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Abstract. In an experimental study using a wave tank in a laboratory cold room we determine the 
dispersion relation and amplitude attenuation for surface waves propagating through different 
thicknesses of grease ice. We compare our results to two ice rheology models: the mass-loading 
model, which predicts a wavelength decrease relative to open water, and an infinite depth viscous 
fluid model, which predicts an increasing wavelength as the wave Reynolds number decreases. For 
a thick grease ice layer in which the waves are strongly damped we observe that the wavelength 
increases by up to 30% over its open water value in the frequency range of 1.0 Hz < f< 1.6 Hz. This 
trend agrees with the viscous model, and the agreement improves as the ice thickness increases and 
at higher wave frequencies where conditions approach those of the infinite depth approximation. 
The Reynolds number decreases approximately exponentially with frequency and is in the range 
1 < R < 10 for our experimental conditions. From the model the inferred viscosity of grease ice is at 
least 4 orders of magnitude larger than the open water value and increases with frequency, suggest- 
ing that grease ice is non-Newtonian. For the observed parameter values our analysis shows that the 
mass-loading model of grease ice is inapplicable while a one-layer viscous model provides 
a better match to laboratory observations. 

1. Introduction 

Grease ice is a suspension of frazil crystals, which are small ice 
discs or spicules measuring - 1-4 mm in diameter and 1-100 gm 
in thickness that form in turbulent, slightly supercooled water [see 
Martin and Kauffman, 1981, Figure 11]. "The disc-like shape is the 
result of a highly anisotropic surface energy" of the ice crystal 
structure [Weeks and Ackley, 1982, p. 13]. As the number density 
of crystals increases, a "dense slurry of the individual frazil plate- 
lets" forms, "with concentrations by volume in sea-water of 
20-40%," which at the surface has the visual appearance of a grease 
or oil slick [Martin and Kauffman, 1981, p. 284]. Martin [1981] 
reports grease ice thicknesses of 0.1-0.3 m in the Bering Sea. 

Weitz and Keller [1950] and Peters [1950] give the first quanti- 
tative description of wave propagation through grease ice by treat- 
ing the ice as a layer of noninteracting point masses. Using this 
mass-loading model, they each solve for the two-dimensional 
velocity potential in an inviscid fluid with mixed surface boundary 
conditions in which waves propagate from open water across a dis- 
tinct ice edge into ice-covered water. Both papers predict that phase 
speed and wavelength decrease as waves enter the ice. In a field 
application, Wadhams and Holt [ 1991] use this theory to estimate 
grease and pancake ice thickness from the wavelength change 
observed using satellite synthetic aperture radar (SAR) imagery. 

Martin and Kauffman [1981] discuss the related phenomena of 
wave attenuation and find from laboratory experiments that a non- 
linear viscosity explains observations of wave damping in grease 
ice. Their data suggest that wave amplitude decays linearly with 
distance according to a frequency-dependent slope and that the ice 
is a thixotropic (shear-thinning) fluid in which viscosity decreases 
as the shear rate increases. Tsang [ 1982] suggests that a natural fra- 
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zil slush in a canal possesses an "apparent viscosity" which leads 
to high hydraulic resistance. Weber [1987] models the effect of 
brash ice with a Lagrangian formulation for waves propagating in 
a two-layer fluid. He describes the upper layer as having Newto- 
nian viscosity, while the lower layer is inviscid and infinitely deep. 
For the upper layer he assumes a balance between pressure and fric- 
tion, which implies a wave Reynolds number R which is much less 
than 1. For the limit of a thin, very viscous upper layer this model 
leads to an exponential wave decay rate and an increase in wave 
damping with frequency. This agrees with field observations that 
an ice cover acts as a low-pass filter and that high-frequency waves 
are reflected or damped out within a short distance of the ice edge 
[Hunkins, 1962; Liu etal., 1991a, b; Squire etal., 1995]. In recent 
work, J. Keller (Gravity waves on ice-covered water, submitted to 
the Journal of Geophysical Research, 1997) (hereinafter referred 
to as Keller, submitted manuscript, 1997) describes a two-layer 
system where each layer has an arbitrary thickness, the upper layer 
is viscous, and the lower layer is inviscid. 

