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Abstract

The effect of boundary layer streaming on the sea bed shear stresses, beneath random waves, is

investigated for laminar flow as well as smooth turbulent flow. It is demonstrated how bottom

friction formulas for regular waves can be used to obtain the bed shear stresses resulting from steady

streaming under random waves. As a result, friction factors for steady streaming under random

waves are provided, and the effect of streaming versus the effect of linear waves is discussed. For

laminar flow the effect of second order Stokes waves is also included. Examples are included to

illustrate the applicability of the present practical method, and results are obtained using data typical

for field conditions.

q 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The steady streaming under sinusoidal waves is caused by the non-uniformity of the

wave boundary layer resulting from spatial changes of the orbital velocities. This non-

uniformity of progressive waves causes a change in the mean shear stress over the wave
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boundary layer. The steady streaming for a laminar wave boundary layer was determined

by Longuet-Higgins (1956). Based on this work the streaming-related time-averaged bed

shear stress can be expressed in terms of the wave friction factor and the wave number (see

e.g. Nielsen, 1992). Recently Nielsen and Callaghan (2003) included the effect of

streaming predicting the shear stress and the total sediment transport rate for sheet flow

under waves. Here the effect of streaming was included by adding a constant shear stress

corresponding to the streaming-related bed shear stress, and by applying the friction factor

for rough turbulent flow. This method predicts the real propagating wave observations of

Ribberink et al. (2000) quite well. A summary of results from models and experiments on

wave-induced streaming near the seabed is given by Davies and Villaret (1997, 1998,

1999). Above a smooth bed the measured streaming at the edge of the wave boundary

layer is in reasonable agreement with the predictions by Longuet-Higgins (1956).

The purpose of this paper is to investigate the effect of streaming on the bed shear

stresses beneath random waves for laminar and smooth turbulent flow, and to compare the

magnitude of these streaming-related bed shear stresses with those for linear waves. This is

of practical interest for, e.g. flow over smooth and featureless beds as is frequently the case

for freshly deposited muds, which are commonly taken to be smooth turbulent

(Whitehouse et al., 2000, p. 52). The bed shear stresses enter in the calculating of,

e.g. erosion and deposition rates of mud. The present analysis also has physical

implications for, e.g. estimation of wave energy dissipation for flow above such beds.

Specifically, the cumulative distribution function of bed shear stresses related to streaming

of individual random waves is determined; characteristic statistical values are calculated,

and the root-mean-square (rms) friction factors for random waves are provided. The effect

of streaming versus the effect of linear waves is investigated. For laminar flow the effect of

second order Stokes waves is also included. Thus two second order effects are considered

for laminar flow, as streaming is a second order effect of linear waves. Streaming under

second order Stokes waves is not considered here; that would imply including terms of

similar or smaller magnitude. Finally, examples of the calculation procedure are given.

Previous studies of bottom friction beneath random waves have been undertaken; a

brief review is given by Myrhaug and Holmedal (2003). Myrhaug and Holmedal (2002)

used a rough turbulent bed friction formula valid for regular second order Stokes waves to

find the cumulative distribution function of individual bed shear stress maxima for

nonlinear random waves plus a weak current. The friction factor for random waves, in the

lower near-bed excursion amplitude to bed roughness ratio range, was given. In a

proceeding paper, Myrhaug and Holmedal (2003) used a similar approach to calculate the

laminar bottom friction beneath nonlinear random waves. An extension to nonlinear

random waves plus current flow was also suggested.
2. Effect of streaming under random waves

2.1. Theoretical background for regular waves

Following Nielsen (1992) the bottom shear stress related to the wave-induced

current (streaming) in the laminar bottom boundary layer of regular waves is given as
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follows
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where U is the near-bed orbital velocity amplitude, u is the angular wave frequency, r is

the density of the fluid, n is the kinematic viscosity of the fluid, k is the wave number

determined from the dispersion relationship u2Zgk tanh kh, g is the acceleration of

gravity, and h is the water depth. Eq. (1) can be re-arranged as
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where AZU/u is the near-bed orbital displacement amplitude, and fw is the laminar wave

friction factor given as that for Stokes’ second problem (Schlichting, 1979)

fw Z 2ReK0:5 for Re(3!105 (3)

where

Re Z
UA

n
(4)

is the Reynolds number associated with the wave motion.

Nielsen and Callaghan (2003) have recently applied Eq. (2) for rough turbulent

flow to include the effect of streaming in shear stress and sediment transport

calculations for sheet flow under waves. Following this approach smooth

turbulent flow will be considered using Myrhaug’s (1995) smooth bed friction factor

given by

fw Z rReKs for ReT3!105 (5)

with the coefficients

ðr; sÞ Z ð0:0450; 0:175Þ (6)

Alternative friction factors for smooth turbulent flow proposed by Jonsson (1980),

Fredsøe and Deigaard (1992), Soulsby (1997) and Samad (2000) are given by Eq. (5)

with (r, s) values given in Table 3.

