known to be exact and, hence, give a perfect
relationship between the wave excitations and the ship
responses for the specific ship. Similar studies, although not
as comprehensive, have been carried out by Nielsen (2006),
Pascoal et al. (2005) and Tannuri et al. (2003), where the
two latter studies, however, did not consider the problem
of a ship being underway, i.e. the speed-of-advance
problem first dealt with by Iseki and Ohtsu (2000).
Moreover, the present paper compares the results of
the Bayesian Modelling with those of the Parametric
Modelling.

1.4. Sea state estimations from measured ship responses

Today, means of obtaining estimations of the sea state
parameters exist. Such means include moored wave rider
buoys and current meters, satellite measurements and wave
radar systems. The latter two of these means do not suffer
from the problems related to the fixed position of a moored
buoy and current meters, but do, on the other hand,
require complex computational hardware and have a high
initial cost, cf. Tannuri et al. (2003), not to mention
calibration and maintenance. For this reason it is of
interest to be able to estimate the wave spectrum from
measured ship responses, which are easily accessible—and,
as a matter of fact, already at hand—from the sensor
measurements done in an in-service monitoring system. In
this way, the ship is itself to be considered as a kind of wave
buoy. It is, however, important to keep in mind that wave
estimations carried out from measured ship responses
cannot be expected to be as accurate as the wave
estimations from a real wave buoy; primarily due to
filtering introduced by the (high) inertia of a ship hull (with
a complex geometry) as compared to the relatively small
size and well-described geometry of a wave buoy. Secondly,
the wave estimations from ship responses cannot be
expected as accurately as the estimations from a real wave
buoy, since a ship, in general, is moving with a forward
speed when the estimations are carried out. In the
comparisons presented later these issues should be kept
in mind, since some of the statements and conclusions
reflect that the wave estimations are ship response-based.

1.5. Composition of paper

The organisation of the paper is as follows. In the next
section the fundamental theory of Bayesian Modelling and
Parametric Modelling is outlined. In addition, the section
contains a subsection that describes how the numerical
simulation of the ship responses is conducted. The third
section sets up the numerical study which will be carried
out. Thus, a number of test cases are organised and the
specific ship and the considered motion responses are
described. Moreover, the section lists the integrated wave
parameters, on which comparisons can be made. The
results of the study are given in the fourth section;
primarily in tabular form and visualised graphically.
Finally, the last section draws conclusions from the
presented material.

2. Theory

2.1. Bayesian Modelling

This subsection gives the fundamentals of Bayesian
Modelling applied to estimate directional wave spectra.
The subsection is by no means comprehensive and the
literature should be consulted for details, e.g. Iseki and
Terada (2002), Nielsen (2006, 2007).
On the assumption that the ship responses are stationary

and linear with the incident waves, the complex-valued
frequency response functions Fiðoe;bÞ and Fjðoe;bÞ for the
ith and jth responses yield the theoretical relationship
between the ith and the jth components of the cross spectra
SijðoeÞ and the directional wave spectrum Eðoe; bÞ through
the following integral equation:

SijðoeÞ ¼

Z p

�p
Fiðoe; bÞFjðoe; bÞEðoe;bÞdb, (2.1)

where the bar denotes the complex conjugate, and with b
being the heading of the ship (relative to the waves) and oe

being the encounter frequency. The heading is defined so
that b ¼ p corresponds to head waves. It should be realised
that the wave spectrum is given in terms of the heading,
which is justified by letting the wave direction and the
course of the ship be given relative to the same datum, so
that the heading and the wave direction are coincident.
Finally, it should be noted that the complex-valued
frequency response functions are written as functions of
only the heading and the encounter frequency, since the
implication of changing of other operational parameters is
understood.
The wave spectrum is advantageously estimated in the

wave frequency domain. This means that the speed-of-
advance, or triple-valued function, problem needs to be
considered. This problem has been properly incorporated
by Iseki and Ohtsu (2000), for details see Nielsen (2006).
In terms of matrix notation, (2.1) can be written as

b ¼ AfðxÞ þ w. (2.2)

The vector function fðxÞ expresses the unknown values of
the wave spectrum Eðo;bÞ through a non-negativity
constraint fðxÞ ¼ expðx), so that x ¼ lnEðo; bÞ. The vector
w is a Gaussian white noise sequence vector with zero mean
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and variance s2, introduced for stochastic reasons so that
the Bayesian modelling is facilitated, cf. Akaike (1980). The
vector b contains the elements of SijðoeÞ, and the coefficient
matrix A has elements according to the products of the
transfer functions and the derivative of the wave frequency,
cf. Eq. (2.1).

In principle, (2.2) can be solved for x by minimising w2ðxÞ
with

w2ðxÞ � kAfðxÞ � bk2, (2.3)

where k � k represents the L2 norm.
The equation system given by (2.3) is in most cases

underdetermined, or otherwise degenerate, which means
that the solution is unstable. To overcome this problem
Bayesian Modelling is introduced, see Akaike (1980). As
will be shown in the following, it is possible to evaluate x

by maximisation of the product of the likelihood function
and the prior distributions, which must be defined
properly. The prior distributions act as a stochastic
constraint and are a general character of the model which
is known in advance, e.g. Iseki and Terada (2002). For the
model above, the likelihood function is written as

lðxjs2Þ ¼
1

2ps2

� �P=2

exp �
1

2s2
kAfðxÞ � bk2

� �
, (2.4)

where P is the total number of integral equations derived
from (2.1) including a number of equations yielding
equivalence of energy on the left- and right-hand side of
(2.1), cf. Nielsen (2006).

