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The effect of a footprint on perceived surface roughness

By D. E. NEWLAND

University Engineering Department, Trumpington Street,
Cambridge, CB2 1PZ, UK.

(Communicated by K. L. Johnson, F.R.S. — Received 14 October 1985)

A two-dimensional homogeneous random surface {y(X)} is generated from
another such surface {z(X)} by a process of smoothing represented by

y(X) = f duw(u—X)z()

where w(X) is a deterministic weighting function satisfying certain
conditions. The two-dimensional autocorrelation and spectral density
functions of the smoothed surface {y(X)} are calculated in terms of the
corresponding functions of the reference surface {z(X)} and the properties
of the ‘footprint’ of the contact w(X).

When the surfaces are Gaussian, the statistical properties of their peaks
and summits are given by the continuous theory of surface roughness.
If only sampled values of the surface height are available, there is a
corresponding discrete theory. Provided that the discrete sampling
interval is small enough, profile statistics calculated by the discrete theory
should approach asymptotically those calculated by the continuous
theory, but it is known that such asymptotic convergence may not occur
in practice. For a smoothed surface {y(X)} which is generated from a
reference surface {z(X)} by a ‘good’ footprint of finite area, it is shown
in this paper that the expected asymptotic convergence does occur
always, even if the reference surface is ideally white. For a footprint to
be a good footprint, w(X) must be continuous and smooth enough that
it can be differentiated twice everywhere, including at its edges. Sample
calculations for three footprints, two of which are good footprints,
illustrate the theory.

1. INTRODUCTION

This paper has arisen from work undertaken by the author and a colleague into
the response of wheeled vehicles to road surface irregularities (Cebon & Newland
1984; Cebon 1985; Newland 1986). In assessing the vertical displacements of a
vehicle’s wheels, it is necessary to allow for the action of the wheels’ rubber tyres
in enveloping road surface height irregularities. This depends on the scale of the
irregularities and the size of the contact patch, which is the region where there is
tyre-to-road contact. When the wavelength of the irregularities is small in com-
parison with the dimensions of a wheel’s contact patch, deflections within the
tyre absorb the irregularities and the wheel is not lifted significantly.

In practice, all mechanical surfaces whose height is measured by a method
involving contact, whether by a wheel or by a probe, will be smoothed by the
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304 D. E. Newland

contacting device. The degree of smoothing depends on the size of the area of
contact and the flexibility properties of the measuring device and of the surface.

In the field of vehicle dynamics various models have been devised to represent
the interaction that occurs between a rubber-tyred wheel and the ground (Captain
et al. 1979). In one class of model the enveloping action of the tyre is allowed for
by assuming that the vertical displacement of the tyre is a weighted average of
the road surface height within its contact patch. In the following analysis, we shall
assume that a general homogeneous random surface is smoothed by such an
averaging process. A weighted average of the surface height within a contact patch
of fixed size is used to define a derived or smoothed surface whose statistical
properties will be calculated. We shall assume only that the original or reference
surface is homogeneous (stationary in space), and we calculate the two-dimensional
autocorrelation and spectral density functions for the smoothed surface in terms
of the corresponding functions for the reference surface and the properties of the
‘footprint’ which defines the averaging process. It has been pointed out before that
the averaging of surface height irregularities within a contact patch of fixed size
isequivalent to filtering the different wavenumber components of surface roughness
(Captain et al. 1979; Gillespie et al. 1980), but there appears to be no previous
general theoretical treatment of the two-dimensional problem.

Recently a paper by another of the author’s colleagues has considered a related
subject (Greenwood 1984). In his paper, Greenwood has calculated the statistical
description of surface roughness for the case when the surface in question is known
only by the result of sampling its height on a rectangular grid of constant sampling
interval. His results agree with and extend those obtained by Whitehouse &
Archard (1970) and Whitehouse & Phillips (1978, 1982). Peaks and summits are
defined in terms of the relative heights of adjacent ordinates. The distributions
of peak heights and curvatures are obtained for any profile across a homogeneous,
Gaussian surface. The distributions of summit heights and mean curvatures are
obtained for any homogeneous, Gaussian surface which is also isotropic. When the
sampling interval becomes vanishingly small, the discrete results for profile
statistics should become asymptotically the same as those worked out earlier by
Rice (1944, 1945), Cartwright & Longuet-Higgins (1956), Longuet-Higgins
(1957a,b, 1962) and Nayak (1971) for a continuous profile. Greenwood (1984)
shows that, under suitable conditions, this asymptotic convergence of the two
theories does occur, but quotes experimental results which indicate that the
required conditions may not be satisfied in practice. Then the continuous and
discrete theories give different results.

The cause of this lack of agreement is due to the presence of small-wavelength
(large-wavenumber) components in the surface height. When the surface is
smoothed by a suitable footprint, these large-wavenumber components are
eliminated and the statistical properties of profiles across the smoothed surface
then become asymptotically the same, whether calculated by the continuous
theory or by the discrete theory when the sampling interval becomes vanishingly
small.

It will be assumed that the shape and size of the footprint are constant (the
so-called fixed footprint model of vehicle dynamics) and that the averaging
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properties of the footprint are independent of the characteristics of the road
surface. Variation of contact patch size due to the vertical dynamics of the wheel
and suspension system is not considered.

2. GENERAL THEORY OF SMOOTHING

Consider a rigid surface whose height measured from a reference plane is a sample
function of a two-dimensional random process. The height of a point on the surface
whose position is defined by vector X in the datum plane is given by z(X). If the
random process {z(X)} is homogeneous and has a correlation function R,,(x) defined

by
B, (x) = E[2(X) 2(X +x)] (1)
then its two-dimensional spectral density S,,(y) is given by
1 s
S.el0) = G5 f xRy (x) €77, @)

The integration extends over the infinite two-dimensional domain of x. We shall
assume that R,,(x) is known for all x and hence that the spectral density function
8,.(y) is also known. The use of delta functions in the generalized theory of Fourier
analysis permits S,,(y) to be found subject to very general conditions which appear
to include all practicable correlation functions. Since R,,(x) is an even function
of x, it follows from (2) that §,,(y) is always real (see, for example, Newland 1984).