Thus the friction factors for laminar and smooth turbulent flow have the form

fwZrReKs.

The method of applying the laminar flow result in Eq. (2), and to replace the friction

factor by that for smooth turbulent flow, should be considered as a first approximation to

the streaming related shear stress for smooth turbulent flow. This is encouraged by the

success of Nielsen and Callaghan (2003) in predicting the total sediment transport rate data

of Ribberink et al. (2000). However, this approach should be validated by, e.g. using a full

boundary layer model.
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2.2. Probability distribution of bottom shear stress maxima

The present approach is based on the following assumptions:
(1)
 the free surface elevation z(t) is a stationary Gaussian narrow-band random process

with zero expectation described by the single-sided spectral density SzzðuÞ,
(2)
 the bottom friction formula for regular waves given in Section 2.1, is valid for

irregular waves as well.
The second assumption implies that each wave is treated individually, and

consequently that the bottom friction is taken to be constant for a given wave situation.

The accuracy of this assumption has been justified by Samad (2000) for laminar and

smooth turbulent boundary layer flow, for which the bottom friction is given by tw/rZ
0.5fwU2. Here fw is given in Eq. (3) for laminar flow, and by Eq. (5) using (r, s)Z(0.041,

0.16) for smooth turbulent flow. Samad (2000) found good agreement between his

measured bed shear stresses (laminar and smooth turbulent) under irregular waves and

simulations of bed shear stresses based on individual wave formulas. The bottom friction

formula related to streaming is essentially based on the laminar and smooth turbulent bed

friction factors. Thus, for linear waves the assumption of treating each wave individually is

justified. The accuracy of the narrow-band assumption will be discussed below.

Based on the present assumptions, the time-dependent near-bed orbital displacement

a(t) and velocity u(t), are both stationary Gaussian narrow-band processes with zero

expectations and with single-sided spectral densities as follows:

SaaðuÞ Z
SzzðuÞ

sinh2 kh
(7)

SuuðuÞ Z u2SaaðuÞ Z
u2SzzðuÞ

sinh2 kh
(8)

For a narrow-band process the waves are specified as a ‘harmonic’ wave with cyclic

frequency u and with slowly varying amplitude and phase. Then, for the first order, the

near-bed orbital velocity amplitude U is related to the near-bed orbital displacement

amplitude A by UZuA, where U is slowly varying with t as well (see e.g. Sveshnikov,

1966).

It follows from the narrow-band assumption that the near-bed orbital displacement

amplitude, A, and the near-bed orbital velocity amplitude, U, are Rayleigh-distributed

with the cumulative distribution function given as follows

Pðx̂Þ Z 1 Kexp ðKx̂2Þ; x̂ Z x=xrmsR0 (9)

where x represents A or U, and xrms is the rms value of x representing Arms or Urms.

When x̂ is Rayleigh-distributed, and x̂ is defined within a finite interval x̂1% x̂% x̂2, then

x̂ follows the truncated Rayleigh distribution with the cumulative distribution function
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given as follows:

Pðx̂Þ Z
exp ðKx̂2

1ÞKexp ðKx̂2Þ

exp ðKx̂2
1ÞKexp ðKx̂2

2Þ
; x̂1 % x̂% x̂2 (10)

Now Arms and Urms are related to the zeroth moments m0aa and m0uu of the amplitude

and velocity, respectively (corresponding to the variances of the amplitude ðs2
aaÞ and the

velocity ðs2
uuÞ), given as follows:

A2
rms Z 2m0aa Z 2s2

aa Z 2

ðN

0
SaaðuÞdu (11)

U2
rms Z 2m0uu Z 2s2

uu Z 2

ðN

0
SuuðuÞdu (12)

It should be noted that Urms used by Soulsby (1997) corresponds to the standard

deviation suu used here.

From Eqs. (12) and (8), it also appears that m0uuZm2aa, where m2aa Z
ÐN

0 u2SaaðuÞdu

is the second moment of the amplitude spectral density. Thus, the mean zero-crossing

frequency for the near-bed orbital displacement, uz, is obtained from the spectral moments

of a(t) as follows

uz Z
m2aa

m0aa

� �1=2

Z
m0uu

m0aa

� �1=2

Z
Urms

Arms

(13)

where Eqs. (11) and (12) have been used. This result is valid for a stationary Gaussian

random process. Note that for a finite-band process this zero-crossing frequency of a(t) at

the bed generally will be smaller than the zero-crossing frequency of z(t) at the surface due

to greater attenuation of high frequencies; this means that the high wave frequency

components will not reach the bottom. However, for a narrow-band process these zero-

crossing frequencies will be equal, since there is only one frequency present.

