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Abstract

Scaling in long wave theory is quite complex. In the present paper, the problems associated with scaling in long waves are

described and characteristic length scales for the dynamical variables are developed. The vertical length scale over which the

horizontal velocity varies is shown to be different from the vertical length scale over which the vertical velocity varies and are

consistent with the properties of long wave theory.
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1. Introduction

Scaling analysis plays a large part in the under-

standing of fluid flows. In a particular situation, they

can give information on whether a physical process is

dynamically important or not. This is usually done by

introducing scales of motion that characterize the

spatial and temporal variations of dynamical fields.

Essentially, these are dimensional quantities express-

ing the overall magnitude of the variables under

consideration. They are estimates rather than precisely

defined quantities and are solely understood as orders

of magnitude estimates of physical variables. In most

situations, the key scales are those of time, length and

velocity. Nondimensional variables are obtained by

dividing the dimensional variables by their character-

istic scales. Proper scaling of the dimensional equa-

tions results in nondimensional equations, which

gives information on the dynamical importance of

physical processes. The nondimensional variables

obtained by scaling should be O(1) if meaningful

information must emerge from the nondimensional

equations.

In long wave theory, the characteristic length scales

that represent the wave motion are wavelength, 2k/k,
wave height, a, and water depth h. These length scales

give rise to three nondimensional numbers (only two

are independent). They are:

e = ka—wave steepness

y = a/h—relative wave height and

A = kh—relative water depth

The proper scaling of long wave equations and

appropriate boundary conditions ensures that at lowest

order, the dominant terms are obvious. Scaling, how-

ever, has to preserve a few important properties of

long waves. These are:

� All long waves correspond to lb1. This means

that the length of the wave is very long compared
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to the water depth. Thus, the long wave equations

can be obtained by imposing the constraint lb1

on the nondimensional set of equations.
� To the lowest order (i.e., lb1), long wave theory

implies the hydrostatic balance in the vertical

momentum equation. Thus, proper scaling of the

vertical momentum equation would result in the

hydrostatic balance.
� All the terms in the vorticity equation should be of

the same order, since the flow is assumed to be

irrotational.
� The terms in the continuity equation must be of the

same order.

Many researchers have performed scaling in long

wave theory (e.g., Yoon and Liu, 1989; Nwogu, 1993;

Wei et al., 1995) to obtain Boussinesq equations,

which belong to the category of long wave theory

with the additional constraint of d/l2 =O(1). The

weakness of their scaling analysis is that they do not

show the properties discussed above. Yoon and Liu

(1989) obtain the hydrostatic balance through their

scaling but are unable to properly scale the vorticity

balance and the continuity equation. Nwogu (1993) is

unable to obtain the terms in the vorticity balance to

be of the same order. In this paper, the shortcomings

of the scaling performed by the previous researchers

are discussed and an alternate scaling which does not

suffer from the above mentioned deficiencies is pro-

vided.

This paper is organized as follows. The next section

introduces the governing equations for the wave

motion. A linear solution is obtained, and in Section

3, these linear solutions are used to obtain characteristic

scales for the long wave motion. In Section 4, these

scales are used to develop the nondimensional equa-

tions to check the consistency of the scaling. Scaling of

long waves by different researchers is discussed in

Section 5. The final section is the Conclusion.

2. Equations

The governing equation for the inviscid, irrota-

tional wave motion is the Laplace’s equation. This can

be stated as

/xx þ /zz ¼ 0 ð1Þ

where / is the velocity potential, x is the horizontal

coordinate, z is the vertical coordinate and subscripts

denote differentiation with respect to a particular

variable.(For simplicity, we consider the two-dimen-

sional problem.). The imposed boundary conditions

are

� The kinematic-free surface boundary condition

gt þ /xgx ¼ /z z ¼ g ð2Þ

where g is the free surface elevation.
� The dynamic-free surface boundary condition

/t þ gg þ 1

2
ð/2

x þ /2
z Þ ¼ CðtÞ z ¼ g ð3Þ

where g is the acceleration due to gravity, C is any

function of time, and t is the time.
� No flow through the bottom (flat-bottom for

simplicity)

/z ¼ 0 z ¼ �h ð4Þ

where h is the water depth.

The linear solution to the above boundary value

problem is

/ ¼ ga

x
coshkðhþ zÞ

coshkh
sinðkx� xtÞ ð5Þ

where x is the angular velocity.

g ¼ acosðkx� xtÞ ð6Þ

and the dispersion relation is given as

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gktanhðkhÞ

p
ð7Þ

These solutions can be used to obtain characteristic

scales for the different variables.