In this paper, two prior distributions are taken into
account, cf. Nielsen (2007). Both distributions are a
Gaussian smoothness prior distribution which minimises
the sum of the second order difference of the unknown
vector x in order to smoothen the change with frequency
and direction, respectively, of the wave spectrum, e.g.
Nielsen (2006) and Iseki and Terada (2002). The prior
distributions are therefore defined by the minimisation of
the functionals

XN

n¼1

XM
m¼1

�21mn ¼
XN

n¼1

XM
m¼1

ðxm�1;n � 2xm;n þ xmþ1;nÞ
2,

ðx0;n ¼ xM;n; xMþ1;n ¼ x1;nÞ, ð2:5Þ

XN

n¼1

XM
m¼1

�22mn ¼
XM
m¼1

XN�1
n¼2

ðxm;n�1 � 2xm;n þ xm;nþ1Þ
2, (2.6)

where N and M are the number of discrete wave
frequencies and discrete headings, respectively. Thus,
considering �1mn and �2mn to be normal distributions with
zero mean and variance s2=u2 and s2=v2, respectively, the
prior distribution is given in terms of the so-called
hyperparameters u and v. In matrix notation the
functionals can be written as, see e.g. Press et al. (1992),

XN

n¼1

XM
m¼1

�21mn ¼ xTH1x, (2.7)
XN

n¼1

XM
m¼1

�22mn ¼ xTH2x. (2.8)

In accordance with Akaike (1980), the posterior distribu-
tion pðxju; v;s2Þ is proportional to the product of the
likelihood function and the prior distribution, which can be
written as, see Nielsen (2007),

pðxju; v;s2Þ ¼ c
1

2ps2

� �ðPþKMÞ=2

j detðu2H1 þ v2H2Þj
1=2

� exp �
1

2s2
SðxÞ

� �
ð2:9Þ

with

SðxÞ ¼ kAfðxÞ � bk2 þ xTðu2H1 þ v2H2Þx (2.10)

and where c is a normalising factor independent of the
model parameters x and the hyperparameters u and v.
The hyperparameters control the trade-off between the

good-fit of the solution to the data (i.e. agreement between
solution and data) and the smoothness, or stability, of the
solution, and the optimum values of the hyperparameters
are determined by minimising the control criterion ABIC,
cf. Akaike (1980) and Nielsen (2007),

ABIC ¼ �2 ln

Z
pðxju; v;s2Þdx (2.11)

2.2. Parametric Modelling

Parameterised wave spectra, e.g. Goda (2000), are
typically considered reliable for describing the variation
with frequency of ocean wave spectra. Moreover, the
angular spread of wave spectra can be described by certain
parameters, e.g. Longuet-Higgins et al. (1961) and Goda
(2000). In the following the estimation method based on
Parametric Modelling will be outlined briefly. Details can
be found in the literature, e.g. Nielsen (2006) and Tannuri
et al. (2003).
The governing equation system which facilitates

Parametric Modelling is derived in the previous subsection
as Eq. (2.3). Hence, Parametric Modelling aims at mini-
mising (2.3), which means that the solution is obtained by

min kAfðxÞ � bk2. (2.12)

As input, fðxÞ, to this equation system, the following 10-
parameter bimodal spectrum is considered, e.g. Tannuri et
al. (2003) and Hogben and Cobb (1986)

Eðo; yÞ ¼
1

4

X2
i¼1

ððð4li þ 1Þ=4Þo4
p;iÞ

li

GðliÞ

H2
s;i

o4liþ1
AðsiÞ

� cos2si
y� ymean;i

2

� �
exp �

4li þ 1

4

op;i

o

� �4� �

ð2:13Þ

with Hs being the significant wave height, l is the shape
parameter of the spectrum, ymean is the mean wave
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direction, op is the angular peak frequency, and s

represents the spreading parameter.

AðsÞ ¼
22s�1G2ðsþ 1Þ

pGð2sþ 1Þ
(2.14)

is a constant introduced to normalise the area under the
cos2s curve and G denotes the Gamma function.

The wave spectrum expressed by (2.13) considers
basically a sea component (i ¼ 1) and a swell component
(i ¼ 2), and on this basis it is, in theory, possible to model
most ocean wave spectra, e.g. Hogben and Cobb (1986).
The solution of equation (2.12) implies a non-linear
optimisation problem from which the best-fit-values can
be determined. Hence, the final outcome of the Parametric
Modelling is constituted by the parameters

fHs;1 l1 y1 op;1 s1 Hs;2 l2 y2 op;2 s2 g.

(2.15)

2.3. Cross spectral analysis

It should be noted that the cross spectral analysis of the
responses is carried out by use of multivariate autoregres-
sive modelling, e.g. Akaike and Nakagawa (1988), by
application of the so-called stepwise least squares algo-
rithm, see Neumaier and Schneider (2001), for the
determination of the MAR coefficients. Detailed informa-
tion can be found in Nielsen (2005).

2.4. Numerical simulation of responses

Ship motions can, in principle, be found by a time
domain solution

g ¼ gðtÞ (2.16)

of the generalised equations of motion where the motions,
in six degrees of freedom g ¼ ½Z1; Z2; Z3; Z4; Z5; Z6�

T, are the
surge, sway, heave, roll, pitch, and the yaw. In addition,
global ship responses, e.g. the vertical acceleration and the
wave induced bending moment, can be derived from the
ship motions. In the following, a general global ship
response RðtÞ will be considered, without differentiation
between ship motions and derived responses.