For a narrow-band process, AZU/u where u is replaced by uz from Eq. (13) and A is

given as follows: AZUArms/Urms. Then, by substituting this in Eq. (2) using Eqs. (5) and

(4), Eq. (2) can be re-arranged to give the streaming-related bottom shear stress for the

individual narrow-band random wave-cycles as follows

tstr

r
Z

�tstr rms

r

U

Urms

� �3K2s

(14)

where, by definition,

�tstr rms

r
Z

1

4
ffiffiffi
2

p �kArmsU
2
rmsrReKs

rms; Rerms Z
UrmsArms

n
(15)

and �k is the wave number corresponding to uz determined from u2
z Zg �k tanh �kh. By

introducing t̂str Ztstr= �tstr rms and ÛZU=Urms in Eq. (14), Eq. (14) can be re-arranged to

give the shear stress related to streaming for individual narrow-band random waves as
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follows:

t̂str Z Û
3K2s

(16)

Now the cumulative distribution function of t̂str follows by transformation of random

variables when Ûðt̂strÞ is known. By utilizing that pðt̂strÞ ¼ pðÛÞjdÛ=dt̂j and by using Eq.

(9) with x̂Z Û, the probability density functions of the non-dimensional shear stress for

the two flow regimes are given as follows:

pðt̂strÞ Z expðKt̂strÞ; t̂str R0; laminar (17)

pðt̂strÞ Z bt̂
bK1
str expðKt̂

b
strÞ; t̂str R0; b Z

2

3 K2s
; smooth (18)

The corresponding cumulative distribution functions for the two flow regimes are given as

follows:

Pðt̂strÞ Z 1 KexpðKt̂strÞ; t̂str R0; laminar (19)

Pðt̂strÞ Z 1 KexpðKt̂
b
strÞ; t̂str R0; b Z

2

3 K2s
; smooth (20)

Hence the distribution of t̂str is given by an exponential distribution for laminar flow and a

Weibull distribution for smooth turbulent flow.

These results are based on the not truncated Rayleigh distribution in Eq. (9) (rather than

using the truncated distribution in Eq. (10)), which are sound for practical applications

(see Appendix A for details).
2.3. Some characteristic statistical values

When the cumulative distribution function is known, the relevant characteristic

statistical values of the bed shear stress related to streaming for individual random waves

can be calculated. Here only a few characteristic statistical values will be discussed, based

on the cumulative distribution functions in Eqs. (19) and (20).

The rms value is given as follows:

t̂str rms hðE½t̂2
str�Þ

1=2 Z
ffiffiffi
2

p
; laminar (21)

t̂str rms ¼ G 1 þ
2

b

� �� �1=2

¼ ½Gð4 K2sÞ�1=2; smooth (22)

The value of t̂str which is exceeded by the probability 1/n is given as follows:

t̂str 1=n Z ln n; laminar (23)

t̂str 1=n Z ðln nÞ1=b Z ðln nÞð3K2sÞ=2; smooth (24)

The validity ranges for t̂str rms and t̂str 1=n with nZ3, 10 are summarized in Table 1 for

laminar flow and in Table 2 for smooth turbulent flow.



Table 1

Validity ranges of the stochastic approach for bottom friction caused by boundary layer streaming, linear waves

and second order Stokes waves for laminar flow, based on an overprediction of less than about 10% by the not

truncated vs. the truncated distribution

Streaming t̂str rms (Eq. (21)) Rerms(7!104

t̂str 1=n (Eq. (23)) nZ3 Rerms(105

nZ10 Rerms(8!104

Linear waves (DrmsZ0)

and second order Stokes

waves

t̂rms (Eq. (B11)) Rerms(105

t̂1=n (Eq. (B12)) nZ3 Rerms(105

nZ10 Rerms(105
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The effect of truncation on the rms value for laminar and smooth turbulent flow is

discussed in Appendix A.
2.4. Friction factor

The friction factors based on characteristic statistical values of the shear stress related

to streaming for individual random waves can be defined. The rms friction factor is

commonly used and is defined as follows:

fw str; rms Z
ðtstr=rÞrms

1
2

U2
rms

(25)

A conventional calculation method of the friction factor for random waves is to replace the

wave related quantities by their rms values in an otherwise deterministic approach, i.e. by an

equivalent sinusoidal wave. These conventional results are obtained by substituting Eq. (3),

or Eqs. (5) and (6), in Eq. (2) and replacing U and A with their rms-values, and taking uZuz

and kZ �k. This gives: ðtstr=rÞrmsZ ð1=4
ffiffiffi
2

p
Þ �kArmsU

2
rmsrReKs

rms, corresponding to Eq. (15).

