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Abstract

In this article, we state and review the premises on which a successful asymp-
totic closure of the moment equations of wave turbulence is based, describe
how and why this closure obtains, and examine the nature of solutions of
the kinetic equation. We discuss obstacles that limit the theory’s validity and
suggest how the theory might then be modified. We also compare the ex-
perimental evidence with the theory’s predictions in a range of applications.
Finally, and most importantly, we suggest open challenges and encourage
the reader to apply and explore wave turbulence with confidence. The narra-
tive is terse but, we hope, delivered at a speed more akin to the crisp pace of
a Hemingway story than the wordjumblingtumbling rate of a Joycean novel.
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1. INTRODUCTION

Turbulence theory is about understanding the long-time statistical behavior of solutions of nonlin-
ear field equations with additional external forcing and dissipation, e.g., the forced high–Reynolds
number Navier-Stokes equations. Principal aims are to understand transport, such as the average
flux of mass down a pipe as a function of the pressure head, and the spectral distributions that
carry the energy or other conserved densities from the scales at which they are injected to the
scales at which they are dissipated. Alas, despite some success, such as Kolmogorov’s four-fifth’s
law (Frisch 1996) and predictions based on scaling arguments, quantitative results are hard to
come by. The main obstacle is the lack of a consistent statistical closure of the infinite hierarchy
of moment equations.

In contrast, the hierarchy of moment equations for wave turbulence, the turbulence of a
sea of weakly interacting dispersive wave trains (the analogs of eddies), has a natural asymp-
totic closure (Benney & Newell 1967, 1969; Benney & Saffman 1966; Newell et al. 2001). All
the long-time statistical quantities, the energy density, the nonlinear frequency renormalization,
the long-time behaviors of the cumulants, and the structure functions can be calculated from
a set of core particle densities {n(r)(k, t)}, which are proportional to the Fourier transforms of
two-point averages. For simplicity, we use examples for which there is only one such density,
nk ≡ n(k, t), such as the wave-action density in ocean gravity waves. Moreover, and central to
the success of wave turbulence, this number density nk satisfies a closed (Boltzmann-like, ki-
netic) equation (Hasselmann 1962, 1963a,b; Zakharov et al. 1992) with a form revealing that,
to leading order, all transport is carried by N-wave resonances (N = 3, 4, . . .). Furthermore,
the kinetic equation admits stationary solutions that capture not only the entropy-maximizing,
equipartition thermodynamic behavior of isolated systems, but also the finite-flux Kolmogorov
behavior of nonisolated ones in which conserved densities such as energy and particle number
flow from sources (in k space) to sinks (Zakharov & Filonenko 1967a,b). These Kolmogorov-
Zakharov (KZ) solutions are the analogs of the familiar Kolmogorov energy spectrum prediction
E(k) = c P2/3k−5/3 of high–Reynolds number hydrodynamics. In addition, the kinetic equation
has time-dependent solutions of a self-similar type that describe how the stationary solutions are
accessed.

Furthermore, nature and laboratories abound with applications in which wave turbulence the-
ory should obtain. The most familiar example is that of ocean gravity waves on a wind-stirred
sea, but, in principle, its signatures should also be found in magnetohydrodynamic waves in astro-
physical contexts, in Rossby-like waves in the atmospheres of rotating planets, in the formation
of condensates, in capillary waves, in acoustic waves, and in the music of vibrations on large, thin,
elastic sheets. But does the hand of wave turbulence really guide the behavior of ocean waves,
capillary waves, and all the examples above for which one might expect the theory to apply? Al-
though there have been notable successes, the theory also has limitations. In short, both the good
and bad news is that the wave turbulence story is far from over. One might compare its current
standing, particularly with respect to experiments, to the situation regarding pattern formation
in the late 1960s. By that time, there had been many theoretical advances, but the experimental
confirmation of the predictions fell very much in the “looks like” category. It took the pioneering
experimental works of Ahlers, Croquette, Fauve, Gollub, Libchaber, and Swinney in the mid-
to late 1970s (which overcame some extraordinary challenges of managing long-time control of
external parameters) to put some of the advances on a firm footing. For wave turbulence, we are
only at the beginning of the experimental stage.
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2. THE ASYMPTOTIC CLOSURE

2.1. The Set Up

We begin with equations governing the Fourier transforms As
k ≡ As (k, t) of suitable combinations

of the field variables us (x, t) chosen to diagonalize the linearized equations of the dynamical system
under study,

d As
k

dt
− iωs

k As
k =

∑
r=2

εr−1
∑
s1 ...sr

∫
Ls s1 ...sr

kk1 ...kr
As1

k1
. . . Asr

kr
δ(k1 + · · · + kr − k)dk1 . . . dkr , (1)

where 0 < ε � 1 is a small parameter (e.g., the wave slope); δ(x) is the Dirac delta function; and
ωs

k is the linear dispersion relation, where s enumerates the set of cardinality {s} of frequencies
associated with wave vector k. For gravity waves, ωs

k = s
√

gk, where k = |k|, s = ±1, and {s } = 2,
connoting waves with phases kx ± ωkt. For magnetohydrodynamic waves, {s } = 6. The right-hand
side of Equation 1 is obtained as convolutions of all the nonlinear terms and the coefficients Ls s1 ...sr

kk1 ...kr

are symmetrized over (1 . . . r). The Fourier transforms As
k are generalized functions because the

us (x, t) are bounded fields that do not decay at large x. However, combinations of averages, called
cumulants, will have ordinary Fourier transforms, at least initially, although they will develop
weak (order εr , r ≥ 1), but important, calculable generalized function behaviors over long times.

2.1.1. Equation 1 is easy to derive. Equation 1 does not require a priori knowledge of any
Hamiltonian structure. All it requires is the diagonalization of the linear part of the equations and
the ability to calculate convolutions. For example, atmospheric Rossby waves are described by the
conservation of potential vorticity (∂t +ψy∂x −ψx∂y )(∇2−α2)ψ+β∂xψ = 0, where ψ is the velocity
stream function, α−1 is a length scale, and β measures the northward change of Earth’s rotation.
Here {s } = 1, ω(k) = βkx/(α2 +k2), k2 = k2

x +k2
y , and εLkk1k2 = (k1 ×k2)(k2

1 −k2
2)/(2(α2 +k2)). All

higher-order coefficients are zero. For the nonlinear Schrödinger (NLS) equation, ut = −i∇2u −
iλu2u∗, we take u = u+ = ∫

A+
k exp(ikx)dk, u∗ = u− = ∫

A−
k exp(ikx)dk, so that A+∗

−k = A−
k .

Then ωs
k = s k2, s = ±1, and εLs s1s2s3

kk1k2k3
= −(iλs /3)P123(δs1s δs2s δs3−s ), where P123 is the cyclic

permutation over 1, 2, 3, and δs s ′ is the Kronecker delta. For gravity-capillary waves, we write the
Fourier transforms of the surface elevation η(x, t) and velocity potential at the mean surface level
as ν−1

k

√
ωk/2(A+

k + A−
k ) and (iνk/(

√
2ωk))(A+

k − A−
k ), where ωs

k = s ωk; ω2
k = gk + (S/ρ)k3 = kν2

k ;
and g, S, and ρ are gravity, surface tension, and water density, respectively.

2.1.2. Symmetries. If there is only one physical process, such as in ocean gravity waves, ωk and
Ls s1 ...sr

kk1 ...kr
are homogeneous functions with degrees α and γ r , respectively; i.e., ω(λk) = λαω(k) and

Ls s1 ...sr
λkλk1 ...λkr

= λγr Ls s1 ...sr
kk1...kr

. For gravity waves, α = 1/2, γ2 = 7/4, and γ3 = 3. For capillary waves,
α = 3/2, γ2 = 9/4, and γ3 = 3. In such situations, Equation 1 has a symmetry, k → K = λk,
t → T = λ−αt, and As

k = λb Bs
K , under which it is invariant if b = d + (γr − α)/(r − 1) for all

r, d = dim(k). For what power law ns
k ∝ k−αx does the two-point average 〈As

k A−s
k′ 〉 = δ(k + k′)ns

k
inherit the above symmetry? By writing As

k in terms of Bs
K and k in terms of K, one finds that

αx = d + 2(γr − α)/(r − 1). For gravity waves, αx = 9/2, which corresponds to a Phillips’ (1985)
spectrum of sharp, crested waves. We meet the generalized Phillips’ spectrum again when we
discuss the validity of the theory and the regularization of the KZ spectrum at high wave numbers.

