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Abstract

The effect of boundary layer streaming on sea bed shear stresses, as well as on the mean bedload sediment transport rate, beneath random

waves, is investigated. Formulas for the bottom friction and bedload sediment transport under regular waves have been applied to obtain the

mean bedload sediment transport rate caused by steady streaming under linear random waves. Friction factors for steady streaming under

random waves are also provided. The effect of streaming and second order wave asymmetry on the mean bedload sediment transport rate is

discussed.
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1. Introduction

Steady streaming under sinusoidal waves is caused by

non-uniformity of the wave boundary layer resulting from

spatial variation of the orbital velocities. Vertical velocities

generated within the bottom boundary layer under pro-

gressive waves are not exactly out of phase with the

horizontal velocities, leading to a non-zero time-averaged

bed shear stress. The steady streaming for a laminar wave

boundary layer was determined by Longuet-Higgins [1].

Based on this work, the streaming-related time-averaged

bed shear stress can be expressed in terms of the wave

friction factor and the wave number (see, e.g. [2]). Recently

Nielsen and Callaghan [3] included the effect of streaming

predicting the shear stress and the total sediment transport

rate for sheet flow under waves. The effect of streaming was

included by adding a constant shear stress corresponding to

the streaming-related bed shear stress and by applying a

friction factor for rough turbulent flow. This method

predicts the real propagating wave observations of

Ribberink et al. [4] quite well.
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A summary of results from models and experiments on

wave-induced streaming near the seabed is given by Davies

and Villaret [5–7]. Above a smooth bed, the measured

streaming at the edge of the wave boundary layer is in

reasonable agreement with the Eulerian drift predicted by

Longuet-Higgins [1]. Over a flat rough bed, however, the

Eulerian drift is reduced in magnitude. The reason is that the

phase difference between the outer velocity and the near-

bed velocity is smaller for rough turbulent flow than for

laminar flow. This feature is described by Trowbridge and

Madsen [8] for flows in which momentum transfer is

dominated by turbulent processes, i.e. for A=z0T900, where

A is the near-bed orbital displacement amplitude and z0 is

the bed roughness. Trowbridge and Madsen [8] also

included the effect of second order wave asymmetry by

including second order terms in a specified time-varying

eddy viscosity for flow over flat rough beds. They found that

this reduced the Eulerian drift at the edge of the boundary

layer with a mean flow reversal (negative drift) occurring

for very long waves, i.e. for small kh, where k is the wave

number and h is the water depth. Davies and Villaret [7]

have developed an analytical model of the Eulerian drift

induced by second order Stokes waves in the wave boundary

layer above very rough and rippled beds. They found that

the streaming velocity profile within the wave boundary

layer is characterized by: a near-bed jet in the direction of
Applied Ocean Research 26 (2004) 183–197
www.elsevier.com/locate/apor

http://www.elsevier.com/locate/apor


D. Myrhaug et al. / Applied Ocean Research 26 (2004) 183–197184
wave propagation; a level of zero velocity; and a flow

reversal extending to the edge of the boundary layer. The

negative streaming velocity at the edge of the boundary

layer depends on the wave height to water depth ratio, the

degree of wave asymmetry, and the near-bed displacement

amplitude to bed roughness ratio. For very rough and

rippled beds the momentum transfer is no longer dominated

by turbulent processes but by organized vortices shed from

bed roughness elements or ripple crests at flow reversal. As

a result, they found that the drift at the edge of the wave

boundary layer was in the negative wave direction. More

details are given in Davies and Villaret [7].

The purpose of this paper is twofold. First, to investigate

the effect of streaming on the bed shear stresses beneath

random waves and to compare the magnitude of these

streaming-related bed shear stresses with those for linear

waves. Second, to investigate the effect of streaming on the

bedload sediment transport rate beneath random waves and

to compare the magnitude of this effect with that caused by

second order asymmetric waves as determined by Myrhaug

and Holmedal [9]. The asymmetric wave motion gives a

non-zero net sediment transport in the direction of wave

propagation, because transport under the crest is greater

than under the trough. The present results are valid for flows

over flat rough beds with A=z0T900, for which the

momentum transfer is dominated by turbulent processes.

The present analysis of bed shear stresses has physical

implications for the estimation of wave energy dissipation

for flow above rough beds. The results for the bedload

transport rate is particularly relevant to shingle and coarse

sand, where all or at least most of the sediment transport

takes place as bedload. The rms (root-mean-square) friction

factors and the mean bedload transport rate for random

waves are provided.

The reader should note the difference between the two

effects considered here; the second order wave asymmetry

and streaming. By the second order wave asymmetry effect

is meant that the magnitude of the wave crest velocity is

larger than that of the wave trough velocity at the edge of the

boundary layer, inducing a net drift in the wave propagation

direction. Streaming is caused by the presence of a vertical

velocity component in the boundary layer under progressive

waves giving a weak current at the edge of the boundary

layer. For the parameter regime considered here, this current

is in the wave propagation direction.

Previous studies of bottom friction beneath random

waves have been undertaken by Madsen, Simons et al.,

Myrhaug, Myrhaug et al., Mathiesen and Madsen,

Samad, Holmedal et al. [10–19] as well as Myrhaug

and Holmedal [20–22]. Madsen [10] gave explicit wave

friction factor formulas for spectral wave-current bound-

ary layer flow. The formulas were obtained using a time-

invariant eddy viscosity model based on the concept of

an equivalent sinusoidal wave having the same near-bed

orbital velocity amplitude and excursion amplitude as the

rms value of the wave spectrum. Laboratory experiments
studying the bed boundary layer under random waves

plus currents were carried out by Simons et al. [11,12]

and by MacIver and Simons in 1998 (see [14]). All these

measurements were performed in the basin at the UK

Coastal Research Facility allowing for waves having an

angle of attack on the current. Myrhaug [13] showed that

if the free surface elevation is assumed to be stationary

Gaussian narrow-band process, the bed shear stress

maximum for waves alone is Weibull distributed. This

approach was successfully compared with estimates of

bed shear stresses under random waves from field

measurements near the seabed in the Strait of Juan de

Fuca, Washington State, and at EDDA, North Sea, in

Myrhaug et al. [15]. Myrhaug [13] approach was

extended by Myrhaug et al. [14] to weak wave-current

interactions. Mathiesen and Madsen[16] investigated the

bottom roughness for spectral waves and current. Their

experiments show that sinusoidal and spectral wave-

current bottom boundary layer flow over a fixed rippled

bed can both be characterized by a single bottom

roughness when used in conjunction with a representative

equivalent wave. Samad [17] investigated laminar and

smooth turbulent flow characteristics in the bed boundary

layer under irregular waves. He performed systematic

experimental investigations as well as computations using

a kK3 model. Shear stress amplitudes under random

waves plus current have been calculated by Holmedal

et al. [18] using Monte Carlo simulations of Soulsby [23]