According to the definition in Eq. (25), the deterministic friction factor is as follows:

fw str; det Z
1

2
ffiffiffi
2

p �kArmsrReKs
rms (26)

Similarly, the result according to the present stochastic approach is obtained by substituting

t̂str rms Ztstr= �tstr rms in Eq. (21) using Eq. (15) for laminar flow, and in Eq. (22) using Eq. (15)

for smooth turbulent flow. According to the definition in Eq. (25), the stochastic friction
Table 2

Validity ranges of the stochastic approach for bottom friction caused by boundary layer streaming as well as

linear waves for smooth turbulent flow, based on an underprediction of less than about 10% by the not truncated

vs. the truncated distribution

Streaming t̂str rms (Eq. (22)) RermsT3!106

t̂str 1=n (Eq. (24)) nZ3 RermsT3!106

nZ10 RermsT2!106

Linear waves t̂rms (Eq. (C4)) RermsT3!106

t̂1=n (Eq. (C5)) nZ3 RermsT2!106

nZ10 RermsT106

These results are based on using sZ0.175 (Myrhaug, 1995).
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factors in the two flow regimes are as follows:

fw str; stoch Z �kArmsReK0:5
rms ; laminar (27)

fw str; stoch Z
1

2
ffiffiffi
2

p �kArmsrReKs
rms½ð3 K2sÞGð3 K2sÞ�1=2; smooth (28)

Fig. 1 gives an example of results for laminar flow showing the stochastic and

deterministic friction factors divided by �kArms versus Rerms. The two lower straight lines

represent the stochastic results according to Eq. (27) as well as the deterministic results

according to Eq. (26) with (r, s)Z(2, 0.5). It should be noted that the results for the stochastic

approach according to Eq. (27) is valid for Rerms(7!104, which is consistent with the

results for the rms-value given in Table 1. Frictions factors based on other characteristic

statistical values, e.g. t̂str 1=n, will have similar behaviour as shown in Fig. 1. The validity

ranges for the characteristic statistical values considered here are given in Table 1.

By combining Eq. (26) with (r, s)Z(2, 0.5) and Eq. (27), it appears that the stochastic to

deterministic method ratio for the rms friction factor is given by the factor
ffiffiffi
2

p
, showing

that the stochastic approach gives about 40 percent larger shear stress related to streaming

than obtained using the deterministic approach. This suggests that a stochastic approach is

required for laminar flow.

Fig. 2 gives an example of results for smooth turbulent flow showing the stochastic and

deterministic friction factors divided by �kArms versus Rerms. The two lower straight lines

represent the stochastic results according to Eq. (28) as well as the deterministic results

according to Eq. (26) with (r, s)Z(0.0450, 0.175). It should be noted that the results for the

stochastic approach according to Eq. (28) is valid for RermsT3!106, which is consistent

with the results for the rms-value given in Table 2. Friction factors based on other
Fig. 1. Friction factors vs. Rerms for laminar flow for given values of Drms. Note that fw, det coincides with fw, stoch

for DrmsZ0. Note that the validity ranges are given from Table 1 as: fw str; det; fw; det; Rerms (3!105;

fw str; stoch; Rerms (7!104; fw; stoch; Rerms (105.



Fig. 2. Friction factors vs. Rerms for smooth turbulent flow. Note that the validity ranges are given from Table 2 as:

fw str; det; fw;det; Rerms T3!105; fw str; stoch; fw;stoch; Rerms T3!106.
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characteristic statistical values, e.g. t̂str 1=n, will have similar behaviour as shown in Fig. 2.

The validity ranges for the characteristic statistical values considered here are given in

Table 2.

By combining Eqs. (26) and (28), it appears that the stochastic to deterministic method

ratio for the rms friction factor is given by

R1 Z ½ð3 K2sÞGð3 K2sÞ�1=2 (29)

By using the Myrhaug (1995) coefficients (r, s)Z(0.0450, 0.175), R1Z1.98, showing that

the stochastic approach gives about two times larger shear stress related to streaming than

obtained using the deterministic approach. This is also the case for the other models

considered, see Table 3. This suggests that a stochastic approach is required for smooth

turbulent flow.

The stochastic results for t̂str rms and t̂str 1=n according to Eqs. (22) and (24) using the

coefficients (r, s) referred to in Section 2.1, are given in Table 4. It appears that all the

models referred to in Table 3 give almost the same results. One should note that the results

using Samad’s (2000) coefficients coincide with those based on Fredsøe and Deigaard
Table 3

Stochastic to deterministic method ratios for the rms friction factor for streaming, R1, and for linear waves, R2,

for smooth turbulent flow

Authors Coefficients in friction factor Streaming R1

Eq. (29)

Linear waves R2

Eq. (35)
r s

Jonsson (1980) 0.09 0.2 1.93 1.20

Fredsøe and Deigaard (1992) 0.035 0.16 2.02 1.23

Samad (2000) 0.041 0.16 2.02 1.23

Myrhaug (1995) 0.0450 0.175 1.98 1.22

Soulsby (1997) 0.0521 0.187 1.96 1.21



Table 4

Bottom friction caused by boundary layer streaming and linear waves using four friction factors for smooth

turbulent flow

Authors Coefficients in

friction factor

Streaming Linear waves

t̂str rms

(Eq. (22))

t̂str 1=n (Eq. (24)) t̂rms

(Eq. (C4))

t̂1=n (Eq. (C5))

r s nZ3 nZ10 nZ3 nZ10

Jonsson (1980) 0.09 0.2 1.93 1.130 2.96 1.20 1.078 1.95

Fredsøe and

Deigaard (1992)