2.1.3. Properties. For simplicity of presentation, we take ωs
k = s ω(|k|), s = ±1. Then

Ls s1 ...sr
kk1 ...kr

= −L−s −s1 ...−sr
−k−k1 ...−kr

= −(Ls s1 ...sr
kk1...kr

)∗ will be symmetric on 1 . . . r and, on resonant manifolds,∑r
j=1 s j ω j = s ω,

∑r
j=1 k j = k, equal to (s /s1)Ls1s −s2 ...−sr

k1k−k2 ...−kr
. Also Ls s1 ...sr

0k1 ...kr
= 0, so that a zero initial
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mean will remain unchanged. We note that the NLS equation does not satisfy this. If H is the
Hamiltonian∫

ωk A+
k A−

−kdk +
∞∑

r=2

εr−1
∑

s1...sr+1

∫
H s1 ...sr+1

k1 ...kr+1
As1

k1
. . . Asr

kr
δ(k1 + · · · + kr+1)dk1 . . . dkr+1

and As
k, A−s

−k = As ∗
k are canonically conjugate, then Equation 1 is d As

k/dt = i s δH /δA−s
−k and

Ls s1 ...sr
kk1 ...kr

= i s (r + 1)H s1 ...sr −s
k1 ...kr −k.

2.2. The Cumulant Hierarchy

We seek to understand the long-time behavior of the statistical cumulants that are formed by
suitable combinations of moments. Cumulants have the advantages of decaying sufficiently fast to
zero (at least initially) as the separations in the configurations of N-space points become large so
that they initially have ordinary Fourier transforms and the property that all cumulants of order
three and higher are zero for joint Gaussian distributions. We now arrive at the first premise,
which is assumed without much discussion in almost all turbulence theories but which turns out
to be spontaneously violated in situations in which wave turbulence fails (see Section 5).

The first premise is that the field is spatially homogeneous. This means that statistical corre-
lations such as 〈u(x)u(x + r)〉 (assume 〈u(x)〉 = 0) only depend on the relative geometry, here r,
of the configuration. It also means that statistical (ensemble) averages are equivalent to averages
over the base coordinate, here x. As a direct consequence, the statistical averages of products of
the generalized Fourier transforms As

k are Dirac delta correlated.
In particular, for zero mean fields, 〈As

k As ′
k′ 〉 = δ(k + k′)Qs s ′ (k′), 〈As

k As ′
k′ As ′′

k′′ 〉 = δ(k +
k′ + k′′)Qs s ′s ′′ (k, k′, k′′), 〈As

k As ′
k′ As ′′

k′′ As ′′′
k′′′ 〉 = δ(k + k′ + k′′ + k′′′)Qs s ′s ′′s ′′′ (k, k′, k′′, k′′′) + δ(k +

k′)Qs s ′ (k′)δ(k′′ + k′′′)Qs ′′s ′′′ (k′′′) + δ(k+k′′)Qs s ′′ (k′′)δ(k′ +k′′′)Qs ′s ′′′ (k′′′)+δ(k′ +k′′′)Qs s ′′′ (k′′′)δ(k′ +
k′′)Qs ′s ′′ (k′′). The cumulant hierarchy is formed by multiplying Equation 1 by As ′

k′ ; replacing s, k by
s′, k′; and adding and averaging. We use the symbols P00′ , P00′0′′ to connote the cyclical sums over
(s, k), (s′, k′), (s′′, k′′), and so on. Including only quadratic nonlinearities, the first two equations in
the hierarchy are

d Qs s ′ (k′)
dt

− i (s ω + s ′ω′)Qs s ′
(k′)

= εP00′
∑
s1s2

∫
Ls s1s2

kk1k2
Qs ′s1s2 (k′, k1, k2)δ(k1 + k2 − k)dk1dk2, (2)

where k + k′ = 0 and ω′ = ω(|k′|); for k + k′ + k′′ = 0,

d Qs s ′s ′′ (k, k′k′′)
dt

− i (s ω + s ′ω′ + s ′′ω′′)Qs s ′s ′′
(k, k′, k′′)

= εP00′′′
∑
s1s2

∫
Ls s1s2

kk1k2
Qs ′s ′′s1s2 (k′, k′′, k1, k2)δ(k1 + k2 − k)dk1dk2

+ 2εP00′0′′
∑
s1s2

Ls s1s2
k−k′−k′′ Qs1s ′

(k′)Qs2s ′′
(k′′). (3)

2.3. The Solution Strategy and Asymptotic Closure

We solve the cumulant equations iteratively in power series in ε; i.e.,

Q(N )s s ′ ...s (N −1) (
k, k′, . . . k(N −1), t

)
= q (N )s s ′ ···s (N −1)

0 (k, k′, . . . k(N −1), 0)e i (s ω+s ′ω′+...)t + εQ(N )
1 + · · · . (4)
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We then calculate the long-time behavior, i.e., t → ∞, τr = εr t finite for r = 2, 4, . . . of the
successive iterates. The iterates will contain some terms that will be bounded in t and others that
will grow in time. By allowing the leading-order cumulants q (N )

0 to vary slowly with time by writing
q (N )

0 (0) as a reverse Taylor series q (N )
0 (τ = εr t) − τ∂q (N )

0 (τ )/∂τ + · · ·, we can remove these secular
terms and render the asymptotic expansion given in Equation 4 uniformly valid in time. Closure
occurs because the secular terms in Q(N ) involve only cumulants less than or equal to N.

Carrying out this procedure involves studying the long-time asymptotics of integrals such as

Qs s ′
1 (k, k′) = P00′

∑
s1s2

∫
Ls s1s2

kk1k2
q (3)s ′s1s2

0 (k′, k1, k2, 0)�(s1ω1 + s2ω2 − s ω, t)δ(k1 + k2 − k)dk1dk2,

(5)
where �(x, t) = ∫ t

0 exp(i xt)dt = (exp(i xt) − 1)/(i x). As we progress up the series
of iterates, we find we need to evaluate integrals of the form

∫ ∞
−∞ f (x)�(x, t)d x,∫ ∞

−∞ f (x)�(x, t)�(−x, t)d x,
∫ ∞

−∞ f (x, y)E(x, y, t)d xd y , and
∫ ∞

−∞ f (x)E(x, 0, t)d x, where
E(x, y, t) = ∫ t

0 �(x − y, t′) exp(iyt′)dt′. Here we list those necessary for the first closure.
Under very weak assumptions on the smoothness of f(x) [we will assume f(x) and its first
derivative exist and are absolutely integrable], we find (Benney & Newell 1969) exp(i xt) ∼ 0,
�(x, t) ∼ �̃(x) = πδ(x)sgn(t) + iP(1/x), �(x, t)�(−x, t) ∼ 2πδ(x)sgn(t) + 2P(1/x) ∂

∂x ,
E(x, 0, t) ∼ �̃(x)(t − i ∂

∂x ), and E(x, y, t) ∼ �̃(x)�̃(y). The first asymptotic result is the
Riemann-Lebesgue (RL) lemma, limt→∞

∫
f (x) exp(i xt)d x = 0; the second means

limt→∞
∫ ∞

∞ f (x)�(x, t)d x = π f (0)sgn(t) + iP
∫ ∞

−∞ x−1 f (x)d x, where P denotes the Cauchy
principal value. The x’s in these expressions are combinations h(k, k1, k2) of frequencies such as
±ω(k1) ± ω(k2) ∓ ω(k), k1 + k2 − k = 0. We check that the coordinate x crosses the resonant
manifold h ≡ ω(k1) + ω(k2) − ω(k) = 0, k1 + k2 − k = 0, transversely, namely that ∇k1 h �= 0 on
h = 0. In some cases (e.g., acoustic waves), the zero of h is double and the asymptotic analysis
needs to be done more carefully (Newell & Aucoin 1971).

We now introduce the second and third premises. In the second premise, at some time t = 0,
e.g., at the beginning of the storm action, the statistical cumulants such as {u(x)u(k + r)} [equal
to 〈u(x)u(k + r)〉 − 〈u(x)〉2 if the mean is nonzero] decay sufficiently rapidly as the separations
r, r′, . . . become large independently so as to admit ordinary Fourier transforms. This is a weak
assumption and perfectly reasonable as one fully expects that, at least initially, distant points are
statistically uncorrelated.

In the third premise, in carrying out the asymptotic analysis, we treat all leading-order cu-
mulants q (N )

0 as being constant in time or at worst slowly varying compared with the fast time t
measured in units of inverse frequency. In other words, we require timescale separation. As ε → 0,
the linear time tL(k) must be much less than the nonlinear time tNL(k) on which the leading-order
cumulants evolve.

Because the triple correlation 〈us (x)us ′ (x + r)us ′′ (x + r′)〉 tends to zero very rapidly at t = 0, its
Fourier transform q (3)s s ′s ′′

0 (k, k′, k′′, 0), k + k′ + k′′ = 0, is sufficiently smooth so that Q(2)s s ′
1 (k, k′),

k+k′ = 0, is bounded as t → 0. The leading-order contribution of the third-order cumulant does
not induce any secular behavior in the second-order moment. As far as the long-time statistics is
concerned, it could have very well been taken to be zero.