The present paper describes a laboratory study of wave propa- 
gation and decay in grease ice and compares the results to the 
mass-loading model and an infinite depth viscous model of wave 
propagation. In what follows, section 2 describes our experimental 
procedures, and section 3 explains our data analysis methods. Sec- 
tion 4 discusses the mass-loading model and derives the viscous 
fluid model, both used to describe wave propagation in grease ice. 
Section 5 compares our results with the theories, and section 6 dis- 
cusses the implications of our results, addressing issues of scaling 
and applicability to field situations. Finally, section 7 summarizes 
our conclusions. 

2. The Experiment 

2.1. Apparatus 

Figure 1 shows the laboratory apparatus. The wave tank is a 
flat-bottomed rectangular box, - 3.5 m long, 1 m wide, and 1 m 
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Figure 1. A schematic side view of the laboratory tank, approximately to scale. 

deep, located in a cold room. One of the long sides is made of trans- 
parent Plexiglas, allowing a side view of the wave propagation and 
ice thickness. The tank walls and bottom are thermally insulated 
with Styrofoam sheets so that the water is cooled from above by 
regulating the room air temperature with a digital thermostat to 
+1 o C. We generate waves with a flap-type paddle, which consists 
of a sheet of plywood, hinged at the bottom edge and extending the 
width of the tank. It is driven by a variable speed dc motor with an 
eccentric wheel, allowing the generation of waves over a range of 
frequencies and amplitudes. The beach is horsehair packing mate- 
rial (sheets of densely packed interwoven fibers held together with 
plastic mesh). We fill the tank to a depth of - 0.5 m with a solution 
of water and rock salt (NaC1) at a salinity comparable to Arctic sur- 
face waters (around 33 practical salinity units (psu)). 

We measure wave properties with five independent strain gauge 
probes, each producing a time series of analog voltage that is sub- 
sequently digitized for analysis. The instruments are attached to a 
metal frame at precisely known separation distances and at a uni- 
form depth of - 0.225 m along the center line of the tank. To avoid 
aliasing, the relative probe spacing is unequal such that probe 1 is 
located at the origin, probe 2 is at 0.217 m, probe 3 is at 0.345 m, 
probe 4 is at 0.517 m; and probe 5 is at 0.781 m. The probe ports 
are positioned to point horizontally across the tank, perpendicular 
to the wave vector to eliminate pressure anomalies caused by 
dynamic pressure fluctuations. Thus we measure only those pres- 
sure perturbations caused by the wave propagation. 

2.2. Procedure 

For each experiment we cool the room temperature for several 
days until the salt water reaches its freezing point. We initiate ice 
growth by rapidly dropping the air temperature to --10 ø C and 
generating waves with the paddle to provide turbulence, a condi- 
tion necessary for frazil formation [Martin, 1981 ]. In this way the 
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ice layer thickness grows at a rate of up to 1.5 cm h . When the 
ice reaches the desired thickness, we return the air temperature to 
near freezing, measure wave propagation with the probes, and 
make various observations of the ice properties. 

As the layer thickness and ice concentration increase, waves are 
attenuated so severely that the signal amplitude becomes too small 
and our data quality is compromised. For thicker layers (up to 
0.2 m) the frazil crystals cohere into domains with dimensions of a 
few centimeters, called flocs. When these flocs form in the ice 
above the probes, we terminate the experiment and melt the ice. 

The grease ice layer is described in terms of its thickness h, 
salinity S, and volume concentration c. We measure c by scooping 
up a portion of the bulk ice/brine layer, filtering the solid from the 
liquid, then allowing the samples to melt and warm to room tem- 

perature. We calculate c from the relative volumes of each, taking 
into account the density difference between ice and water; observed 
values of c range from 0.22 to 0.57. We measure salinity using an 
optical salinometer, which is accurate to within 0.1 psu. The ice 
salinity ranges from 6.0 to 21.0 psu while that of the liquid water 
ranges from 33.0 to 37.8 psu, where the variation in water salinity 
is due to salt conservation in our tank. 