parameterized wave-current friction factor formulas valid

for sinusoidal waves plus current. Holmedal et al. [19]

used a dynamic eddy viscosity (kK3) model to

investigate the seabed boundary layer under random

waves plus current. Myrhaug and Holmedal [20]

extended Myrhaug et al. [14] approach to calculate the

bottom friction in nonlinear random waves plus current

flow near a rough bed in the lower near-bed excursion

amplitude to bed roughness range. Myrhaug and

Holmedal [21] used a similar approach to calculate the

laminar bottom friction beneath nonlinear random waves.

Myrhaug and Holmedal [22] used a similar approach as

used in this paper to investigate the effect of boundary

layer streaming on the seabed shear stresses, beneath

random waves, for laminar flow and smooth turbulent

flow.

Previous studies of bedload transport rate under random

waves have been undertaken by Myrhaug and Holmedal [9]

as well as Holmedal and Myrhaug [24]. The first reference

calculated analytically the bedload transport rate under

random second order Stokes waves using a simple bedload

formula by Damgaard et al. [25] for each individual wave

component. The second reference calculated the flat bed

bedload transport rate under random waves plus current

using Monte Carlo simulations of Soulsby’s [23] para-

meterized wave-current friction factor formulas combined

with his bedload transport formula valid for sinusoidal

waves plus current.
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2. Effect of streaming under regular waves
2.1. Bottom friction caused by streaming

Following Nielsen [2] the bottom shear stress related to

the wave-induced current (streaming) in the laminar bottom

boundary layer of regular waves is given as follows:

tstr

r
Z

1

2
ffiffiffi
2

p k

ffiffiffiffi
n

u

r
U2 (1)

where U is the near-bed orbital velocity amplitude, u is the

angular wave frequency, r is the density of the fluid, n is the

kinematic viscosity of the fluid, k is the wave number

determined from the dispersion relationship u2Zgk tanh kh,

g is the acceleration of gravity, and h is the water depth. Eq.

(1) can be re-arranged to:

tstr

r
Z

1

4
ffiffiffi
2

p kA3
u

2fw Z
1

4
ffiffiffi
2

p kAfwU2 (2)

where AZU/u is the near-bed orbital displacement

amplitude and fw is the laminar wave friction factor given

as that for Stokes’ second problem ([26]): fwZ2 ReK0:5 for

Re(3:105, where ReZUA/n is the Reynolds number

associated with the wave motion.

Nielsen and Callaghan [3] have recently applied Eq. (2)

for rough turbulent flow to include the effect of streaming in

shear stress and sediment transport calculations for sheet

flow under waves. They used a modified version of Swart

[27] friction factor proposed by [2]. In this paper, rough

turbulent flow will be considered using the friction factor

proposed by [14] for A=z0T200

fw Z c
A

z0

� �Kd

(3)
Fig. 1. Friction factor due to streamin
with the coefficients

ðc; dÞ Z ð1:39; 0:52Þ for 900(A=z0 (11000 (4)

ðc; dÞ Z ð0:112; 0:25Þ for 11000(A=z0 (5)

Note that Eq. (4) corresponds to Soulsby [23] friction factor

obtained as best fit to data for 10(A=z0(105. The reason

for using this friction factor is that it is possible to derive the

stochastic approach analytically, which is not possible by

using, e.g. the Swart formula. Note that the results which

will be deduced here using Eq. (4) will be valid for

A=z0T900.

Application of the friction factor for rough turbulent flow

should be considered as a first approximation to the

streaming related shear stress for rough turbulent flow.

This is encouraged by the success of Nielsen and Callaghan

[3] in predicting the total sediment transport rate data of

Ribberink et al. [4]. Moreover, the results shown in Fig. 1

give some support for the method. It shows tstr/(rU2 kA)

versus A/z0 in the range 9:102%A=z0%3,105, compared

with the results of [28]; Fig. 7.2 from a two-equation (kK3)

turbulence closure model. Overall the results by the two

methods are in fair agreement for engineering purposes.
2.2. Bedload transport caused by streaming

The bedload transport caused by streaming is calculated

using the Soulsby [23], Eqs. SC (129a)–SC(129d) formulas

for bedload transport by regular waves plus current. The

reason is that the wave motion, with the effect of streaming

included, can be modelled by waves plus a weak current

caused by streaming. This corresponds to the wave-

dominated situation for co-linear waves plus current,

which is obtained by using Soulsby [23], Eq. SC(129b))

formula, as

Fstr Z aq1=2
w ,qstr; a Z 13:7 (6)
g vs. A/z0 for sinusoidal waves.
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where

Fstr Z
qbstr

½gðs K1Þd3
50�

1=2
(7)

qw Z
tw

rgðs K1Þd50

(8)

qstr Z
tstr

rgðs K1Þd50

(9)

Here Fstr is the dimensionless bedload transport rate

caused by streaming, qw is the amplitude of the oscillatory

component of the Shields parameter, qstr is the Shields

parameter caused by streaming, qbstr is the volumetric net

bedload transport rate per unit width [m2/s], s is the

sediment density to fluid density ratio, and d50 is the

median grain size diameter. Eq. (6) applies only if qw

is larger than the threshold value qcr where qcr is the

critical value of the Shields parameter corresponding to

the initiation of motion of the bed, i.e. qcrz0.05. The

expression for Fstr in Eq. (6) can be viewed as the product

of a ‘transporting’ term proportional to the current

strength (wq1=2
str in the case of streaming) and a ‘stirring’

term (wq1=2
w q1=2

str by implication).

This method is based upon taking the bed roughness as

the sand grain roughness, i.e.

z0 Z
2:5d50

30
(10)

in both qw and qstr. However, Nielsen and Callaghan [3]

suggested basing the calculation on using Eq. (10) in qw,

while the bed roughness associated with the bed transport

should be used in qstr, i.e. using

z0Z170ðqw K0:05Þ1=2d50=30. However, the present results

will be based on using Eq. (10) in both qw and qstr, as this is

considered to be physically more consistent.