Next, when we compute the first correction Qs s ′s ′′
1 (k, k′, k′′) to the third-order cumulant,

we find that it is given by an integral containing the leading-order cumulant of fourth-order
q s ′s ′′s1s2

0 (k′, k′′, k1, k2, 0) multiplied by �(s1ω1 + s2ω2 − s ω) and a term that integrates out
to 2P00′0′′ {∑s1s2

Ls s1s2
k−k′−k′′q

s1s ′
0 (k′)q s2s ′′

0 (k′′)�(s1ω
′ + s2ω

′′ − s ω) exp(i (s ω + s ′ω′ + s ′′ω′′)t)}. The first
integral is bounded. To take the long-time limit of the second, one must return to physical space
Rs s ′s ′′

1 (r, r′) = ∫
Qs s ′s ′′

1 exp(i (k′r + k′r′))dk′dk′′, k+k′ +k′′ = 0. Only when s1 = −s ′, s2 = −s ′′, do
we obtain a nonvanishing contribution (the other combinations vanish by the RL lemma), which
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we call the asymptotic survivor,

Qs s ′s ′′
1 ∼ 2P00′0′′ Ls −s ′−s ′′

k−k′−k′′q−s ′s ′
0 (k′)q−s ′′s ′′

0 (k′′)�̃(s ω + s ′ω′ + s ′′ω′′). (6)

Thus the third- (fourth-) order physical space cumulant Rs s ′s ′′
1 (r, r′) = 〈us (x)us ′ (x + r)us ′′ (x + r′)〉

will see a long-time non-Gaussian behavior only at order ε (ε2) and, more important for closure,
this asymptotic survivor only depends on the leading-order behavior q−s s

0 (k) (which for simplicity
we assume to be s independent and call nk) of the number density nk.

Likewise, Qs ′s
2 (k), the second correction to the two-point cumulant, will be given by the in-

tegration over (0, t) of an integral involving Q(3)s ′s1s2
1 (k, k′, k1, k2). In the long-time limit, the

secular terms that arise depend only on integrals containing quadratic products of nk if s ′ = −s
(directly related to the asymptotic survivor given in Equation 6) or, if s ′ = s , as a product
i Qs ′s

0 (k)(�s
2[nk] + �s ′

2 [nk′ ]), where �s
2[nk] is an integral over nk given by

�s
2[nk] =

∑
s2

∫ (
− 3i Ls s s2−s2

kkk2−k2
− 4

∑
s1

∫
Ls s1s2

kk1k2
Ls1s −s2

k1k−k2(
P

1
s1ω1 + s2ω2 − s ω

+ iπsgn(t)δ(s1ω1 + s2ω2 − s ω)δ(k1 + k2 − k)
))

nk2 dk1dk2, (7)

where the cubic coefficient Ls s1s2s3
kk1k2k3

has been restored. In a similar fashion, the only unbounded

(grows as t) contribution to Q(N )s s ′ ...s (N −1)

2 [k, · · · k(N −1)] has the form i Q(N )s s ′ ···
0 (�s

2[nk] + �s ′
2 [nk′ ] +

. . . + �s (N −1)

2 [nk(N −1) ]).
We remove the secular terms by allowing the hitherto time-independent leading-order cu-

mulants nk(q−s s
0 (k)), q (N )s s ′ ...s (N −1)

0 (k, . . .) to vary slowly in time. The resulting equation for dnk/dt,
which contains only nk, is the kinetic equation. The equations for q (N )

0 can be (miraculously) si-
multaneously solved for all N by renormalizing the frequency s ωk → s ωk + ε2�s

2[nk]. A natural
asymptotic closure is thereby achieved. In physical terms, the reasons for the natural asymptotic
closure are the following: For times much greater than tL(k) but shorter than tNL = nk(dnk/dt)−1,
the field dynamics is dominated by linear, dispersive wave propagation. Even acoustic waves in
dimensions greater than one are dispersive, as are oppositely traveling Alfvén waves! The statis-
tics of the field at any cluster of points is governed approximately by a linear superposition of
independent contributions that have traveled from afar, and, by central limit theorem arguments,
the field relaxes close to [within O(ε)] joint Gaussian. The second premise in Section 2.3 and
the RL lemma ensure that this result is also manifested by the mathematics. But the dynamics is
nonlinear. The third- and higher-order cumulants are regenerated on the longer timescale tNL by
a combination of higher-order cumulants and products of equal and lower-order cumulants. The
asymptotic closure occurs because, in the long-time limit, the latter dominate the former.

Now we are in a position to discuss the connection with the so-called random phase approxi-
mation, which certain authors employ unnecessarily in the derivation of the kinetic equation. In
calculating Q−s s (k), we found that the secular terms in the various iterates depend only on nk. All
terms involving q N

0 , n ≥ 3, were bounded. Although we did not, we could have ignored them
for this part of the calculations. They have no long-time cumulative effect. This means that, had
we initially expanded the Fourier amplitudes As

k as As
k0 + ε As

k1 + · · ·, then all product averages
〈As

k0 As ′
k′0 As ′′

k′′0 . . .〉 could be decomposed as if the zeroth-order amplitudes had random phases or as
if they were joint Gaussian so that only products of two-point functions survive (Wick’s theorem).
But let us be clear. Averages of products of the complex amplitudes As

k cannot be expanded as
if they had random phases or as if they were joint Gaussian. We have seen that moments such
as P00′0′′ 〈As

k1 As ′
k′0 As ′′

k′′0〉 have asymptotic survivors that play central roles in both producing a non-
trivial closure and inducing over long times weakly decaying long-distance correlations. Only the
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zeroth-order products of the amplitudes can be expanded as if they had random phases. In the
language of cumulant discard schemes, what we have shown using only very weak assumptions
(the three premises listed in Sections 2.2 and 2.3) is that one could have found the correct kinetic
equations to order ε2 by discarding all cumulants of order four and higher, and to order ε4 by
discarding all cumulants of order six and higher, and so on.

The asymptotic closure can be carried out systematically, as long as the asymptotics are done
correctly, to all even orders in ε. The result is a kinetic equation

dnk

dt
= T [nk] = ε2T2[nk] + ε4T4[nk] + · · · , (8)

T2r = ∂nk/∂τr , and a frequency renormalization

s ωk → s ωk + ε2�s
2[nk] + ε4�s

4[nk] + · · · , (9)

sgn(t)Im�s
2N [nk] > 0, together with expressions for regenerated behaviors of the higher-order

cumulants that only depend on nk and from which all the Fourier and physical space statistics can
be calculated. The expression for T2[nk] is

T2[nk] = 4π sgn(t)
∑
s1s2

∫
Ls s1s2

kk1k2
nknk1 nk2

(
L

−s −s1−s2
−k−k1−k2

nk
+ L

s1 s −s2
k1k−k2
nk1

+ L
s2 s −s1
k2k−k1
nk2

)

δ(s1ω1 + s2ω2 − s ω)δ(k1 + k2 − k)dk1dk2. (10)

When three-wave resonances are forbidden, T2[nk] ≡ 0, and

T4[nk] = 12π sgn(t)
∑

s1s2s3

∫
Gs s1s2s3

kk1k2k3
nknk1 nk2 nk3

(
G

−s −s1−s2−s3
−k−k1−k2−k3

nk
+ P123

G
s1 s −s2−s3
k1k−k2−k3

nk1

)

δ(s1ω1 + s2ω2 + s3ω3 − s ω)δ(k1 + k2 + k3 − k)dk1dk2dk, (11)

where

Gs s1s2s3
kk1k2k3

= Ls s1s2s3
kk1k2k3

− 2i
3

P123

∑
s4

Ls −s4s1
kk2+k3k1

L−s4s2s3
k2+k3k2k3

/(s2ω2 + s3ω3 + s4ω(k2 + k3)).

For surface gravity waves, there are no resonances for which all the sign parameters are equal.
As a consequence, to this order, wave number is conserved and Equation 11, after appropriate
summations, becomes, for t > 0,

T4[nk] = 12π

∫
|Gkk1k2k3 |2nknk1 nk2 nk3

(
1
nk

+ 1
nk1

− 1
nk2

− 1
nk3

)
δ(ω1 + ω2 − ω3 − ω)δ(k1 + k2 + k3 − k)dk1dk2dk3, (12)

where Gkk1k2k3 is closely related to the Gs s1s2s3
kk1k2k3

given above. Assuming isotropy and angle averaging
so that N ω = �0kd−1 dk

dω
nk(k(ω)) (where �0 is the solid angle in d dimensions), the kinetic equation

for four-wave resonances can be further simplified as

d N ω

dt
= S(ω)

=
∫

Sωω1ω2ω3 nknk1 nk2 nk3

(
1
nk

+ 1
nk1

− 1
nk2

− 1
nk3

)
δ(ω1 + ω2 − ω3 − ω)dω1dω2dω3, (13)

where � is the region ω2, ω3, ω2 +ω3 > 0 in the ω2, ω3 plane. If Gs s1s2s3
kk1k2k3

has homogeneity degree
γ 3, Sωω1ω2ω3 has homogeneity degree σ = (2γ3 + 3d )/α − 4. Before we discuss solutions, we make
several further remarks.