As Figure 1 shows schematically, the ice thickness profile in our 
experiments was not uniform; the ice layer increased in thickness 
away from the paddle. This is attributable to inviscid Stokes drift 
and radiation stress caused by viscous wave decay [Phillips, 1966; 
Martin and Kauffinan, 1981; Longuet-Higgins and Stewart, 1964], 
which causes the grease ice to move in a downwave direction and 
pile up against the beach. Bauer and Martin [1983] present a 
numerical model of grease ice growth and herding. They predict a 
wedge-shaped accumulation of grease ice with a maximum thick- 
ness of 0.1-0.3 m at the downwind edge of leads for a wind speed 

-1 
of 5-10 m s and fetch of 50-500 m, which is consistent with the 
field observations of Martin [1981]. Because neither the 
mass-loading nor viscous models account for a nonuniform ice 
layer thickness, we estimate a spatially averaged thickness by mea- 
suring h with a ruler through the transparent Plexiglas tank wall 
when no waves are present. Observed values range from 0.05 to 0.2 
m. Given h and the ice concentration c, the product ch has dimen- 
sions of length and is termed the effective ice thickness. 

2.3. Data Collection 

We ran two sets of experiments, each comprised of several sets 
of runs made under varying ice conditions. A run is a single pres- 
sure time series for a fixed paddle frequency. On completion of a 
run we changed the paddle frequency and performed another run 
under the same ice conditions. A set consists of all runs made with 

the same ice thickness on the same day. Between runs we made 
qualitative observations of such processes as wave splashing or 
downtank herding of the ice by waves. Occasionally, we recorded 
several consecutive runs at the same frequency to ensure consistent 
results. We usually ran two sets of runs per day, one in the morning 
and one in the afternoon, each requiring about 2.5 hours to com- 
plete. If the ice conditions were unchanged from morning to after- 
noon, then we considered all runs on that day as a single set. In each 
set we keep only those runs for which the waves experience no sig- 
nificant reflection from the beach; if reflections do occur, we 
require that the reflected waves damp out completely before prop- 
agating back through the array. The presence or absence of 
reflected waves was determined visually and later confirmed by 
checking that the signal amplitude decayed monotonically away 
from the paddle. Between sets we grew more ice by lowering the 
cold room air temperature. 
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Figure 2. A potion of a typical data tim• s•fies, wh•m the ve•ical axis has arbitrary units of pressure. Data from 
probe 1 is shown by the solid lin•; probe 2 is shown by the dashed line; prob• 3 is shown by the dotted line; probe 4 
is shown by the dash-dot line; and probe 5 is shown by the hatched solid line. 

3. Data Analysis 

3.1. Frequency and Time Delay 

Figure 2 shows a portion of the raw data for one run, illustrating 
that the signal is offset in time from one probe to the next and that 
its amplitude decreases away from the paddle. For this case, waves 

are propagating through 0.11 m of grease ice (ch=5.4 c•), and the 
exponential wave damping coefficient is q = 0.33 m-. For each 
run we apply a one-dimensional fast Fourier transform (FFT) and 
use the Welch method [Oppenheim and $chafer, 1975, 
pp. 553-554] to obtain the power spectral density and phase trans- 
fer function for each probe. We assume that the wave is monochro- 
matic at the frequency fM of the maximum in the power spectral 
density. Although frequency resolution improves with Fb'T size, 
practical time constraints limit the data record length. We recorded 
data at a rate of 50 Hz for 44 s per run, which permits use of a 2048 
point Fb-T. The phase transfer function is evaluated at fM to find 
the phase delay 0 m of the signal at probe m relative to that at probe 
1, where probe 1 is closest to the paddle and probe 5 is farthest 
away. The time offset of each signal is calculated as 

= t z - 0 (1) tm 2•rf M 

We derive the signal amplitudes Pm from the power spectrum 
by using Parseval's theorem [Oppenheim and Schafer, 1975, 
pp. 390-391 ]. 

3.2. Wavenumber and Decay Coefficient 

Knowing fM, tin' and the probe locations x m , the wave phase 
speed Cp, m between probes 1 and m is expressed as 

_ •o (2) X--m or Cp, m - k-• Cp, m =tm 
We rewrite (2) to give the real part of the wavenumber as 

(Ot m 2 tC f Mtm 
k m = - (3) 

X m X m 

We estimate the error in k m from uncertainties in the observed 
quantities. This method requires data from only two probes, so for 
each run we use the pair with the largest separation distance for 
which both signal amplitudes are significantly above the estimated 
noise level. This minimizes the relative error caused by uncertain- 

ties in t m and x m . At very high frequencies this procedure 
becomes untenable because the waves are so quickly attenuated 
that no pair of probes has sufficiently strong signals. The measure- 
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1•igllro 3. An example of signal amplitude versus distance with best fit exponential curve. 



