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Forcing a three-dimensional, hydrostatic
primitive-equation model for application in the surf
zone, Part 1: Formulation

P. A. Newberger

J. S. Allen

College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, USA

Abstract. An Eulerian analysis for wave forcing of three-dimensional (3D) wave-averaged
mean circulation in the surf zone is presented. The objective is to develop a dynamically
consistent formulation for applications in a 3D primitive equation model. The analysis

is carried out for the case of shallow-water linear waves interacting with wave-averaged
depth-independent horizontal currents that vary on larger space and time scales. Vari-
ations in wave properties are governed by a wave action equation that includes wave-
current interactions and dissipation representative of wave breaking. Wave forcing of the
mean currents consists of a surface stress and a body force. The surface stress is pro-
portional to the wave energy dissipation. The body force includes one term that is re-
lated to gradients of part of the radiation stress tensor and a second term that is related
to the vortex force and is proportional to a product of the mean wave momentum and
the vertical component of the mean vorticity vector. In addition there is a non-zero nor-
mal velocity at the mean surface that arises from the divergence of the mean Eulerian
wave mass flux. This velocity results in an additional momentum flux forcing of the mean
flow. Applications of this formulation to the DUCK94 field experiment are presented in
Part 2.

1. Introduction

The interactions between waves and longer period flow
and the forcing of mean currents by waves have been the
subject of many previous studies [e.g., Longuet-Higgins and
Stewart, 1962, 1964; Bowen, 1969; Hasselmann, 1970, 1971;
Longuet-Higgins, 1973; Mei, 1989; Garrett, 1976; Smith,
2006 and the comprehensive discussion in Phillips, 1977].
Most of this work has been in the framework of one- or two-
dimensional, depth-integrated currents. This approach has
had considerable success in predicting wave-driven currents
and wave-averaged surface elevation in the nearshore surf
zone [e.g. recent studies by Ruessink et al., 2001; Reniers
et al., 2004; Long and Ozkan—Haller, 2005]. It seems clear,
however, that development of a three-dimensional model-
ing capability for the wave-averaged circulation that resolves
both vertical and horizontal spatial structure would be ex-
tremely useful, e.g., for application to sediment transport
problems. A prerequisite for the development of that capa-
bility is a dynamically consistent derivation of the structure
of the wave forcing. The primary objective of the present
paper is to begin to develop such a rational formulation for
wave forcing of a three-dimensional (3D) primitive equation
model of the nearshore. An application of this formulation
to conditions found during the DUCK94 field experiment,
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2 NEWBERGER AND ALLEN: FORMULATION OF A 3D SURF ZONE MODEL

including detailed model-data comparisons, is presented in
[Newberger and Allen, 2007] refered to here as NA2.

Initial efforts to look at depth-dependent effects of wave-
forcing in the surf zone include one-dimensional vertical
models with undertow calculated to balance the effects of
the waves [e.g. Svendsen, 1984b; Deigaard et al., 1991;
Garcez Faria et al., 2000]. Quasi-three-dimensional mod-
els have been developed which combine a horizontally two-
dimensional shallow-water model with an approximate sub-
model for the vertical current structure [e.g., Svendsen and
Putrevu, 1994; Putrevu and Svendsen, 1999; Van Dongeren,
et al., 1999]. The increase in horizontal turbulent diffusion
caused by three-dimensional dispersion is included in this
type of model.

Other studies describing the effects of waves on mean
currents have involved primarily non-breaking, deep-water
waves. These include the work of Craik and Leibovich [1976]
and of Garrett [1976] that describe possible generation mech-
anisms for Langmuir circulation. In these cases, it is the
interactions between the waves and currents that are im-
portant. In another example, Hasselmann [1970] looks at
mean currents generated by waves in a rotating environ-
ment and shows that rotation should not be neglected for
times approaching an inertial period. In this study, we con-
sider both the effects of wave breaking and of wave-current
interactions with our results applicable to the nearshore surf
zone.

The development of fully three-dimensional models of the
wave-averaged circulation requires an understanding of the
distribution of the wave forcing in the vertical. The wave
forcing may include both a body force acting on the inte-
rior of the fluid and a surface stress. One relevant issue is
that of the determination of the surface stress which acts
to generate vorticity . De Vriend and Kitou [1991] discuss
the forcing of a three-dimensional model and point out the
inconsistency, when the waves are inviscid and irrotational,
of non-zero surface stress seemingly indicated by Eulerian
models. This issue has also been discussed, for example, by
Dingemans et al. [1987].

A generalized Lagrangian mean (GLM) theory for non-
linear waves has been developed by Andrews and McIn-
tyre [1978].  Groeneweg and Klopman [1998] describe a
three-dimensional GLM formulation for long-crested, non-
breaking waves and apply a one-dimensional formulation
of this model to explain laboratory observations of modi-
fication of the vertical profile of an imposed current by the
presence of waves. A two-dimensional (vertical and across
flume) GLM model with non-hydrostatic pressure correc-
tion is used by Groeneweg and Battjes [2003] to further
study the same laboratory experiments. Mellor [2003, 2005]
describes a three-dimensional model using phase averaging
with wave following coordinates. In the context of Eulerian
primitive-equation models, McWilliams and Restrepo [1999]
and McWilliams et al. [2004] have derived wave forcing for
non-dissipative waves and applied the results to oceanic sim-
ulations of wave influenced circulation.