0.035 0.16 2.02 1.134 3.06 1.23 1.082 2.01

Samad (2000) 0.041 0.16 2.02 1.134 3.06 1.23 1.082 2.01

Myrhaug (1995) 0.0450 0.175 1.98 1.133 3.02 1.22 1.081 1.99

Soulsby (1997) 0.0521 0.187 1.96 1.131 2.99 1.21 1.079 1.97
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(1992). It should also be noted that R1 (Table 3) coincides with t̂str rms (Table 4) with the

present scaling.
3. Effects of streaming and second order Stokes waves versus effect of linear waves

Here the effect of streaming versus the effect of linear waves will be discussed. For

laminar flow the effect of second order Stokes waves is also included. As for streaming, the

results for linear waves and second order Stokes waves are based on the cumulative

distribution functions which are not truncated. However, the truncated distribution

functions determine the validity range of the not truncated results, which is the basis for

the present practical method. Thus Appendix C gives a brief summary of the Myrhaug

(1995) results for seabed shear stresses under linear random waves for smooth turbulent

flow, plus an extension including the effect of truncation; Appendix B gives a brief

summary of the Myrhaug and Holmedal (2003) results for seabed shear stresses under

nonlinear second order random waves for laminar flow, plus an extension including the

effect of truncation. Examples are included to illustrate the present method, and results are

obtained using field data conditions.
3.1. Laminar bottom friction beneath nonlinear random waves

The rms friction factor obtained from the stochastic approach as well as the

deterministic friction factor according to Myrhaug and Holmedal (2003) are given in

Eqs. (B14) and (B16), respectively, in Appendix B as (see Appendix B for details)

fw; stoch Z 2ReK0:5
rms ð1 C1:36DrmsÞ; Rerms (105 (30)

fw; det Z 2 ReK0:5
rms ð1 CDrmsÞ; Rerms(3!105 (31)

The stochastic and deterministic wave friction factors for laminar flow are shown in

Fig. 1 versus Rerms for linear (DrmsZ0) and nonlinear (DrmsZ0.20) waves. The two upper
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straight lines represent the stochastic results according to Eq. (30), as well as the

deterministic friction factor according to Eq. (31). Note that the stochastic rms friction

factor coincides with the deterministic friction factor for DrmsZ0. Friction factors based

on other characteristic statistical values, e.g. t̂1=n, will have a similar behaviour as shown in

Fig. 1. The validity ranges for the characteristic statistical values considered here are given

in Table 1.

By combining Eqs. (30) and (31), it appears that the stochastic to deterministic method

ratio R for the rms friction factor is given as

R Z
1 C1:36Drms

1 CDrms

(32)

This reveals that the deterministic approach gives the same result as the stochastic

approach for linear waves (DrmsZ0); for second order Stokes waves RZ1.06 when DrmsZ
0.20. This suggests that for practical purposes the deterministic approach is applicable for

laminar flow.
3.2. Smooth turbulent bottom friction beneath linear random waves

The rms friction factor obtained from the stochastic approach as well as the

deterministic friction factor according to Myrhaug (1995) are given in Eqs. (C7) and (C8),

respectively, in Appendix C as (see Appendix C for details)

fw; stoch Z rReKs
rms½Gð3 K2sÞ�1=2; RermsT3!106 (33)

fw; det Z rReKs
rms; RermsT3!105 (34)

The stochastic and deterministic wave friction factors for smooth turbulent flow are

shown in Fig. 2 versus Rerms. The two upper lines represent the stochastic results according

to Eq. (33), as well as the deterministic friction factor according to Eq. (34). Friction

factors based on other characteristic statistical values, e.g. t̂1=n, will have a similar

behaviour as shown in Fig. 2. The validity ranges for the characteristic statistical values

considered here are given in Table 2.

By combining Eqs. (33) and (34), it appears that the stochastic to deterministic method

ratio R2 for the rms friction factor is given by

R2 Z ½Gð3 K2sÞ�1=2 (35)

By using the Myrhaug (1995) coefficients (r, s)Z(0.0450, 0.175), R2Z1.2. This is also the

case for the other models considered; see Table 3. This might suggest to use a stochastic

approach for the cases where this accuracy is considered to be necessary. The results for

t̂rms and t̂1=n according to Eqs. (C4) and (C5) using the coefficients (r, s) referred to in

Section 2.1 are given in Table 4. It appears that the stochastic models give almost the same

results. One should note that the results using Samad’s (2000) coefficients coincide with

those of Fredsøe and Deigaard (1992). It should also be noted that R2 (Table 3) coincides

with t̂rms (Table 4) with the present scaling.
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3.3. Streaming versus linear waves

Here the relative magnitude between the shear stress related to streaming and the shear

stress under linear waves will be investigated for laminar and smooth turbulent flow. The

shear stress for linear waves in shallow water for �khZp=10 will be used as a reference

value.