First, the kinetic equation is solved for times t = O(1/ε2r ), r = 1, 2, . . . , by successive trun-
cation. For the theory to remain valid, it is important to check that solutions of the truncated
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equations keep Equations 8 and 9 uniformly asymptotic in k, and that the ratio tL/tNL is uniformly
small in k. Second, with forcing and damping, the first truncation leads to a universal, statistically
steady state involving all wave vectors, except in cases such as acoustic waves or Alfvén waves in
which the resonant manifolds foliate wave-vector space (see Section 5.2.1 and the shape of the KZ
spectrum in Galtier et al. 2000). Third, the kinetic equation dnk/dt = ε4T4[nk] is independent of
the sign of the coefficient Gkk1k2k3 , but the first frequency correction is not. This has important
ramifications for the equations of NLS type. Fourth, the energy density ek is related to nk to
order ε2 by ek = (ωk + ε2s −1�s

2[nk])nk. Formal energy conservation follows from the properties
of Ls1s −s1 ...−sr

k1k−k1 ...−kr
= (s1/s )Ls s1 ...sr

kk1...kr
given earlier. Fifth, if one redoes the initial value problem from

t = t1 = O(ε−2) > 0, the coefficients in Equations 10 and 11 are still sgn(t) not sgn(t − t1)
because, in addition to Equation 10 with the sign factor sgn(t − t1), there is an extra term with
sign factor (sgn(t) − sgn(t − t1)) arising from the fact that the third-order cumulant now has a
nonsmooth, order ε, initial value (see Equation 6). Thus the isolated system will always relax to
its thermodynamic state for large positive or negative time measured from t = 0.

Finally, let us emphasize what we mean by a valid wave turbulence theory. Above we only use
the conservative part of the underlying dynamical system. We append, phenomenologically, to
the kinetic equation (Equation 13) two terms SIN and SOUT representing forcing and dissipation.
Only if input and output can be represented as γ (ω)As

k in Equation 1 is Equation 13 a natural
closure. In that special case, SI N = 2γI N (ω)N (ω) and SOUT = 2γOUT (ω)N (ω). But the input and
output are often too complicated for this to be the case. Therefore, in general, we look at Equation
13 with SIN and SOUT added as being a valid approximation because each is much smaller than
the first term (which feeds nk) and second term (proportional to nk) in Equation 11. We can also
take account of weak nonspatial homogeneity by writing ∂nk/∂t as ∂nk/∂t +∇kω∇xnk −∇xω∇knk,
where ω is the renormalized frequency. We say that wave turbulence theory is valid if solutions
of the original or extended equations match what is observed.

3. SOLUTIONS OF THE KINETIC EQUATION

In systems where a UV cutoff avoids energy leakage to an infinite wave number, zero-flux thermo-
dynamic solutions (Rumpf 2008) are the statistically steady states. But most wave turbulent systems
of interest have sources and/or sinks that oftentimes are widely separated in wave-number space.
In the windows of transparency between sources and sinks, one expects the statistically steady state
to be of Kolmogorov finite-flux type. It is quite remarkable that, of all the pioneers in establishing
the kinetic equation as the centerpiece of wave turbulence theory, only Zakharov saw that the
finite-flux KZ solutions were more important for nonisolated systems. For over 20 years, few of
his Western colleagues took much notice of them, and his was a lone voice crying in the wilderness.

We begin with the special pure power-law solutions of Equation 13, nk(ω) = c 1, c 2ω
−1,

c 3 P1/3ω−2γ3/3α−d/α , and c 4 Q1/3ω−2γ3/3α−d/α+1/6, corresponding to equipartition of number den-
sity, energy density, finite energy flux P (with zero number flux Q), and finite number flux Q (with
zero energy flux P). These are obtained when the coupling coefficient Sωω1ω2ω3 is homogeneous
of degree σ = (2γ3 + 3d )/α − 4. Using the properties of the coupling coefficients, the first two
solutions follow by inspection. The last two are obtained by dividing the region of integration �

into four subregions (�1, 0 < ω2, ω3 < ω, ω2 + ω3+ > ω; �2, 0 < ω2 < ω, ω3 > ω; �3, ω2,
ω3 > ω; and �4, 0 < ω3 < ω, ω2 > ω) and mapping each of �2, �3, and �4 conformally onto �1.
Setting ω j = ωζ j , j = 1, 2, 3, and n = c ω−x allows us to write S(ω) as c 3ω−y−1 I (x, y(x)), where

I (x, y) =
∫

�′
1

S1ζ1ζ2ζ3 (ζ1ζ2ζ3)−xδ(1 + ζ1 − ζ2 − ζ3)(1 + ζ x
1 − ζ x

2 − ζ x
3 )(1 + ζ

y
1 − ζ

y
2 − ζ

y
3 )dζ1dζ2dζ3,

(14)

66 Newell · Rumpf

A
nn

u.
 R

ev
. F

lu
id

 M
ec

h.
 2

01
1.

43
:5

9-
78

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 I
fr

em
er

 -
 B

ib
lio

th
eq

ue
 L

a 
Pe

ro
us

e 
on

 0
1/

18
/1

1.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



FL43CH03-Rumpf ARI 19 November 2010 11:44

�′
1 is 0 < ζ2, ζ3 < 1, ζ2 +ζ3 > 1, and y = 3x +1−2γ3/α−3d/α. The choices x = 0, 1 and y = 0,

1 are the pure equipartition solutions and finite-flux solutions, respectively. Depending on the
behavior of Sωω1ω2ω3 near ω1 = ω2 +ω3 −ω = 0, I(x, y) converges in the ranges including the finite-
flux solutions. For gravity waves, the KZ finite-flux solutions are x = 23/3 and x = 8, respectively,
and I(x,y(x)) converges for 5 < x < 19/2 (see the second remark below). The Kolmogorov
constant can be found by setting S(ω) = ∂ Q/∂ω and ωS(ω) = −∂ P/∂ω, respectively, where
Q = − limy→0 c 3

4 Qy−1ω−y I (x, y) = c 3
4 Q(d I/d y)y=0 and P = + limy→0 c 3

3 P (y − 1)−1 I (x, y) =
c 3

3 P (dI/dy)y=1, respectively. The slopes of I(x, y) at y = 0, 1 are negative and positive, respectively.
A similar analysis for the kinetic equation dnk/dt = ε2T2[nk] dominated by three-wave resonances
gives two special stationary solutions nk = T /ωk and nk = c P1/2ω−(γ2/α+d/α) corresponding to
energy equipartition and finite energy flux P.

For reasons of pedagogy, it is helpful to rederive the stationary solutions T4[nk] = 0 another
way. If the coupling coefficient Sωω1ω2ω3 is localized and supported only near ω = ω1 = ω2 = ω3,
one can replace S(ω) by a differential representation ∂2 K/∂ω2, where K = S0ω

3x0+2n4d 2n−1/dω2,
S0 is a well-defined integral, and x0 = 2γ3/(3α) + d/α. We can identify the particle flux as
Q = ∂K/∂ω (Q is positive when particles flow from high to low wave numbers), and P, the direct
energy flux, is K−ω∂K/∂ω. The stationary solutions are clearly K = Aω+B, where we can identify
the constants A and B with Q and P. In general, the solutions of K = S0ω

3x0+2n4(d 2(1/n))/(dω2) =
Qω + P will be a four-parameter family with two additional constants T and μ (temperature and
chemical potential) arising from the double integration of K = Qω + P . If P = Q = 0, then
n = T /(ω − μ), the Rayleigh-Jeans solution for classical waves. (Similar solutions for bosons and
fermions generalizing the Bose-Einstein and Fermi-Dirac distributions by the addition of finite
fluxes can also easily be found.) The pure KZ solutions occur when we take in turn Q = 0 and
P = 0 and look for power-law solutions n = c 3ω

−x , n = c 4ω
−x , for K = ωQ + P . It is easy

to show that these two solutions are n = c 4 Q1/3ω−(2γ3)/(3α)−d/α+1/6 and n = c 3 P1/3ω−2γ3/(3α)−d/α ,
respectively. In many practical applications, however, the actual steady-state solution may be a
complicated combination of these special solutions. We now make several further remarks.

First, the pure finite energy (zero particle) flux solution is strictly relevant only when the energy
is inserted at the boundary k = 0 and removed at k = ∞, equivalent to solving Equation 13 with
boundary conditions K = P , ∂K/∂ω = 0, at ω = 0 and ω = ∞. Likewise, the pure particle flux
KZ inverse cascade (zero energy flux) obtains when particles are added to the system at k = ∞
and removed at k = 0.

Second, T4[nk] in Equation 8 [and S(ω) in Equation 13] can be written as two integrals, a feed
Fk involving integrals over the product nk1 nk2 nk3 and a term −nk�k proportional to nk. Indeed �k

is exactly Im�4[nk]. Fk and �k are often divergent at low wave numbers on the KZ solution, but the
singularity cancels because of the combination. The first consequence is that when compared with
any input or dissipation terms, the contributions Fk and nk�k dominate the phenomenologically
added SIN and SOUT . The second consequence is the breakdown criteria developed in the fifth
remark below can curtail the range of validity of the KZ spectrum even further.