The wave mobility number J is defined as

J Z
U2

g s K1ð Þd50

(11)

representing an estimate of the ratio between the disturbing

and stabilizing forces acting on a seabed particle [2]. By

introducing Eq. (11) Eq. (6) can be re-arranged to

Fstr Z
a

8
kA c

A

z0

� �Kd

J

� �3=2

(12)
3. Effect of streaming under random waves
3.1. General

The present approach is based on the following

assumptions:
(1) the free surface elevation z(t) is a stationary Gaussian

narrow-band random process with zero expectation

described by the single-sided spectral density Szz(u),

(2) the bottom friction formula and the bedload transport

formula for regular waves given in Section 2, are valid

for irregular waves as well.

The second assumption implies that each wave is treated

individually and that memory effects are neglected. The

validity of this approach was confirmed for seabed shear

stresses by Holmedal et al. [19] for high values of A/z0

(z30000). Characteristic statistical values of the resulting

seabed shear stress amplitude deviated less than 20% from

those obtained by the Monte Carlo simulation method by

Holmedal et al. [18]. Holmedal et al. [18] method is

essentially based on the same two assumptions upon which

the present approach is based. Regarding the second

assumption that each wave is treated individually, Holmedal

et al. [19] concluded for large values of A/z0 that the main

reason for the fair agreement obtained between the Monte

Carlo simulations and the (kK3) model predictions is the

good description of the wave friction factor for individual

waves. This appears to be much more important than

violating the assumption of independent individual waves.

Since the bottom friction formula related to streaming is

essentially based on the rough turbulent bed friction factors,

the assumption of treating each wave individually for linear

waves seems reasonable. Moreover, results from some

preliminary studies have been discussed by Myrhaug and

Hansen [29]. Overall the results suggested that the present

approach is adequate as a first approximation that can be

used to predict integrated effects such as bedload sediment

transport with a reasonable degree of accuracy. The

accuracy of the narrow-band assumption will be discussed

below.

Based on the present assumptions, the time-dependent

near-bed orbital displacement a(t) and velocity u(t) are both

stationary Gaussian narrow-band processes with zero

expectations and with single-sided spectral densities as

follows:

SaaðuÞ Z
SzzðuÞ

sinh2kh
(13)

SuuðuÞ Z u2SaaðuÞ Z
u2SzzðuÞ

sinh2kh
(14)

For a narrow-band process the waves are specified as a

‘harmonic’ wave with cyclic frequency u and with slowly

varying amplitude and phase. Then, for the first order, the

near-bed orbital velocity amplitude U is related to the near-

bed orbital displacement amplitude A by UZuA, where U is

slowly varying with t as well (see e.g. [30]).

It follows from the narrow-band assumption that the

near-bed orbital displacement amplitude, A, and the near-

bed orbital velocity amplitude, U, are Rayleigh-distributed
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with the cumulative distribution function given as follows:

Pðx̂Þ Z 1 KexpðKx̂2Þ; x̂ Z x=xrms R0 (15)

where x represents A or U, and xrms is the rms value of x

representing Arms or Urms.

Now Arms and Urms are related to the zeroth moments of

the amplitude and velocity spectra, m0aa and m0uu,

respectively, given as follows:

A2
rms Z 2m0aa Z 2s2

aa Z 2

ðN

0
SaaðuÞdu (16)

U2
rms Z 2m0uu Z 2s2

uu Z 2

ðN

0
SuuðuÞdu (17)

Here s2
aa and s2

uu are the variances of the amplitude and

velocity, respectively.

It should be noted that Urms used by Soulsby [23]

corresponds to the standard deviation suu used here.

From Eqs. (17) and (14) it also appears that m0uu Zm2aa,

where m2aa Z
ÐN

0 u2SaaðuÞdu is the second moment of the

amplitude spectral density. Thus, the mean zero-crossing

frequency for the near-bed orbital displacement, uz, is

obtained from the spectral moments of a(t) as follows:

uz Z
m2aa

m0aa

� �1=2

Z
m0uu

m0aa

� �1=2

Z
Urms

Arms

(18)

where Eqs. (16) and (17) have been used. This result is valid

for a stationary Gaussian random process. Note that for a

finite-band process the motion due to higher frequency

causes decays more rapidly with depth than lower frequency

and therefore contributes less to the motion at the bed. This

results in a smaller zero-crossing frequency for a(t) at the

bed than at the free surface. However, for a narrow-band

process these zero-crossing frequencies will be equal, since

there is only one frequency present.
3.2. Probability distribution functions
3.2.1. Bottom friction

For a narrow-band process, AZU/u where u is replaced

by uz from Eq. (18) and A is given as follows:

AZUArms=Urms. Then, by substituting this in Eq. (2) using

Eq. (3), Eq. (2) can be re-arranged to give the streaming-

related bottom shear stress for the individual narrow-band

random wave-cycles as follows:

tstr

r
Z

�tstr rms

r

U

Urms

� �3Kd

(19)

where, by definition,

�tstr rms

r
Z

1

4
ffiffiffi
2

p �kArmsU
2
rmsc

Arms

z0

� �Kd

(20)

and �k is the wave number corresponding to uz determined

from u2
z Zg �k tanh �kh. By introducing t̂str Ztstr= �tstr rms and
ÛZU=Urms, Eq. (19) can be re-arranged to give the shear

stress related to streaming for individual narrow-band

random waves as follows:

t̂str Z Û
3Kd

(21)

Now the cumulative distribution function of t̂str follows by

transformation of random variables, when Ûðt̂strÞ same as

known. By utilizing pðt̂strÞZpðÛÞjdÛ=dt̂strj and by using

Eq. (15), the cumulative distribution function is given as:

Pðt̂strÞ Z 1 KexpðKt̂
b
strÞ; t̂str R0; b Z

2

3 Kd
(22)

Hence the distribution of t̂str is given by the Weibull

distribution.

When the cumulative distribution function is known, the

relevant characteristic statistical values of the bed shear

stress caused by streaming under random waves can be

calculated. Here only a few characteristic statistical values

will be discussed.