The goal here is to derive approximate, dynamically con-
sistent expressions for the wave forcing that can be used
to extend an existing three-dimensional primitive equation
model, the Princeton Ocean Model (POM) [Blumberg and
Mellor, 1987], for application to the wave-averaged circula-
tion in the surf zone. The unmodified POM includes forc-
ing by surface stress from wind, surface fluxes of heat and
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fresh water and bottom stress calculated from a quadratic
drag parameterization. A two-equation turbulent closure,
the Mellor-Yamada level 2.5 scheme [Mellor and Yamada,
1982], is used to calculate turbulent eddy coefficients. In
the surf zone, additional factors become important. Break-
ing waves exert a stress on the wave-averaged currents and
create an increase of near surface turbulence. The onshore
flux of mass in the waves must also be taken into account.
Interactions of waves and currents near the bottom bound-
ary increase the bottom stress felt by the mean currents
above the boundary layer. These effects must be added to
the model in a dynamically rational manner to simulate the
surf-zone currents. In addition, a wave model is required to
provide the wave-averaged wave energy density, dissipation
rate and wavenumber needed to force the wave-averaged cir-
culation.

In this paper we will develop an Eulerian formulation
for wave forcing of a three-dimensional primitive equation
model for wave-averaged currents. As an initial step in solv-
ing the general problem we will restrict our attention to
shallow-water waves and depth-independent horizontal cur-
rents. Consistent with application to the surf zone, we will
not assume that the currents are weak relative to the wave
propagation speed so that the waves may be changed by the
presence of the mean currents.

Although many aspects of the wave forcing of mean cur-
rents have been addressed previously, [e.g., Hasselmann,
1971; Longuet-Higgins, 1973; Deigaard and Fredsge, 1989;
Deigaard, 1993; Rivero and Arcilla, 1995], we have not been
able to find a single, unified analysis that includes all the
components necessary to formulate dynamically consistent
forcing for a three-dimensional model of the wave-averaged
currents in the nearshore. One important point is the in-
clusion of wave-current interactions in both the wave and
current equations. Additionally, it is necessary to properly
evaluate the correlation between the horizontal and vertical
wave velocities. This correlation is zero for waves propagat-
ing without change of shape. It has been shown in particular
cases that non-zero values of this term caused by dissipa-
tion [Deigaard and Fredsoe, 1989; Deigaard, 1993], shoaling
[Rivero and Arcilla, 1995] or rotation [Hasselmann, 1970]
cannot be ignored in calculating the three-dimensional forc-
ing terms. We note that none of these results are directly ap-
plicable by themselves to the problem considered here with
time variation in both the mean wave properties and the
mean currents, sloping topography and wave-current inter-
actions.

In section 2 we look at the general Eulerian framework for
three-dimensional forcing extending the approach of Hassel-
mann [1971] to address calculation of the partition of the
wave forcing into a surface stress and a body force. The
special case of depth-independent horizontal currents and
shallow-water waves is worked out in detail in sections 3
and 4. Discussion and conclusions are presented in section 5.
Details of the derivations are presented in the Appendices.
Numerical solutions obtained using the forcing derived in
this paper are presented in NA2.

2. Interactions of the mean current and
waves

Hasselmann [1971] has examined the interactions between
gravity waves and the larger-scale flow. We begin by using
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150 his equations (1-5) for the total flow modified to include the
151 effects of rotation and vertical turbulent mixing. Thus, the
12 governing equations in Cartesian (z,¥, z) coordinates are:

153 Uz + vy + w, =0, (1)
154

15 ut + (u)e + (wv)y + (uw). + % — fo=17, (2)
156

157 ve+ (W0)e + (V%) + (o). + B 4 fu=7Y, (3
158 p

159 wi 4 (uw)z + (vw)y + (W), + pf =—g, (4)

10 where u = (u, v, w) is the velocity vector, = and y the hor-
161 izontal coordinates, z the vertical coordinate, p the pres-
12 sure, p the constant density, f the Coriolis parameter and
163 subscripts x, y, z and ¢t denote partial differentiation. The
1wa  terms 77 and 7Y represent vertical gradients in the turbu-
165 lent Reynolds stress associated with the vertical turbulent
166 velocities.

167 We assume no imposed external stress at the surface (i.e.
18 no wind stress) and that the bottom stress is zero. The
160 surface and bottom boundary conditions are

170 ™=7Y=0, p=p° at z =1, (5a, b)
171

172 N+ une +ogy —w=0 atz=n, (6)
173

174 ™" =7Y=0, wHos+vHoy+w=0

175

176 at z = —Ho, (7a,b)

177 where p® is the atmospheric pressure assumed in the follow-
178 ing to be uniform and therefore neglected, 1 the free surface
w9 and Hp the undisturbed water depth.

180 We define an averaging operator ( ) as an appropriate
181 average over wave time scales which retains the slower time
12 variations of the large scale currents and use it to separate
183 the mean (wave-averaged) velocity and fluctuating compo-
18« nents of the total flow such that, if © = u,, + o',

185 U= Un, W =0. (8)
186 This operator is applied to the equations for the total flow

17 (1)-(4) to obtain the equations for the mean flow which, we
188 assume, in addition, is in hydrostatic balance:

189 Uy +Vy +w. =0. (9)
190 m

101 " =pg(f—2). (10)
192

W + (0°)e + (WD)y + (WW): + g7, — [T

194 =—(u?), — (W), — (W), —py +77-, (11)
195

106 Ui+ (W0)e + (07)y + (D). + g7, + fU

107 = —(uv'), — (W)y — ('), —p, + 7Y, (12)

18 where p™ is the mean pressure in the absence of waves and
10 p“ is the wave contribution to the mean pressure. Boundary
200 conditions applied at the mean surface 77 are [Hasselmann,
21 1971],

202 n,+un, +vn, —w= -M; — M} atz=1, (13)
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where
7 7
Mm® :/ udz, MY :/ vdz. (14a,b)
n n

The boundary condition (13) at z = 7 is discussed further
in Appendix A. At the bottom,

T =T ZO, EH01+5H03,+E:0

at z = —Ho. (15a, b)

Additional boundary conditions for 7% and 7¥ at z = 7 are
required.

