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ABSTRACT

The cross sections of four trenches peripheral to the Pacific Ocean are fitted by a double exponential
depth profile. Nondivergent trapped wave propagation is shown to be possible in two directions along
such a profile. In addition to the familiar shelf waves, only slightly modified by the presence of a
trench, ‘‘trench waves” propagating in the direction opposite to that of shelf waves and at
speeds lower by an order of magnitude are also possible.

Dispersion curves and eigenfunctions are presented for the Peru-Chile and Japan-Kuril trenches.
Coastal sea level records are used to demonstrate phase propagation at ‘‘trench wave’ phase speeds
off both Japan and Peru. The fundamental mode speeds predominate in the phase spectra off both

Japan and Peru.

1. Introduction

The role played by the continental shelf in guiding
long-wave energy along oceanic boundaries is now
well understood. The properties of coastal trapped
long waves traveling along various monotonic
depth profiles that model the continental shelf/
slope region have been recently reviewed by Le-
Blond and Mysak (1977, 1978), and the general
qualitative theory of these waves has been dis-
cussed by Huthnance (1975, 1978). In particular, we
recall here that in the absence of strong longshore
currents, second-class shelf waves always propagate
their phase with the shallow water (i.e., the coast)
to the right (left) in the Northern (Southern) Hemi-
sphere. Further, the amplitude of a shelf wave de-
cays rapidly away from the edge of the shelf.
Shelf waves with periods of several days were
first observed on the east Australian coast by Hamon
(1962, 1963), and their presence has since been de-
tected along many coastlines (see above reviews).

In some coastal areas, the depth of the ocean does
not increase monotonically away from the shore-
line because of the presence of banks or trenches.
The reversal in bottom slope associated with such a
feature raises the possibility of another set of
second-class waves coexisting with the shelf
waves, but propagating their phase in the opposite
direction to the -latter. Also, the energy of this
set of waves is likely to be trapped over the bank
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or trench. Second-class wave propagation along a
coast with a bank offshore, on the shelf, has re-
cently been investigated by Louis (1978). As a
model of the Hecate Bank off the coast of Oregon,
Louis used the following form for the depth pro-
file H(x):

H,, -L;i=sx<0
H,, 0<x <L,
H3, L2<x<°°

H(x) = (L.

where x denotes the distance normal to the coast
and the H; are constants, with H, < H; < H;. In
agreement with the above remarks regarding phase
propagation, Louis indeed found that second-class
waves travel in both directions along the above
depth profile.

We observe that (1.1) can also be used as a crude
model for a coastal trench if we specify that H,
< H, < H,. An examination of a number of such
trenches in the Pacific Ocean reveals, however,
that their form is much more accurately repre-
sented by a pair of exponential depth profiles with
slopes of opposite sign. It is the propagation of baro-
tropic second-class waves along this type of bathym-
etry which we shall discuss in this paper. Along a
coast bordered by such a trench, typically the
kind of bathymetry found in subduction zones at
plate boundaries, one expéects two types of second-
class waves: 1) continental shelf waves, which
propagate their phase according to the criterion
given in the first paragraph, and 2) trench waves,
which propagate their phase in the direction opposite
to that of the shelf waves. Further, one anticipates
that the energy of shelf and trench waves will be
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Fi1G. 1. Map of the Japan and Kuril trenches and the sea level
stations used in the analysis. Sections labeled J and K are those
along which depth profiles were taken. Depth contours are in
fathoms.

trapped over the shelf and trench regions respec-
tively.

Recently, by using current meter data from moor-
ings off Peru, Smith (1978) was able to confirm pole-
ward phase propagation at speeds slightly greater
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FiG. 2. Map of the Peru-Chile trench and coastal sea level
stations employed. Sections labeled P and C are those along
which depth profiles were taken. Depth contours are in fathoms.
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than that expected for shelf waves. Similar evi-
dence of poleward propagation was found using
lag-correlations and cross-spectral comparisons of
coastal sea level data. These techniques, applied
to somewhat longer records of daily sea level from
Peru, also indicate equatorward propagation at the
nondispersive phase speed of the fundamental mode
trench wave. Using monthly sea level data from
many stations along the Japan-Kuril trench system,
these techniques confirm northward propagation,
consistent with trench wave dynamics, at speeds
representative of the first three trench wave modes.