Now suppose that a new random surface is defined in such a way that the height
y(X) of the new surface is a weighted integral of 2(X) in the vicinity of X. For each
sample surface making up the ensemble {y(X)} we define

y(X) = f duw(u—X)z(u), 3)

where w(X) is the same arbitrary deterministic weighting function and z(X) is a
corresponding sample from the ensemble {z(X)}. We can think of the height of the
2(X) surface being measured by a probe which records, not the absolute height z(X),
but a weighted average of this height in the region of X. We shall refer to z(X)
as the original (or reference) surface and y(X) as the smoothed (or generated)
surface. The (real) weighting function w(X) is taken to be always finite and to
decay to zero fast enough when |X]—> oo that the integral in (3) exists whenever
E[2?] exists. For convenience, we shall use only weighting functions which are
normalized so that

f dXw(X) = 1. )

Data and lag footprints

We shall now calculate the autocorrelation function for the smoothed surface,
R,,(x), in terms of the weighting function w(X) and the autocorrelation function
for the original surface, R,,(x).
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Since
R, (%) = E[y(X) y(X +x)] (5)
we have, on substituting from (3
[J dulj du, w( X) w(u,— X—x) 2(u;) z(uz)] . (6)

The expectation operator E may be brought inside the integrations and then, using
(1), we obtain

= f dulf du, w(u, — X) w(u,— X—x) R, (u,—u,). (7

[e] [e o]

By defining two new variables
u=u—X (8)
and v=u,—u—X—x 9)

and noting that dv = du, when u is constant, (7) can be rewritten as
f duj dvwu)wu+v)R,,(v+x). (10)

The integration over u does not involve R,,(v+ x) and if we define a new weighting
function

w'(v) =f du w(u) w(u+v), (11)
[e]
then an alternative form for (10) is
R, (x)= foo dow'(v)R,,(v+x) (12)
or, on changing the variable again by putting
s=v+X, (13)
another version of (12) is
Ryy(x) = f dsul(s—x) Rels). (14)

The use of a prime after a quantity does not denote differentiation; instead it
indicates a quantity which has been derived from the corresponding unprimed
quantity by an appropriate transformation. In this case w’(v) has been derived
from w(u) by (11). In the terminology of spectral analysis (see, for example,
Newland 1984) w(u) is called the data window and w’(v) is the corresponding lag
window. However in the subjects of road roughness in vehicle dynamics and
surface roughness in mechanical engineering, the term ‘footprint’ seems more
appropriate than ‘window’ so that we shall refer to w(u) as the data footprint and
w’(v) as the lag footprint.
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By changing v to —v in (11) and then changing the variable of integration to
r where = u—ov (15)
it is easy to see that w'(v) = w'(—v) (16)

so that the lag footprint w’(v) defined by (11) is an even function of v whatever
the form of the data footprint w(u). Also we note, from (3), that u is a dummy
variable for the position vector X and, from (12), that v is a dummy variable for
the displacement (lag) vector x. The data footprint is therefore often written as
w(X) and the lag footprint as w’(x) and, from (11), the two are related by

w'(x) = f dX w(X) w(X + x). (17)

Frequency and spectral footprints

Following the same terminology, we shall define two footprints in the frequency
domain which correspond to the data and lag footprints in the space domain. The
Fourier transform of the data footprint, w(X), will be called the frequency footprint,
W(y), and is defined by

1 .
=— —iy-x
W(y) (2ﬂ)2fw dXw(X)e . (18)
The Fourier transform of the lag footprint, w’(x), will be called the spectral
Sfootprint, W’(y), and is defined by
1 ‘
’ — ’ —iy-x
W (y) (2n)2f00 dxw'(x)e . (19)
By changing the variable of integration from x to —x in (19) and using (16), we
see that
Wi(y) = W*(y) (20)

so that the spectral footprint is always a real function. The relationship between
W(y) and W’(y) can be obtained by taking Fourier transforms of both sides of (17).
After multiplying the right-hand side by e 7'X ¢!7'X and rearranging terms, we
obtain

‘(%)2\[00 dxw'(x)e '* = (2;)2deXw(X) eir'Xfoo dx w(x+X)e 7 C+%  (21)

which, with the definitions (18) and (19), gives
W(y) = (2m)> W*(y) W(y). (22)

We can now relate the spectral density of the smoothed surface, S,,(y), to the
spectral density of the original surface, S,,(y), by taking the Fourier transform of
both sides of (12). After multiplying the right-hand side by e!?’?e "¢ and
rearranging terms, we obtain

————1 —iy- 1 ’ iy-v iy (o+x
(211:){[00 dx R, (x) e = (2n)2fwde (v)el? foo dx R,,(v+x)e i7" ®+x) (23)
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which with (2), (19) and (20), gives
Syy(¥) = (21)2 W' () S.(7) (24)
or, on substituting from (22),
Syy(¥) = (21)* W*() W(2) 8,.(?). (25)

These results (24) and (25) allow the spectral density of the smoothed surface
to be obtained from the spectral density of the original surface by simply
multiplying by the spectral footprint function in (24) and by the square of the
frequency footprint function in (25). The theory of the derivation of (24) and (25)
is similar to that for the spectral analysis of finite-length records of random
functions, which is the basis of the theory of digital spectral analysis (see, for
example, Newland (1984)). However the application of this theory to the two-
dimensional problem of surface roughness is thought not to have been published
before. It will be seen that the fixed one-dimensional data window of digital
spectral analysis has been replaced by a moving two-dimensional data footprint,
and the moving one-dimensional spectral window of digital spectral analysis has
become a fixed two-dimensional spectral footprint.