The rms value is given as follows by using Eq. (22):

t̂str rms hðE½t̂2
str�Þ

1=2 Z G 1 C
2

b

� �� �1=2

Z ½Gð4 KdÞ�1=2 (23)

The value of t̂str which is exceeded by the probability 1/n is

given as follows:

t̂str 1=n Z ðln nÞ1=b Z ðln nÞð3KdÞ=2 (24)
3.2.2. Bedload transport

By substituting uZuz and AZUArms=Urms and using

Eqs. (8) and (9), Eq. (6) can be re-arranged to give the

bedload transport caused by streaming for individual

narrow-band random waves as

Fstr Z a �q
1=2
wrms$qstr rms

U

Urms

� �4K3
2
d

(25)

where, by definition,

�qwrms Z
�twrms

rgðs K1Þd50

(26)

�twrms

r
Z

1

2
c

Arms

z0

� �Kd

U2
rms (27)

qstr rms Z
�tstr rms

rgðs K1Þd50

(28)

and �tstr rms=r is given in Eq. (20). Eq. (25) can be re-arranged

to

fstr h
Fstr

a �q
1=2
wrms$qstr rms

Z Û
4K3

2
d

(29)

Now the cumulative distribution function of fstr follows by

transformation of random variables. Using Eq. (15) with
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x̂Z Û, gives

PðfstrÞ Z 1 KexpðKf
b
strÞ; fstr R0; b Z

2

4 K 3
2

d
(30)

Hence fstr is Weibull distributed.

The statistical value most relevant to the calculation of

the bedload sediment transport is the expected (mean) value.

The standard deviation is of interest when estimating the

spreading of the bedload transport under individual random

waves. By using Eq. (30) the expected value and the

standard deviation are given as, respectively,

E½fstr� Z G 3 K
3

4
d

� �
(31)

sðfstrÞ Z G 5 K
3

2
d

� �
K G 3 K

3

4
d

� �� �2� �1=2

(32)
3.3. Friction factor

The friction factors based on characteristic statistical

values of the shear stress related to streaming for individual

random waves can be defined. The rms friction factor is

defined as follows:

fw str;rms Z
ðtstr=rÞrms

1
2

U2
rms

(33)

Conventional results by using an equivalent sinusoidal wave

are obtained by substituting Eq. (3) in (2), and replacing U

and A with their rms-values, and taking uZuz and kZ �k to

recover Eq. (20). According to the definition in Eq. (33), the
Fig. 2. Friction facto
deterministic friction factor is:

fw str;det Z
1

2
ffiffiffi
2

p �kArmsc
Arms

z0

� �Kd

(34)

Similarly, the result according to the present stochastic

approach is obtained by substituting t̂str rms Ztstr= �tstr rms in

Eq. (23) using (20). According to the definition in Eq. (33),

the stochastic friction factor is:

fw str;stoch Z ½Gð4 KdÞ�1=2fw str;det (35)

Fig. 2 gives an example of results showing the stochastic

and deterministic friction factors divided by �kArms versus

Arms/z0. The two lower straight curves represent the

stochastic results according to Eq. (35) and the deterministic

results according to Eq. (34) for the (c,d) values in Eqs. (4)

and (5). Frictions factors based on other characteristic

statistical values, e.g. t̂str1=n, will have similar behaviour as

shown in Fig. 2. The discontinuity in the streaming friction

factor is caused by the friction factors for regular waves

having different left and right derivatives at the intersection

point A=z0Z11000.

By combining Eqs. (34) and (35), it appears that the

stochastic to deterministic method ratio for the rms friction

factor is given by

R1 Z ½Gð4 KdÞ�1=2 (36)

By using the d values in Eqs. (4) and (5), this ratio varies

from 1.8 to 2.1 depending on the Arms/z0 range considered.

This result is in qualitative agreement with the turbulent

boundary layer model results of Deigaard et al. [31]. They

used a one-dimensional mixing length model in conjunction

with a sediment diffusion model to predict the net sediment
rs vs. Arms/z0.



Table 1

Bottom friction caused by boundary layer streaming and linear waves

Flow range d Streaming Linear waves

t̂str rms Z ½Gð4KdÞ�1=2 t̂str 1=n Z ðln nÞð3KdÞ=2 t̂rms Z ½Gð3KdÞ�1=2 t̂1=n Z ðln nÞð2KdÞ=2

nZ3 nZ10 nZ3 nZ10

900(Arms/z0(11 000 0.52 1.80 1.12 2.81 1.14 1.07 1.85

11 000(Arms/z0 0.25 2.10 1.14 3.15 1.27 1.09 2.07
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transport under wave groups and bound long waves. They

found that the shear stress caused by streaming is larger for a

wave group than for regular waves with the same energy,

i.e. an equivalent sinusoidal wave.

The stochastic results for t̂str rms and t̂str 1=n (Eqs. (23) and

(24) respectively, using the d values in Eqs. (4) and (5)) are

given in Table 1. It should also be noted that R1 (Eq. (36))

coincides with t̂str rms (Table 1) with the present scaling.
3.4. Bedload transport

By using Eq. (31) it follows that the expected (mean)

value of the dimensionless bedload sediment transport rate

due to streaming is given as

E½Fstr� Z G 3 K
3

4
d

� �
Fstr;det (37)

where Fstr,det is the deterministic value obtained by using

the equivalent sinusoidal wave concept of replacing the

wave-related quantities in Eqs. (6), (8) and (9) with their

rms-values, giving

Fstr;det Z a �q
1=2
w rms$qstr rms (38)

Here �qw rms and qstrrms are as defined in Eqs. (26) and (28),

respectively. By using Eqs. (11) and (12), Eq. (38) can be re-

arranged to

Fstr;det Z
a

8
�kArms c

Arms

z0

� �Kd

Jrms

� �3=2

(39)

where

Jrms Z
U2

rms

gðs K1Þd50

(40)

By using Eq. (32) it follows that the standard deviation of

Fstr is obtained by a similar expression as for E[Fstr] given

in Eq. (37).

From Eq. (37) it follows that the stochastic to

deterministic method ratio for the mean bedload transport
Table 2

Some characteristic statistical values of the bedload sediment transport rate cause

Flow range Stochastic to deterministic m

net bedload transport rate

R2 Z E½Fstr�
Fstr;det

; E½F�
Fdet

900(Arms/z0(11 000 1.44

11 000(Arms/z0 1.69
is given as

R2 Z G 3 K
3

4
d

� �
(41)

Using the d values in Eqs. (4) and (5), this ratio varies from

1.4 to 1.7 depending on the Arms/z0 range considered.