2. Trench profiles

We have chosen to examine two trench systems
on the periphery of the Pacific Ocean: the Japan-
Kuril and Peru-Chile trenches. The locations of
these trenches and of the bathymetric transects used
to determine their depth profiles are shown in Figs.
1 and 2. As a simple approximation to the depth
profiles shown in Fig. 3, we have used a depth
function of the form

H] = Hoeza‘r, —Ll =X = 0
Hz =Hoe—2ar, Osx st
H3 = Hoe_zﬂLz, L2 TX s %™,

The origin (x = 0) is taken at the deepest point of the
trench. The fitted profile for each trench is also
shown in Fig. 3; the values of the parameters «, 3,
L,, L,, H, are listed in Table 1.

It is convenient to introduce the nondimensional
parameters

a = a-Lls b = BL19 r= LZ/LI, (2‘2)

which will be used later in the mathematical
analysis. The depth profile (2.1) then takes the form

H(x) = (2.1)

Hne2a1‘" _1 le < 0
H(x') = {Hpe™®* 0<x'<r 2.3)
Hye™, 0=sx' <o

with x' = x/L,. The values of a, b and r for the
various trenches are also given in Table 1.

3. Governing equations

The unforced linearized equations for barotropic,
nondivergent motions on an f~plane with depth pro-
file H(x) are given by

u —fo+ pp, =0, (3.1a)
v, +fu +pp,=0, (3.1b)
(Hu), + Ho, = 0, (.2)

where u, v are the velocity components in the
x, y directions, p is the pressure, p the density and f
the constant Coriolis parameter. The coordinates
x, ¥, z form a right-handed system with x directed
away from the coast (at x = —L,), y along the
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coast and z upward. In view of the nondivergent
form of (3.2) (i.e., the rigid-lid approximation,
which filters out all gravity waves in the system), the
velocity components can be expressed in terms of
a mass transport streamfunction W(x,y,?):

u=-~-VY,/H, v=WV,[H. (3.3)

Substituting (3.3) into (3.1a,b), eliminating p, and
then taking ¥ to have the plane wave form

V= l){l()‘:)ei(ky—mt)’ k > 0, (3.4)

we obtain the vorticity balance equation (cf.
LeBlond and Mysak, 1978, p. 237)

I\t 1 2
3 + (2 -5l
H w\H H
where the prime denotes differentiation with respect
to x.
We shall assume that (3.5) holds in the interval

—-L, < x < o; at the end points we impose the
boundary conditions

lll=0 at x=_L1,

y—>0 as x - x,

(3.9)

(3.6)
3.7

which imply that there is no transport across the
shoreline at x = —L, and that the waves are trapped
against the coast. At a discontinuity in H or H', at
X, say, we require that the normal transport Hu and
the pressure p be continuous. These imply the
jump conditions

Wl=0 at x=ux,

[d;’ + (fklw)p
H

3.8)
] =0 at x = x,. (3.9

For the steplike profile (1.1), these conditions must
be applied at x = 0 and x = L,. For the double
exponential profile (2.1), in which H is continuous,
(3.8) must be applied at x = 0 and x = L, and (3.9)
reduces to

[¢17=0 at x=0,L,. (3.10)

4. Derivation of general dispersion relation

In the shelf region —L, < x < 0, Eq. (3.5) with
depth profile H,(x) given by (2.1) reduces to

¥ = 2ayy — Qfkalow + kK20, = 0,

~L<x=<0. .1

The equation for ¢, in the trench region0 < x < L,
is obtained from (4.1) by replacing « by —8. In the
deep-sea region L, <x <o, Eq. (3.5) simply
becomes

g - kZIJI3 = 0, Lz sx < o, (4.2)