Third, both energy and particle number conservation may break down after a finite time.
The idea goes back to Onsager. If we compute the amount of energy,

∫ ∞
ω0

ωN ωdω, in the range
(ω0, ∞), for example, under the direct energy flux KZ spectrum nk = c 3 P1/3ω−(2γ3)/(3α)−d/α , or
ωNω = (�0/α)c 3 P1/3ω−(2γ3)/(3α), the integral converges (the spectrum supports finite energy) if
γ3 > 3α/2 and diverges otherwise (infinite capacity). In the finite-capacity case, if energy is added at
ω = ω0 at a constant rate and is not confined to finite frequencies, it must escape to the dissipation
sink at ω = ∞ in a finite time t∗ after which energy conservation no longer holds. Likewise, there is
an equivalent notion of finite capacity for the particle flux. Ocean gravity waves have finite energy
capacity at large wave numbers and infinite wave-action capacity at low wave numbers so that
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the inverse cascade does not build condensates (in infinite wave tanks). Alternatively, in optical
turbulence for which α = 2, γ3 = 0, the direct cascade of the Hamiltonian density has infinite
capacity, whereas the power density has finite capacity, and, as a result, condensates and collapses
can form (see Dyachenko et al. 1992). For three-wave resonances, the direct energy flux cascade
nk = c P1/2ω−(γ3+d )/α has finite capacity if γ2 > α (e.g., capillary waves).

Fourth, pure KZ spectra are generally realized by self-similar solutions nk = t−b n(kt−a ) of
Equation 13 (Falkovich & Shafarenko 1991). In the infinite-capacity case, both exponents a and
b are found by scaling arguments, and the spectrum consists of a front that joins an exponentially
small precursor to a wake through a front at k f ∝ ta , a > 0. The spectrum behind the front
relaxes to the pure KZ spectrum. In the finite-capacity case, an anomaly occurs. The front now
travels as k f ∝ (t∗ − t)a , a < 0, and leaves in its wake a spectrum k−x for which the exponent
x = b/|a| is greater than the KZ value and can only be determined by solving a nonlinear eigenvalue
problem. Only after the front hits the dissipation range does the KZ spectrum build up backward
from k = ∞. It is not known whether such anomalies are present for fully turbulent systems
(Connaughton et al. 2003, Connaughton & Newell 2010).

Fifth, to test the validity of the third premise in Section 2.3 (i.e., the breakdown of KZ spectra),
let us compute tL/tNL = (nkωk)−1dnk/dt on the spectrum nk = c k−αx for the case in which
T2[nk] ≡ 0. Setting each kj in T4 to kζ j , we obtain

tL

tNL
= k2γ3 c 3k−3αxk−αk2d

c k−αxkα
I, (15)

where I is some k-independent integral that we assume (for the moment) converges. We find
tL

tNL
∝ c 2k2(γ3+d−α−αx). (16)

Only on the generalized Phillips spectrum is k independent (i.e., has a critical balance between
linear and nonlinear terms). The ratio then depends on the nondimensional size of c. On the direct
energy cascade KZ spectrum, αx = 2γ3/3 + d , c = C P1/3, we find tL/tNL = C2 P2/3k2(γ3/3−α). On
the inverse number density (wave action, power) cascade, αx = 2γ3/3+d−α/3, c = C Q1/3, we find
tL/tNL = C2 Q2/3k2(γ3−2α)/3. We have absorbed the small parameter ε into c and thereby both into
P and Q. For γ3 > 3α, as is the case for ocean gravity waves, the ratio is of order unity or greater,
and the third premise in Section 2.3 is violated for wave numbers k > kU when P2/3k2(γ3/3−α)

U ∼ 1.
For gravity waves, P2/3kU /g ∼ 1. For γ3 < 2α, as is the case for the NLS equation, the ratio
becomes unity at small wave numbers k < kI when Q2/3k2(γ3−2α)/3

I ∼ 1. On the direct energy
cascade for three-wave resonances, breakdown occurs for k > kU , P1/2kγ2−2α

U ∼ 1, when γ2 > 2α.
For capillary waves, γ2 = 9/4 < 2α = 3, so the wave turbulence requirement that tL/tNL � 1
gets better the larger k is. As long as the relevant integral I in Equation 15 converges, breakdown
occurs at the same point for all measures of wave turbulence validity, tL/tNL, T4/T2, �2/ω, �4/ω,
and (S4 − 3S2

2 )/S2
2 (with k, ω replaced by r−1, τ−1). But as indicated in an earlier remark, it turns

out that, for gravity waves, the ratio �4/ω does not converge, and this adds a factor (kU /kp )1/2

to P2/3kU /g, with kp the peak wave number in nk. The breakdown range becomes even larger
in this case. For wave numbers larger than the breakdown wave number kU , the KZ spectrum
must be modified. We suggest how in Section 5. For the NLS or MMT equations (see Section
5), the ratio �2/ω contains an additional logarithmic factor c 3 P1/3k−1/2

0 ln (kd /k0) necessitated by
the logarithmic divergence of the KZ energy flux spectrum c 3 P1/3k−d and the introduction of an
infrared cutoff at k0. Again, the range of validity of the KZ spectrum is further diminished.

Sixth, given that nk has power-law behavior over an inertial range, one can ask what is the corre-
sponding universal behavior of the structure functions SN (r, τ ) = 〈(η(x+r, t+τ )−η(x, t))N〉, where
η(x, t) is the surface elevation, for example (Biven et al. 2003). As measurements usually involve
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the time signal at a given point, we have to settle for SN (0, τ ). For surface waves, the second-order
structure function S2(τ ) = 2

∫ ∞
0 I (ω)(1 − cos(ωτ ))dω, where I (ω) = (πω/2ν2)(dk2/dω)nk(ω),

ω2 = kν2 = gk+ (S/ρ)k3, is the Fourier transform of the two-point correlation 〈η(x, t)η(x, t+τ )〉.
For capillary waves, I (ω) = c P1/2(S/ρ)1/6ω−17/6 is the direct energy flux spectrum. If this shape
was valid for the entire range, then S2(τ ) = 2c P1/2(S/ρ)1/6τ 11/6

∫ ∞
0 ξ−17/6(1 − cos ξ )dξ . But, of

course, in practice, the universal power law holds at best over a finite range (ω1, ω2), where ω1

(ω2) denotes the upper (lower) boundary of the forcing (dissipation) range. We can generally
take ω2 = ∞ so that S2(τ ) = 2

∫ ω1
0 I (ω)(1 − cos(ωτ ))dω + 2cP1/2(S/ρ)1/6τ 11/6J(ω1τ ), where

J(ω1τ ) = ∫ ∞
ω1τ

ξ 17/6(1 − cos ξ )dξ . The nonuniversal part of S2(τ ) behaves, for small τ , as τ 2. The
universal part behaves as τ 11/6. It is difficult to distinguish the two. To gain separation, it is better to
work with averages of higher time differences such as S′

N (τ ) = 〈(η(x, t+τ )−2η(x, t)+η(x, t−τ ))N〉.
In this case, the nonuniversal behavior of S2 now is τ 4 for small τ , whereas the universal behavior
remains at τ 11/6.

Finally, with finite box effects, size matters. If the spectrum is not continuous but quantized,
then it is more difficult to satisfy the resonance condition. Some help, however, is gained by the
fact that the nonlinear correction to the frequency effectively replaces the Dirac delta function
δ(ω1 + ω2 − ω) with a Lorentzian, Im(1/(ω′

1 + ω′
2 − ω′)), s ω′

1 = s ω + ε2�s
2. This means that the

resonance manifold is broadened by an amount proportional to ε2 (ε4 in the four-wave interaction
case). In order for the quantized spectrum to allow lots of resonances within the band, we require
that the ratio of the box size l to the typical wavelength λ participating in triad resonances be greater
than ε−2 multiplied by a calculable factor. For gravity waves when ε ∼ 0.1, resolving resonances
involving waves of 60 m would require a tank of approximately 60 km. Finally, for finite boxes, it is
important to make sure that repeated boundary reflections lead to the same almost-joint Gaussian
behavior in the linear limit. In large boxes, the near-Gaussian behavior is guaranteed dynamically
by the addition of influences from statistically uncorrelated far-away sources. It may be necessary
to use corrigated boundaries to achieve the same conditions.

4. EXPERIMENTAL EVIDENCE

In this section, we examine the available experimental evidence. Although there is some evidence
of consistency between theory and experiment, much remains to be done. In particular, it would
be valuable to measure the joint space-time power spectrum �(k, ω), the Fourier transform of
〈η(x, t)η(x + r, t + τ )〉. A necessary condition for a valid theory is that its support be concentrated
on the modified dispersion relation given in Equation 9.