On the assumption of a linear relationship between
responses and wave excitations, the time domain solution of
the response RðtÞ of a ship can be expressed in terms of the
complex-valued frequency response function FRðo; bÞ, see for
example Denis and Pierson (1953). In this paper, the time
domain solution of the response is, however, presented with
the same format as in Jensen and Capul (2006) and Jensen
and Pedersen (2006), although the latter references consider
only unidirectional waves. Thus, the response is written as a
Gaussian process introduced by the set of uncorrelated,
standard normal distributed variables umn and ūmn. Hence,

RðtÞ ¼
XN0

n¼1

XM0

m¼1

½umncmnðtÞ þ ūmnc̄mnðtÞ�. (2.17)
The deterministic coefficients cmnðtÞ and c̄mnðtÞ are given by

cmnðtÞ ¼ smnjFRðon; bmÞj cosðoe;ntþ �mnÞ,

c̄mnðtÞ ¼ �smnjFRðon;bmÞj sinðoe;ntþ �mnÞ,

s2mn ¼ Eðon; bmÞDonDbm, ð2:18Þ

where it should be noted that the discretised number of
wave frequencies N0 and the discretised number of
headings M0 not (necessarily) take the same numbers as
in the estimation analysis, cf. Eqs. (2.5) and (2.6).
Furthermore, it should be realised that the variation over
time is expressed in terms of the encounter frequency

oe ¼ o� o2A; A ¼
V

g
cos b (2.19)

with V being the speed of the ship, and g the acceleration
of gravity. Eðon;bmÞ is the directional wave spectrum
under the assumption that the wave direction is measured
relative to the ship course (i.e. b ¼ y), and Don and Dbm are
the increments of the discrete wave frequencies and the
discrete headings, respectively. The phase angles are
calculated from

�mn ¼
Im½FRðon; bmÞ�

Re½FRðon; bmÞ�
. (2.20)

It should be noted that for an equidistant frequency
discretisation, the signal RðtÞ will repeat itself after a period
of 2p=Do. Thus, in order to avoid this problem, the
frequency discretisation is taken to be non-equidistant

oiþ1 ¼ oi þ c � pi (2.21)

with c as an ‘appropriately’ small factor while pi denotes a
stochastic variable with values between 0 and 1.
Furthermore, it should be realised that the present

simulation technique, similar to that by Jensen and Capul
(2006), yields a wave height which varies statistically, e.g.
Goda (2000). In particular, this means that any wave
record (i.e. jFðo; yÞj � 1) has a significant wave height
which, in most cases, is not exactly equal to the Hs applied
to the wave spectrum.

2.5. Partitioning of directional wave spectra

It is difficult to compare bimodal or, in general, multi-
peaked directional wave spectra and it may lead to
ambiguous results if the entire spectrum is treated as one
wave system. However, it is possible to construct an
algorithm which partitions the wave spectrum into compo-
nents which represent different wave systems, e.g. Komen
et al. (1994) and Gerling (1992). The idea is similar to that
used in hydrology, cf. Komen et al. (1994), where a
topographical domain is decomposed into a set of catch-
ment areas associated with local minima of the topography.
The catchment area of a local topography minimum is
defined as the area which drains into the minimum point. In
analogy, the spectral wave system associated with a given
peak of the wave spectrum is defined as the catchment area
of the local minimum corresponding to the inverted peak of
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Table 2

The underlying wave parameters of the test cases and the corresponding

speed of the vessel

Case Hs (m) Tp (s) s y (deg.) V (m/s)

A,B,C,D 3.0 8.0 3.0 015,105,180,225 10.0

E,F,G,H 2.0 14.0 4.0 015,105,180,225 10.0

I 3.0/2.0 8.0/14.0 3.0/4.0 015/225 10.0

J 3.0/2.0 8.0/14.0 3.0/4.0 180/225 10.0

K 3.0/2.0 8.0/14.0 3.0/4.0 105/105 10.0
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the inverted spectral topography. Thus, the domain of a
wave system associated with a given spectral peak consists
of all spectral points whose paths of steepest ascent lead to
that peak. In this sense, a path of steepest ascent is defined
on a discretised grid as the direct set of line segments
connecting spectral grid points to the highest of the four
nearest-neighbour grid points. Hence, Komen et al. (1994)
constructs—mathematically (and numerically)—the do-
main of a wave system by the induction rule which
says that ‘‘a grid point and its highest nearest-neighbour
grid point (if it is higher than the first grid point—otherwise
the first grid point is peak) belong to the same wave
system’’.

The algorithm for partitioning of wave spectra is an
extensive study in its own right and will not be treated
in detail here. In the analysis, which follows, the
code developed by Aarnes and Krogstad (2001) is
applied to partition the wave spectrum when bimodal
wave spectra are considered. The literature should be
consulted for reference, e.g. Gerling (1992) and Komen
et al. (1994).
3. Numerical study

3.1. Setup of simulations

This section serves to describe the setup of the numerical
study which is to be conducted. Thus, the numerical study
will be carried out for a container ship with main
dimensions as seen in Table 1. The complex-valued
frequency response functions of the ship have been
calculated by the three-dimensional time domain code
WASIM, e.g. the User Manual of WASIM (DNV, 2005).
In all the cases, which will be examined, three responses are
considered. The responses are the sway, the heave and the
pitch motions, and the speed of the vessel is V ¼ 10:0m=s
in all the numerical simulations. It should be realised
that the sway response is an asymmetric response
with respect to waves entering the starboard/port side, cf.
Nielsen (2006) and Tannuri et al. (2003) which discuss also
general aspects on responses to include in response-based
estimation of wave spectra.