The function ¢ which satisfies the above equations,
the boundary conditions (3.6), (3.7), and the jump
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FiG. 3. Depths along sections labeled J in Fig. 1(a) and along
sections labeled P in Fig. 2(b). Depths are plotted on a logarithmic
scale with actual depths as points and the fitted curve as a solid line.
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condition (3.8) at x = 0, L, is given by
Y = Ae® sinm(x + L,), -Lysx=<0
¥ = { ¥ = e (B sinlx + A sinmL, coslx), 0<sxs<lL, 4.3)
Y3 = e P2(B sinL, + A sinmL, coslL,)e L2 Lysx <o,
where
m = (=2afklo — o — k?)\2, (4.42)
I = QBfklw — B2 — k)12, (4.4b)

and A and B are arbitrary constants.

The substitution of (4.3) into (3.10) yields two
homogeneous equations for A and B. Upon setting
the determinant of coefficients of these two equa-
tions equal to zero, we obtain the general dispersion
relation

(a + B+ m cotmL)[l + (k — B) taniL,] _
+ Ik — B —[tanL,) = 0. (4.5)

In the limit L, — 0 and 8 — 0 (no trench), Eq.
(4.5) reduces to

tanmL, = — m/(k + a), (4.6)

in agreement with Buchwald and Adams (1968).
In order for (4.6) to have an infinity of real
positive roots m, (n = 0, 1, 2, . . .) for fixed k and
a, the frequency must obey the inequality [see Eq.
(4.4a)]

—2ak w

< —<0.

o+ k2 f “-7

Once the roots m, of (4.6) are obtained, then (4.4a) is
used to determine the shelf wave eigenfrequencies
w,(k). The upper bound in (4.7) yields the shelf-
wave phase propagation criterion referred to in the
Introduction. Also, since (4.7) implies that w/f — 0
as both k — 0 and £ — oo, it follows that each shelf
wave mode has a zero group velocity at some
intermediate value of k. We shall see below that
this result regarding the group velocity also holds for

provided k # B. If kK = (3, then (4.8a) implies that
I = 0, in which case (4.4b) gives w = f; but this
leads to the trivial solution ¥, = 0 = ¢, [cf. Eq.
(4.3.)] In analogy with the shelf wave case, Eq.
(4.8b) has real positive roots I, provided that
(see Eq. (4.4b)] -

0<ﬂ< 2Bk

fooBrk
Thus the direction of phase propagation for a pure
trench wave is opposite to that of the shelf wave.
We note, however, that (4.9) implies that the group
velocity of each trench wave mode also vanishes
at some intermediate value of k.

4.9)

5. Dispersion relations and eigenfunctions for shelf
waves and trench waves

As mentioned in the Introduction, the presence of
both positive and negative bottom slopes in the
shelf-trench profile (2.1) allows the existence of
second-class waves traveling in opposite directions.
To bring out this property more explicitly, we first
define a nondimensional frequency and wavenumber

o=owlf, k=kL, >0. ;.1

In terms of these and the nondimensionalized
geometric parameters a, b, r defined in Section
2, viz.,

trench waves. a=caly, b=BL, r=L)JL, (5.2)
Although of less practical importance, it never- . . .
. e, 0 Y the dispersion relation (4.5) takes the form
theless is of theoretical interest to note that in the p @.5)
limit L, — 0 and « — 0 (no shelf), Eq. (4.5) yields {(a + b + w cotu)[A + (k — b) tankr]
[+ (k- pB)tanlL, = 0 (4.8a) + Mk — b — Mtannr) =0, (5.3)
or where _
tanlL, = l/(k — B) (4.8b) u = (—2axlo ~— a® — )2, (5.4a)
TABLE 1. Values of the parameters of fitted p~r0ﬁles of the form (2.1) to four trenches in the Pacific.
H, L, L, o B a b r
Trench (km) (km) (km) (km™) (km™) (=aly (=BL)) (=L,/Ly)
Kuril 8.25 185 55 0.95 x 10-2 4.24 x 1072 1.75 0.784 0.297
Japan 7.25 208 45 0.88 x 10~2 3.27 x 1073 1.84 0.681 0.220
Japan-Kuril 7.75 197 50 0.91 x 1072 3.71 x 1073 1.80 0.730 0.260
Chile 6.24 107 50 1.32 x 102 3.82 x 1073 1.41 0.409 0.467
Peru 6.06 171 50 1.20 x 102 2.84 x 1073 2.04 0.486 0.292
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A = 2bklo — b* — K2)V2 (5.4b)