As pointed out by Hasselmann [1971] these equations are
not closed. Equations for the fluctuating part of the flow
are required. We will assume that the fluctuations are com-
prised of approximately linear waves with near-surface dis-
sipation representing breaking waves. The inclusion of dissi-
pation for the waves will allow us to apply the wave forcing
to flow in the surf zone where breaking and dissipation at the
surface are important processes. Breaking waves are clearly
not linear, but this assumption allows analytical progress.
It also retains physically important aspects of the lowest or-
der wave dynamics that have made possible valuable results
in previous studies of closely related problems [e.g., Thorn-
ton and Guza, 1983, 1986; Deigaard and Fredspe, 1989]. We
note, however, that applications to observed surf zone or
laboratory flows frequently are significantly more accurate
when the linear wave results are supplemented by the addi-
tion of a submodel for turbulent surface rollers [Svendsen,
1984a; Fredsge and Deigaard, 1992; Stive and De Vriend,
1995; Reniers and Battjes, 1997; Reniers et al., 2004]. Ex-
isting roller models are necessarily rather idealized approx-
imations, but they have the advantage that they can be
readily appended to other formulations. The addition of
a roller submodel to the wave forcing formulation derived
here is discussed, applied, and evaluated with model-data
comparisons in NA2.

The waves act as forcing for the wave-averaged currents in
three ways. First, as the body forces arising from the wave-
averaged nonlinear wave terms that appear on the right hand
side of (11) and (12). Additional forcing is in the form of
a flux of mass at the wave-averaged surface (13). As dis-
cussed below, dissipating (i.e. breaking) waves will exert
a stress at the wave-averaged surface. Wave dissipation in
the wave bottom boundary layer is also important in some
cases [Deigaard and Fredspe, 1989; Longuet-Higgins, 2005]
but will not be considered here.

We obtain equations for the wave- and depth-averaged
wave momentum by integrating the equations for the to-
tal momentum (2) and (3) from the mean surface 77 to the
free surface n = 7 + 1" and applying the averaging oper-
ator. These integrals and averages are evaluated with the
same assumptions and methods that are used in derivations
of depth-integrated equations [e.g. Phillips, 1977; Hassel-
mann, 1971; Smith, 2006]. We assume that the velocity
components can be analytically continued to the mean sur-
face when the instantaneous surface is below 77 so that av-
erages such as that in (14) can be defined. As in the case
of the assumption of linear waves, analytic continuation is
of questionable validity in the surf zone where the instanta-
neous surface is not clearly defined and the region between
the trough and crest is an appreciable portion of the water
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6 NEWBERGER AND ALLEN: FORMULATION OF A 3D SURF ZONE MODEL

column. It is consistent with the assumption of linear waves
and will be employed here to allow estimation of the forcing
terms.

To evaluate the terms in the mean wave momentum equa-
tions we will further assume that the total near surface cur-
rent can be expressed as a Taylor series about the value at
the mean surface. From (2) and (3), we obtain, respectively,

M{ +2uM®), + (@M +7M*), —u (Mg + M])
—ww’ — MY+ %g (), + ()7, + (w') 7,
=77 atz=T1], (16)

MY +2@OMY), + @MY +TM"), - (Mg + M)

VW M+ 50 (), + ()T + (),
=—77 atz=T1. (17)

These equations relate the wave-averaged surface stress com-
ponents 7% and 7Y at the mean surface 7 to u/w’(7) and
v'w' (7)) as well as to time and space variations in the wave
momentum and the near-surface mean velocity component u
and T . Note that the wave-current interaction terms [Gar-
rett, 1976] that were omitted in Hasselmann’s [1971] anal-
ysis are included. With an appropriate wave model, (16)
and (17) provide formulae for evaluating the mean surface
stress.

Kirby and Chen [1989] discuss the effects of weak
vertically-sheared flows on surface waves. Their results point
out the difficulty of describing the waves in the presence of
vertically sheared mean flow. The determination of an ap-
propriate wave model that includes at least, shoaling, dissi-
pation and wave-current interactions in the presence of mean
currents with O(1) vertical shear is not addressed here and
remains a topic for future research. In the sections 3 and
4 we will develop expressions for the wave forcing in the
special case of shallow-water waves and currents using the
expressions (16) and (17) to calculate the surface stress.

3. Shallow water currents with linear waves

We specialize the results of Section 2 to shallow-water
waves in the presence of depth-independent horizontal mean
currents. Approximate wave solutions are obtained for the
case of slowly varying mean currents and topography. Con-
sistent with application to the surf zone, the mean currents
may be comparable in magnitude to the wave propagation
velocity. In Section 4 these wave solutions are utilized to
calculate the time-averaged wave forcing terms for the mean
flow.