4.1. Capillary Wave Turbulence

Weakly nonlinear capillary waves support three-wave resonances (Pushkarev & Zakharov 1996).
Two groups, based in Paris (Falcon et al. 2007a,b, 2008, 2009; Falcon 2010) and Chernogolovka
(Kolmakov et al. 2004, 2006), have carried out series of experiments on the surface response to
broad- and narrowband forcing at wave numbers k f < k0 = √

ρg/S. To increase the range in
which pure capillary influences are dominant, both groups have sought to decrease viscosity and
the effective gravity. The Paris group used shallow layers of mercury (λ0 = 2π/k0 ∼ 1 cm)
and layers of ethanol and water in very-low-gravity situations (kudos to their courage in fly-
ing loop the loops) where λ0 ∼ 10 cm. The forcing in both cases was sinusoidal (via sub-
harmonic generation) and low pass filtered, broadband and random in the 0–6-Hz range.
There is clear evidence of the theoretically predicted pure KZ energy flux frequency spectrum
I (ω) = (2π )−1

∫ 〈η(x, t)η(x, t + τ )〉 exp(−iωτ )dτ = c P1/2(S/ρ)1/6ω−17/6 over at least a decade of
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Figure 1
Power spectrum density of surface wave height on the surface of a fluid layer in low gravity, showing
capillary wave turbulence. The lower curve is random forcing at 0–6 Hz, and the upper curve is sinusoidal
forcing at 3 Hz. Dashed lines have slopes of −3.1 (lower curve) and −3.2 (upper curve). (Inset) Same as in main
panel, but with gravity. Here the slopes of the dashed lines are −5 (upper curve) and −3 (lower curve),
corresponding to gravity and capillary wave turbulence regimes, respectively. Figure courtesy of Eric Falcon,
taken from Falcon et al. (2009).

frequencies in the first experiment and over two decades in the second. The observed power law
I (ω) ∼ ω−s found s = 3.1 for broadband and s = 3.2 for narrowband input and is shown in
Figure 1. The probability density function (PDF) for the surface elevation η (Falcon et al. 2007b)
is almost Gaussian with the usual Tayfun correction expected from second harmonics excited by
quadratic interactions. In the normal gravity experiments, the spectrum in the gravity wave range
is much steeper than the KZ spectrum predictions, consistent with what is seen for gravity waves
in finite tanks (Nazarenko et al. 2010). However, the dependence of I(ω) on P, the energy flux,
is neither P1/2 nor P1/3 as predicted but seems to be proportional to P. The reason for this is
unclear, but one might argue that P, the constant flux in the inertial range and dissipation rate, is
not measured simply by the mean of very widely distributed input flux (as measured by forces on
the driving paddles), which has fluctuations much larger than the mean itself and can take on both
positive and negative values. In addition, the structure-function measurements do not corroborate
the theory, but that may be attributable to the sixth remark in Section 3.

The Russian group studied capillary turbulence on quantum fluids, liquid hydrogen, and he-
lium in both its normal and superfluid states. For broadband forcing, they found I (ω) ∼ ω−s ,
where s = 2.8 ± 0.2. The result for narrowband forcing is steeper, s = 3.7, and the group stud-
ied the transition between this and the KZ regime. We do not understand why the difference
between narrowband forcing (not expected to follow wave turbulence theory) and broadband
forcing in the Russian experiments should be so much greater than that observed by the Paris
group.
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4.2. Gravity Wave Turbulence

The views expressed in this section have been informed by the experimental results of Donelan
et al. (1992, 2005, 2006) and Toba (1972, 1973a,b, 1997), by observations by Long & Resio (2007),
by the books of Young (1999) and Phillips (1977), by the numerical simulations of both the forced
and damped kinetic and water wave equations by Badulin et al. (2005, 2007) and Korotkevich
(2008), and by the recent review articles of Zakharov (2005). Although most measurements have
involved time signals at a fixed location, Hwang and colleagues (Hwang et al. 2000, Hwang &
Wang 2004, Hwang 2006) (see Figure 2) measured spatial correlations by flying precision parallel
courses over the ocean surface.

Despite the fact that Hasselmann derived the kinetic equation in 1962 and Zakharov and
Filonenko found the finite-flux solutions in 1968, it took a long time for the oceanographic
community to accept the fact that, over the largest range, the observed spectra E(k) = 2πkωknk and
I(ω) had more connections with the pure KZ spectra nk = c 3 P1/3k−4 [E(k) = 2π c 3g1/2 P1/3k−5/2,
I (ω) = d3 P1/3gω−4] and nk = c 4 Q1/3k−23/6 [E(k) = 2π c 4g1/2 Q1/3k−7/3, I (ω) = d4 Q1/3gω−11/3]
than with the flux-independent spectrum I (ω) ∼ g2ω−5 that Phillips had proposed. Eventually
in the 1980s, Donelan et al. (1985) argued (Young 1999, p. 119) that the data did not support
the earlier JONSWAP spectrum proportional to ω−5 but rather supported the one given by an

101

100

100
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10–2
10–3
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k)

 (m
3  ra

d–1
)

Figure 2
Surface elevation spectra proportional to E(k)/g with three comparison slopes: solid line is k−5/2, and the
dashed and dashed-dotted curves are k−3 (Phillips’ spectrum) with different normalizations. Near the peak,
the spectrum is slightly less steep (the wave-action flux has slope 7/3), whereas for meter length scales, the
spectrum is steeper and closer to Phillips’. Figure courtesy of Paul A. Hwang, adapted from Hwang et al.
(2000).
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I(ω) with a tail frequency of ω−4. Furthermore, the spectrum I (ω) = d3 P1/3ω−4 is consistent with
the observationally deduced Toba’s law. The total energy per square meter of ocean surface is
proportional to I = 〈η2〉 ≈ ∫ ∞

ωp
I (ω)dω = (1/3)d3 P1/3gω−3

p , which translates into the law that the

mean square height
√

〈η2〉 is proportional to T 3/2
p , the 3/2 power of the period of the peak wave.

This is analogous to the widely accepted result that ε = 〈η2〉 satisfies εω4
p/g2 = α((dε/dt)ω3

p/g2)1/3,
where the flux P is replaced by gdε/dt and dε/dt is interpreted as a total dissipation rate. Note
that neither this nor Toba’s law is much changed if we were to use the pure inverse wave-action
flux KZ spectrum instead of the pure direct energy flux KZ spectrum.

Although the evidence seems to favor the wave turbulence prediction, there is a rub. Although
little is known about the precise form of input and dissipation, it is generally agreed that the
main input occurs at small (<1 m) scales by a variant of the Miles (1967) instability. [The Kelvin-
Helmholz instability, which amplifies perturbations of wave number k on the surface between two
layers of fluid (e.g., air, water) with constant tangential velocities (the ultra-simple model) U and
U w with densities ρa and ρ (ρaU 2 � ρU 2

w), has a growth rate (ρ + ρa )σ = −ik(ρaU + ρU w) + ν,
ν2 = −g(ρ2 − ρ2

a )k(1 − kρρa (U − U w)2/(g(ρ2 − ρ2
a )) + Sk2/(g(ρ − ρa )). It would require a U

of at least 5 m s−1 [ρ/ρa ∼ 10−3, S/(ρg) ∼ 7 × 10−2 cm2] to excite waves of wavelengths more
than centimeters. The fact that wave generation occurs at these centimeter scales for much lower
wind speeds would seem to rule out the Kelvin-Helmholz instability as the primary mechanism.
However, as we argue in Section 5, it may play a role in initiating whitecap events.] The generation
of longer waves is primarily thought to be the result of an inverse cascade in which both wave
action and energy are carried to long waves. But the pure KZ ω−4 spectrum is predicated on an
energy flux from long to short waves. Numerical simulations (Badulin et al. 2007) suggest that
the observed spectrum—an evolving spectral shape I(ω) with a front at ωf moving from high
toward low frequencies, rising quickly to a peak at ωp, and then decaying algebraically as ω−s,
11/3 ≤ s ≤ 4 in the wake ω > ωp —is a combination of an almost constant wave-action flux
(especially near ωp) and a nonconstant energy flux that changes sign so as to provide a net direct
energy flux. The change of sign can be attributed to the deposition of energy by the dual inverse
fluxes that conserve both energy and wave action. The conclusion we draw is that the observed
spectrum is consistent with a wave turbulence solution but one that is more complicated than that
of pure wave action or energy fluxes. An additional observation is that at small scales, in strongly
driven seas, the spectrum seems to be steeper and more aligned with Phillips’ prediction. The
appearance of the Phillips’ spectrum in strongly driven situations is consistent with the findings
of Korotkevich (2008) in direct numerical simulations.

4.3. Vibrating Plate Turbulence: Can One Hear the Kolmogorov Spectrum?

During et al. (2006a) derived and analyzed the wave turbulence of vibrations ωk ∝ |k|2 on large,
thin, elastic plates with normal deformations η(x, t) governed by the von Kármán–Donnell equa-
tions. They found a kinetic equation similar to Equation 13, but with the distinct feature that,
unlike gravity waves and optical waves of diffraction, the restriction that the four-wave interaction
preserves wave numbers is no longer required. As a result, there is only one equipartition solution
nk = T /ωk ∝ k−2 and the KZ direct energy flux solution nk ∝ k−2. Because of the degeneracy, the
KZ solution requires a log correction, and one can show 〈|ηk|2〉 = d (P1/3/k4) ln1/3(k∗/k), where
k∗ is some cutoff wave number. Numerical simulations appear to corroborate these findings to
within a surprising accuracy (even for the log power fit!). However, subsequent experiments by
Mordant (2008) and Boudaoud et al. (2008) have failed to observe these spectra. In frequency space,
the corresponding KZ spectrum is ln1/2(ω∗/ω), but the experiments show a definite power-law
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decay ω−s, where s ≈ 0.6. Space-time spectra confirm that, except for very large waves, the joint
power spectrum �(k, ω) is supported on a very thin curve that closely follows the linear dispersion
relation. The real (nonlinear) frequency correction (�2 in Equation 7) is found, however, to be
proportional to Ps, where s ≥ 1/2 rather than s = 1/3.