The rms value of the shear stress under linear waves is given as

twrms

r
Z

1

2
rðnuzÞ

s uzHrms

2 sinh �kh

� �2K2s

½Gð3 K2sÞ�1=2 (36)

This result is obtained by combining Eqs. (C6) and (C7) (see Appendix C) and substitution

of ArmsZUrms/uz and

Urms Z
uzHrms

2 sinh �kh
(37)

In shallow water, for which sinh �khz �kh and taking �khZp=10, Eq. (36) takes the form

twrms

r
Z

1

2
rðnuzÞ

s uzHrms

2p=10

� �2K2s

½Gð3 K2sÞ�1=2 (38)

By combining Eqs. (25) and (28), and substitution of Urms from Eq. (37), the rms value

of the shear stress caused by streaming is given as

tstr rms

r
Z ½ð3 K2sÞGð3 K2sÞ�1=2

1

4
ffiffiffi
2

p �kArmsrðnuzÞ
s uzHrms

2 sinh �kh

� �2K2s

(39)

A measure of the relative magnitude between the effects of streaming in an arbitrary water

depth and linear waves in shallow water R3* is obtained by taking the ratio of Eqs. (39) and

(38), which for laminar (sZ0.5) and smooth turbulent flow give

R3	 Z
1

2
�kArms

p=10

sinh �kh
; laminar (40)

R3	 Z
ð3 K2sÞ1=2

2
ffiffiffi
2

p �kArms

p=10

sinh �kh

� �2K2s

; smooth (41)

Moreover, the ratio between the shear stress under linear waves in arbitrary water depth

and in shallow water R4 is obtained by taking the ratio of Eqs. (36) and (38), which gives

R4 Z
p=10

sinh �kh
; laminar (42)

R4 Z
p=10

sinh �kh

� �2K2s

; smooth (43)

The range of values of �kArms is determined by the validity of linear wave theory, which

can be expressed in terms of the Ursell number as H(2p/k)2/h3(15 for regular

waves (Skovgaard et al., 1974). This criterion can be re-arranged to (kH/2)/(kh)3(0.2,
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which for narrow-band random waves is taken as ð �kHrms=2Þ=ð �khÞ3(0:2, where
�kHrms=2Z �kArms sinh �kh. Thus the Ursell number criterion can be re-arranged to

�kArms (0:2
ð �khÞ3

sinh �kh
(44)

Moreover, the maximum steepness of regular waves in finite water depth is limited by the

Miche breaking criterion, i.e. kH/2%p!0.142 tanh(0.875kh) (see e.g. Soulsby, 1997).

For narrow-band random waves this criterion can be re-arranged to

�kArms %p!0:142
tanhð0:875 �khÞ

sinh �kh
(45)

In the shallow water ð �khZp=10Þ to deep water ð �khZpÞ range it appears that Eq. (44)

is the most restrictive for p=10% �kh(1:2, while Eq. (45) is the most restrictive for

1:2( �kh%p. Here the shallow to intermediate water depth range p=10% �kh(1:2 is

considered, because the seabed shear stress is of most interest in this range. Thus
�kArms is restricted by Eq. (44) which for �khZ ðp=10; 1:2Þ gives �kArms ( ð0:02; 0:23Þ.

However, since random waves are considered it can be argued that the criteria in

Eqs. (44) and (45) should be based on the maximum wave within the time series, i.e.

the maximum values of H and A within the time series should be used rather than the

rms values. Since H and A are Rayleigh-distributed, ðHmax;AmaxÞZ ðHrms;ArmsÞ
ffiffiffiffiffiffiffiffiffi
ln N

p
,

where N is the number of waves within the time series. One should note that a time

series of 1 h duration with a mean zero-crossing wave period of 10 s contains 360

individual waves, i.e. NZ360, which gives Amaxz2.4Arms, and similarly for Hmax. In

this case the factors used in Eqs. (44) and (45) should be divided by the factor 2.4.

Consequently, �kArms will be restricted by the modified Eq. (44), which for �khZ
ðp=10; 1:2Þ gives �kArms( ð0:01; 0:10Þ. Although it is uncertain which values of H and

A should be used in the criteria, the present discussion suggests that �kArms Z0:20

represents an upper limit.

The range of Drms values follows by substituting the upper limit of �kArms from Eq. (44)

in Eq. (B5), which for �khZ ðp=10; 1:2Þ gives Drms((0.2, 0.1). However, if the criterion in

Eq. (44) is based on the maximum wave in a time series of 1 h duration, then these values

of Drms should be divided by the factor of 2.4. Due to the uncertainty related to which

values of A to use in the criterion in Eq. (44), it is suggested that DrmsZ0.2 represents an

upper limit.