We define scales appropriate for linear waves in shallow
water and slowly varying depth-independent horizontal cur-
rents and topography. Length scales are L,, = K' <« Lg
for the waves and mean currents, denoted by subscripts
w and B respectively, where Kis a typical wavenumber.
Other length scales are A for the wave amplitude and H for
the water depth, both assumed to be much smaller than
L,. The mean surface elevation 77 is assumed to scale
with . The time scale for the waves Ty, and currents
Tg, scale as Ty, = o' <« Tg where @ is a typical wave
frequency. The wave scales are related by the shallow-
water dispersion relationship so that a typical wave speed
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¢ = (gfi)l/2 = LD/R = Lw/Tw. The velocity scales are
Uw = é/l/f[ for the waves and UB = ¢ for the currents.
From the continuity equation, the vertical velocities scale
so that W, = fIUw/Lw and Wg = fIUB/LB. We assume
that

e=Lyw/Lg=Tw/Te K 1. (18)

The waves are assumed to be linear and shallow water; that
is, the parameters

p=HK <1, a=AK<1 (19a, b)
and in addition,
B=A/H=a/p<1 (19¢)

is required for shallow-water waves to be approximately lin-
ear. We further assume that

B<e (194)

The mean wave properties, such as amplitude and wave
number, are assumed to vary on the same large space and
time scales as the mean velocities and topography. In the
shallow-water approximation, the vertical gradient of the
stress 77 and 77 must be independent of depth except in fric-
tional boundary layers. We assume that these stress terms
are of at most order e.

We assume that the velocity components u, v and w,
and surface elevation 7 can be expressed as a sum of slowly
varying quantities Ug, Vg, Wg, and np corresponding to
the mean currents, with time and space scales Ts and Lg,
and wave quantities .y, vy, Wy, and 7y, varying on shorter
wave scales. The Eulerian average (8) can be considered
as an average at a fixed spatial point over multiple wave
periods, Ty, where the averaging time is small compared to
the time scale of the currents Ts. The terms 77 and 77 are
assumed to be the sum of mean and fluctuating parts.

We define the non-dimensional horizontal velocity and
surface elevation

u' =u/Up = puy/Uy + Up/Up = fuj, + Uy, (20a)

n" =n/H = Bnw/A+ns/H = Bn, + g, (20b)

slow time,
T" =t/Tg = et = et”, (21)
and coordinates
X" =x/Lp =ekx = ex". (22)

Note that uy and 7, are functions of the variables
(z*,y",t") while Uy and nj are functions of the slow vari-
ables (X*,Y*, T*). With this scaling, the depth-integrated
and wave-averaged wave momentum vector M = (M?*, M¥)
(14) in non-dimensional form is

M* =M/HUg = *M/ AU,

e
= B’M;}, = 5/ wdz* = g, (23)
3
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Using this scaling, the non-dimensional equations for the
shallow-water approximation from (1)-(4) are (omitting the
superscript asterisks):

B (uwe + Vwy + ww:) + € (Upx + Vay + Wr2) =0,  (24)

Buwt + cUsr + 2 ((uwuw)m + (Vwlw)y + (wwuw)z)
+Be((quB)x + (vwUB)y + (waB)z)
+B((UBuw)m + (VBuw)y + (WBUw)z) + 6((UBUB)X
+ (VBUs)y + (WsUs):) — €fo (Vs + Bvw)
= —(enBx + Bnuwe) + €77, (25)

vat + eVer + 52 ((uwvw)z + (Uwvw)y + (wwvw)z)

+56((UwVB)X + (v VB)y + (wwVB)z)

+8((Usvw)z + (VBvw)y + (Wavw):) +€((UsVa)x

+ (VBVB)y + (WBVB)z) +efo (U + Buw)

= — (enBy + Bnuwy) + €7, (26)
where the horizontal velocity u is depth-independent, fo=
f/ew and f is a typical value of the Coriolis parameter as-
sumed to be order € as are the stress terms. The parameter
fo is included in the equations as an O(1) dimensionless

place holder for the Coriolis parameter f. The boundary
conditions are given by (5)-(7).

3.1. Mean flow equations

Applying the averaging operator, (), to (24)-(26) we ob-
tain equations for the mean flows:

Usx + VBy +Wp. =0, (27)
3
Usr +UsUBx + VBUBY — ?FbE - foVe
= —nBx + eﬁv (28)
3
Ver + UrVBx + VBVBY — ?FIZJ + foUs
= —nBy + er?, (29)

where the continuity equation (27) has been used to rewrite
the nonlinear terms in (28) and (29). The wave forcing terms
are given by

Fy = = ((wwtw)s + (ottw)y + (Wotn): )

= = (T Tz + VuTuy) , (30)

and

FY = = ((wwvw)s + @Wuvw)y + (wauvw):)
= — (Twlas + TaTay) , (31)

where the continuity equation for the wave variables,
(24)—(27), has been used to eliminate the w. terms in
(30) and (31). The velocity components (Ug, VB, Wg) are
defined in the region —Hy < z < . Note that wave forcing
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terms such as

1
Ttz = €5 (Twtiw) x (32)

are derivatives of wave-averaged quantities and therefore of
order (€). These terms will be evaluated below.

The non-dimensional kinematic boundary condition at
the mean surface ng, equivalent to the dimensional bound-
ary condition (13) [Hasselmann, 1971], is

ner + Usnex + Veney — Wa(ng)
=B (Mix +M!,) atz=ns. (33)

The bottom boundary condition is
UpHox + VeHoy + We(—Ho) =0 at z = —Hy. (34)

Equations (27), (33) and (34) imply that the mean depth-
integrated continuity equation is

ner + (HUp)x + (HVp)y = —B*(Myx + MYy), (35)
where
H = Hy+ nB (36)

is the mean water depth. The boundary conditions for the
stress terms are determined below.