The wave excitations, applied in the numerical simula-
tion of the motion measurements, are based on the wave
spectrum given by Eq. (2.13). The wave spectrum is
introduced in three fundamental ways: in the first two
ways, a unimodal Pierson Moskowitz (i.e. l ¼ 1) wave
spectrum with only one peak is assumed, whereas a
Table 1

Main dimensions of the considered ship

Length, Lpp 275.0m

Breadth, Bmld 40.0m

Draught, T 12.0m

Displacement 50,000 t
bimodal Pierson Moskowitz wave spectrum with two
peaks is considered in the third way. The different
fundamental setups are divided into a number of cases,
characterised by different wave directions. Thus, the
test cases are summarised in Table 2, where it is seen
that Cases A–D correspond to wind sea, all with a
significant wave height Hs ¼ 3:0m, a peak period
Tp ¼ 8:0 s, and a spreading parameter s ¼ 3:0, but with
different mean wave directions y ¼ 015�; 105�; 180�, and
225�. Cases E–F represent swells with Hs ¼ 2:0m,
Tp ¼ 14:0 s, and s ¼ 4:0, and with the same variation
in wave directions as the wind sea. Finally, Cases I, J and K
are the bimodal cases, each being a combination of
wind sea and swells having an energy content repre-
sented by Hs ¼ 3:0m and Hs ¼ 2:0m, respectively.
Similarly, the peak period, the spreading parameter
and the shape parameter are identical for the individual
components of the combined cases to the unimodal
cases representing wind sea and swells. The wave directions
do, however, vary, so that the first number gives the
direction of the wind sea, whereas the second number
gives the direction of the swells. It is seen that Case K
represents wind sea and swells from the same direction
y ¼ 105�.
In the numerical analysis which follows in the next

section, each of the cases listed in Table 2 is applied to
simulate 20 runs of the set of responses (sway, heave, pitch)
mentioned above, so that a total of 220 simulations
are made. All the runs have a duration of 15min
corresponding to 900 s. Furthermore, it should be noted
that no white noise has been added to the numerical
generated time series and, similar, no uncertainties are
considered in the estimations, so that the used complex-
valued frequency response functions are assumed to give a
perfect description of the hydrodynamic behaviour of the
ship. The discretisation of the wave field used in the
simulations, cf. Eq. (2.17), is based on a constant number
of headings M0 ¼ 36 whereas the number of wave
frequencies N0 varies (N0 � 5502650) for the individual
set of simulations, since a non-equidistant frequency
discretisation is used, cf. Eq. (2.21). The cut-off frequency
is app. 0.5Hz. Finally, it should be remembered that the
course of the vessel and the wave direction are measured
relative to the same datum, that is, b ¼ y so that y ¼ 180�

is head sea.
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3.2. Integrated wave parameters

Basically, the overall outcome of the estimation proce-
dures, being it from the Bayesian Modelling or from the
Parametric Modelling, is given by a directional wave
spectrum Eðo; yÞ. For comparative reasons, integrated
wave parameters therefore need to be evaluated in each
estimation, and this subsection serves as the reference for
the calculation of these parameters. The listed expressions
follow from Günther et al. (2006).

The frequency wave spectrum is obtained by integrating
the directional wave spectrum with respect to direction

F ðoÞ ¼
Z

Eðo; yÞdy (3.1)

and hence the spectral moment of order n is defined by

mn ¼

Z
onF ðoÞdo. (3.2)

Thus, the significant wave height Hs and the mean wave
period T s are estimated from

Hs ¼ 4
ffiffiffiffiffiffi
m0
p

, (3.3)

T s ¼
m0

m1
. (3.4)

In addition, the peak period is

Tp ¼
2p
op
; F ðopÞ ¼ max

o
F ðoÞ. (3.5)

The estimated mean wave direction follows from

ys ¼ arctanðd=cÞ, (3.6)

where d and c are defined according to

d ¼

ZZ
Eðo; yÞ sin ydody,

c ¼

ZZ
Eðo; yÞ cos ydody. ð3:7Þ

Finally, the mean directional spread is given by

ss ¼ 2�
2

m0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2
þ c2

p� �0:5

(3.8)

which should not be confused with the spreading para-
meter s, since the directional spread ss is measured in
radians.