Eq. (5.3) represents an implicit form of the dis-
persion relation [0 = g(k)], with r, @ and b as
parameters. For fixed values of the latter, we wish
to find the real solutions ok}, n =0, 1,2...,
of (5.3). For this purpose it is necessary to examine
the cases of positive and negative o separately.

When o < 0 (shelf wave case), we see from
(5.4b) that A\ is pure imaginary. Thus for this case,
we let A = iN, where

N = (=2bklo + b* + Kk})'2 > 0.

Under this transformation, Eq. (5.3) becomes

(5.5)

a + k + pcotw = tanhNr

x[b

In the limit » — 0 (no trench), this reduces to

— K

(a +b + pcotu) — N} . (5.6)

Piv = e sinu(x’ + 1),

Y™ = 1P = e (B sinhNx’ + sinu coshNx'),
UM = e~(B sinhNr + sinu coshNr)e «="—n,

where
x' =x/L,,

B = [(a + b) sinp + u cosu)/N

and pu = u(o,), N = N(o,). Eq. (5.10) is the non-
dimensional form of (4.3) when A = 1 and o < 0.
The relation (5.11) is obtained upon requiring
that ¢’ be continuous at x = 0. Note that ™ is
oscillatory over the shelf region (-1 <x' <)
and of exponential character over the trench and
deep-sea regions.

When o > 0 (trench wave case), u is now pure
imaginary and we thus put u = iM, where

M = Qaxlo + a®> + ¥¥)¥* > 0. (5.12)
Under this transformation, Eq. (5.3) becomes
A+ (k — b) tanar = tanh M {-Ma + k)

+ tanAr[A® — (a + b)(k — b)]}. (5.13)

The pure trench dispersion relation [cf. (4.82)] can
be formally obtained from (5.13) by setting the right
side equal to zero. However, since L, = 0 (r = »)

P® = e sinhM(x’ + 1),
Y™ = e7%'(B sinhx’ + sinhM coskx’),
PP = e~P"(B sinAr + sinhM cosAr)e <&'—1,

\l’(") —

where now
B = [(a + b) sinhM + M coshM)/\ (5.19)
and A = NMoy,), M = M(a,). As expected, ¢™ has
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which is the nondimensional form of (4.6). For (5.6)
to have real roots o,(x), we require that [see
(5.42)].

tanu = —u/(x + a),

—2ak
a* + k?

<o <0, (5.8

which is the nondimensional form of (4.7). Thus
we conclude that even with a trench present, each
shelf wave mode propagates in the expected direc-
tion and has a zero group velocity at some inter-
mediate wavenumber. The largest negative root
satisfying (5.6) and (5.8) will be denoted by o, (the

fundamental mode), the next largest negative root

by o, and so on:
—2ax

a’ + k?

<oy <o <o,<...<0. (5.9
For a particular root o,(k), the corresponding nth

mode shelf wave eigenfunction can be written as

-1=sx'=0
O0sx'<sr
rsx' <o

(5.10)

(5.11)

in this case, L, must now be used as the length
scale. Thus the nondimensional form of (4.8a) can be
written as :
AN+ (¢ —b')tan\' =0, (5.14)
where

k' = kLz, b’ = BLz,
N = Q2b'k'lo — b'? — kP2, (5.15)

For (5.13) to have real roots o,(«x), we require
that [cf. (4.9)]