3. Scaling

Characteristic scales for the dynamic variables can

be obtained from the linear solution. The horizontal

velocity, u, and the vertical velocity, w, can be
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obtained from the gradient of the potential. They can

be expressed as

u ¼ /x ¼
gak

x
coshkðhþ zÞ

coshkh
cosðkx� xtÞ ð8Þ

and

w ¼ /z ¼
gak

x
sinhkðhþ zÞ

coshkh
sinðkx� xtÞ ð9Þ

The horizontal and vertical velocities in long

waves are obtained by evaluating the above expres-

sions in the limit lb1. This results in

u ¼ gak

x
cosðkx� xtÞ ð10Þ

and

w ¼ gak2ðhþ zÞ
x

sinðkx� xtÞ ð11Þ

Thus, the characteristic velocity scales in the hor-

izontal and vertical directions are gak/x and gak2h/x,

respectively. Also note that while w varies linearly

with water depth, u is nearly constant over depth.

Since u is nearly constant over the water depth, clearly

h cannot be the characteristic length scale over which

u varies. Hence, it is not a simple exercise to choose

the vertical length scale for the dynamical variables.

The linear solution is used to evaluate the vertical

length scales for u and w. Evaluating Bu/Bz and Bw/

Bz, we obtain

Bu

Bz
¼ gak2

x
sinhkðhþ zÞ

coshkh
cosðkx� xtÞ ð12Þ

and

Bw

Bz
¼ gak2

x
coshkðhþ zÞ

coshkh
sinðkx� xtÞ ð13Þ

Again, for the limit lb1, the above expressions

become

Bu

Bz
¼ gak3ðhþ zÞ

x
cosðkx� xtÞ ð14Þ

and

Bw

Bz
¼ gak2

x
sinðkx� xtÞ ð15Þ

Also, we can obtain expressions for Bu/Bx and Bw/

Bx. They are, in the shallow water limit,

Bu

Bx
¼ gak2

x
sinðkx� xtÞ ð16Þ

and

Bw

Bx
¼ gak2ðhþ zÞ

x
sinðkx� xtÞ ð17Þ

From Eqs. (12)–(17), we can obtain characteristic

length scales for the variations of u and w.

Bu

Bz

����

���� ¼
gak3h

x
ð18Þ

Bw

Bz

����

���� ¼
gak2

x
ð19Þ

where jBu/Bzj and jBw/Bzj are the characteristic

values of Bu/Bz and Bw/Bz, respectively.

The characteristic vertical length scale over which

u varies is juj/jBu/Bzj. Thus, the vertical length scale

over which u varies is h/l2. Since l is small in long

waves, h/l2 is very large. This means that over the

water depth, h, u is nearly constant. In contrast, the

characteristic vertical length scale for w is jwj/jBw/Bzj.
In Eqs. (11) and (19), we can show that the vertical

length scale for w is the water depth, h.This aniso-

tropy in scaling makes the scaling of long waves quite

complicated and causes inconsistencies if scaling is

done improperly. All the previous researchers have

ignored the difference in the vertical length scales for

u and w in their scaling of the velocities.

Similarly, characteristic horizontal length scales for

u and w can be derived. The horizontal length scale for

u and w can be shown to be 1/k. Table 1 compares the

different scaling used by various researchers. It clearly

shows that the vertical length scale of both the hori-

zontal as well as the vertical velocities are scaled

incorrectly by all the researchers. The scaling of the

pressure term in the horizontal momentum equations is

C. Narayanan / Coastal Engineering 48 (2003) 67–74 69



also incorrect. This is the main reason why their scaling

is not able to satisfy all the criterion mentioned pre-

viously.

Next, we use observational data to show that while

the vertical velocity (w) does vary within the range of

the water depth, the horizontal velocity (u) does not.

Velocity and surface elevation data were collected by

Cox et al. (1995) which was later analyzed and

reproduced in Veeramony and Svendsen (2000). The

experiments were conducted in a wave flume with a

plain beach of 1:35. The wave height at the wave-

maker [see Fig. 3, Veeramony and Svendsen (2000)]

was 11.5 cm; the water depth at beginning of the slope

region was 0.4 m; and the wave period was 2.2 s. Fig.

1 shows the vertical profile of the velocity as a

function of time (the maximum depth is 0.28 m).