25,094 NEWYEAR AND MARTIN: WAVE PROPAGATION IN GREASE ICE 

Table 1. Observed and Derived Variables for Experiment 1 

Open Water Observed Decay Reynolds 
Frequency Wavenumber Wavenumber Coefficient Number 

(•, ( ko ), (k), (q), (R) 
-1 -1 -1 

Hz m m m 

Viscosity 

(v), 
2-1 10-2m s 

1.173 5.54 5.45 1.07 4.5 1.35 

1.176 5.57 5.54 1.05 4.7 1.27 

1.181 5.62 5.46 1.14 4.1 1.42 

1.185 5.65 5.49 1.12 4.2 1.38 

1.187 5.68 5.47 1.08 4.3 1.34 

1.196 5.76 5.52 1.08 4.3 1.32 

1.284 6.63 6.22 1.87 2.8 1.64 

1.296 6.76 6.40 1.78 3.0 1.47 

1.424 8.16 7.00 2.77 1.9 1.75 

1.504 9.11 8.22 3.45 2.0 1.42 

1.514 9.23 8.13 3.22 2.0 1.38 

1.517 9.26 8.22 3.54 1.9 1.45 

The ice thickness is 11.3 cm. and ch=5.4 cm. For the variables the 95% confidence limits 
-1 m-Z1 2 -1 are +0.09 m for k, +0.03 for q, +0.1 for R, and +0.08 x 10 -2 m s for v. 

ments are further hindered at high f because the amplitude of a 
pressure perturbation at the water surface, measured at depth, 
decreases for shorter wavelengths while the instrument noise 
remains constant, so the signal-to-noise ratio is reduced. In our 
analysis we assume that the wave attenuation takes the form 

p o,: exp [-qx] (4) 

because for a very thin ice layer we observed multiple wave reflec- 
tions from the beach and paddle, while for a very thick layer the 
waves damped out before passing over the probe array. Addition- 
ally, flocs quickly formed from thick grease ice. Our second set of 
useful runs was terminated because of the formation of flocs; oth- 
erwise, the two sets of results presented here pertain only to grease 
ice. 

We calculate the decay coefficient q by fitting a line to the 
observed signal amplitude P when plotted as ln(P) versus x at each 
fM' similar to the procedure used by Wadhams et al. [1988]. The 
negative slope of the least squares fit is q (q must be positive while 
the slope is negative). We find a posteriori that the assumption of 
exponential decay given in (4) is generally valid (Figure 3). 

In our experiments we found two sets of runs suitable for anal- 
ysis; these were done at effective ice thicknesses of ch=5.4 and 6.9 
cm. For these thicknesses, Tables 1 and 2 list the dimensional val- 
ues of the open water wavenumber and the observed values of k 
and q as a function of frequency. Our other runs were unsuitable 

4. Models 

Squire [1993] derives both the mass-loading and elastic plate 
models of sea ice in detail, noting on page 219 that they are nearly 
equivalent, "the mass-loading model may be regarded as the limit 
of an elastic plate with no rigidity." However, when applied to ice 
typical of the marginal ice zone (MIZ), Squire [1995, p. 997] states 
that the elastic plate formulation "is being used in a manner for 
which it was not intended, and there are concomitant dangers if its 
predictions are taken too far." Therefore we do not invoke the elas- 
tic plate model to explain our observations. Instead, because of the 

Table 2. Observed and Derived Variables for Experiment 2 

Open Water Observed Decay Reynolds 
Frequency Wavenumber Wavenumber Coefficient Number 

(f), ( ko ), (k), (q), (R) 
-1 -1 -1 

Hz m m m 

Viscosity 

(v) 