3.2. Wave equations

The equations for the waves, obtained by subtracting
(27), (28) and (29) from (24), (25) and (26) are

Uz + Vwy + Wy = 07 (37)

Uwt + € (Uw UBX + UwUBY) + UBuw:c + VBuwy - €fovw
€' |o=np

= —Nwz + BH (38)
Vwt + € (UwVBx + wVBY ) + UBVwe + VBUwy + €fotw
67,y|z=n3
= —Nuy + —BH (39)

where the continuity equations (27) and (37) have been used
to rewrite the nonlinear wave-mean flow terms and where the
relatively small O(8) nonlinear wave-wave terms have been
omitted. We have also assumed that the wave breaking pro-
cess leads to a time-dependent stress (7'*, 7'¥) at the mean
surface np. Effects of wave-resolved near surface stresses
associated with wave breaking are discussed and modeled,
for example, by Veeramony and Svendsen [2000], utilizing
the analysis of laboratory measurements of Svendsen et al.
[2000].
The boundary conditions are

Nwt + € {uwnBx + vwnBYy + Nw (Usx + VBY)}
+UBNwe + VBNuwy —ww =0 at z =g, (40)

and

e{uwHox +vwHoy} +ww =0 at z=—Hy, (41)
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mo  The depth integral of (37), together with the kinematic
0 boundary conditions for the waves (40) and (41), implies
w51 that the depth-integrated continuity equation for the waves

452 1S

453 Twt + H {Uwz + Uwy} + Uanz + Vany
154 +e{uwHx + vwHy + 1w (Upx + Vay )} = 0. (42)

w5 From (38), (39) and (42), the corresponding equation for the
6 wave energy density

2 2 2
By =T g <M) 7 (43)

s S
wo Fye + {anUw + EwUB}z + {ﬂwHUw + EwVB}y

2 2
460 Z—E{ (Hui,—{-n?w) Usx + (Hvz,—{-n?w) Vey

161 + H oV (UBY + VBX) — % (Tmuw + T,va) }7 (44)

w2 where the relatively small O(3?) wave terms on the right
a3 hand side of (35) are neglected.
3.3. Solution of the wave equations

a6 The evaluation of the wave forcing terms (30) and (31)
w5 in the mean flow equations requires a solution of (38), (39)
a6 and (42) for the waves. We obtain the relevant approximate
w67 solution by using slow variables

168 X=ex, Y=ey T=c¢t, (45)

w9 and assuming that the horizontal wave velocities can be ex-
a0 pressed to order € as

m ww = [Uo(X,Y,T) + ieU1(X,Y,T)]
i exp(iO(X,Y,T)/e), (46)

473

vw = [Vo(X,Y,T) +ieVi (X, Y,T))
as exp (iO(X,Y,T)/e), (47)

ae  and that the surface elevation is given by
ar7 nw = A(X,Y, T)exp(iO(X,Y,T)/¢), (48)

azs - where A is the complex amplitude and © is the phase func-
a9 tion, such that

480 @T = —w, @X = k, @y = l, (49)

w1 with w the absolute frequency and (k,!) = k the wave num-
2 ber vector. We define K to be the magnitude of k,

- K= (K +1)". (50)
aga These definitions imply
485 kY = lX, kT == _UJX7 lT = —Wy. (51)

486 We assume that (7'%, 7'¥) is a real multiple of the wave
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velocity vector (uw, vw) and that it scales so that
% = _ﬁRuwv ' = _ﬁvav (5237 b)

where R > 0 is of order one and is a function of the slow
variables X,Y,T. As a result,

leuw + T,va = _/BR(UZ + ’Ug,), (53)

where R may depend on the wave amplitude and frequency,
water depth and mean velocity. This assumption is clearly
an idealization of the dissipative processes due to breaking
waves at the surface, but it provides a useful method to
incorporate general effects of wave-breaking into the present
formulation.

Substituting w. (46), vy (47), and 7, (48) into (38), (39)
and (42) gives at first order:

iUo (—w + Upk + Vgl) = —ikA, (54)

iVo (—w + Uk + Val) = —il A, (55)
tA(—w+ Uk + Val) + iHUok + iHVpl = 0.  (56)
With the relative frequency defined as

wr =w — Upk — Vagl, (57)

(54) and (55) may be written

vo=2k  y =4l (58a, b)
wr Wy
Substituting (58a,b) in (56) implies
wl = HK?, (59)

so that the relative frequency w, satisfies the nondimensional
shallow-water dispersion relation. L
The wave-averaged energy density £ = E,, is given by

P — Nw Ny n H (UoUg + VoVy) _ AA*
v 4 4 2

(60)

where * indicates the complex conjugate. The contribution
from the potential energy is equal to that of the kinetic
energy. The phase speed ¢ and group speed ¢4 are equal

Wy

K

_ Owy

:(H)1/27 Cg = 8[(

= (H)"?, (61a, b)

c
and the components of the wave velocity vector are

c=(c",c") = (ck/K,cl/K). (61c)

At order ¢, from (42) the complex amplitude A satisfies

At + (HU())X —+ (HV())Y — HU k — HV1l
+ (UnA)y + (Vad)y =0, (62)

where from (38) and (39)
Uwwr = — [Uor + UpUox + VeUoy + UoUsx

+VoUsy — foVo + Ax + RUo) (63)

Viw, = = [Vor + UsVox + VeVoy + UoVex
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+VoVBy + folUo + Ay + RW). (64)

We substitute the velocity components from (58a,b), (63)
and (64) into (62) to determine the equation for the am-
plitude A. The resulting amplitude equation implies, after
considerable but straightforward manipulation, the wave ac-
tion equation with dissipation:

(&), {2},

+{(cy+vB>§}Y=—5—d (65)

)
4 Wy

where ¢4 = RE is the energy dissipation.