4. Results

4.1. Organisation

The overall results of the analyses have been divided into
cases corresponding to unimodal spectra and bimodal
spectra, and the underlying wave parameters are presented
in Tables 3 and 4, respectively. Thus, these tables list the
characteristic wave parameters as calculated by the
expressions (3.1)–(3.8) and, specifically, the significant
wave height Hs, the peak (wave) period Tp, the mean
(wave) period T s, the mean (wave) direction ys, and the
mean directional spread ss are found in the tables. It
should be noted that the shape parameter l of the wave
spectrum is not included in the tables, since this parameter
is difficult to obtain. A somewhat similar measure could be
established by the combined measures of skewness and
kurtosis in the spectral description. In the analysis, these
numbers are, however, not dealt with.
From the tables, it can be seen that four values, denoted

‘true’, ‘mean’, ‘std’ and ‘error’, are given to each case
A;B; . . . ;K. The values ‘true’ correspond to the exact
parameters of the wave spectrum as seen from Table 2. For
the three other values—‘mean’, ‘std’ and ‘error’—two
numbers are given to each wave parameter. The first
number, i.e. the left one, yields the result as obtained by the
Bayesian Modelling, whereas the second number, i.e. the
right one, yields the result as obtained by the Parametric
Modelling. It is understood that the value ‘mean’
represents the mean value of the specific estimated
parameter for the 20 simulations/estimations carried out
in the individual cases. The value ‘std’ gives the standard
deviation of the parameter based on the 20 estimations
and, finally, ‘error’ gives the error between the estimated
mean and the true value relative to the true value, except
for the parameters related to the wave direction where the
absolute value of the error is shown. The two latter values
are also based on the mean of the 20 estimations.
In the estimation analysis the wave field is discretised

into N ¼ 30 wave frequencies ([0.01–0.30Hz]) and M ¼ 18
directions ([0–360�]). The sensitivity to discretisation is not
studied, but it should be noted that a previous study,
Nielsen (2005), indicates that the solution is not particu-
larly sensitive to the values of N and M (if chosen
appropriately), and in the study it was found that N ¼ 30
and M ¼ 18 are reasonable values to use in the discretisa-
tion of the wave field.

4.2. Unimodal wave spectra

Table 3 shows the results of Cases A–H. From the table
it is seen that both the Bayesian and the Parametric
Modelling estimate the energy content of the wave spectra
close to the level of the true wave fields. Thus, the mean
values of the estimated significant wave height Hs are,
more or less, identical in the individual cases, with the
exception of Cases C and E. It is seen that the error on the
significant wave height is, in most cases, less than 20%
(with the exception of Cases C and E) of the true value,
independently of the modelling procedure in question. It
should, however, be noted that energy is almost consis-
tently lacking in the estimations. This fact could be due to
filtering introduced by the insensitivity of the ship to
excitations at certain wave lengths; in particular, short
wave lengths since the inertia of the ship is relatively large,
cf. Table 1. Indeed, it is seen that the largest errors on the
significant wave height are found for Cases A–D which
represent wind sea with shorter wave lengths than Cases
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Table 3

True and estimated wave parameters for the unimodal cases

Case Hs Tp T s ys ss
(m) (s) (s) (deg.) (deg.)

A true 3.0 8.0 6.6 015 41

mean 2.5 2.4 6.8 6.4 7.1 6.2 015 054 43 21

std 0.2 0.2 0.2 0.4 0.2 0.2 7 10 3 8

error �17% �20% �15% �20% 9% �5% 0 38 2 20

B true 3.0 8.0 6.6 105 41

mean 2.5 2.8 7.9 7.3 7.6 5.9 115 80 59 34

std 0.1 0.2 0.5 1.6 0.2 0.4 11 13 4 11

error �17% �7% �1% �9% 17% �9% 10 25 18 7

C true 3.0 8.0 6.6 180 41

mean 1.5 2.1 7.3 7.5 7.3 6.8 178 186 23 34

std 0.6 0.9 0.6 1.2 0.4 0.9 73 58 15 17

error �50% �30% �9% �6% 12% 5% 2 6 18 7

D true 3.0 8.0 6.6 225 41

mean 2.2 2.4 8.0 7.2 7.7 5.9 227 264 50 32

std 0.2 0.3 0.3 1.5 0.1 0.6 9 25 4 14

error �27% �20% 0 �10% 18% �9% 2 39 9 9

E true 2.0 14.0 11.0 015 36

mean 2.1 2.8 11.7 10.6 10.9 9.6 27 43 30 27

std 0.2 1.8 1.5 3.4 0.8 2.8 7 33 4 9

error 5% 40% �16% �24% 1% �13% 12 28 6 12

F true 2.0 14.0 11.0 105 36

mean 2.0 1.9 12.8 13.8 11.1 11.3 109 109 46 33

std 0.1 0.1 0.7 0.8 0.4 0.6 5 6 4 3

error 0 �5% �9% �1% 1% 3% 4 4 10 3

G true 2.0 14.0 11.0 180 36

mean 1.7 1.7 12.7 13.8 12.1 11.9 182 181 38 38

std 0.1 0.1 0.5 0.9 0.3 0.7 8 9 3 3

error �15% �15% �9% �1% 10% 8% 2 1 2 2

H true 2.0 14.0 11.0 225 36

mean 1.9 1.9 12.9 13.7 11.5 11.2 221 223 44 38

std 0.1 0.2 0.7 0.9 0.4 0.7 8 10 4 9

error �5% �5% �8% �2% 5% 2% 4 2 8 2

Numbers are shown for both the Bayesian (left one) and the Parametric Modelling (right one).

Table 4

True and estimated wave parameters for the total wave systems of the bimodal cases

Case Hs Tp T s ys ss
(m) (s) (s) (deg.) (deg.)