Deigaard et al. [31] also included predictions for bedload

transport under wave groups. They found that the bedload

transport caused by streaming is slightly larger for a wave

group than for regular waves with the same energy, which

agrees qualitatively with the present results.

Similarly, the standard deviation can be obtained by

using the results in Eq. (32). The standard deviation to mean

value ratio, s(Fstr)/E[Fstr], is given in Table 2, together with

the values of R2 for the different roughness regimes. The

standard deviation to mean value ratio varies from 1.7 to 2.0

depending on the roughness regime. This shows that s(Fstr)

is of the same magnitude as the corresponding E[Fstr],

revealing a significant scatter of the bedload sediment

transport rate caused by streaming under random waves.

It should be noted that the expected value of the transport

without streaming is zero, i.e. that there are no second order

wave asymmetry effects present, consistent with the model

assumptions. This wave asymmetry will be addressed in

Section 5.
4. Bottom friction: Effect of streaming versus effect

of linear waves
4.1. Bottom friction beneath linear random waves

Here a brief summary of the Myrhaug et al. [14] results

for seabed shear stresses under linear random waves is

given. They essentially used the same assumptions as in

Section 3.1, and found that the non-dimensional maximum

bed shear stress for individual random waves was Weibull

distributed. This Weibull distribution is given by Eq. (22)
d by streaming and second order wave asymmetry for the two flow ranges

ethod ratio of mean Standard deviation to mean value ratio

sðFstrÞ
E½Fstr�

; sðFÞ
E½F�

1.69

1.96



Table 3

Summary of results for deterministic and stochastic friction factors as well as stochastic to deterministic method ratios for linear waves and that caused by

streaming

Linear waves Streaming

Deterministic method
fw;det Zc Arms

z0

	 
Kd

fw str;det Z
1

2
ffiffi
2

p �kArmsc
Arms

z0

	 
Kd

Stochastic method fw;stoch Z ½Gð3KdÞ�1=2fw;det fw str;stoch Z ½Gð4KdÞ�1=2fw str;det

Stochastic to deterministic method ratio R3 Z ½Gð3KdÞ�1=2 R1 Z ½Gð4KdÞ�1=2
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withbZ2=ð2KdÞ; t̂str is replaced by t̂Ztw= �tw rms where

the maximum bed shear stress, tw, is made dimensionless by

�tw rms given in Eq. (27). Thus, t̂rms and t̂1=n are given by

similar formulas as in Eqs. (23) and (24), respectively, by

using bZ2=ð2KdÞ.

The rms friction factor is defined as

fw;rms Z
ðtw=rÞrms

1
2

U2
rms

(42)

By substituting ðtw=rÞrmsZ t̂rms �tw rms=r in Eq. (42) using

Eq. (27) and t̂rms in Table 1, the rms friction factor

corresponding to the stochastic approach is given in Table 3.

The friction factors fw,stoch and fw,det are shown in Fig. 2

for the (c,d) values in Eqs. (4) and (5). Friction factors based

on other characteristic statistical values, e.g. t̂1=n, will have

similar behaviour as shown in Fig. 2.

The stochastic to deterministic method ratio for the rms

friction factor, R3Z fw;stoch=fw;det, is given in Table 3. Using

the d values in Eqs. (4) and (5), this ratio varies from 1.1 to

1.3 depending on the Arms/z0 range considered.

The stochastic results for t̂rms and t̂1=n using the d values

in Eqs. (4) and (5) are given in Table 1. It should be noted

that R3 (Table 3) coincides with t̂rms (Table 1) with the

present scaling.
4.2. Streaming versus linear waves

Here the effect of streaming versus the effect of linear

waves on the bed shear stress will be considered. The shear

stress for linear waves in shallow water, for which
�khZp=10, will be used as a reference value.

The rms value of the shear stress under linear waves is

given as

twrms

r
Z

1

2
cðz0uzÞ

d uzHrms

2 sinh �kh

� �2Kd

½Gð3 KdÞ�1=2 (43)

This result is obtained by combining Eq. (42) with fw,stoch

and fw,det in Table 3 and substitution of ArmsZUrms=uz and

Urms Z
uzHrms

2 sinh �kh
(44)

In shallow water, for which sinh �khz �kh, Eq. (43) takes the

form
twrms

r
Z

1

2
cðz0uzÞ

d uzHrms

2p=10

� �2Kd

½Gð3 KdÞ�1=2 (45)

taking �khZp=10.

By combining Eqs. (33) to (35), and substitution of Urms

from Eq. (44), the rms value of the shear stress caused by

streaming is given as

tstr rms

r
Z ½Gð4 KdÞ�1=2

!
1

4
ffiffiffi
2

p �kArmscðz0uzÞ
d uzHrms

2 sinh �kh

� �2Kd

(46)

The range of values of �kArms is determined by the validity

of linear wave theory. This can be expressed in terms of the

Ursell number requiring H(2p/k)2/h3(15 for regular waves

[32]. This criterion can be re-arranged to (kH/2)/(kh)3(0.2,

which for narrow-band random waves is taken as

ð �kHrms=2Þ=ð �khÞ3(0:2, where �kHrms=2Z �kArms sinh �kh. Thus

the Ursell number criterion can be re-arranged to

�kArms(0:2
ð �khÞ3

sinh �kh
(47)

Moreover, the maximum steepness of regular waves in finite

water depth is limited by the Miche breaking criterion, i.e.

kH/2%p 0.142 tanh (0.875 kh) (see e.g. [23]). For narrow-

band random waves this criterion can be re-arranged to

�kArms%p$0:142
tanhð0:875 �khÞ

sinh �kh
(48)