The surface elevation is also plotted to identify the

phase over which the data is collected. Fig. 1 shows

the vertical variation of the vertical velocity. It is clear

that in the region where the surface elevation gradient

is the greatest (third and fifth curves from left), the

vertical velocity varies linearly. This shows that the

characteristic vertical length scale of w is O(h).Simi-

ilarly, Fig. 2 shows the same for horizontal velocity. In

contrast, horizontal velocity remains nearly constant

Table 1

Comparison of various theories and their corresponding character-

istic scales

hu hw lu lw Pw Ph

Correct h/mu2 h 1/k 1/k Ugh Uga
Nwogu (1993) h h 1/k 1/k Ugh Ugh
Yoon and Liu (1989) h h 1/k 1/k Ugh Ugh
Peregrine (1967) h h 1/k 1/k Ugh Ugh

hu and hw represent the vertical length scale over which u and w

vary. Similarly, lu and lw represent the horizontal length scales over

which u and w vary. Pw and Pu are the characteristic scales for

pressure in the vertical momentum equations and horizontal

momentum, respectively.

Fig. 1. The vertical profile of the vertical velocity (w) is plotted over one wave period. z/h0 is the dimensionless form of the depth and t/T is the

dimensionless time. In this case, h0 = 0.28 m and T= 2.2 s.
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for all the phases. This implies that the vertical length

scale over which u varies is much larger than O(h).

These results are consistent with the length scales

developed in this paper.

In the next section, the scaling of Euler’s equa-

tions, the continuity equation, and the irrotationality

condition is introduced to show the consistency in the

scaling system adopted here.

4. The nondimensional equations

Euler’s equations, in the non-rotating framework,

can be expressed as (in the dimensional form)

ut þ uux þ wuz ¼ � px

q0

ð20Þ

wt þ uwx þ wwz ¼ � pz

q0

� g ð21Þ

The continuity equation is

ux þ wz ¼ 0 ð22Þ

and the irrotationality constraint is

uz � wx ¼ 0 ð23Þ

The characteristic scales for the different variables

are

uf
gak

x
; wf

gak2h

x
; xf

1

k
; tf

1

x
; gfa

The pressure is scaled as follows: Characteristic

scale for the pressure, p, is U0gh when it varies over

the vertical coordinate, z (which is scaled by h) and

the scale for the dynamic pressure is U0ga when

scaled over the horizontal coordinate, x (which is

scaled by 1/k).

Fig. 2. The vertical profile of the horizontal velocity (u) is plotted over one wave period. z/h0 is the dimensionless form of the depth and t/T is the

dimensionless time. In this case, h0 = 0.28 m and T= 2.2 s.
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The vertical length scale depends on the variable

chosen. For the variable, w, the vertical length scale is

h and for the variable, u, the vertical length scale is h/

l2.
Introducing the scaling results in the nondimen-

sional equations. Note that the nondimensional vari-

ables (which are denoted by primes) are of O(1). The

nondimensional equations are

utVVþ dðuVuxVVþ l2wVuzVÞ ¼ �pxVV ð24Þ

The horizontal momentum equations shows that in

the shallow water limit (or, long wave limit) the

dominant balance is between the pressure gradient,

the local acceleration term, and the nonlinear term. If

further, the weakly nonlinear assumptions is made

(db1), then the nonlinear terms become small t and

the local acceleration term balances the pressure

gradient.

dl2wtVVþ d2l2ðuVwxVVþ wVwzVVÞ ¼ �pzVV� 1 ð25Þ

For the vertical momentum equation in the long

wave limit (l2b1),the two terms on the left-hand side

drop out leaving behind the hydrostatic equation. This

is an important property of long wave theory.

uxVVþ wzVV¼ 0 ð26Þ

Scaling of the continuity equation shows both

terms to be of the same order. Supposing one term

were to dominate over the other, for e.g., if at the

lowest order, we of fund uxVV = 0, then at the lowest

order, the only solution this would permit is for u to be

constant throughout the water column. This is clearly

a trivial solution. Hence, both terms in the continuity

equation need to be of the same order and is obtained

from proper scaling analysis.

uzVVþ wxVV¼ 0 ð27Þ

The above nondimensional equation implies that

the terms in the vorticity equation are all of the same

order. Instead, if one of the terms, say, uzVV= 0 is

obtained at lowest order, then vorticity would be

generated inside the domain from no apparent source.

This would be a violation of physical principles.

Hence, the correct nondimensional form of the equa-

tion must include both the terms at lowest order.

Hence, the equations are scaled consistently with the

properties of long wave theory. Similarly, proper

scaling of the Boussinesq equations can be done using

the scaling variables used here.

5. Discrepancy in scaling

Researchers have either used the Euler’s or the

Laplace’s equation as governing equations for deriv-

ing the Boussinesq equation. In this section, we

describe the scaling used by the different researchers

and show that the properties of long waves are not

preserved.