An estimate of the upper limit of the relative magnitude between the effects of

streaming for �kh in the range p/10 to 1.2 and linear waves in shallow water R3 can

be obtained by substituting the upper limit of �kArms from Eq. (44) in Eqs. (40) and (41),

which gives

R3 Z
p

100

ð �khÞ3

sinh2 �kh
; laminar (46)

R3 Z
ð3 K2sÞ1=2

2
ffiffiffi
2

p 0:2
ð �khÞ3

sinh �kh

p=10

sinh �kh

� �2K2s

; smooth (47)
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Fig. 3 shows the ratios R3 and R4 versus �kh in the range p/10 to 1.2 for laminar flow

according to Eqs. (46) and (42), respectively. It appears that the ratio between the shear

stress related to streaming (hereafter referred to as the streaming effect) and the shear

stress under linear waves (hereafter referred to as the linear effect) in shallow water (R3)

increases from 0.01 to about 0.02 from shallow to the intermediate water depth considered

here. One should note that the reason for this increase in R3 as �kh increases is caused by the

validity range of linear wave theory given by the Ursell number criterion in Eq. (44). A

consequence of this is that the maximum of R3 becomes twice as large in intermediate than

in shallow water. The ratio R4 shows that the linear effect in intermediate water ð �khZ1:2Þ

is only 20% of that in shallow water ð �khZp=10Þ. By combining R3 and R4 it appears that

the relative magnitude between the streaming effect and the linear effect increases from

1% in shallow water to 10% in intermediate water. For laminar flow the physical

implication of this for, e.g. the dissipation of wave energy for progressive linear waves is

that: in shallow water the streaming effect is 1% of the linear effect; in intermediate water

the streaming effect increases by a factor of 2 relative to that in shallow water, and it is

10% of the linear effect in intermediate water; the sum of the linear and streaming effects

in intermediate water is about 20% of the linear effect in shallow water.

Fig. 4 shows the ratios R3 and R4 versus �kh in the range p/10 to 1.2 for smooth turbulent

flow according to Eqs. (47) and (43), respectively, for the four friction factors considered.

Overall, each model gives similar results. It appears that R3 has a value close to 0.01;

nearly invariant with �kh, which is caused by the validity range of linear wave theory given

by the Ursell number criterion in Eq. (44). The ratio R4 is reduced by a factor of about 10

from shallow to intermediate water depth. Thus the relative magnitude between the

streaming effect and the linear effect increases from 0.01 in shallow water to about 0.1 in

intermediate water. This is the same as for laminar flow. For smooth turbulent flow the

physical implication of this for, e.g. the dissipation of wave energy for progressive

linear waves is that: in shallow water the streaming effect is 1% of the linear effect;
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in intermediate water the streaming effect is the same as in shallow water, and it is 10% of

the linear effect; the sum of the linear and streaming effects in intermediate water is about

10% of the linear effect in shallow water.

It should be noted that the results in Figs. 3 and 4 for the rms values are similar to those

obtained using a deterministic approach. This means that by using a deterministic

approach the curve representing R3 will be reduced by the factors
ffiffiffi
2

p
and (3K2s)1/2z1.6

for laminar and smooth turbulent flow, respectively, while R4 will be the same.
3.4. Second order Stokes waves versus linear waves for laminar flow

Here the magnitude of the shear stress related to the second order term of second order

Stokes waves for laminar flow will be considered. The shear stress for linear waves in

shallow water will be used as a reference.

The rms value of the second order component of the shear stress under second order

Stokes waves is given as 1:36DrmsReK0:5
rms U2

rms. This result is obtained by combining

Eqs. (B3), (B10) and (B11). By substitution of Urms from Eq. (37) and Drms from Eq. (B5),

as well as dividing by Eq. (38) for sZ0.5, the ratio between the second order contribution
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to the shear stress amplitude of second order Stokes waves (hereafter referred to as the

second order effect) in an arbitrary water depth and the shear stress amplitude related to

linear waves in shallow water for laminar flow is

R5	 Z 1:36 1 C
1

p

� �
3 �kArms

2 sinh3 �kh

p

10
(48)

An estimate of the upper limit of this ratio for �kh in the range p/10 to 1.2 is obtained by

substituting the upper limit of �kArms from Eq. (44) in Eq. (48), which gives

R5 Z 0:0845
ð �khÞ3

sinh4 �kh
(49)

One should note that Eq. (49) is strictly not valid close to �khZp=10 due to the restriction

of no secondary bump in the free surface profile of second order Stokes waves (see e.g.

Dean and Dalrymple, 1984). However, for the sake of simplicity this is not elaborated

further. The use of Eq. (49) close to �khZp=10 is sufficient for the order of magnitude

considerations made here.

The ratio R5 versus �kh in the range p/10 to 1.2 for laminar flow according to

Eq. (49) is shown in Fig. 3. It appears that the ratio between the second order effect

and the linear effect in shallow water decreases from 0.25 to about 0.03 from shallow

to intermediate water. By combining R4 and R5 it appears the relative magnitude

between the second order effect and the linear effect is about 0.2 in both shallow and

intermediate water. Moreover, it appears that the second order effect is an order of

magnitude larger than the streaming effect in shallow water, while these two effects

are of the same order of magnitude in intermediate water. One should note that the

results for R5 in Fig. 3 for the rms values are similar to those obtained using a

deterministic approach, i.e. the curve representing R5 will be reduced by a factor of

1.36.