In intermediate water depth ðp=10% �kh%pÞ it appears that

Eq. (47) is the most restrictive for p=10% �kh(1:2, while

Eq. (48) is the most restrictive for 1:2( �kh%p. Here the

shallow to intermediate water depth range p=10% �kh(1:2

is considered, because the seabed shear stress is of most

interest in this range. Thus �kArms is restricted by Eq. (47)

which for �khZ ðp=10; 1:2Þ gives �kArms( ð0:02; 0:23Þ. How-

ever, since random waves are considered, it can be argued

that the criteria in Eqs. (47) and (48) should be based on the

maximum wave within the time series, i.e. the maximum

values of H and A within the time series should be used

rather than the rms values. As H and A are Rayleigh-

distributed, ðHmax;AmaxÞZ ðHrms;ArmsÞ
ffiffiffiffiffiffiffiffiffi
ln N

p
, where N is

the number of waves within the time series. Taking a time

series of 1 h duration with a mean zero-crossing wave

period of 10 s, NZ360, giving (Hmax, Amax)z2.4(Hrms,

Arms). In this case the factors used in Eqs. (47) and (48)
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should be divided by the factor 2.4. Consequently, �kArms

will be restricted by the modified Eq. (47), which for �khZ
ðp=10; 1:2Þ gives �kArms ( ð0:01; 0:10Þ. Although it is

uncertain which values of H and A should be used in the

criteria, the present discussion suggests that �kArms Z0:20

represents an upper limit.

Fig. 3 shows the ratios R4 and R5 versus �kh in the range

p/10 to 1.2 according to Eqs. (A4) and (A2) (see Appendix

A), respectively, for the two flow ranges of Arms/z0. Here R4

is an estimate of the upper limit for the ratio between the

shear stress related to streaming (hereafter referred to as the

streaming effect) in an arbitrary water depth and the shear

stress under linear waves (hereafter referred to as the linear

effect) in shallow water. This upper limit is based on the

Ursell number criterion in Eq. (47). It appears that R4 is

nearly invariant with �kh for Arms=z0T900. One should note

that the reason for this behaviour of R4 as �kh increases is

caused by the validity range of linear wave theory given by
Fig. 3. The ratios R4 (Eq. (A4)), R5 (Eq. (A2)) versus �kh. R4 is an estimate of the

arbitrary water depth, �kh, and that caused by linear waves in shallow water, �khZp=

water depth and that in shallow water.
the Ursell number criterion in Eq. (47). R5 is the ratio

between the shear stress under linear waves in an arbitrary

water depth and in shallow water. In Fig. 3, R5 shows that

the linear effect in intermediate water ð �khZ1:2Þ is an order

of magnitude smaller than that in shallow water ð �khZp=10Þ.

By combining R4 and R5 it appears that the relative

magnitude between the streaming effect and the linear effect

increases from 1% in shallow water to about 10% in

intermediate water. This is also demonstrated in Fig. 4

which shows the ratio between the effect of streaming and

the effect of linear waves in an arbitrary water depth (R6)

versus �kh.

It should be noted that the results in Figs. 3 and 4 for the

rms values are similar to those obtained using a

deterministic approach. This means that by using a

deterministic approach the curves representing R4 and R6

will be reduced by the factor (3Kd)1/2, while R5 will be the

same.
upper limit for the ratio between the shear stress caused by streaming in an

10. R5 is the ratio between the shear stress under linear waves in an arbitrary



Fig. 4. The ratio R6 (Eq. (A5)) versus �kh. R6 is an estimate of the upper limit for the ratio between the shear stress caused by streaming and that caused by linear

waves in an arbitrary water depth, �kh.

D. Myrhaug et al. / Applied Ocean Research 26 (2004) 183–197192
5. Bedload transport: Effect of streaming versus effect

of Stokes second order wave asymmetry

5.1. Bedload transport by nonlinear random waves

Here a brief summary of the [9] results for the bedload

sediment transport rate by nonlinear random waves is given.

They essentially used the same assumptions as in Section 3.1

except for using the [25] bedload transport formula for

second order regular waves, which was assumed to be valid

for second order nonlinear irregular waves as well. The

cumulative distribution function of the nondimensional net

bedload sediment transport rate for individual narrow-band

random waves was found to be Weibull distributed, i.e.

given by Eq. (30) with fstr replaced by f. Here

f Z
F

2:8Drms
�q
3=2
w rms

(49)

F Z
qb

½gðs K1Þd3
50�

1=2
(50)

where Drms and �qw rms are given in Table 4 and Eq. (26),

respectively, and qb is the volumetric net bedload transport

rate per unit width [m2/s]. Thus the expected value, E[f],
Table 4

Summary of results for deterministic and stochastic method results for mean bed

Streaming

Deterministic

method Fstr;det Za �q
1=2
wrms$qstr rms Z a

8
�kArms c Arms

z0

	 
Kd

Jrms

� �3=2

Stochastic method E½Fstr�ZG 3K 3
4

d
� �

Fstr;det

Stochastic to deter-

ministic method ratio
R2 ZG 3K 3

4
d

� �

Drms Z 2K 1K 2
p

� �
d


 �
3 �kHrms

8 sinh3 �kh
Z 2K 1K 2

p

� �
d


 �
3 �kArms

8 sinh2 �kh
Zcharacteristic asymme
and the standard deviation, s[f], are as given in Eqs. (31)

and (32), respectively.

Here 0%Drms(0:20 represents a characteristic asym-

metry of the shear stress (caused by second order wave

asymmetry) in a seastate of random waves. The range of

Drms values follows by substituting the upper limit of �kArms

from Eq. (47) in Drms given in Table 4, which for �khZ
ðp=10; 1:2Þ gives Drms ( ð0:2; 0:1Þ. However, if the criterion

in Eq. (47) is based on the maximum wave in a time series of

1 h duration, then these values of Drms should be divided by

the factor 2.4 as explained in Section 4.2. Due to the

uncertainty related to which values of A to use in the

criterion in Eq. (47), it is suggested that DrmsZ0.2

represents an upper limit.

By using Eqs. (49) and (31) with fstr replaced by f it

follows that E[F] and Fdet are as given in Table 4.