I true 3.6 – 7.5 352 –

mean 3.3 3.5 – – 8.2 6.4 335 292 – –

std 0.2 0.4 – – 0.4 0.6 13 10 – –

error �8% �3% – – 9% �15% 17 60 – –

J true 3.6 – 7.5 195 –

mean 2.7 3.0 – – 9.9 9.0 203 205 – –

std 0.1 0.6 – – 0.3 0.7 6 14 – –

error �25% �17% – – 32% 20% 8 10 – –

K true 3.6 – 7.5 105 –

mean 3.3 3.7 – – 8.9 6.6 102 86 – –

std 0.2 0.3 – – 0.2 0.4 9 7 – –

error �8% 3% – – 19% �12% 3 19 – –

Numbers are shown for both the Bayesian (left one) and the Parametric Modelling (right one).
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Fig. 1. The significant wave height of Cases C (left) and G (right).
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E–H which are characterised as swells. The aspect of
filtering explains probably also the apparent peculiarity
that the largest error on the estimated significant wave
height exists for Case C, which corresponds to head waves
(b ¼ 180�). Thus, the encountered wave system in Case C is
the system with the shortest apparent (i.e. encountered)
wave lengths relative to the other cases.

With respect to the standard deviation of the significant
wave height, the results of the Bayesian as well as the
Parametric Modelling are almost constant in all the cases;
however, with the smallest standard deviations in the
Bayesian Modelling, which means that the Bayesian
Modelling produces more stable results. On the other
hand, it is observed that the Bayesian results of Hs, with
focus on Cases A–D, exhibit the largest (mean) errors. The
reason is likely to be that filtering necessitates a relatively
large amount of smoothing introduced by priors. This issue
is discussed in more general terms in Nielsen (2005).

Some of the issues concerning the significant wave height
are visualised in Fig. 1 which shows the variation of Hs in
the 20 estimations corresponding to Cases C and G. In the
figure, the results of the Bayesian and the Parametric
Modelling are shown and, in addition, the results of the
true wave record for the 20 simulations are visualised.
Thus, it is seen that the true significant wave height is not
exactly Hs ¼ 3:0m and Hs ¼ 2:0m, respectively, in any of
the simulations, which, in principle, ought to be taken into
account in the comparisons. Similar plots and results,
although not shown and not as bad as Case C, are observed
in the remaining cases. As regard to Cases C and G, Fig. 1
evidently illustrates the difference of the wind sea case
versus the swell case in respect of the estimated Hs; much
better estimations are made for the swell case, both in
regard to error and standard deviation.

Inherently, the estimated significant wave height gives a
measure of the conservation of energy in the estimations.
In order to evaluate the correctness of the distribution of
energy, polar plots of the contours of the directional wave
spectra can be studied. The energy distribution can,
however, also be characterised—in a mean sense—by the
wave period and the wave direction. Therefore, Tp and T s

in combination with ys and ss give a reasonable evaluation
of the energy distribution. With due consideration of these
numbers, Table 3 shows that the Bayesian Modelling and
the Parametric Modelling exhibit somewhat identical
numbers in the individual cases, although it seems that in
cases represented by wind sea (Cases A–D), the former
method performs the best with respect to the mean wave
direction ys. Thus, it is noted that for the Bayesian
Modelling the mean value of the mean wave direction
deviates at most 10� from the true mean wave direction,
which should be compared to deviations from 6� to 39� for
the Parametric Modelling in Cases A–D. For the cases
represented by swell (Cases E–H), the estimated mean wave
direction is in good agreement with the true value with a
slight exception of Case E. Compared to the true numbers,
it is seen that the error on the wave period is at most 24%.
The aspects of filtering is, however, noted for the wind sea
cases, since the peak period Tp is almost consistently
estimated too small, in contrast to the estimated mean
period T s which, in most cases, has values larger than the
true one. Hence, the shape of the frequency wave spectrum,
cf. Eq. (3.1), is distorted in the sense that the energy is not
distributed in a perfect match with the true distribution of
energy. This phenomenon applies to the Bayesian Model-
ling as well as to the Parametric Modelling and the
phenomenon is visualised in Fig. 2 which shows all the
estimated frequency wave spectra in the individual wind
sea cases (Cases A–D). The results of both the Bayesian
Modelling (left plots) and the Parametric Modelling (right
plots) are shown. For the Bayesian Modelling it is seen that
the energy is distributed within a too short frequency
range. In the Parametric Modelling, the problem is of
another kind, since it is observed that, in some of the cases,
the procedure, frequency-wise, estimates a bimodal spec-
trum, which means that the spectrum exhibits two peaks.
Fig. 3 shows similar plots for Cases E–F which are
characterised by swells. From the figure it appears
evidently that the best agreement between the estimations
and the true spectra are observed for the swell cases. This
fact confirms, to some extent, the hypothesis made
previously about the aspect of filtering. Hence, due to the
relatively large inertia of the considered ship, the vessel is
the most sensitive to wave excitations in the lower
frequency range, which means that the estimation proce-
dures work the best—for the specific ship—for excitations
represented by swells. In summary for the unimodal cases,
it can be concluded that the distribution of energy,
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Fig. 2. The estimated frequency wave spectra of Cases A–D (wind sea types).
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directional-wise, of the estimated wave spectra is reason-
able, independently on the modelling procedure in question
although the results of the Bayesian Modelling are more
consistent and in line with the true values. The frequency-
wise distribution of energy is, however, distorted somewhat
for the wind sea cases, whereas there is a good agreement
for the swell cases.