10-2 2 -1 m s 

1.053 4.47 4.41 0.82 4.7 1.75 

1.054 4.48 4.42 0.84 4.6 1.79 

1.054 4.48 4.42 0.85 4.6 1.80 

1.109 4.95 4.88 1.26 3.5 2.06 

1.209 5.88 5.47 1.74 2.6 2.09 

1.285 6.65 5.83 2.32 2.0 2.30 

1.288 6.67 5.89 2.36 2.0 2.27 

1.299 6.79 5.93 2.36 2.0 2.25 

1.395 7.84 6.26 2.94 1.5 2.36 

1.440 8.35 6.43 3.10 1.4 2.34 

1.490 8.93 6.79 3.25 1.4 2.16 

1.490 8.94 6.81 3.41 1.3 2.19 

1.510 9.18 6.73 3.18 1.3 2.22 

The ice thickness is 14.6 cm, and ch = 6.9 cm. See Table 1 for confidence limits. 
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z=-H 

x z=0 

Figure 4. The coordinate system used in the wave propagation 
models. 

Plz = o = Pi ch•2rl (10) r•t 2 

yields the dispersion relation 

2 gkp wtanh (kH) 
co = (11) 

pw+ p ichktanh (kH) 

When ice is absent, ch = 0 and (11) reduces to the open water 
dispersion relation 

2 

co = gkotanh (koH) (12) 

viscous decay theorized by Weber [ 1987] and observed by Martin 
and Kauffinan [ 1981 ], we use the model presented by Stokes [ 1851 ] 
and Lamb [1932, pp. 623-628], which describes time-decaying 
waves in an infinitely deep fluid with constant Newtonian viscosity 
v; the solution admits both wave attenuation and a wavelength 
increase. We briefly review both models and state the results. 

We assume that small-amplitude, monochromatic plane waves 
propagate in an incompressible fluid, and we solve for the 
two-dimensional velocity field. Our coordinate system is the verti- 
cal x-z plane shown in Figure 4 in which waves propagate to the 
fight and u and w are the velocity components. For the mass-load- 
ing model the fluid is irrotational, inviscid, and of uniform depth H 
with an ice layer of thickness h, while for the viscous model the 
fluid is infinitely deep and homogeneous. At the free surface the 
boundary conditions for both cases are the linearized kinematic 
condition 

-•1 = •__n (5) z=0 

For any given wave frequency the mass-loading model yields a 
larger wavenumber than for open water. At small wavenumbers it 
asymptotically approaches the open water value; at larger wave- 
numbers it strongly diverges. 

4.2. The Viscous Model 

From Lamb's [1932, sections 348 and 349] version of Stokes's 
[1851 ] problem for wave propagation in an infinitely deep viscous 
fluid we write 

u = 3x & v= •+•xx (13) 
provided that 

V2qb = 0 rg.__.• = vV2• r (14) 0t 

where • is the stream function. The boundary conditions include 
the vanishing of both components of surface stress 

and the linearized Bernoulli equation 3•b I 2vl 0 • -gr/+ = 
Z= Z=0 

= _l? 0 • 0 p Iz = 0 + gz (6) 
v 7xx+ : 0 where •bis the velocity potential, r/is the free surface displacement, = 0 

P is the pressure field, p is the density, and g is the gravitational and that the solution is bounded at depth 
acceleration. We use the convention that wave frequency f, mea- 
sured in hertz, is real while the wavenumber tc is complex 

tc = k + iq (7) 

-1 

where tc, k, and q have units of m . This treats wave attenuation 
as an exponential, spatial decay given by the magnitude of q. The 
real part of the wavenumber for ice-free deep water is 

09 2 4•2f 2 
k o = -- = (8) 

g g 

(15) 

(16) 

lim qb = 0 (17) 
Z --'> -oo 

Neglecting surface tension, we rewrite Lamb's [1932] solution 
to describe a wave decaying with distance and obtain the complex 
dispersion relation 

2vr2-iro +gtc = 4v tc- (18) 

We define the complex, nondimensionhl wavenumber X as 

where ro = 2•rf. 