5.1. Euler’s equation

Nwogu (1993), Peregrine (1967) and Yoon and Liu

(1989)all used the Euler equations for their investiga-

tion of Boussinesq equations. Nwogu (1993) used h as

the characteristic length scale for the vertical coordi-

nate. This produced a discrepancy in the scaling of the

continuity equation.

Nwogu derived his nondimensional continuity

equation as:

wzVVþ l2uxVV¼ 0 ð28Þ

By definition, wzVV and uxVVare both O(1). An O(1)

term cannot balance an order l2 term. Hence, Nwo-

gu’s scaling implies that at long wave limit, wVzV has to
be zero. Also, the rate of variation of u with respect to

x is an order of magnitude smaller than variation of w

with respect to z. This is physically incorrect. Hence,

the nondimensional variables wzVVand uxVV in Nwogu’s

incorrect scaling are not O(1).The correct form of this

nondimensional equation is:

wzVVþ uxVV¼ 0 ð29Þ

Nwogu also scaled his pressure by Uga in the

vertical momentum equation. He thus obtained:

l2wtVVþ d2ðuVwxVVþ 1=l2wVwzVVÞ ¼ �dpzVV� 1 ð30Þ
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For fully nonlinear (d =O(1))shallow water theory

(l2b1),Nwogu’s scaling implies wVwzVV= 0. The low-

est order balance obtained from Nwogu’s scaling is

not the hydrostatic assumption. The equation obtained

from Nwogu’s scaling is physically meaningless.

Yoon and Liu (1989)derived a set of Boussinesq

equations using Euler’s equations as their starting

point. They scale the vertical variation of both u and

w with h. Also, they do not distinguish between the

pressure scale being different in the vertical and

horizontal momentum equations. They scale pressure

by Ugh. From their scaling, they obtain the nondimen-

sional continuity equation to be:

lwzVVþ uxVV ¼ 0 ð31Þ

At lowest order, this suggest, uxVV= 0. Hence, at the
lowest order this would not permit solutions with

horizontal variation in u. This is clearly incorrect.

The correct form is shown in Eq. (29). The scaling of

horizontal momentum equation gives:

lutVVþ l2ðuVuxVVþ dwVuzVÞ ¼ �pxVV ð32Þ

At lowest order (lb1),this gives pxVV= 0. That is, at
the lowest order, there is no horizontal pressure

gradient. This again is not correct. For fully nonlinear

and weakly dispersive long waves, the correct form of

the lowest order equations is utVV+ uVuxVV=� pxVV. How-
ever, Yoon and Liu (1989) are able to obtain the

hydrostatic equation from their scaling of the vertical

momentum equation.

Peregrine (1967) used h as the length scale for both

horizontal and vertical motions. Again, in his case, the

scaling of the vertical momentum equation does not

lead to the hydrostatic equation.

5.2. Laplace’s equation

Gobbi et al. (2000) and Wei et al. (1995) use the

Laplace’s equation as the governing equation from

which they derive the Boussinesq equations. They

choose h as the characteristic vertical length scale over

which the potential, /, varies. This is equivalent to

having the same depth scale for both the depth scales,

u and w. Thus, the anisotropy in scaling is not taken

into account. Upon scaling, they obtain:

/zVzVV þ l2/xV xVV ¼ 0 ð33Þ

Hence, for the long wave limit, this seems to

suggest that the lowest order is /zVzVV= 0. This is

would imply that the vertical velocity varies much

faster over depth that the horizontal velocity varies

over the horizontal. This is incorrect and similar to

what Nwogu obtains. The correct form of this non-

dimensional equation would be:

/zVzVV þ /xVxVV ¼ 0 ð34Þ

6. Conclusion

The scaling of long waves is quite complex. It is

important to understand how the different dynamical

variables vary spatially. Many previous researchers

have obtained an inconsistent set of nondimensional

governing equations due to improper scaling. This is

because the nondimensional variables obtained from

scaling are not O(1). In this paper, the deficiencies in

the scaling arguments of previous studies are pointed

out and a different set of scaling variables that are

consistent with the assumptions of long wave theory

is developed.

The horizontal velocity in inviscid long wave

theory is associated with a vertical length scale of h/

l2. Often, the vertical length scale over which u varies

has been chosen to be the water depth, h, which is

incorrect. This is due to the inviscid nature of the

boundary value problem. In an inviscid domain, the

horizontal velocity is usually non-zero at the bottom

and the u is nearly constant over the water depth (in

the case of long wave motion). The vertical length

scale of the vertical velocity, however, is the water

depth. These scaling arguments can also be used in

correcting the improper scaling in long wave equa-

tions, such as the Boussinesq equations.
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