Three sample footprints

For the purpose of illustration in the following calculations, we consider three
sample footprints. We take rectangular axes in the datum plane of the surface with
reference directions e,, €,, and express the vectors X, x and y in terms of their
components along these directions.

For the rectangular, flat data footprint, the weighting function w(X) = w(X;, X,)
is constant over a rectangular area —a, < X, <a,, —a, < X, < a, and is zero
elsewhere. The height of the smoothed surface at X is then an unweighted average
of the original surface over a rectangular area 2a, x 2a, centred at X. For the
rectangular, cosine data footprint, the average extends over the same rectangle but
now there is a cosine weighting. For any section through w(X,, X,) parallel to the
X, axis, the weighting function has the form (1 + cosnX,/a,), and similarly for any
section parallel to the X, axis. For the normal data footprint, w(X,, X,) is an
elliptical Gaussian bell with its major and minor axes aligned with the coordinate
axes. The volume under each w(X,, X,) surface is normalized to unity in order to
satisfy (4).

In table 1, these three data footprint functions are listed, together with their
corresponding lag footprints calculated from (17), frequency footprints calculated
from (18), and spectral footprints calculated from (19) or from (22). All the
functions are shown drawn to scale in figures 1, 2 and 3, and, in order to illustrate
more clearly the different shapes of the three spectral footprints, their cross-sections
along the y,-axes in figures 1(d), 2(d) and 3 (d) are plotted again to a logarithmic
scale in figure 4.

In the case of the normal data footprint, the area covered by the footprint is
infinite, which is obviously a theoretical case only. In any practical application,
there must be some truncation to limit the size of the footprint. The flat data
footprint (T1.1) (see table 1), and the cosine data footprint (T'1.5), are examples



309

Perceived surface roughness

“Aprespo azowr adeys Suifjzepun oty M0ys 01 Leme 4n9 us9

. I q sey ydeid yoes jo
juerpenb quoly oy,  A]uo s1equnusA®M JO POy pojtuil] & 10§ umelp are sjuLidyoog [es3oads pue Lousnbaiy oﬁ& T Mng .W:
pouyep se sjutid}ooy rexgoads (p) pue Louenbaug (9) ‘Fey (q) Surpuodseu100 s31 pue utzdyoof eyep re re[nueoey (v) 'y aﬁ.bcﬂm

..
22>
RS
s
XA 2
.’.00’0‘"’.".’
2 S
[ 7 FA 2RISR ARZS
s

2L L 2L LA
osrrs 22

>
>
225

(?)

A

Vol. 405.



‘K[respo a1out adeys Suif[Iepun oY) moys 0} Leme no usaq sey ydeid yoes jo juripenb
U0y oY, *AJUO SIOqUINUSARM JO P[OY Pajiut] & 10§ umelp oxe syuridioo; reigoeds pue Louenbary oy, 1 o[qe) Ul pauyep
se syuradjooy [eagoads (p) pue Lousnbeiy (9) ‘Fef (9) Burpuodse1iod syt pue Juldjooy BJEP SUISOD Ien3ueloay (v) "g TINOI

D. E. Newland

(Bztz),m

310



311

Perceived surface roughness

“Apresp arowr adeys Fuifpapun 9y} moys 0} Leme
QU] & 10} UMOYs are s3ulid)oo] Yy [[y | 9[qe)
dse1100 11 pue quurdjooy ©}ep [eUWLION (V) "¢ TN

MO u99q sry Ydeid yoeo jo quripenb quoij oy, “A[uo senpea jo PRy p
ut paugap se sjutrdjooy [eagoads (p) pue Louenbeay (o) ‘Sef () Surpuo

-2

11



D. E. Newland

312

-porrord Usaq JoU 9ABY ‘SIXE [€JUOZLIOY Y} MO[aq [[B) Yorym

‘P 08 — U®Y) SSO[ SON[B A "9[BIS STy 3LIedo] B U0 ponyord ueym ‘qurrdjo0] BIEPp [BULIOU € (7) pUE yuLd}00] ©)EP SUIS0D IR[NFULBIOSL
® () ‘punrdyooy erep fepy rem3uejoal e (v) 03 Surpuodse1100 suorouny juiidjooy [e13oeds oYy YSnoay) suoOes-§80I) § TUNDLY

ug uy 0 1y - ug-
q%ﬁsﬂl—‘ T T T Qw T T T L) 1
+o9|-
- o —_
llcw'
T ©)
(30,04-2) 3107 |°
ug RM 0 1y — ug— ug iy 0 1y — ug—
Y% < 08— . C L 08
+o9- Lool-
40y — <+ 0¥~
1 1
103 TO
g y (@) ) (o)
{o(2/ "0 4)-T13 Y, 4 o' 3
d pws o NA:..AE% 101




Perceived surface roughness 313

of footprints of finite area. Later we shall refer to a general footprint of finite area,
by which is meant any data footprint satisfying (4) for which w(X) is zero for all
|X] > r where r is some arbitrary but finite dimension.

The flat data footprint is discontinuous at its edges and its derivatives dw/dX,
and dw/0X, do not exist at X, = +a, and X, = +a, respectively. The cosine data
footprint is not discontinuous and both its first and second derivatives exist
everywhere (including at its edges). We see also that, for the corresponding spectral
footprints, for large wavenumbers the decay of W'(y,, v,) is proportional to 1/y2y2
in the case of the flat data footprint and proportional to 1/y$y$ in the case of the
cosine data footprint. This behaviour is illustrated in figure 4, as is the greater rate
of decay of the exponential function in the case of the normal footprint.