4.1. The Mass-Loading Model 

For a finite depth H, there is no normal flow at the bottom 

•P 0 (9) 

The ice field is imposed via the top boundary condition rather 
than any bulk fluid property and is parametefized by the ice thick- 
ness h, the volume fraction of ice c, and the density Pi' In the 
mass-loading model the frazil crystals are assumed to be noninter- 
acting, and the condition of zero rigidity 

where 

tc }+i•t (19) X-•o- 

k q (20) ro 
are dimensionless forms of the wavenumber and damping coeffi- 
cient. We also define the wave Reynolds number R by using the 

co 2• 

wave phase speed U = •o and wavelength •, = •oo to obtain 
2 

R = to = g (21) 
2 3 

4 vk o 4 vro 
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which is a function of co and v only. Using (19) and (21), we 
rewrite (18) in nondimensional form as 

/ X6_.•l (X5 +3X4)+ 2i( 3 - x 2) 4R 3 2R 2 

-X2+2X-1 = 0 

Given R, (22) yields six roots for X. As R varies, the roots trace 
out curves in the complex plane, three of which lie in the quadrant 
where } and • are positive. In this region we obtain a power series 
solution to (22) for large R 

i ,j•(1-i) 9 + 41 (1+i) 
X-- 1 + • + 4 R 3/2 4R 2 164r• R 5/2 

0.4 

0.3 

(22) 0 
race 0.2 
.rant 

,'ries 

0.1 

(23) 
0 

As we show below, this particular expansion is an approximation 
to that root of (22) which is closest to our experimental data. 

Figure 5 shows both the exact ((22), solid lines) and approxi- 
mate ((23), dashed line) solutions for 0.1 < R < 50, omitting the 
four exact solutions which do not converge to the inviscid solution 
of } = 1, •t = 0. As labeled, the dots mark the location of the 
solutions for R = 0.1, and the hatch marks show the values for 

R = 0.5, 1, 2, 5, 10, and 15. The vertical dotted line shows } = 1, 
which corresponds to the open water wavelength. Examination of 
the figure shows that as R becomes large, the two solid curves 
approach the real axis along the line •: = 1. This vertical approach 
to the/c axis means that as R increases, the waves attain their open 
water wavelength before damping ceases to occur. Eq.uation (23) 
also shows that the first damping term is of order R -I while the 
first term giving a wavelength change is of order R -3/2 . Thus for 
R >> 1, damping can occur without a change in wavelength. 

4.3. Reynolds Number and Viscosity 

Obtaining results from the viscous model-requires the evalua- 
tion of v or, equivalently, of the Reynolds number. For each exper- 
imental run we determine R by comparison of the observed values 
of Xob s = •Cob s + i•obs with the solution curves from (22). At 
each observed frequency the closest solution •c v + JOy is found by 
minimizing the expression 

d •Cob s ]•v 2 2 = + (•obs - •v) (24) 

0.4 

0.3 

0.2 

0.1 

i i i i i 
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_ • 0.3 5•• 
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i i i 

0 0.2 0.4 0.6 0.8 1.0 

Figure 5. Solutions of (22) for. positive (/c, •t). See text for addi- 
tional description. 

i i 

0.7 0.8 0.9 1.0 

Figure 6. Comparison of the solution curves and the observed 
values of X. Solid lines are the exact solutions (equation (22)), the 
dashed line is the approximate solution (equation (23)). The 
crosses show the solutions for ch=5.4 cm, and the open circles are 
for 6.9 cm, all with 95% confidence limits. The dots on the solu- 
tion curves are the closest solution for each X. See text for addi- 

tional description. 

Figure 6 shows the solution curves from Figure 5 (on a different 
scale), our experimental observations with their 95% confidence 
limits, and the set of closest solutions from the viscous theory. 
Although the trend of our observations in this figure is similar to 
the theory, our data generally lie above the curves indicating that 
for a given wavelength the wave damping is greater than predicted. 
Only for small values of R (i.e., farthest to the left) does the theory 
match our observations of both • and • simultaneously. Figure 6 
also shows that •: < 1 for all our observations. All of the closest vis- 
cous solutions are located on the upper of the two solid curves, and 

each is associated with a value of R, while each Xob s corresponds 
to a specific f. Thus we obtain a value of R for each frequency. 
Once R is known, we calculate the viscosity v from (21). We then 
define the relative viscosity 

9 = __v (25) 
v o 

2-1 

where v o is taken as the pure water viscosity of 10 -6 m s . 
Tables 1 and 2 also list these derived values of R and v. 