2bk
b+ k2
In analogy to the shelf wave case, the roots will
be ordered as

0<o< (5.16)

2bk

K

0<... <oy <0,< 5.17)

5 -

For a particular root o,(x), the corresponding nth

mode trench wave eigenfunction can be written as
-1=x'=<90

O0<x'=<r
rsx' <o

(5.18)

an oscillatory behavior over ihe trench region
(0=x"=r) and is of exponential character
elsewhere.
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F1G. 4. The shelf wave (a) and trench wave (b) dispersion curves of the first three
modes {n = 0, 1, 2) computed from Egs. (5.6) and (5.13), respectively, fora = 2.04,
b = 0.49andr = 0.29 (Peru shelf/trench parameter values). The dashed curves in part
(a) were computed from (5.7), the dispersion relation for shelf waves in the absence of

atrench (a = 2.04,b = 0,r = 0). The values L,

171 km and |f| = 2.21 rad day™*

(corresponding to 10.1°S latitude) were used to calculate wavelengths and periods
respectively. Note that the vertical scale in (b) has been magnified tenfold over

that in (a).

Examination of Table 1 reveals that the shelf/
trench regions ‘examined can be characterized by
rather similar values of the geometrical parameters.
We choose here, as representative cases, the Peru
and Japan-Kuril values of a, b and r for the pur-
poses of calculating the appropriate dispersion

curves. These dispersion properties will be com-
pared with phase propagation in sea level records
from coastal stations bordering these trenches.
Fig. 4 shows the dispersion curves for shelf
(o < 0) and trench (o > 0) waves off the coast of
Peru. From Fig. 4 we note that the classical sheif
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wave dispersion curves of Buchwald and Adams
(1968) (the dashed lines) are hardly affected by the
presence of a trench. The main effect of the trench is
to decrease the frequency at intermediate wave-
numbers by about 3-4%. The trench wave disper-
sion curves are similar in shape to those for the
shelf waves. However, the zero group velocity for
each trench wave mode occurs at a higher wave-
number. Further, the trench wave periods are about
ten times longer than the shelf wave periods. As a
consequence, their phase propagates very slowly
(see Table 2 for values of the low-wavenumber
phase speeds).

According to our coordinate system, y is directed
southward along the Peru coast. Further, f < 0 in
the Southern Hemisphere. It thus follows from (3.4)
that the shelf waves, with o, > 0, travel poleward
(with the coast on the left), and that the trench
waves, with w, <0, travel equatorward. The
gravest mode shelf wave speed (143 km day™)
compares favorably with the recent observations of
Smith (1978) off the coast of Peru. He found that
subinertial (0.05-0.25 cpd) fluctuations in current
and sea level propagate coherently at 200 km day~'in
a poleward direction. If stratification were included
in our model, the shelf wave speed would be in-
creased (Mysak, 1967; Huthnance, 1978) and thus
compare even more favorably with the observed
speed. Smith suggested that these fluctuations may
represent baroclinic Kelvin waves, especially in the
region 10-15°S. However, in the latitude band
8-13°S, where our profile fits were made, it is
suggested that these propagating signals may instead
be interpreted as shelf waves.

Fig. 5 shows the shelf and trench wave eigen-
functions corresponding to the modes shown in Fig.
4. All the eigenfunctions are plotted for « = 1,
with the corresponding values of o, found in
Fig. 4. As pointed out earlier, the shelf wave
eigenfunctions are oscillatory only over the shelf
region (—1 <x’ <0), whereas the trench wave
eigenfunctions are oscillatory only over the trench.
In each case, however, the nth mode eigenfunc-

TABLE 2. Phase speeds ¢, (=w,/k) of nondispersive shelf and
trench waves for the Peru and Chile coasts. All speeds are given
in units of km day~!.