4. Wave forcing of the mean circulation

The three components of the wave forcing of the mean
currents can be calculated from the wave velocities given
by (46), (47), (58a,b), (63) and (64). The first component,
calculated in section 4.1 is the flux of mass through the mean
surface (33) [Hasselmann, 1971]. The second component,
determined in section 4.2 and Appendix B is the body force
(30), (31) arising from the average of the wave nonlinear
terms. The remaining term is the surface stress caused by
the breaking waves and is discussed in 4.3. The relationship
of this formulation to the radiation stress gradient forcing
for depth-averaged mean currents is discussed in Appendix
D.

4.1. Surface boundary condition
The surface kinetic boundary condition (33) is equivalent

to a non-zero velocity perpendicular to the mean surface np.

Wi =Wp —nr —UBnBx — VBNBY
. Ek FEl
=52(wa+Mi‘,y)=ﬁ2{( )X+(—)Y}. (66)

Wy Wy

Note that this boundary condition results in a mean mo-
mentum flux forcing at the surface. This forcing appears
explicitly, for example, in the depth-integrated momentum
balance for the mean flow (D7) in Appendix D.

4.2. Body forces

We calculate the body forces as

F: :—{%Uw %me'f‘%vw §Ruwy} (67)

Fby :—{§Ruw %me“‘l‘%Uw %va}v (68)

where R is the real part of a complex number and the com-

plex velocities are given by (46) and (47). Evaluation of the

body force Fy is discussed below with most of the calcu-

lations outlined in Appendix B. A similar procedure gives
The first term in the body force Fy is

(R Re) = 7 {To + 00) (e )}

i (UoUpx + UoxUy)
€

K2AA" e (K*E
:4(w2 ) :ﬁ(wz) ’ (69)
r b'e r/x

The other term Rv,, Ruwy is calculated in Appendix B and
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is given by (B7). From (69) and (B7) we find that

" K*? kE [k IE [k
Fir == [ﬂ e+ (5) o (5,

IEK? lE
E— (Vex — Uy + fo) + 3 (kwry — lwrx)] . (70)

T

With (59) and wave momentum
M., = (Mg, MY) = (Fk/w:, Eljw,), (71)

(70) reduces to

bord =e{—% (%)X + Mf‘% (Vax = Usy + fo) } . (72)

From a similar calculation we find

T
Fg’ =€ {—% (g)y - J\éw (VBX — Uy + fo)} . (73)

The terms involving (E/H)x and (E/H)y can be seen to
come directly from part of the radiation stress in the two-
dimensional depth-averaged formulation [Longuet-Higgins,
1973; Smith, 2006 and Appendix D]. Without restriction to
shallow-water waves, Longuet-Higgins [1973] shows that, in
the depth-integrated case with weak currents and no time
variation of the wave field, the radiation stress forcing can
be expressed as the sum of two terms, one a gradient term
which reduces to the first terms of (72) and (73) in the limit
of shallow-water waves and the other proportional to the
wave dissipation which we will show to be the surface stress
in this formulation.

The other terms in (72) and (73) are related to the vortex
force [Leibovich, 1980]. These terms result from the wave-
current interactions [Garrett, 1976; McWilliams et al., 2004;
Smith, 2006] and involve a product of the wave momentum
and the vertical component of the vorticity of the mean ve-
locities VB, — Uy and the Coriolis parameter fo. We note
that an identical form of this depth-independent vortex force
was found by McWilliams et al. [2004] in the shallow wa-
ter limit (Section 12) of their depth-dependent results for
non-dissipative waves and weak currents.

4.3. Surface stress

Equations (16) and (17) for the surface stress in terms
of the wave-averaged wave momentum are derived by inte-
grating the momentum equations (25)-(26) for the total flow
from the mean surface np to the free surface n = np + BnNw
and wave-averaging. With the assumptions of Section 3, the
non-dimensional wave-averaged surface stress (16) in the X
direction reduces to

% = —Mpr — (2Us M) — (UMY + Ve M),
1)
+Un (Mix + Miy) = =5 + foM}

2

_ k kl
+= (R Rww) Jo=np — Eﬁan - EFHBY- (74)

a | =

The term (%uw %ww) |:=np is evaluated in Appendix C and
is given by:

Ex B
2 2w}

X

(§Ruw §wa) l:=np =€ {
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Ek?
—MY (Vex — Usy + fo) +

2w?
- Elk Ek* Elk
_ (chy)y + o2 Hy — w% Hox — w% Hoy} . (75)

7.

Hx — (Mf;cx)x

An equation for the time-rate of change of the z and y
components of the wave-momentum vector can be derived
from the wave action equation (65) by multiplying by & and
l, respectively. The resulting equation for the X component
is

x x x x E
Mg+ (M (" + Us)lx + [M3 (¢ + Vi), + 577 Hox
Edk

+MiUx + MY Vex = — . (76)

W

Substituting the value of (%uw %ww) |:=np from (75) and
MZ . from (76) into (74) we obtain
F Edk

AR at z =np. (77)

It follows similarly that the surface stress in the Y direction
is

ﬁ _ 6dl _

EEh at 2 =np. (78)
Consequently, the surface stress vector has a magnitude that
is directly related to the near-surface wave dissipation and
a direction that is aligned with that of the wave propaga-
tion, in agreement with the findings of Deigaard and Fredsge
[1989] and Deigaard [1993] (see also Fredsge and Deigaard
[1992] chapter 6).