3. ROUGHNESS PROPERTIES OF A SMOOTHED SURFACE

We shall now consider the application of the previous results to calculations of
the statistics of peaks and summits of a smoothed surface. We shall assume that
the original surface is a Gaussian surface with zero mean height so that the
smoothed surface is also Gaussian with zero mean. The classical theory of
Cartwright & Longuet-Higgins (1956), Longuet-Higgins (19574, b, 1962) and
Nayak (1971) can then be applied. It is known from this theory that the profile
statistics for the curve of intersection of the surface with a vertical plane parallel
to the reference vector e can be defined in terms of the following three moments
of the surface’s spectral density :

my = L dy Sy, (7), (26)
my = L dy (y-€)*Syy(»), (27)
my = f . dy (y-e)* Sy, (7). (28)

Since the directions of the reference axes X,, X, may be chosen arbitrarily, we may
assume without loss of generality that the profile direction e is parallel to the X, -axis,
when (27) and (28) simplify to

my = L dyyisS,,(») (29)

and my = f dy Y1 8yy (7). (30)
o]

If the surface is isotropic, the statistics of its summits can also be defined in terms
of these three moments m,, m, and m,, which are now independent of the direction
of the profile across the X,, X, plane.

Since the spectral density of the smoothed surface, S,,(y), is defined as the
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Fourier transform of its autocorrelation function R, (x), it follows by the inverse
transform that

wy(X) = Lo dySy,(r)e'r*. (31)

Also, since y-x = y, &, +7y, , the result of differentiating e’'* with respect to x,
is to multiply by the factor iy,. Hence, on differentiating R, (x) with respect to
x, we have, from (31),

02 .
Tk == arns,mers 52)
1 . [e o]
o 4 iy-x
and a—x‘{Ryy(x) = B dyy18,,(y) e . (33)

By putting x = 0 in (31), (32) and (33) and comparing the results with (26), (29)
and (30), we obtain the well-known results that

my = R, (0), (34)
my = — (02/0a}) R, (0), (35)
m4 = (64/63/‘%) Ryy(o)a (36)

where we understand that (02/0x3) R, (0) means the value of the partial derivative
(0%/0a%) R, (x) evaluated at x = 0, and similarly for (9*/dz7) B, (x).

If any of m,, m,, m, do not exist, then the classical theory of peak and summit
statistics fails. The reason for this is that, when m,— co the mean-square height
approaches infinity; when m,—>oo but m, is finite, the average density of
zero-crossings on a profile approaches infinity; when m,— 0o but m, is finite, the
average density of peaks and summits approaches infinity. If the high wavenumber
content of S,,(y) is such that the integral in (30) does not converge to a limit, so
that m, does not exist, then the surface of which y(X) is a sample has infinitely
many peaks per unit length of profile and infinitely many summits per unit area,
and we cannot talk meaningfully about the distributions of these peaks and
summits and their curvatures.

The action of smoothing by a data footprint w(X) according to (3) blurs the fine
details of the topography of the original surface {z(X)} and small summits present
in z(X) do not appear as summits in y(X). We shall now investigate this
consequence of smoothing by calculating the spectral moments m,, m,, m, for the
case of a general surface {y(X)} derived from a reference surface {z(X)} by (3).

Spectral moments for a smoothed surface

Starting from (14), we have, on substituting into (34),

my = f dsw'(s) B,,(s). (37)

On differentiating (14) the appropriate number of times and putting x = 0, and
then substituting the results into (35) and (36), we obtain

aZ
my = ——Lo dsa—siw’(s) R,,(s) (38)
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a4

and m, =f ds —w’
Yo )s T ost

22(8). (39)
The lag footprint w’(s) is related to the corresponding data footprint w(X) by, from
(17),
= f dXw(X)w(X+s). (40)
o]
By differentiating (40) with respect to s, changing the variable of integration from

X to X’ = X+ and differentiating with respect to s; again, and then reverting
to the original variable X, we find that

0
asl j dX aX w(X+5) (41)
and, similarly,

%w’(s)= f dXi%w(X)aX2 w(X+s). (42)

These results (40), (41) and (42) may now be used to substitute for w’(s) and its
derivatives in (37), (38) and (39) to give

= f ds f AX w(X) w(X+s) R, (s), (43)
f ds f dX a?c w(X+5) R, (s), (44)

aZ
m4=f dsf anx% 0(X) g5 WX+ 5) B (5). (45)

We are interested in the conditions that the footprint function w(X) must satisfy
in order to ensure that the spectral moments m,, m, and m, all exist. This depends
on the form of the autocorrelation function for the original surface, R, (s).

Good footprints

The most extreme autocorrelation function that we shall consider is that for a
theoretically white reference surface of constant spectral density S,, for which

R, (s) = (2m)2 S, & (8). (46)

After substituting from (46) into (43), (44) and (45), the integration over s may
then be completed to give

m, = (2m)? Sof dX w?(X), (47)
m, = (21)2 Sof dX{% w(X)} (48)

m, = (2m)2 S, f dx{ai;; (X)}Z. (49)
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These are general expressions for the three spectral moments m,, m,, m, defined
by (26), (29) and (30), for a surface generated by smoothing a white reference
surface with a data footprint w(X) = w(X,, X,).