5. Results 

From Kinsman [1965, pp. 131-132], waves in a fluid of depth 
h* are deep water waves when the phase speed equals 95% of its 
deep water value. This occurs for koh* • = • or, equivalently, when 

f (h*) -- f c (h*) = J•h* (26) 
When h* equals the tank depth H, then all our observed waves 

are deep water waves. For the viscous theory to be applicable, how- 
ever, h* should equal the grease ice thickness h. Therefore we 
define the nondimensional frequency • as 

•- f f c ( h ) (27) 
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Figure 7. Wave decay coefficient • versus f. (a) ch=5.4 cm; (b) 
ch=6.9 cm. See text for additional description. 

When • > 1, the wave speed is at least 95% of its deep water 
value, so we expect the viscous model to strictly apply. For • < 1 
we expect the deep water solution to diverge from our observations. 
For the first experiment, described in Table 1, fc = 1.85 Hz and 
0.63 < • < 0.82; for the second experiment, shown in Table 2, 
fc = 1.63 and 0.64 <_ jc <_ 0.93. This indicates that •c < 1 for all 
our runs, but • --> 1 at the higher frequencies. 

Figures 7 through 10 present our results plotted versus •; the 
upper frame in each figure is for ch = 5.4 cm, the lower frame is 
for ch = 6.9 cm. Figures 7a and 7b plot the wave decay coeffi- 
cient ̂ versus •. On these figures the open circles give our obser- 
vations, where in all cases the 95% confidence limits lie within the 

circles. The solid line in each subfigure gives the viscous solution 
derived by the method described in section 4.3. Examination of 
Figure 7 shows that in• both cases, • is approximately linearly pro- 
portional to jc and that the slope is similar in both cases. For low 
frequency waves, • is small, and damping becomes unimportant. 
Thus the grease ice cover serves as a low-pass filter for wave 
energy. At high • the shorter waves are severely damped; we 
observe an e-folding decay distance as small as half a wavelength 
for 

Figures, 8a and 8b show the dependence of the Reynolds number 
R on f. The solid circles are our observations with their 95% error 
bars, and the line is the least squares exponential curve fit to those 
points, For reference we show a solid horizontal line at R = 1. For 
all our observations, 1 < R < 10 so that inertial effects and viscous 

effects are comparable. Our measurements at large R have greater 
errors because of weak wave damping, which leads to experimental 
difficulties such as partial standing waves. As f increases, R 
decreases exponentially and approaches R = 1 as • approaches 
1, indicating that viscous effects are important for high-frequency 

Figures 9a and 9b show the log of normalized viscosity •,. In 
each figure the error bars are smaller than the symbols, and the line 
is the least squares linear fit. The figures show that viscosity 
increases with •, is always more than 4 orders of magnitude 
greater than that of water, and is larger for thicker ice. Our experi- 
ments yield values of •, as large as 2.4 x 104 A Newtonian fluid . 

has constant viscosity; our observation that •' increases with f 
implies that grease ice is non-Newtonian. 

Finally, Figures 10a and 10b show •: as a function of jc. Our 
observations and their uncertainty are given by the open circles. 
The viscous solution is shown as a solid line and the mass-loading 
solution as a dashed line. Because the mass,loading model yields 
such large values of •:, we use a discontinuous vertical axis to 
include them. For all frequencies we find/• < 1, indicating that the 
wavenumber is smaller and the wavelength is longer than for open 
water. For increasing f, •: decreases approximately linearly, so 
that the wavelength relative to its open water value becomes longer 
as the frequency increases. As • decreases, R increases and •: --> 1, 
signifying that the wavelength is unaffected by the ice. HoWever, 
at low frequencies we find nonnegligible decay (• -- 0.2 ), so that 
the waves are damped with very little wavelength change in accor- 
dance with (23). At higher frequencies (jc>0.85), where the 
wavelength change is largest, the viscous model matches our obser- 
vations. Therefore the viscous model accurately describes the 
change in wavelength when the ice layer approxima.tes a deep fluid. 
In contrast, the mass-loading model is inapplicable to our experi- 
ment since it predicts/• > 1 for our experimental frequen- 
cies. 

6. Discussion 

Figure 10 shows that the mass-loading model is inapplicable to 
our observations and that the viscous model comes closer to 

explaining our observations, both in terms of wave damping and 
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Figure 8. Reynolds number R versus f. (a) ch=5.4 cm; (b) 
ch=6.9 cm. 
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meters across [Martin and Kauffman, 1981' Bauer and Martin, 
19831. 