It may be noted that the calculation of (§Ruw §wa) |:=np
(75) shows explicitly that the gradient of the pressure con-
tribution to the radiation stress Ex /2, which arises in (74)
from integration over the surface layer from ng to 7, does
not contribute directly to a surface stress, consistent with
physical reasoning [De Vriend and Kitou, 1991]. Likewise,
the combined substitution of (75) and (76) into (74) shows
the same result for the wave current interaction terms in-
volving products of Ug, Vg and Mg, MY,

The results found in subsections 4.1-4.3 provide the re-
quired expressions for the wave forcing terms in the mean
flow equations (27)-(33). We note that, as discussed in Ap-
pendix D, the depth-integral of the resulting equations, with
the body force specified as in 4.2 and the boundary condi-
tions found in 4.1 and 4.3, agrees exactly with previously de-
rived depth-integrated equations for the mean flow [Smith,
2006].

5. Discussion

With the objective of establishing a rational approxima-
tion in an Eulerian frame of reference for forcing of wave-
averaged circulation in the surf zone represented by three-
dimensional primitive-equation models, we derive the forc-
ing for the case of depth-independent horizontal currents
and shallow-water waves. We include wave-current interac-
tion terms in both the wave and mean equations. We find
that the surface stress is non-zero only when there is dis-
sipation of wave energy near the surface. The body force
consists of two parts, one related to the gradients in part
of the radiation stress tensor with modifications for varia-
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tion is water depth. The other is a wave-current interaction
term that involves a product of the wave momentum and
the vertical vorticity of the mean current plus the Coriolis
parameter. It is related to the vortex force of Craik and
Leibovich [1976] [see Leibovich, 1983; Garrett, 1976; Smith,
2006]. We find that the evaluation of the terms involving
(Wwww) and (VupWwy) is critically important for a consistent
estimation of the forcing. The proper specification of the
wave related surface stress cannot be determined without
the correct evaluation of these terms.

The wave-current interactions that result in the vortex
force term are frequently omitted from surf zone models
based on scaling arguments that assume relatively weak cur-
rents. We have made a deliberate choice to scale the currents
here so that these interaction terms are retained. One ad-
vantage is that it helps demonstrate the relation of surf zone
forcing models to the substantial, but generally separate, set
of wave-current interaction results that originated in stud-
ies of Langmuir circulation [e.g. Leibovich, 1983]. A second
advantage is that the present formulation remains valid in
the weak current limit. Thus, if the currents are weak in
the applications, the wave-current interaction forces will be
correspondingly small, but the remaining wave-forcing will
be properly specified. In the companion paper NA2, we use
this formulation to force a three-dimensional primitive equa-
tion model and compare the results with observations from
the DUCK94 field experiment. It is shown there that the
wave-current interaction forcing terms can play an appre-
ciable role. The extension of the present results to include
depth-dependent currents is clearly needed and is a topic for
future research.

Appendix A: Wave-averaged surface bound-
ary conditions

The wave-averaged boundary condition (13) at the mean
surface 77 was derived originally by Hasselmann [1971].
Physically, it states that the divergence of the horizontal
time-averaged wave mass flux, which in an Eulerian for-
mulation occurs between the wave crests and troughs [e.g.,
Phillips, 1977], is balanced by a mean normal mass flux at
the mean free surface. This same boundary condition natu-
rally arises in the asymptotic wave-averaged Eulerian anal-
yses of McWilliams and Restrepo [1999] and of McWilliams
et al. [2004]. Results that might appear to be different are
obtained, however, in the recent analyses of Mellor [2003,
2005] where time-averages in an Eulerian frame of reference
are not utilized, but rather time-averages in a wave following
coordinate system are used.

Questions naturally arise concerning the differences, espe-
cially with respect to implementation in three-dimensional
models in Eulerian coordinates. To obtain some insight into
these issues, it is useful to reexamine the original Hassel-
mann [1971] derivation. Accordingly, following Hasselmann
[1971], taking (z,y) derivatives of (14a,b) and adding, we
find

Mg+ MY = (une +vny)|z=n — (W7, +07,) .=

+‘/_n (g + vy) dz. (A1)

Integrating the last term in (A1) after substitution of w,

15
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720 from (1), we obtain

(e + une + vy — w)|a=y
722 Z(m+ﬂn_m+5m—ﬁ)|2:ﬁ+M$+Myy, (AZ)

»3 where the equation (1¢)].=y = (77) |.=7 has been added.
74 From (6), the left hand side of (A2) is zero which implies
s (13). The point to be emphasized here is that (A2) is an
76 equation that converts a time-average at the wave-following
77 free surface 7 into an equivalent relationship between time-
ns averaged variables at 77 and the divergence of the time-
9 averaged Eulerian wave mass flux. It seems clear that if
730 equations are being formulated for implementation in an
71 Eulerian coordinate model, time-averages at wave-following
72 locations need to be properly converted to time-averages at
73 fixed spatial locations as in (A2). We also call attention
734 to Appendix D where it is shown that boundary condition
735 (13), which implies (33), is necessary to provide consistency
736 with separately formulated depth-integrated equations for
737 the mean flow [Smith, 2006].

Appendix B: Evaluation of (Rv, Ru.wy)

738 Evaluation of (Rv., Ruwy) is required to find the body
70 force term in Section 4.2.  We divide the terms of
70 (Rvw Ruwy) into parts that can be more easily evaluated:

741 (?va %uwy) = E

1 [El +E2+E3+E4], (B1)

2 where
2 *
RSB ()
Wr Wr T Wr /T
744 _1_162 [A <ﬂ> + A* (Al) ]
Wr Wr T Wy /T

wo = A ) = A ey ], (B2)
UJT wr
746
EFZ—Q{ B<A ) + U5 (25)
Wy Wy Wr / x
748 +AVE ( ) + A ﬁ) +2UBx AATk
v wr /vy Wr
749 +2Upy Ad ]
l2
- 5 [UB— AA), +VB—(AA )y
s +2UpAA (—) F2VpAA (—)
wr/ x Wr/y
752 +2AA*£UBX + QAA*UJLUBY:I I} (B3)
753
¢ e ()
w Wr/ x
755 +AVE ( ) + A"Vp (%) +2Vex AATk
/Y T

756 +2Vpy AA :|
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lk l « [ *
= T2 [UBw_T(AA )X'*'VBW_T(AA )y

F2RAAT (i) F2VRAAT (L)
X Y

Wy r

+2AA*§VBX + 2AA*UJLVBY] , (B4)

l2

w?