Two reasons can be given to explain the steeper spectrum. The first has been suggested by
C. Josserand (private communication), who included broadband damping and found that the
spectrum indeed did decay as ω−s, s > 0, where s could be tuned by the choice of damping. The
second is that the spectrum is steepened by finite box size effects.

5. QUESTIONS AND OPEN CHALLENGES

5.1. Questions

Two questions naturally emerge from the discussion to date. First, we have learned that the finite-
flux spectra are almost never valid over all wave numbers in the sense that, either for very short or
for very long waves, the premises on which wave turbulence theory rests are violated by the KZ
solutions. Is there any way to modify the theory for those ranges so that its basic validity, namely
closure and spectral energy transfer via resonances, still obtains? Second, are there situations for
which all the ingredients for a successful wave turbulence appear to be in place, namely a dispersive
wave system with weak nonlinearity for early times, but which over long times realize statistically
stationary states that are completely inconsistent with the predictions of wave turbulence theory?
Is there any way in which one can recognize these situations a priori?

We provide some answers to the first question by considering two examples. Given, over some
range, a direct flux KZ spectrum for gravity waves, we know that the KZ spectrum breaks the
premises of theory for wave numbers k > kU , where P2/3kU /g is of order unity. It is then natural
to ask if there is another physical process, in this case capillary wave action, that may come into
play for wave numbers (k0, ∞) with k0 < kU , k0 = (ρg/S)1/2, which can regularize the breakdown
or, if k0 > kU , if there is a new spectral shape that we can find for nk in (kU , ∞) (we take k0 = ∞
in this case) that can be legitimately attached to the KZ direct energy spectrum cascade at kU . For
ocean waves, k0 < kU if P < (gS/ρ)3/4 or [because P ∼ (ρa/ρ)3/2U 3] at wind speeds U of less than
5 m s−1. Then the direct three-wave resonance energy transfer carries the energy flux from the
four-wave KZ spectrum to the millimeter scale at which viscosity acts to absorb the energy. For
P > (gS/ρ)3/4, for U > (ρ/ρa )1/2(gS/ρ)1/4, or for wind speeds much greater than 5 m s−1, a new
spectrum must be appended for k > kU . We note that this is precisely the criterion for which there
is a range of wave numbers for which the Kelvin-Helmholz instability is active. Such an instability
leads to wave breaking and may be responsible for whitecapping events. It has been our suggestion
(Newell & Zakharov 1992, 2008) that the new spectrum is the Phillips’ spectrum nk = c g1/2k−9/2.
It has exactly the right properties to satisfy the amended kinetic equations S(ω) + SOUT = 0 in the
integral sense so that, ignoring surface tension, all energy crossing kU with flux P is absorbed in
(kU , ∞) by whitecapping events. Moreover, because the constant c is very small (the estimate is
0.2), the wave turbulence approximation (see Equation 15) is still valid.

The second example concerns the NLS equation with the Hamiltonian
(1/2)

∫
(|∇u|2 − λ|u|4)dx) and the Majda-McLaughlin-Tabak (MMT) equation (Majda et al.

1997). In the MMT equation, the Fourier space representation of the dispersion is ω = k1/2

rather than ω = k2. In the case of the focusing NLS equation (λ = +1) in two dimensions,
number density inserted at intermediate wave numbers at rate Q0 flows to longer and longer
waves and will form an unstable condensate. The condensate breaks into large-amplitude collapse
events that carry number density to small scales at which it is dissipated. The imperfect burnout

www.annualreviews.org • Wave Turbulence 73

A
nn

u.
 R

ev
. F

lu
id

 M
ec

h.
 2

01
1.

43
:5

9-
78

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 I
fr

em
er

 -
 B

ib
lio

th
eq

ue
 L

a 
Pe

ro
us

e 
on

 0
1/

18
/1

1.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



FL43CH03-Rumpf ARI 19 November 2010 11:44

of fraction f (see Dyachenko et al. 1992, Newell & Zakharov 1995) leads to a source of number
density and energy at large wave numbers. By the joint action of waves and collapses, a statistically
steady state with flux Q0/f is achieved. Such a scenario is seen for the discrete NLS equation
(Rumpf & Newell 2004) and the Benjamin-Feir stable (λ = 1) MMT equation (Cai et al. 1999,
2001; Rumpf & Biven 2005). Driving feeds wave action to the system at low amplitudes, and
dissipation removes it at high amplitudes, a flux from low to high amplitudes. The nonlinearity of
energy offsets the loss of energy by the dissipation of low-amplitude waves at high wave numbers.
For sufficiently weak damping, the collapse events are rare enough so as not to affect the spectrum
of lower moments. The challenge is to devise a two-species gas (waves and collapses) description
that takes advantage of both the weak interaction of waves and the special structures of the
collapse events.

With regard to the second question, we know from the work of Fermi, Pasta, and Ulam how an
initially weakly nonlinear system can avoid thermalization for a very long time by the creation of
coherent structures, a result that led to soliton theory. In their seminal paper, Majda et al. (1997)
challenged the notion that a weakly nonlinear system of wave turbulence type would always reach
the KZ attractor as its statistically steady state. Rumpf et al. (2009) have verified and explained that
conclusion. For λ = −1, monochromatic waves of the MMT equation are Benjamin-Feir unstable
and lead to the creation of solitary pulses, which in turn excite radiating tails. The ensemble of
such pulses leads both to the observed MMT spectrum and to the correct prediction of a wave-
action inverse cascade. But how might we have known a priori that wave turbulence theory must
fail? We have recently discovered (with Zakharov) that, for λ = −1, the KZ solution is unstable
to perturbations in n(k, x) that are not spatially homogeneous, namely weakly dependent on x
(B. Rumpf, V.E. Zakharov & A.C. Newell, unpublished manuscript). The assumption of spatial
homogeneity is temporarily violated although it will again be recovered when the system moves
away from a wave turbulent state and reaches its new, nonlinear MMT statistically steady spectrum.

5.2. Open Challenges

To conclude, we list some additional challenges.

5.2.1. Acoustic turbulence, isotropy or shocks? The resonant manifolds for the dispersion
relation ω = c |k| are rays in wave-vector space. The first closure transfers spectral energy along but
not between the rays. Given an initial anisotropic energy distribution, do the nonlinear interactions
of the next closure lead to an isotropic distribution or to condensation along particular rays, which
would likely become fully nonlinear shocks (L’vov et al. 1997)?

5.2.2. Energy exchange times. For a discrete set of interacting triads, the nonlinear energy
exchange time is ε−1. For a continuum set of such triads, cancellations cause this time to extend
to ε−2. Why?

5.2.3. Condensate formation. Condensate formation modeled by the defocusing (λ = −1)
NLS equation is an open and hot topic (Connaughton et al. 2005; During et al. 2006b; L’vov et al.
1998, 2003). We list three questions here. (a) Given an input Q0, P0 of number and energy flux at
finite wave number k0, can one follow, using wave turbulence theory, the creation of a condensate
by inverse flux action and the subsequent relaxation of waves and vortices on the condensate
(Dyachenko et al. 1992, Lacaze et al. 2001, Nazarenko & Onorato 2006)? (b) Given a finite total
energy and number of particles (and an UV cutoff kc), can one find in the subcritical temperature
range T < Tc [at T = Tc , μ, the chemical potential is zero; for T < Tc , μ would be positive and
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the Rayleigh-Jeans equilibrium nk = T /(ωk − μ) singular] a wave turbulence description with a
gradual transition from free waves (ωk = k2) to Bogoliubov waves (ω = ±

√
2|λ|n0k2 + k4), where

n0 is the number of particles in the condensate (Zakharov & Nazarenko 2005)? (For T ≈ Tc ,
Equation 9 is no longer uniformly asymptotic.) (c) How is the second-order phase transition in
question b affected if one initiates the dynamics with nonzero fluxes?

5.2.4. Wave turbulence in astrophysics. Magnetized plasmas, found in the solar corona, solar
wind, and Earth’s magnetosphere, support waves, and, like ocean waves, they have a continuum
of scales (up to 18 decades!) and are a natural playground for wave turbulence (Boldyrev & Perez
2009; Galtier 2003, 2006, 2009; Galtier et al. 2000; Goldreich & Sridhar 1995, 1997; Goldstein
& Roberts 1999; Kuznetsov 1972, 2001; Ng & Bhattacharjee 1996; Ng et al. 2003; Sahraoui et al.
2003, 2007; Sridhar & Goldreich 1994). To date, however, only the signatures of strong turbulence
(Kolmogorov, rather than Iroshnikov-Kraichnan) have been found experimentally although wave
turbulence behavior has been clearly seen in direct numerical simulations by Bigot et al. (2008).
Given present satellite capabilities, what are the best hopes for observing wave turbulence spectra
such as the E(k⊥, k‖) ∼ f (k‖)k−2

⊥ , k‖ = kb, k⊥ = k − k‖b, f(k‖) nonuniversal, b unit vector in the
magnetic field direction, behavior for a sea of oppositely traveling Alfven waves? For a review, we
refer the reader to Galtier (2009).