As has been mentioned previously, the Bayesian Model-
ling seems to produce more stable solutions/results
compared to the Parametric Modelling. This is seen in
terms of the smallest standard deviations on the wave
parameters corresponding to the Bayesian Modelling, cf.
Table 3, and it is also visualised graphically in Figs. 2
(particularly) and 3. The reason for the instability of
the solutions as regard to Parametric Modelling is
probably to be found in the search algorithm for the
non-linear optimisation problem. In the present study,
a gradient based search algorithm is used and when, on
the assumption, many local minima exist, the search
basin needs to be rather comprehensive/detailed for
the algorithm to find the global minimum. The insta-
bilities observed, notably in the wind sea cases, for the
Parametric Modelling may therefore be due to pro-
blems related to finding local minima instead of a
global minimum. This topic does, however, need further
studies.
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Fig. 3. The estimated frequency wave spectra of Cases E–H (swell types).
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4.3. Bimodal wave spectra

Table 4 presents the results corresponding to the
bimodal wave spectra, i.e. Cases I–K. It is seen that the
table contains results for only the significant wave height
Hs, the mean wave period T s and the mean wave direction
ys, since the table represents the total wave system in the
individual cases. In addition to Table 4, Table 5 needs
therefore to be considered for the partitioning of the wave
spectra. Hence, Table 5 shows the estimated mean values of
the wave parameters corresponding to the wind sea and the
swell components, respectively. The results of the Bayesian
(bay) as well as the Parametric (par) Modelling are shown.
As regards Table 4, it is seen that, in the mean sense, the
Bayesian Modelling and the Parametric Modelling give
reasonable estimates for the significant wave height with
the largest error being �25% relative to the true value. It
is, however, observed that the error on the significant wave
height is (almost) consistently to the lower side which
means that energy is lacking in the estimations. This
phenomenon is similar to that for the unimodal cases and
is, probably, explained with the same reason, namely the
aspect of filtering. In this respect, it should be noted that
the errors on the significant wave height and the mean
wave period (T s) of Case J do, indeed, take the largest
values. Thus, Case J represents waves with a true mean
wave direction (ys ¼ 195�) close to head sea which means
that the encountered wave system of Case J has the
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Table 5

Partitioning of the bimodal wave spectra

Case Wind sea Swell

Hs Tp T s ys ss Hs Tp T s ys ss
(m) (s) (s) (deg.) (deg.) (m) (s) (s) (deg.) (deg.)

I true 3.0 8.0 6.5 015 41 2.0 14.0 11.0 225 36

bay 2.7 7.4 7.4 004 45 1.9 14.6 14.1 237 31

par 3.0 6.0 4.6 315 36 1.7 14.0 10.8 232 29

J true 3.0 8.0 6.5 180 41 2.0 14.0 11.0 225 36

bay 2.1 10.3 10.2 196 58 1.7 14.2 13.9 241 25

par 2.7 10.6 8.2 195 34 1.3 14.0 10.8 254 36

K true 3.0 8.0 6.5 105 41 2.0 14.0 11.0 105 36

bay 2.8 8.4 8.6 96 47 1.8 12.1 12.7 121 33

par 2.9 5.9 4.5 100 40 2.3 12.6 9.8 78 29

Mean values from the 20 simulations/estimations are shown for the Bayesian (bay) and the Parametric (par) Modelling in each of the cases.

U.D. Nielsen / Ocean Engineering 34 (2007) 1797–1810 1807
shortest—encountered—wave lengths compared to the
other cases. Hence, due to the relatively large inertia of
the vessel, high-frequency components of the wave system
are filtered.

With respect to the mean wave direction the Bayesian
Modelling yields good estimates for all cases. So does the
Parametric Modelling for Cases J and K, but it is seen that
the error takes a significant value for Case I. Looking
closer into this problem, the inspection of the partitioned
wave spectra, see Table 5, reveals that it is the wind sea
component that is estimated to the wrong side, by the
Parametric Modelling, in the specific case (Case I). Thus, it
appears that the wind sea component has a mean value of
ys ¼ 315� for the estimated mean wave direction, which
should be compared to a true mean wave direction of 015�.
It is difficult to explain this controversy for the Parametric
Modelling, since the Bayesian Modelling yields a reason-
able mean value (004�) for ys in the 20 estimations of Case
I. In addition, it should also be noted that the error by the
Parametric Modelling is consistent in the sense that all 20
simulations of Case I give a wrong mean wave direction
with a mean standard deviation of 13�. One probable
explanation for the error may have to do with the
optimisation algorithm which is used in the Parametric
Modelling. The method uses a gradient based search
algorithm which requires a rather detailed search basin
for the initial guesses of the wave parameters, see Nielsen
(2006). Hence, by refining the search basin (meaning
increased CPU time), the mean wave direction of the wind
sea component is estimated to ys ¼ 018�, which is in good
agreement with the true value. This topic will, however, not
be discussed any further, but it can be mentioned that it
would, most likely, be a better option to use a genetic
optimisation algorithm in the Parametric Modelling as
discussed by Nielsen (2006) and Pascoal et al. (2005).