For a footprint of finite area, the integrals in (47), (48) and (49) only extend over
the area of the footprint, since w(X) is identically zero outside the footprint. By
definition, w(X) is always finite so that, for a footprint of finite area, the integral
in (47) always exists and so m, always exists. Also for a footprint of finite area,
from (48), a sufficient condition for m, to exist is for 9/0X, w(X) to be finite
everywhere and, from (49), a sufficient condition for m, to exist is for 02/0.X% w(X)
to be finite everywhere. We shall define as a good footprint any footprint for which
w(X) is a continuous, finite function which is smooth enough that its first two
derivatives exist everywhere including at the edges of the footprint. Since a profile
may be taken in any direction across the surface, the first and second derivatives
in any direction across the data footprint must be finite everywhere if the footprint
is to be a good footprint.

For a homogeneous reference surface {z(X)} with a finite mean-square height,
the autocorrelation function R,,(s) will be finite everywhere, in which case we can
see from (43), (44) and (45) that, for a good footprint of finite area, the three
moments m,, m,, m, of the smoothed surface will also always exist. Therefore we
conclude the following. For a surface generated by smoothing with a footprint of
finite area a homogeneous reference surface which has finite mean-square height,
a sufficient condition for the spectral moments m,, m, and m, to all exist is for the
footprint to be a good footprint as defined above.

For the rectangular flat data footprint defined by (T 1.1), see table 1 and figure
1, w(X) is not continuous at the edges of the footprint and so cannot be
differentiated here; therefore the flat footprint is not a good footprint. The
rectangular cosine data footprint (T 1.5), figure 2, has a first derivative (in any
direction) which is continuous and differentiable everywhere and so its second
derivative exists everywhere also, and this footprint is a good footprint. Similarly
the normal footprint (T 1.9) figure 3, can be differentiated twice; although this
footprint has infinite area, w(X) and its derivatives decay to zero fast enough as
| X]— oo to ensure that m,, m, and m, defined by (47), (48) and (49) all exist when
a white reference surface is smoothed by a normal footprint. Table 2 shows the
results of calculating m,, m, and m, from each of (47), (48) and (49) for these three
different footprints.

4. DISCRETE CALCULATIONS OF SURFACE ROUGHNESS

We turn now to the effect of smoothing on calculations of surface roughness by
the discrete theory developed by Whitehouse & Archard (1970), Whitehouse
& Phillips (1978, 1982) and Greenwood (1984). The following analysis follows
the nomenclature used by Greenwood (1984). Beginning with profile properties,
if 4 is the sampling interval (units of distance), Greenwood defines an approximate

slope
m(X) = {y(X+4)—y(X)}/4 (50)
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TABLE 2. SPECTRAL MOMENTS FOR A PROFILE IN THE XI-DIRECTION ACROSS A
SURFACE DERIVED FROM A WHITE REFERENCE SURFACE BY SMOOTHING WITH
EACH OF THE THREE SAMPLE FOOTPRINTS IN TABLE 1

1. 2.
rectangular rectangular 3.
flat cosine normal
my (m*/a, as) S, (9n*/4a, a,) S, (m/a,a,) S,
my does not exist  (3n*/4a}a,) S, (m/2a3 a,) S,
my does not exist  (3n%/4afa,)S, (3™/4a a,) S,
a=mym,/mi  does not exist 3

and an approximate curvature

K(X) = [{y(X+4)—y(X)}—{y(X) —y(X - 4)}]/4* (51)

and replaces the three spectral moments m,, m,, m, of the continuous theory by
o = E[y*], (52)

o2, = E[m?], (53)

and o? = E[«?]. (54)

Rather than using 02, and o2 directly, Greenwood finds that it is convenient instead

to use the derived parameters
r=0%/00, (55)

and 6, where sinf = 4o ,/20,,. (56)

For his ‘five-point’ summits, Greenwood makes calculations on the ordinates
measured at five sampling points distances 4, 1/24 and 24 apart. If k, and «, are
the curvatures in the coordinate directions 1 and 2, defined so that

&1 (Xy, Xo) = [y(X, +4, X,)—y(X,, Xo)—{y(Xy, X)) —y(X, — 4, X,)})/4> (57)
and
Ky(Xyy Xo) = [y(Xy, Xy +4)—y(X,, Xo)—{y(X,, Xp)—y(X,, X,—A)})/42, (58)
he finds it necessary to introduce an additional parameter
7 = K[, ,]/(E[«}] E[«3])}, (59)

to define the summit properties.
For an isotropic surface whose autocorrelation function is R, (X) where
X = (X2+ X2), from (52),
o®=R,,(0) (60)
from (50) and (53),
o = 2{R,,(0)—R,,(4)}/4* (61)

and, from (51) and (54),
o= 2{3R,,(0)—4R, (4)+ R, (24)}/4*. (62)
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Similarly, on substituting from (57) and (58) into (59) and calculating the ensemble
averages, leads to the result that
2R, (0)—4R, (4)+2R, (v/24)

— vy

"7 73R, (0)—4R,,(4)+ R,,(24)

(63)

Discrete parameters for a surface smoothed by a good footprint
By writing a Taylor expansion of R, (,, x,) in the vicinity of z, = z, =0, we
have

0 4% 02
Ryy(Ay O) = Rw(O, 0)+Aa—x—lRyy(O, 0)+—2—a—aj—%-Ryy(0’ O)
43 ? A4* 0t 4 (A_x1)4 b
+ 6 av—%Ryy(O, O)+ﬂ5x—§Ryy(0, 0)+f0 dxl 24 a—x?Ryy(xl, 0) (64)

provided that the derivatives involved exist. The fifth order derivative must exist
for all values of z, in the interval 0 < x; < 4 but it does not have to be continuous
(Jeffreys & Jeffreys 1956). For the case of a surface generated by smoothing
another by a good footprint of finite area, we have seen that m,, m, and m, exist
and so, from (34), (35) and (36), R,,(0, 0) and its second and fourth derivatives
all exist. We shall show now that the first and third derivatives are always zero
and that the fifth order derivative (0°/dx}) R,,(x,, 0) always exists. Although
(0°/0a3) R, (x,, 0) will be zero at x; = 0, there may be a discontinuity here but only
so that its value for x; > 0 is always finite.
From (31), by differentiating with respect to x,,

a . o] [0 8]
Ryy(o’ 0) = IJ d71f dy, v, Syy(?’l’ Y2) =0 (65)
— 0 — o0

0x,

by virtue of the property that (see, for example, Newland (1984))