5.2.5. Continuum limit of finite-dimensional wave turbulence. In a box Ld , one can define
a natural probability measure on Fourier amplitudes avoiding the difficulties of such measures in
infinite dimensions. The resulting Liouville hierarchy for the Fourier amplitude PDF leads, via
the Brout-Prigogine equation for its vacuum component, to a kinetic equation if one assumes that
the vacuum PDF can be factored into a product of its marginals (a closure assumption!). Can one
show that a natural closure occurs in Ld or, if not, how the natural closure arises in taking the
L → ∞ limit ( Jakobsen & Newell 2004)?

5.2.6. A priori conditions for wave turbulence. Can one find mathematically rigorous a priori
conditions on the governing equation given in Equation 1 or its statistical hierarchy that guarantees
that wave turbulence theory will obtain? (We also refer the reader to earlier comments in this
section.)

5.2.7. Homogeneity. Is broken spatial homogeneity (the first premise listed above) a potential
problem for all turbulence theories?

5.2.8. Anomalous exponents. Are all finite-capacity Kolmogorov solutions reached with anoma-
lous exponents? Do they have anything to do with positive entropy production?
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Astrophys. J. 438:763–75
Goldreich P, Sridhar S. 1997. Magnetohydrodynamic turbulence revisited. Astrophys. J. 485:680–88
Goldstein ML, Roberts DA. 1999. Magnetohydrodynamics turbulence in the solar wind. Phys. Plasmas 6:4154–

60
Hasselmann K. 1962. On the non-linear energy transfer in a gravity-wave spectrum. Part 1. General theory.

J. Fluid Mech. 12:481–500
Hasselmann K. 1963a. On the non-linear energy transfer in a gravity-wave spectrum. Part 2. Conservation

theorems; wave-particle analogy; irreversibility. J. Fluid Mech. 15:273–81
Hasselmann K. 1963b. On the non-linear energy transfer in a gravity-wave spectrum. Part 3. Evaluation of

the energy flux and swell-sea interaction for a Neumann spectrum. J. Fluid Mech. 15:385–98
Hwang PA. 2006. Duration- and fetch-limited growth functions of wind-generated waves parametrized with

three different scaling wind velocities. J. Geophys. Res. 111:C02005
Hwang PA, Wang DW. 2004. Field measurements of duration-limited growth of wind-generated ocean

surface waves at young stage of development. J. Phys. Oceanogr. 34:2316–26
Hwang PA, Wang DW, Walsh EJ, Krabill WB, Swift RN. 2000. Airborne measurements of the wavenumber

spectra of ocean surface waves. Part 1. Spectral slope and dimensionless spectral coefficient. J. Phys.
Oceanogr. 30:2753–67

Jakobsen P, Newell AC. 2004. Invariant measures and entropy production in wave turbulence. J. Stat. Mech.
Theor. Exp. 2004:L10002

Kolmakov GV, Brazhnikov MY, Levchenko AA, Silchenko AN, McClintock PVE, Mezhov-Deglin LP. 2006.
Nonstationary nonlinear phenomena on the charged surface of liquid hydrogen. J. Low Temp. Phys.
145:311–35

Kolmakov GV, Levchenko AA, Brazhnikov MYu, Mezhov-Deglin LP, Silchenko AN, McClintock PVE. 2004.
Quasiadiabatic decay of capillary turbulence on the charged surface of liquid hydrogen. Phys. Rev. Lett.
93:074501

Korotkevich AO. 2008. Simultaneous numerical simulation of direct and inverse cascades in wave turbulence.
Phys. Rev. Lett. 101:074504

Kraichnan RH. 1967. Inertial ranges in two-dimensional turbulence. Phys. Fluids 10:1417–23
Kuznetsov EA. 1972. On turbulence of ion sound in plasma in a magnetic field. Sov. Phys. J. Exp. Theor. Phys.

35:310–14
Kuznetsov EA. 2001. Weak magnetohydrodynamic turbulence of a magnetized plasma. Sov. Phys. J. Exp.

Theor. Phys. 93:1052–64
Lacaze R, Lallemand P, Pomeau Y, Rica S. 2001. Dynamical formation of a Bose-Einstein condensate. Phys.

D 152–153:779–86
Long CE, Resio DT. 2007. Wind wave spectral observations in Currituck Sound, North Carolina. J. Geophys.

Res. 112:C05001
L’vov VS, L’vov Y, Newell AC, Zakharov V. 1997. Statistical description of acoustic turbulence. Phys. Rev. E

56:390–405
L’vov YV, Binder R, Newell AC. 1998. Quantum weak turbulence with applications to semiconductor lasers.

Phys. D 121:317–43
L’vov YV, Nazarenko SV, West R. 2003. Wave turbulence in Bose-Einstein condensates. Phys. D 184:333–51
Majda AJ, McLaughlin DW, Tabak EG. 1997. One-dimensional model for dispersive wave turbulence. J.

Nonlinear Sci. 7:9–44
Miles JW. 1967. On the generation of surface waves by shear flows. J. Fluid Mech. 30:163–75
Mordant N. 2008. Are there waves in elastic wave turbulence? Phys. Rev. Lett. 100:234505

www.annualreviews.org • Wave Turbulence 77

A
nn

u.
 R

ev
. F

lu
id

 M
ec

h.
 2

01
1.

43
:5

9-
78

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 I
fr

em
er

 -
 B

ib
lio

th
eq

ue
 L

a 
Pe

ro
us

e 
on

 0
1/

18
/1

1.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



FL43CH03-Rumpf ARI 19 November 2010 11:44

Nazarenko SV, Lukaschuk S, McLelland S, Denissenko P. 2010. Statistics of surface gravity wave turbulence
in the space and time domains. J. Fluid Mech. 642:395–420

Nazarenko S, Onorato M. 2006. Wave turbulence and vortices in Bose-Einstein condensation. Phys. D 219:1–
12

Newell AC. 1968. The closure problem in a system of random gravity waves. Rev. Geophys. 6:1–31
Newell AC, Aucoin PJ. 1971. Semidispersive wave systems. J. Fluid Mech. 49:593–609
Newell AC, Nazarenko SV, Biven L. 2001. Wave turbulence and intermittency. Phys. D 152–153:520–50
Newell AC, Zakharov VE. 1992. Rough sea foam. Phys. Rev. Lett. 69:1149–51
Newell AC, Zakharov VE. 1995. Optical turbulence. In Turbulence: A Tentative Dictionary, ed. P Tabeling, O

Cardoso, pp. 59–66. New York: Plenum
Newell AC, Zakharov VE. 2008. The role of the generalized Phillips’ spectrum in wave turbulence. Phys. Lett.

A 372:4230–33
Ng CS, Bhattacharjee A. 1996. Interaction of shear-Alfvén wave packets: implication for weak magnetohy-

drodynamic turbulence in astrophysical plasmas. Astrophys. J. 465:845–54
Ng CS, Bhattacharjee A, Germaschewski K, Galtier S. 2003. Anisotropic fluid turbulence in the interstellar

medium and solar wind. Phys. Plasmas 10:1954–62
Phillips OM. 1977. The Dynamics of the Upper Ocean. Cambridge, UK: Cambridge Univ. Press
Phillips OM. 1985. Spectral and statistical properties of the equilibrium range in wind-generated gravity-

waves. J. Fluid Mech. 156:505–31
Pushkarev AN, Zakharov VE. 1996. Turbulence of capillary waves. Phys. Rev. Lett. 76:3320–23
Rumpf B. 2008. Transition behavior of the discrete nonlinear Schrödinger equation. Phys. Rev. E 77:036606
Rumpf B, Biven L. 2005. Weak turbulence and collapses in the Majda-McLaughlin-Tabak equation: fluxes in

wavenumber and in amplitude space. Phys. D 204:188–203
Rumpf B, Newell AC. 2004. Intermittency as a consequence of turbulent transport in nonlinear systems. Phys.

Rev. E 69:026306
Rumpf B, Newell AC, Zakharov VE. 2009. Turbulent transfer of energy by radiating pulses. Phys. Rev. Lett.

103:074502
Sahraoui F, Belmont G, Rezeau L. 2003. Hamiltonian canonical formulation of Hall MHD: toward an appli-

cation to weak turbulence. Phys. Plasmas 10:1325–37
Sahraoui F, Galtier S, Belmont G. 2007. Incompressible Hall MHD waves. J. Plasma Phys. 73:723–30
Sridhar S, Goldreich P. 1994. Toward a theory of interstellar turbulence I. Weak Alfvénic turbulence. Astrophys.
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at http://fluid.annualreviews.org/errata.shtml
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