AA*] lk ”
—Qﬁ)w—] __2[(1414 )y

w?

w8 LI e () ]
Wy Wr Wr y Wr/y

s AA* ( k ) _21[(2
Y

= (A +2

Wit Wy

foAA™.  (B5)

Wr wi

Using w, =w — kUp — VB we find

2AA"
By + By + By = = [lkwry = Pwyx

T

+l (k2 + 12) (Usy — VBX)] . (B6)

Combining this result with the definition of E4 completes
the computation.

2 *
(Row Runy) = 5 [l— (A4, + A4 (ﬁ)
Y

2&)% W Wy
K2
—IAA" = (Vex = Upy + fo)
lAA*
kwry — lw,
+ o3 (kwry —lw X):|
12 IE [k IEK?
26{ 2Ex+—(—> - ——5 (Vex — Usy
2wy, wr \wr/y wr
IE
o) + o5 (hoy ZW)] . (BT)
The expression (B7) may be rewritten in a form useful in
Appendix C.
H fm——s— 1 -
- (ﬂ?vw %uwy) =3 (Myc®)x + MY (VBx — Usy
El’ Ex
— _Hx - =X B
+f0)+2H[(2 X 2 ’ ( 8)
where we use
I Ek* K*Ex Ek%
(ch )X = ([(2 ) = K2 + K’2
2Ek*K
_sbi Ax (B9)

K 3

Appendix C: Evaluation of (Ru., Rww) |2=ns

Evaluation of (%uw §wa) |:=np is required to find the
surface stress in Section 4.3. We evaluate (S‘Euw S‘Eww) |:=ng
as

nB

(§Ruw §wa) le=np = / (§Ruw %ww)z dz

_HO

+ (%Uw %ww) |z:7H()7 (Cl)

17
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where

(§Ruw §wa) l:=—my = —¢ {%(Uw)QHOX
+§Ruw %vaOY} . (02)

The continuity equation for the waves (37) implies that

(%uw %ww)z = — {S‘Euw Rwe + € (%uw %vw)y
—Rvy §Ruwy} , (C3)

where {(ﬂ?uw %um) } and { (%vw %uwy) } are calculated in
(69) and (B8) respectively, and

(o o), = & (AA*“> = (20 o

w? w?

Substituting (C2), (C3) and (C4) into (C1) we find (75).

Appendix D: Comparison with the depth-
integrated equations

Integrating the total horizontal momentum equations
(25) and (26) from the bottom Hp to the free surface n
and wave-averaging gives the equations for the total wave-
averaged momentum M = (M®, MV) in terms of the radi-
ation stresses [Phillips, 1977; Garrett, 1976; Smith, 2006].
The total wave-averaged momentum in the x direction is
given by

n
M® = / udz = Mg + B ME, (D1)
_HO
where
nB
Mg :/ Ugpdz, (D2)
—Hy

is the contribution from the mean flow and M, (23) is the
contribution from the waves. For depth-independent hori-
zontal currents and shallow-water waves this becomes

Mg+ {HUB®}  + {H(Up Vp)}y + Hnx — foM}
= B {~ Mgz + foMY — {Sa +2UB M}y

where we again assume that 7 is zero on the free surface
n and where Sg, and S, are components of the radiation
stress tensor

7
sz/ u2 +pwdz

Hy
kc® FE E
=F Z=ME+ = D4
o T w5 (D4)
K kcY
Sy = / Uy Vo dz = F =Myc? = MYc". (D5)
We
—Hy
In addition,
M3 = HUg. (D6)

Subtracting the wave momentum equation (76) from (D3),
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we obtain the equation for the depth-integrated and wave-
averaged momentum [Garrett, 1976; Smith, 2006],

Mgz + {HUE}  + {H(Up VB)}, + Hnpx — foM},

k
= 62 { M (Vi = Uy + fo) + 2
H /FE
_ T Y _ (=
Un (Mix + Mby) = 5 (H)X}. (D7)

The same equation is obtained by depth integrating (28)
for Upr and by using (27), (66), (72) and (77). The wave
forcing terms on the right hand side of (D7) are from left to
right: the depth integral of the vortex contribution to the
three-dimensional body force plus the wave Coriolis term,
the surface stress from wave breaking, the advection of mean
velocity by the non-zero surface velocity perpendicular to
the mean surface and a term from the part of the radiation
stress gradient that includes the effects of sloping bottom
and changes in wave energy density. Note that the surface
boundary condition (13), which translates in Section 3 to
(33), results in the momentum flux term —Ug (M x +MY,.)
which is necessary to provide the agreement that should be
found between the depth-integral of (28) and the separately
derived depth-integrated equation (D7) [Smith, 2006]. Con-
sistent with Smith [2006] the only part of the radiation stress
gradients that remains explicitly when the wave momentum
is subtracted from the depth-integrated equation for the to-
tal flow is the finite depth term, which for shallow-water
is —H(E/2H)x. The remainder of the forcing consists of
wave-current interaction terms and the surface stress arising
from dissipation in the surface layer. The latter, of course,
is related to radiation stress gradients resulting from wave
energy variations produced by dissipative processes near the
surface [Longuet-Higgins, 1973].
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