Syy(VP Ye) = Syy(_?’l’ —7a)- (66)
Similarly, on account of (66),
a3 . feo] o8}
@Ryy(o’ 0)= _lf_w dy, f_oo dy, i Syy(yl’ Y2) = 0. (67)

For the fifth-order derivative (0°/d23) R, (x, 0) we begin from (7). After changing
the variables of integration from u, to s, = 4, — X and from u, to s, = u,— X, this
becomes

Ryy(x)=f dslf ds, w(s,) w(s,—x) R, (s,—5,) (68)

and, on differentiating three times with respect to x,, and then changing the
variables of integration to s; = s, —x and s, = s,—x and differentiating twice
more, before reverting to the original variables, gives

a° 02 ks
a—x‘,{ R,,(x)= —Lo ds, LO ds, ﬁ—g w(s,) afiw(s2 —x) R, (s,—5,). (69)
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The partial derivatives are written with respect to X, rather than x, because we
regard the data footprint as a general function of X, w(X). For a good footprint,
the second derivative (02/0X%) w(X) is finite ; the third derivative (03/0X3) w(X) may
be infinite, but since the second derivative exists, the integral of the third
derivative over any finite region must be finite. For the case of a good footprint
of finite area and for a reference surface whose mean-square height is finite so that
R,.(s,—s,) is finite, we conclude from (69) that (0°/0x3) R,,(x) will always exist.
Even for a reference surface with a white spectrum, for which (46) applies, by
substituting for B,,(s,—s,) in (69) and integrating first over s,, we reach the same
conclusion that (0°/0x,)°R,,, (x) exists. Provided that this is the case, the last term
in the expansion (64) will be of order 4° or smaller. We shall use the notation O(4°)
to mean ‘of order 4° or smaller’ and, with these results, (64) simplifies to
4% 02 4* ot
R,,(4,0)= R, (0,0) t3 &?Ryy(O, 0) t51 @Rw(O, 0)+0(4°). (70)

This expansion (70) applies for any surface which has been generated by smoothing
a reference surface with a good footprint of finite area, provided that the reference
surface has a finite mean-square height, or that it is ideally white. Also (70) is true
when a white reference surface is smoothed by the normal footprint defined in
table 1 because then w(X) approaches zero fast enough when |X] is large to ensure
that the required integrals exist even though the domain of the integration is
infinite.

For any surface for which (70) is true, we can substitute for R, (4) = R, (4, 0)
from (70) into (60), (61) and (62) to obtain, from (60) and (34),

from (61) and (35), o = By, (0) = mq (1)
o =—(0*/02}) R, (0)+ O(4?) = my+0(4?) (72)
and, from (62) and (36),
oy = (0*/0x}) R,,(0)+0(4) = m,+0(4). (73)
Hence Greenwood’s derived parameters r and 6 are given by, from (55),
P = m’oniﬁom) (74)
and, from (56), sin 6 = 1A(m,/m,) + 0(42). (75)

The additional derived parameter 7 for an isotropic surface is, on substituting from
(70) into (63),

T=1+0(4). (76)
In the continuous theory, Nayak (1971) has defined the parameter a by
a = mym,/mé (77)
and so, from (74),
2 =1/a+0(4). (78)

When the sampling interval 40, then Greenwood’s r—1/4/a. Also, from (75),
Greenwood’s >0 as 40 and, from (76), his parameter 71 as 4->0.
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Choice of sampling interval

Greenwood (1984) has shown that, when his parameter 8 -0, his results for
profile statistics become indistinguishable from those calculated by the continuous
theory. We can see how small the sampling interval needs to be by calculating 8
for two examples. We consider a surface {y(X)} generated by smoothing a white
reference surface by (i) the rectangular cosine data footprint (T 1.5) and (ii) the
normal data footprint (T 1.9), table 1. Both of these are good footprints for which
the expansion (70) is true, so that 6 is given by (75). Using the results given in
table 2 for m, and m, for these footprints, we obtain, for the rectangular cosine
data footprint,

sinf = n4d/2a,+0(4?) (79)

and, for the normal data footprint,
sin@ = v/34/2a,+ 0(4?). (80)

From these examples, we see that 6 >0 when 4/a, >0, i.e. when the sampling
interval 4 is small compared with the footprint dimension in the direction of the
profile. In case (i), 2a, is the finite length of the footprint; in case (ii), a, is the decay
length of the footprint which, if the Gaussian bell represented a probability
density, would be the corresponding standard deviation. The width of the foot-
print (perpendicular to the direction of the profile) is not involved, but it must
be the same for the discrete analysis and for the continuous analysis.

For summit properties, Greenwood (1984) has shown that, for the isotropic case,
the results of the discrete and continuous theories become very close when 60
(except for the density of five-point summits differing from the density of
geometric summits). To preserve isotropy, the footprint must now have circular
symmetry about its centre, and the condition for § >0 becomes 4/a—>0 where a
is the radius of the footprint.

At present there is neither a discrete analysis nor a complete continuous analysis
for the summit properties of a non-isotropic surface. But we are still interested in
whether experimental results produced by discrete sampling will represent properly
the summit properties of the underlying continuous surface. The above results
suggest that there should be close agreement between the discrete and continuous
analysis of summits in the non-isotropic case (except for summit densities) when
the sampling interval in each coordinate direction is small compared with the
length of a good footprint in that direction.