With the exception of the estimations by the Parametric
Modelling in Case I, Table 5 shows that the distribution of
energy, frequency- and directional-wise, is reasonable for
the two estimation procedures. Similar plots to Figs. 2 and
3, although not shown, can be produced for Cases I, J and
K. Instead of the frequency wave spectra, examples on the
estimated directional wave spectra from Cases I, J and K
are visualised in Fig. 4 which shows contour plots of the
wave spectra in a polar format. It should be pointed out
that the figure illustrates only one of the 20 estimated
directional wave spectra in each of the cases. In the figure,
the true directional spectrum is shown to the left and the
results from the Bayesian and the Parametric Modelling
are shown in the middle and to the right, respectively. The
vessel has a course corresponding to 0�, and the waves are
depicted as approaching.
Fig. 4 shows evidently that the Parametric Modelling has

a problem with the direction of the wind sea component in
Case I; similar plots are observed for all estimations of the
Parametric Modelling in the specific case. In this respect, it
is important to note that the examples shown—for the
Bayesian as well as the Parametric Modelling—are not a
special selection of the (best) estimations in the individual
cases (I, J and K).
The conclusion on the treatment of the bimodal cases is

similar to that given on the unimodal cases. This means
that the underlying wave parameters are, in general,
captured well by both of the estimation procedures,
although the distribution of energy does not match the
true distribution completely; in particular energy is lacking
in the high-frequency range.

4.4. Bayesian versus Parametric Modelling

The intention of this study is not to make a final, general
conclusion on which method is the best to estimate wave
spectra from measured ship responses. To draw such a
conclusion, much more detailed analyses are needed with
respect to type of responses, fields of operation, refinement
of the discretisation, type of optimisation algorithm
applied by the Parametric Modelling, costs as regards
CPU time, etc. However, it is interesting to summarise the
results and the discussions made in the preceding in the
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Fig. 4. Examples of contour plots of the estimated directional wave spectra.
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form of a graphical visualisation. Fig. 5 shows therefore the
errors on the significant wave height, the mean wave period
and the mean wave direction, respectively, in all the cases.
The figure does not present any new information but it is
seen that, in general, the smallest errors are observed for
Cases E–H, which are the swell cases. Moreover, the figure
illustrates that the Bayesian Modelling seems to be the best
procedure to estimate the wave direction. On the other
hand, there cannot be made any decisively remarks
concerning Hs and T s from the figure, although the trend
of the errors seems to be slightly in favour of Parametric
Modelling.

4.5. Responses

The preceding analyses have revealed that the results are
influenced by filtering introduced because of the large
inertia of a ship. In the specific numerical simulations sway,
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Fig. 5. Visualisation of the errors of the significant wave height (left), the mean wave period (middle) and the mean wave direction (right) in the

estimations.
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heave and pitch have been considered as the responses,
upon which estimations of wave spectra were based. In
practical situations there could probably be other kind of
responses to make the estimations from. For example, the
relative wave height (based on the distance from a fixed
point on the ship to the sea surface) could be included as a
response, since this type of response has the advantage in
not being sensitive to filtering low/high-frequency wave
components. Moreover, it also important to keep in mind
that estimation of wave spectra, in the present area of
research, is intended for operational decision support to
avoid critical events for the measured responses. Hence, it
may be the case that the introduced filtering will not be of a
great importance for the decision support as regards to the
specific response(s).

5. Conclusions

Two response-based methods for the estimation of wave
spectra were studied. Specifically, Bayesian Modelling and
Parametric Modelling were applied to estimate directional
wave spectra from numerical simulations of motion
measurements with the underlying wave parameters known
exactly. The considered vessel was a relatively large
container ship and, therefore, high-frequency components
of the wave excitations were expected to be filtered. From
the numerical analyses this phenomenon was, indeed,
observed, since the best estimations were made for cases
characterised by swells; independently of the estimation
procedure. Thus, the results showed that the estimated
energy content, represented by the significant wave height,
was almost conserved for excitations characterised by wind
sea, but the distribution of the energy did not match the
true energy distribution perfectly in those cases. For the
swell cases this was to a much better extent the case. Based
on the present study it can therefore be concluded
	
 The response-based methods—the Bayesian Modelling
and the Parametric Modelling—are capable of estimat-
ing sea state parameters from numerical simulations of
measured ship responses.
	
 The energy content is estimated with a reasonable
accuracy, but the exact distribution of energy with
frequency is difficult to obtain if the measured responses
of the vessel are not sensitive to wave excitations in a
certain frequency range. That is, filtering influences the
results.

	
 Although filtering influences the results/estimations of

the response-based methods it should be remembered
that the methods are developed with focus on decision
support systems for operational safety of ships. This
means that the complete and ‘true’ energy distribution
with frequency and direction may not necessarily be
important. What is important is the estimation of energy
within the frequency range where the ship responds to
the excitations.

	
 As a result of filtering and because of the speed-of-

advance problem for an operating ship, wave estima-
tions of response-based methods cannot be expected to
be as accurately as the wave estimations of, e.g. a real
wave buoy which, on the other hand—in this context—
suffers from its fixed position.

	
 The analyses were carried out for one single vessel speed

(V ¼ 10m=s) only and therefore a sensitivity study as
regard to speed remains as a future task in the
estimation analysis. However, the case of zero-forward
speed has been tested, although not presented, and
the results showed no notable—or little favorable—
differences.

	
 Another future task would be to set up the simulations/

analyses for a set of responses in which one of the
responses does not filter high frequency components of
the wave excitations. Thus, it would be interesting to
include the relative wave height or a similar measure,
e.g. the pressure at a point on the hull under the sea
surface, to see if this would improve the wave
estimations in the wind sea cases.

	
 Finally, it is difficult to propose the one estimation

procedure—Bayesian Modelling versus Parametric
Modelling—in favour of the other, since they perform
almost similarly as regards results for the specific
analyses. And, in general, the literature also reflects
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different opinions about which methodology is the best,
e.g. Tannuri et al. (2003) and Pascoal et al. (2005).
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