Mode Phase speed
number
n Shelf waves Trench waves
Peru 0 143 21
1 43 1.7
2 18 0.57
Chile 0 224 75
1 52 5.6
2 22 19
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FiG. 5. The shelf wave (a) and trench wave (b) eigenfunctions
Y™ of the first three modes computed from Egs. (5.10) and (5.18),
respectively, fora = 2.04, b = 0.49,r = 0.29 (Peru shelf/trench
parameter values) and « = 1. The eigenfunctions ¢®, ¢V, ¢@
computed from (5.18) were normalized by multiplying with the
factors 104, 10-13, 4 x 10~22, respectively, before being plotted
in (b).
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Fi1G. 6. The trench wave dispersion curves of the first three modes for the combined

Japan-Kuril trench.

tion has n zero crossings. It is interesting to note
that the trench waves are very strongly trapped over
the trench region (0 < x’ < r). Thus any nonlinear
interactions that may occur between shelf and trench
waves will have their largest energy exchanges
over the trench region.

The dispersion curves for the combined Japan-
Kuril trench are given in Fig. 6. The general
character is much the same as the Peru trench with
faster nondispersive phase speeds (Table 3) off
Japan. Phase speeds are given for both the Japan
and Kuril trenches separately as well as for the com-
bined trench system.

6. Sea level records

Monthly sea level data for stations in Japan, the
Kuril Islands and Kamchatka were studied to deter-
mine if phase propagation, consistent with trench
wave dynamics, could be detected. Data starting
August 1957 and running to December 1966 pro-
vided a continuous record of 653 monthly values
for the eight stations from Petropavlosk (Fig. 2)
in the north to Mera in the south. These data were
adjusted for atmospheric pressure.

TABLE 3. Phase speeds ¢, (=w,/k) of nondispersive trench
waves for the Japan, Kuril and combined Japan-Kuril trenches.
All speeds are given in km day~1.

Mode Phase speed
number
n Japan Kuril Japan-Kuril
0 82.5 224 152
1 5.78 13.8 9.3
2 1.83 4.0 2.96

Lag correlations were computed for all station
pairs for lags up to 12 months. The maximum corre-
lation, in this interval, was determined and the corre-
sponding lag plotted against the separation distance
between the appropriate sea level stations (Fig. 7).
The shift of lag with distance suggests northward
propagation consonant with trench wave behavior.
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400 § . .
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FiG. 7. Lag in months at the maximum correlation between
sea level stations along the Japan-Kuril trench versus the separa-
tion distance (km) between stations. The lines corresponding to
the nondispersive phase speeds of the first three trench wave
modes are also shown.
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FiG. 8. Phase and coherence spectra of monthly sea level data between (a) Mera and
Petropavlosk, separation = 2605 km, and (b) Onahama and Yuzno Kurilisk, separation
= 892 km. Phase propagation is indicated by dashed lines in the phase spectra.

Plotting lines of the nondispersive phase speed
for the first three modes (combined trench) indi-
cates the possible presence of all three. First
and second mode speeds are represented by only
two or three points with the majority of points
lying along the ordinate. These values, at zero
lag, may be explained by the very fast phase speed
of the fundamental mode (Table 3). Another group

of points, at wide separation distances, suggests a
combination of fundamental and first modes.
Assuming that trench waves propagate nondis-
persively, phase propagation should result in a
straight line in the phase spectrum and high co-
herence in the coherence spectrum. Cross spectra
were computed for all pairs of sea level stations
shown in Fig. 1. A straight line weighted by the
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F1G. 9. As in Fig. 8 except for (a) Onahama and Hachinohe, separation = 400 km and
(b) Kushiro and Hanasaki, separation = 102 km.

coherence, was fitted to each phase spectrum. About
75% of the station pairs exhibited northward propa-
gation by positive slopes, consistent with trench
wave theory. The speeds associated with these
phase lines are close to that of the fundamental
trench wave mode. ‘

Selected examples of such phase spectra, along
with the corresponding coherence spectra, are pre-
sented in Figs. 8 and 9. The 95% confidence
level for coherence was determined as described in