Dependence of discrete statistical properties on the sampling interval

Finally, in this paper, we consider the consequences of measuring the properties
of a random surface by discrete sampling at a sampling interval size 4 which is
notsmall compared with the footprint dimension. We shall calculate the dependence
on 4 of Greenwood’s parameters r, 6 and 7 for a surface derived by smoothing a
theoretically white reference surface by each of the three different footprints listed
in table 1.
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On substituting for R, (s) for a white reference surface from (46) into (14),
evaluating the integral, and using (16), we find that

R, (x) = (2m)2 Sy w’(x). (81)

In order to calculate r and 8, we need the one-dimensional autocorrelation function
values R, (0), B, (4) and R, (24) to substitute into (60), (61) and (62). For a profile
parallel to the X -axis, these are the same as the two-dimensional autocorrelation
function values R, (0, 0), B, (4, 0) and R, (24, 0) which are given by (81). Hence
we have

R,,(0) = R, (0, 0) = (2m)2 S, w’(0, 0), (82)
R,,(4) = R,,(4,0) = (21)2 8,0’ (4, 0) (83)
and R,,(24) = R,,(24, 0) = (2n)2 S, w' (24, 0). (84)

For the discrete summit parameter 7, which applies for an isotropic surface only,
we need also the one-dimensional autocorrelation function’s value R, (1/24) which
1;1 tltle same as the two-dimensional function’s values R, (4, 4) = R,,(1/24, 0), so

a
R, (v24) = R,,(v24,0) = (2r)2S,w'(v/24, 0). (85)

Since 7 is used for defining the summit properties of an isotropic surface, this
parameter is applicable only when the normal footprint is used with a, = a,
because only then will the smoothed surface be isotropic. However, for interest,
we shall calculate 7 also for the two rectangular footprint cases, although for these
non-isotropic cases we cannot have R, (4, 4) = R, (1/24, 0) and so the results do
not have relevance to a practical case.

On substituting from (82)—(85) in (60)—(63) and then using (55) and (56), we
obtain the results that, for a surface obtained by smoothing with a lag footprint
w'(x,, z,) a surface with a white spectrum,

V' 2(w'(0, 0)—w’(4, 0))

— (4,
"= (0, 03 (3w (0, 0)— 4w (4, 0) +w (24, 0)} (86)
_ o [1[3w/(0, 0)—4w'(4, 0)+w'(24, 0)|}
6 =sin [2{ w (0, 0)—w/(4, 0) }] (87)
and _ 200, 0)—4w/(4, 0)+2w'(v/24, 0) 8)

3w’ (0, 0)—4w’(4, 0)+w’' (24, 0)

The lag footprints w’(x,, x,) which correspond respectively to (1) the rectangular
flat data footprint, (2) the rectangular cosine data footprint, and (3) the normal
data footprint are given by (T 1.2), (T 1.6) and (T 1.10) in table 1. Using each of
these three definitions of w’(x,, x,) in turn, the parameters r, 6 and 7 have been
calculated from (86), (87) and (88) for sampling intervals in the range 0 to 4a,.
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The results are plotted in figures 5, 6 and 7 on the base of non-dimensional sampling
interval 4/a,.

In figure 5, we see that, for the ‘good’ footprints, cases 2 and 3, r becomes 1/4/3
when 4 = 0 in agreement with (78) since & = 3 in both these cases (see table 2).
For the flat footprint, case 1, r becomes zero when 4 = 0 on account of the high
wavenumber components which are not smoothed by the sharp edges of this data
footprint. In figure 6, we see that 6 >0 when 40 for both good footprints, in
agreement with (75), but does not do so for the flat footprint, case 1. Even though
the sampling interval approaches zero, in case 1 the statistical properties of peaks
of the sampled profile will not become asymptotically the same as the corresponding
properties of the peaks of a continuous profile This is because high wavenumber
components remaining in the smoothed profile (which would have been eliminated
by a good footprint) are sufficient to ensure that the moments m, and m, do not
exist for the smoothed surface. Therefore the number of crossings and the number
of peaks per unit length of the continuous profile cannot be defined.

In figure 7, the parameter 7 is plotted as a function of the same non-dimensional
sampling interval 4/a,. For the good footprints, 7 becomes asymptotically 1 as
40 in agreement with (76). For the flat data footprint, the value of T fluctuates,
the discontinuities occurring at 4 =a,, 1/2a, and 2a, on account of the
discontinuous function (T 1.2), table 1, which defines this lag footprint. As
mentioned above, cases 1 and 2 involve non-isotropic surfaces, so that only case 3
can be applied to Greenwood’s isotropic summit analysis.

10

r (non-dimensional)

| !
0 1 2 3 4
4/a,

L

FicUurkg 5. Graph of the discrete surface roughness parameter, r, defined by (55) plotted against
non-dimensional sampling interval 4/a, for a profile in the X,-direction across a surface
generated from a white reference surface by smoothing with each of the three different data
footprints in table 1. 1, flat footprint of length 2a,; 2, cosine footprint of length 2a,; 3,
normal footprint of decay length a,.
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F1GURE 6. Graph of the discrete sampling-interval parameter € defined by (56) plotted against
non-dimensional sampling interval 4/a, for a profile in the X,-direction across a surface
generated from a white reference surface by smoothing with each of the three different data
footprints in table 1. 1, flat footprint of length 2a,; 2, cosine footprint of length 2a,;

3, normal footprint of decay length a,.
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FicUure 7. Graph of the discrete curvature-correlation parameter 7 defined by (59) plotted
against non-dimensional sampling interval 4/a, when calculated for a profile in the
X,-direction across a surface generated from a white reference surface by smoothing with
each of the three different data footprints in table 1. 1, flat footprint of length 2a,; 2, cosine
footprint of length 2a,; 3, normal footprint of decay length a,.
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Discussion