By using the results in Table 4 it follows that the

stochastic to deterministic method ratio for the mean

bedload transport rate is given by R2 in Eq. (41). Similarly,

the standard deviation can be obtained by using the result in

Eq. (32). The standard deviation to mean value ratio, s(F)

/E[F], is given in Table 2, together with the values of R2 for

the different roughness regimes. Moreover, a significant

scatter of the bedload sediment transport caused by second
load transport rate caused by streaming and second order wave asymmetry

Second order wave asymmetry

Fdet Z2:8Drms
�q
3=2
wrms Z2:8 2K 1K 2

p

� �
d


 �
3

8
ffiffi
2

p

!
�kArms

sinh2 �kh
c Arms

z0

	 
Kd

Jrms

� �3=2

E½F�ZG 3K 3
4

d
� �

Fdet

R2 ZG 3K 3
4

d
� �

try; Hrms Z 8
ÐN

0 SzzðuÞdu

 �1=2Zrms value of wave height.
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order wave asymmetry was revealed. A similar scatter was

found in field data of ripple migration rates (related to

bedload) by Amos et al. [33]. Such a scatter was also

estimated by Holmedal and Myrhaug [24].
5.2. Streaming versus second order wave asymmetry

Here the relative magnitude of the mean bedload

transport caused by random second order Stokes wave

asymmetry and the mean bedload transport caused by

streaming for random waves will be considered. The mean

bedload transport caused by streaming in shallow water, for

which �khZp=10, will be used as a reference.

By combining Eqs. (29) and (31), and substitution of

Urms from Eq. (44), the mean bedload transport caused by

streaming is given as

E½Fstr� Z G 3 K
3

4
d

� � a½cðuzz0Þ
d�3=2 �kArms

uzHrms

2 sinh �kh

h i3K3
2
d

8½gðs K1Þd50�
3=2

(51)

An estimate of the upper limit of E[Fstr] for �kh in the

range p/10 to 1.2 is obtained by substituting the upper limit

of �kArms given by the Ursell number criterion, Eq. (47), in

Eq. (51), which gives

E½Fstr�ZG 3K
3

4
d

� �a½cðuzz0Þ
d�3=20:2 ð �khÞ3

sinh �kh

uzHrms

2 sinh �kh

h i3K3
2
d

8½gðsK1Þd50�
3=2

(52)

By using the results in Table 4 and substitution of Urms

from Eq. (44), the mean bedload transport caused by second

order wave asymmetry is given as

E½F�ZG 3K
3

4
d

� �
$2:8 2K 1K

2

p

� �
d

� �

$
3 �kArms

8
ffiffiffi
2

p
sinh2 �kh

½cðuzz0Þ
d�3=2

uzHrms

2 sinh �kh

h i3K3
2
d

½gðsK1Þd50�
3=2

ð53Þ

It should be noted that the bedload process that contribute to

Eq. (53) is as follows: It represents no more than the

transport arising from the enhanced stresses beneath the

wave crests compared with the smaller stresses beneath the

wave troughs.

An estimate of the upper limit of E[F]for �kh in the range

p/10 to 1.2 is obtained by substituting the upper limit of
�kArms from Eq. (47) in (53), which gives

E½F� Z G 3 K
3

4
d

� �
$2:8 2 K 1 K

2

p

� �
d

� �

$
0:6ð �khÞ3

8
ffiffiffi
2

p
sinh3 �kh

½cðuzz0Þ
d�3=2

uzHrms

2 sinh �kh

h i3K3
2
d

½gðs K1Þd50�
3=2

ð54Þ

Fig. 5 shows the ratios R7 and R8 versus �kh in the range

p/10 to 1.2 according to Eqs. (B1) and (B2) (see Appendix
B), respectively, for the two flow ranges of Arms/z0. It

appears that the ratio between the mean bedload transport

caused by streaming in an arbitrary water depth and that in

shallow water (based on an estimate of the upper limit of

E[Fstr]) (R7) is reduced by a factor between 3 and 5 from

shallow to intermediate water for Arms=z0T900 depending

on the Arms/z0 range. Moreover, the ratio between the mean

bedload transport caused by second order wave asymmetry

in an arbitrary water depth and the mean bedload transport

caused by streaming in shallow water (based on upper limits

of both effects) (R8) is reduced by two orders of magnitude

from shallow to intermediate water for Arms=z0T900.

Overall it also appears that the second order wave

asymmetry effect is nearly an order of magnitude larger

than the streaming effect in shallow water, while the two

effects are approximately of the same order of magnitude in

intermediate water. This is also demonstrated in Fig. 6

showing the ratio between the effect of second order wave

asymmetry and the effect of streaming in an arbitrary water

depth (R9) versus �kh. Thus the results in Figs. 5 and 6 imply

that the total mean bedload transport caused by second order

wave asymmetry and streaming in intermediate water is

reduced to between 3% to 6% of the total bedload transport

in shallow water for Arms=z0T900 depending in the Arms/z0

range.

It should be noted that the results in Figs. 5 and 6 are the

same as those obtained using a deterministic approach, that

is, by using the equivalent sinusoidal wave representation

the curves representing the ratios R7, R8 and R9 will be the

same.
6. Stochastic versus deterministic approach

It has been shown that the present stochastic approach for

the prediction of both bed friction and bedload transport

gives larger values than the deterministic prediction based

on an equivalent sinusoidal wave. For the effects caused by

streaming these results are in qualitative agreement with the

modelling results of Deigaard et al. [31]. Holmedal et al.

[19] found good agreement between the prediction of bed

friction under random waves plus current by a (kK3) model

and the [18] prediction using a Monte Carlo simulation

based on parameterized friction factor formulas for

sinusoidal waves plus current. This supports the present

stochastic approach for bed friction, as Holmedal et al. [18]

essentially used the same assumptions as in Section 3.1.

However, it should be recalled that the present method is

based on idealized conditions and, as such, the results

should be taken as a first approximation. Confidence in the

results can only be supported by measurements or

simulations for random waves. However, to separate the

streaming effects in experiments are both difficult and

challenging; two-dimensional simulations for random

waves are also demanding. In the meantime the present



Fig. 5. The ratios R7 (Eq. (B1)) and R8 (Eq. (B2)) versus �kh. R7 is an estimate of the upper limit for the ratio between the mean bedload transport rate caused by

streaming in an arbitrary water depth, �kh, and that in shallow water, �khZp=10. R8 is an estimate of the upper limit for the ratio between the mean bedload

transport rate caused by second order wave asymmetry in an arbitrary water depth and that caused by streaming in shallow water.