Julian (1975). Although the phase oscillates widely
in Fig. 8a the linear fit, weighted by the coherence,
indicates a phase speed of 174 km day~'! somewhat
higher than 152 km day—! given in Table 3 for the
combined trench fundamental mode. A station pair
with half the separation (Fig. 8b) yielded a phase
speed of 115.2 km day~'. Even closer station pairs
in Figs. 9a and 9b gave speeds of 95.2 and 130 km
day™!, respectively. There appeared to be no clear
correspondence between phase speed and station
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F1G. 10. Lag-correlation plot for daily sea level data between Talara and Matarani.

separation. Most of the values were slightly below
that of the fundamental mode. Some phase spectra
(~25%) exhibited negative slopes (southward propa-
gation) with similar phase speeds. These negative
slopes occurred mainly for closely spaced stations
along the southern coast. It is possible that local
topographic features could lead to sea level fluc-
tuations that would mask the effects of the trench
waves.

Such an effect was clearly noted in the analysis of
daily sea level records from three stations in Peru
(Fig. 2). Using data from the period between 1972
and 1974, 1884 daily values were used in a lag corre-
lation analysis. These data were not corrected for
atmospheric pressure as Smith (1978) had demon-
strated that such correction did not significantly
alter the correlation study of shelf waves. A plot
of correlation versus lag for the northernmost
(Talara) and southernmost (Matarani) stations (Fig.
10) is highest at zero lag, with a secondary
maximum at 37 days. In an effort to sense any
possible phase propagation similar plots were made
for Callao-Talara and Callao-Matarani. No shift in
the lag of the secondary maximum was evident,
however.

The power spectra of these data revealed some
interesting differences between these three stations.
While Talara and Matarani both appeared to fall
off with frequency, Callao had large, rounded peaks
at periods of 4.5, 2.7 and 2.0 days. Similar peaks
are present in the power spectrum of sea level at
Callao, computed from data collected after 1974
(Smith, 1978).

This different spectral character at Callao may
explain why the phase spectra for both pairs using
Callao fluctuate widely and the coherence is uni-
formly low. In contrast the phase and coherence
spectra (Fig. 11) for Matarani and Talara show
high coherence for the periods around 37 days and a
corresponding equatorward phase speed of 54 km
day~!, twice that of the fundamental mode (Table
2). The line of phase propagation was computed
using, as before, the coherence spectrum as a
weighting function. The fit was not continued for
periods shorter than 20 days which is well out of
the nondispersive regime. Although the velocity is
larger than that predicted for Peru alone, it is in the
right direction. It may be that since Matarani is
situated at the Chile Trench the appropriate phase
speed should be, as observed, between the 21 km
day~! given for Peru and the 75 km day~! given for
Chile (Table 2).

The presence of the Nazca Ridge, just south of
Callao, may explain the anomalous behavior at this
station. This ridge protrudes at right angles to
the trench system and may disrupt the topographic
waveguide sufficiently to alter the wave behavior
at nearby Callao. Farther up the coast the wave
reestablishes itself and is again detectable at Talara.

7. Conclusions

The main conclusions to be drawn from this
study are as follows:

1) Most coastal trenches in the Pacific can be
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sea level data between Talara and Matarani.

Phase propagation is indicated by a dashed line.

accurately fitted by a pair of exponential depth
profiles with slopes of opposite sign.

2) Over such a shelf/trench profile there exists two
types of second-class trapped waves: shelf waves
and trench waves. The phase of the shelf waves
propagates in the direction prescribed by the usual
criterion for topographic waves, and the phase of
the trench waves travels in the opposite direction.
Trench waves have characteristic periods of 100

days, an order of magnitude longer than shelf
wave periods.

3) The presence of an offshore trench slows down
the conventional shelf waves of Buchwald and
Adams (1968) by at most a few percent.

4) Monthly sea-level data along the Japan-Kuril
trench and daily sea level data along the Peru
trench exhibit phase propagation consistent with
trench wave dynamics. Cross correlations and
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cross-spectral analysis indicated phase propagation
in the right direction at speeds representative of
the fundamental mode.
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