When the ordinates of a sampled surface have been measured, estimates for the
ensemble-averaged correlation functions R,,0,0), R, (4,0)and R, (24, 0) can be
calculated for that population of ordinates and, if the surface is isotropic or
approximately so, an estimate for R,,(1/2 4, 0) = R, (4, 4) can also be obtained.
Then corresponding estimates for Greenwood’s parameters r, # and 7 can be
calculated by using (55) and (56) with (60)—(62), and (63). Once r, 6 and 7 are known,
the results in Greenwood’s paper allow the statistical properties of the peaks and
summits as defined in terms of the sampled ordinates to be calculated. Whether
such results represent the corresponding statistical properties of the underlying
continuous surface depends on the value of the parameter 6. Although the
normalized peak and summit height and curvature distributions depend only
weakly on 6, the mean values of the heights and curvatures of peaks and summits
and the peak and summit densities depend strongly on 6. When 60, the profile
properties in the discrete and continuous theories become asymptotic and the
summit properties become close (although Greenwood shows that the density of
his five-point summits is still some 30 % greater than the density of geometric
summits calculated by the continuous theory). Therefore if the computed properties
in the discrete case are to represent properly the continuous surface which has been
sampled, the discrete height ordinates must be measured in a way which ensures
that 6 &~ 0. We have seen that, if the surface is smoothed with a good footprint
of finite area before its height is sampled, it is always possible to make 6 smaller
by reducing the size of the sampling interval. To achieve 8 ~ 0 we need a sampling
interval which is very small compared with the size of the footprint.

In his paper, Greenwood (1984) shows a graph of the experimental values of the
parameters r, 6 and 7 calculated from the results of measurements by Sayles &
Thomas (1979) of the surface roughness of a grit-blasted mild-steel specimen.
Measurements have been made for a range of different sampling intervals and the
results plotted as a function of the magnitude of the sampling interval. Although
these results show a reduction in 6 as 4 is decreased, Greenwood says that ‘In no
case studied has there been any tendency for 6 to approach zero’. If the
experimental surface had been smoothed by a good footprint before its statistics
had been calculated, then we would expect 6 to approach zero as 4 is progressively
reduced. The practical method of doing this requires investigation, but it appears
that the theoretical process of smoothing represented by (3) could be approximated
by using a soft-tipped measuring probe or contacting device. In order to have a
good footprint, the data weighting function must be continuous and smooth with
no sharp edges. This might be achieved by making the tip of the probe softer at
its edges than at its centre, with the stiffness per unit area changing smoothly and
approaching zero stiffness asymptotically at the edges of the probe. When a
constant force is applied to such a probe, its height will then be an approximation
for the height of the smoothed surface y(X) defined by (3). To make 60, the
sampling interval has to be chosen to be small compared with the size of the tip
of the probe. There is no limit on how small the probe may be, provided that the
sampling interval remains small compared with the probe’s size. The smoothed
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surface y(X) is a different surface if a smaller probe (and therefore a smaller data
footprint) is used to generate it, but the discrete statistics will be asymptotically
the same as the statistics calculated by the continuous theory for y(X) if 4 is small
compared with the footprint’s size.

In practice it may be possible to make 8 >0 without using a good footprint when
the spectral density of the original surface decays fast enough as vy,, y,—> . The
definition of a good footprint of finite area identifies a footprint which smooths
a theoretically white reference surface sufficiently to ensure that the number of
summits per unit area of the smoothed surface can be defined. When the original
surface is not white, a footprint which does not smooth so effectively may
nevertheless be adequate to smooth the already partly-smoothed original surface.
The test of whether a footprint is adequate and whether the sampling interval is
small enough relative to the size of the footprint, is that Greenwood’s parameter
6 for the sampled height ordinates must be approximately zero.

5. CONCLUSIONS

When one homogeneous random surface is generated from another by a process
of smoothing defined by (3), the autocorrelation and spectral density functions of
the second surface are related to those of the first by (14) and (24). These equations
involve the lag and spectral footprint functions which are defined in terms of the
data footprint function by (17) and by (22) with (18). Although the analysis
parallels closely that for the spectral analysis of finite-length records of random
functions in time-series analysis, its application to the two-dimensional surface
roughness problem is thought not to have been published before. The fixed data
window used in spectral analysis is replaced by a moving data footprint, and the
moving spectral window in spectral analysis is replaced by a fixed spectral
footprint.

If the reference surface is Gaussian, then the statistical properties of the
smoothed surface can be obtained from the well-known theory of Rice, Cartwright
& Longuet-Higgins, Longuet-Higgins, and Nayak, provided that the necessary
higher order derivatives of the autocorrelation function for the smoothed surface
exist. It has been shown in this paper that, if the smoothing is carried out by a
data footprint of finite area which is a good footprint, then these higher order
derivatives will exist, even if the reference surface is ideally white. A footprint will
be a good footprint if its data footprint function is continuous and smooth enough
that it can be differentiated twice in any direction everywhere, including at its
edges.

For the case of a surface whose roughness is measured by discrete sampling, the
heights of the ordinates depend on the footprint of the sampling device. Provided
that this is a good footprint (of finite area) and that the sampling interval is small
compared with the size of the footprint, it has been shown that the statistical
properties of surface profiles calculated by the discrete theory of Whitehouse &
Archard, Whitehouse & Phillips, and Greenwood approach asymptotically the
results which the continuous theory would give for the analysis of a continuous
smoothed surface generated from the reference surface by the same footprint.
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I am most grateful to DrJ. A. Greenwood for his helpful comments after reading
earlier drafts of this paper.
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