Fig. 6. The ratio R9 (Eq. (B3)) versus �kh. R9 is the ratio between the mean bedload transport rate caused by second order wave asymmetry and that caused by

streaming in an arbitrary water depth, �kh.
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approach should serve as a useful tool for estimating the

effect of streaming on bed friction and bedload transport

under random waves.
7. Summary and conclusions

An approach is presented by which the effects of

boundary layer streaming on the seabed shear stresses, and

the mean bedload transport rate, beneath random waves are

investigated. It is demonstrated how bottom friction

formulas and bedload transport rate formulas for regular

waves can be used to obtain the bed shear stresses and the

mean bedload transport rate resulting from steady

streaming under random waves. As a result, friction factors

for steady streaming under random waves are provided,

and the effect of streaming versus the effect of linear waves

is discussed. Moreover, for the mean bedload transport rate

the effect of boundary layer streaming versus the effect of

second order wave asymmetry is discussed. The results are

valid for flat rough beds with A=z0T900, for which the

streaming is in the direction of wave propagation. The

bedload transport caused by second order wave asymmetry

is also in the wave propagation direction. The present

analysis of bed shear stresses has physical implications for

the estimation of wave energy dissipation for flow above

rough beds. The results for the mean bedload transport rate

are particularly relevant to shingle and coarse sand, where

all, or at least most, of the sediment transport takes place as

bedload.

For bottom friction the main conclusions are:

(a) The present stochastic approach gives 1.4–2.1 larger

friction factors related to streaming than those obtained

using rms values in an otherwise deterministic

approach.

(b) The typical values exemplified for shallow ð �khZp=10Þ

to intermediate ð �khZ1:2Þ water depths based on upper

estimates of the rms values of the seabed shear stresses

caused by streaming, suggest that:

The relative magnitude between the streaming effect and

the linear effect increases from 1% in shallow water to about

10% in intermediate water. This is because the streaming

effect in intermediate water is about the same as in shallow

water; this is a consequence of the upper validity range of

linear wave theory given by the Ursell number criterion.

Consequently, the sum of the linear and streaming effects in

intermediate water is about 10% of the linear effect in

shallow water.

For bedload transport rate the main conclusions are:

(a) The present stochastic approach gives 1.4 to 1.7

larger mean bedload transport rate caused by

streaming than those obtained by using rms values

in an otherwise deterministic approach.
(b) The standard deviation of the bedload transport

caused by streaming is of the same magnitude as

the mean bedload transport, revealing a significant

scatter of the bedload transport caused by

streaming.

(c) The same conclusions as given in (a) and (b) are

also valid for the bedload transport rate caused by

second order wave asymmetry.

(d) The typical values exemplified for shallow ð �khZ
p=10Þ to intermediate ð �khZ1:2Þ water depths based

on upper estimates of the mean bedload transport

rates caused by streaming and second order wave

asymmetry, suggest that:

† Overall the effect of second order wave asymmetry is

nearly an order of magnitude larger than the streaming

effect in shallow water; the two effects are of the same

order of magnitude in intermediate water.

† The total mean bedload transport rate caused by

streaming and second order wave asymmetry in

intermediate water is reduced to about 5% of the total

bedload transport rate in shallow water.

Overall, the present results for the prediction of both bed

friction and bedload transport give larger values than the

deterministic prediction based on an equivalent sinusoidal

wave. For the effects caused by streaming these results are

in qualitative agreement with the modelling results of

Deigaard et al. [31].
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Appendix A. Ratios for bed shear stress caused by

streaming and linear waves

A measure of the relative magnitude between the effects

of streaming in an arbitrary water depth and linear waves in

shallow water, R4, is obtained by taking the ratio of Eqs.

(46) and (45), which gives

R4� Z
ð3 KdÞ1=2

2
ffiffiffi
2

p �kArms

p=10

sinh �kh

� �2Kd

(A1)

The ratio between the shear stress under linear waves in

arbitrary water depth and in shallow water, R5, is obtained

by taking the ratio of Eqs. (43) and (45), which gives

R5 Z
p=10

sinh �kh

� �2Kd

(A2)
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Moreover, the ratio between the effect of streaming and

the effect of linear waves in an arbitrary water depth, R6*, is

obtained by taking the ratio of Eqs. (46) and (43), giving

R6� Z
ð3 KdÞ1=2

2
ffiffiffi
2

p �kArms (A3)

An estimate of the upper limit of the relative magnitude

between the effects of streaming in an arbitrary water depth

(for p=10% �kh%1:2) and linear waves in shallow water, R4,

can be obtained by substituting the upper limit of �kArms from

Eq. (47)(the Ursell number criterion) in Eq. (A1), which

gives

R4 Z
ð3 KdÞ1=2

2
ffiffiffi
2

p $0:2
ð �khÞ3

sinh �kh
$

p=10

sinh �kh

� �2Kd

(A4)

Moreover, an estimate of the upper limit for the ratio

between the effect of streaming and the effect of linear

waves in an arbitrary water depth (for p=10% �kh%1:2), R6,

is obtained by substitution of the upper limit of �kArms from

Eq. (47) in Eq. (A3) (or by taking the ratio of Eqs. (A4) and

(A2)), which gives

R6 Z
ð3 KdÞ1=2

2
ffiffiffi
2

p 0:2
ð �khÞ3

sinh �kh
(A5)
Appendix B. Ratios for mean bedload transport caused

by streaming and second order wave asymmetry

The shallow water value of the mean bedload transport

caused by streaming for �khZp=10 is obtained from Eq. (52)

by substituting sinh �khZ �khZp=10. Thus the ratio between

the mean bedload transport caused by streaming in an

arbitrary water depth and in shallow water ð �khZp=10Þ is

obtained as (based on an estimate of the upper limit of

E[Fstr])

R7 Z ðp=10Þ1K3
2
d ð �khÞ3

ðsinh �khÞ4K3
2
d

(B1)

A measure of the relative magnitude between the effect of

second order wave asymmetry in an arbitrary water depth

and the effect of streaming in shallow water (based on upper

limits of both effects) is obtained by taking the ratio of Eqs.

(54) and (52) (for sinh �khZ �khZp=10 in Eq. (52)),

R8 Z
2:8

a
2 K 1 K

2

p

� �
d

� �
3ffiffiffi
2

p
p

10

	 
1K3
2
d ð �khÞ3

ðsinh �khÞ6K3
2
d

(B2)

Moreover, the ratio between the effect of second order

wave asymmetry and the effect of streaming in an arbitrary

water depth (for p=10% �kh%1:2) is obtained by taking
the ratio of Fdet and Fstr,det in Table 4, giving

R9 Z
2:8

a
2 K 1 K

2

p

� �
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� �
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