The rapid damping of short-period waves also has implications 
for remote sensing of the MIZ. As noted in Wadhams and Holt 
[ 1991], areas covered with grease ice appear dark in SAR imagery 
because Bragg-resonant waves in the ice are damped out very 
quickly in accord with our laboratory results in Figure 7. This low- 
pass filter allows only the longer wavelengths to enter and propa- 
gate through the areas of grease ice. The lack of short, steep waves 
leads to a relatively smooth sea surface and allows the rapid forma- 
tion of large areas of pancake ice floes, as reported by Wadhams et 
al__ [ 1996] for the Greenland Sea Odden region. 

4.4 

4.0 _ - 

0 7 0.8 0.9 

f 
Figure 9. Log of normalized viscosity 9versus jc. (a) ch=5.4 
cm; (b) ch=6.9 cm. 

wavelength change. Why this is so deserves a closer examination. 
The large implied viscosity in Figure 9 suggests that frazil crystals 
at concentrations approaching c = 0.5 strongly interact, possibly 
through sintering, collisions, and/or shearing, thus violating the 
noninteraction assumption of the mass-loading model. The viscous 
model also has shortcomings. Our experiments take place in a fluid 
system which is clearly nonhomogeneous and where the grease ice 
layer does not always satisfy the deep water approximation given 
by (26). At low jc the model generally'underpredicts wave damp- 
ing and overpredicts a change in wavelength. However, as • 
approaches 1, the deep water condition is more nearly satisfied in 
our experiments, and as Figure 10b shows, the agreement between 
theory and observations is best at the highest f where the relative 
ice thickness kh is largest. To address the shortcomings of the infi- 
nite depth theory, it will be necessary to employ a two-layer viscous 
model such as Keller (submitted manuscript, 1997), described ear- 
lier. Further, because of the apparent variability of 9 with fre- 
quency as discussed above, it may also be necessary to use a 

non-Newtonian form of viscosity or a viscoelastic/viscoplastic ice 
rheology. 

Despite the difficulty in scaling our results for waves of the 
order of meters to sea swell typical of the outer MIZ where grease 
ice is often found, we can directly compare our results to wind 
waves generated in leads where grease ice is forming. Our labora- 
tory ,frazil crystals are "life-sized" and need no scaling, as is the 
case when attempting to compare our laboratory results to an ice 
field with larger ice floes. Further, because our laboratory ice layer 
thicknesses are comparable to those observed in the field, as noted 
earlier, the bulk properties of grease ice are well replicated in the 
laboratory. The waves we generate are of the order of 1 Hz, and 
waves of this frequency are common in leads of a few hundreds of 

7. Conclusions 

Laboratory measurements of the propagation and damping of 
surface gravity waves over a range of frequencies in a field of 
grease ice with varying effective thicknesses ch show that wave 
damping is exponential with distance and is frequency-dependent; 
• is small for low wave frequencies and increases with f at high 
frequencies. The wave Reynolds number is O(1) and is an expo- 
nentially decreasing function of •c. The derived bulk viscosity of 
grease ice is at least 4 orders of magnitude larger than for water and 

1.5 

1.4 

1.3 7 - 

/ 

1.0' .••« _ 
0.9 ••••_t• - 

0'8 t , , 
'o19 

1.5 b' 

1.4 , • 
1 

1.0 

_ 

0.9- 

_ 

0.8- 

- 

i / 

0.7 0.8 0.9 

Figure 10. Normalized wavenumber •: versus f. (a) ch=5.4 cm; 
(b) ch=6.9 cm. 
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increases with frequency, implying that grease ice behaves as a 
non-Newtonian fluid. Because of the observed wave lengthening, 
the mass-loading model prediction of a significant wavelength 
shortening relative to open water is inapplicable to grease ice at our 
observed wave frequencies. At high frequencies an infinite depth 
Newtonian fluid model of grease ice yields good agreement with 
the data and explains both the observed wave attenuation and 
wavelength increase, while at lower frequencies the results diverge 
from the theory. Models which may improve on our results include 
a viscoelastic or a two-layer viscous model of the ice/water system. 
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