For laminar flow the physical implication of this for, e.g. the dissipation of wave

energy is that: in shallow water the second order effect is an order of magnitude

larger than the streaming effect, and the former is 25% of the linear effect; in

intermediate water the second order and streaming effects are of the same order of

magnitude, and each are about 10% of the linear effect; the sum of the linear,

streaming and second order effects in intermediate water is about 25% of the linear

effect in shallow water.
3.5. Example 1. Laminar flow

This example is included in order to show the detailed calculation procedure for

laminar flow.

Given flow conditions for a smooth bed:
Water depth, hZ5 m
Significant wave height, HsZ0.65 m
Mean wave period, TzZ6 s
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Kinematic viscosity of water at temperature 10 8C and salinity 35‰ (Soulsby, 1997),

nZ1.36!10K6 m2/s

Calculated quantities:
rms wave height, HrmsZHs=
ffiffiffi
2

p
Z0:46 m
Mean wave frequency, uzZ2p/TzZ1.047 sK1
�k from dispersion relationship corresponding to uz, �kZ0:165 mK1
Intermediate water depth since, �khZ0:83
rms bed orbital velocity amplitude from Eq. (37), UrmsZ0.26 m/s
rms bed orbital displacement amplitude, ArmsZUrms/uzZ0.25 m

�kArms, �kArms Z0:041 (i.e. (0.12 from Ursell number criterion in Eq. (44))
rms Reynolds number, RermsZUrmsArms/nZ4.8!104 (i.e. in the laminar flow regime

since Rerms(105)

Streaming:
�tstr rms=r from Eq. (15) with (r, s)Z(2, 0.5), �tstr rms=rZ4:47!10K6 m2=s2
fw str, det from Eq. (26) with (r, s)Z(2, 0.5), fw str, detZ1.32!10K4
fw str, stoch from Eq. (27) (i.e. Rerms(7!104), fw str, stochZ1.87!10K4
Stochastic to deterministic method ratio for rms friction factor, 1.42
Ratio between effect of streaming and effect of linear waves in shallow water from

Eq. (46), R3Z0.021
Ratio between effect of linear waves in finite and shallow water from Eq. (42),

R4Z0.34

Second order waves:
twrms/r from Eq. (B3), twrms/rZ3.1!10K4 m2/s2
Drms from Eq. (B5), DrmsZ0.048 (i.e. Drms!0.20)
fw, det from Eq. (31), fw, detZ9.57!10K3
fw, stoch from Eq. (30), fw, stochZ9.72!10K3
fw, det and fw, stoch coincide for linear waves, given from Eq. (B15), (fw, stoch)linZ
(fw, det)linZ9.13!10K3
Stochastic to deterministic method ratio for rms friction factor from Eq. (32), RZ1.02
Nonlinear to linear ratios for characteristic values from Eq. (B13), R2, rmsZ1.07, R2,

1/3Z1.05, R2, 1/10Z1.07
Ratio between effect of second order contribution and linear waves in shallow water

from Eq. (49), R5Z0.065
3.6. Example 2. Smooth turbulent flow

This example is included in order to show the detailed calculation procedure for smooth

turbulent flow. The results are based on the Myrhaug (1995) coefficients (r, s)Z(0.0450,
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0.175). It should be noted that smooth turbulent flow is of practical interest for flow over

mud beds.

Given flow conditions for a smooth bed:
Water depth, hZ15 m
Significant wave height, HsZ7.5 m
Mean wave period, TzZ8.9 s
Kinematic viscosity of water at temperature 10 8C and salinity 35‰ (Soulsby, 1997),

nZ1.36!10K6 m2/s

Calculated quantities:
rms wave height, HrmsZHs=
ffiffiffi
2

p
Z5:30 m
Mean wave frequency, uzZ2p/TzZ0.706 sK1
�k from dispersion relationship corresponding to uz, �kZ0:0667 mK1
Intermediate water depth, �khZ1:00
rms bed orbital velocity amplitude from Eq. (37), UrmsZ1.59 m/s
rms bed orbital displacement amplitude, ArmsZUrms/uzZ2.25 m

�kArms, �kArms Z0:15 (i.e. (0.17 from Ursell number criterion in Eq. (44))
rms Reynolds number, RermsZUrmsArms/nZ2.63!106 (i.e. in the smooth turbulent

flow regime since RermsT3!106)

Streaming:
�tstr rms=r from Eq. (15), �tstr rms=rZ2:27!10K4 m2=s2
fw str, det from Eq. (26), fw str, detZ1.80!10K4
fw str, stoch from Eq. (28) (i.e. RermsT3!106), fw str, stochZ3.55!10K4
Stochastic to deterministic ratio for rms friction factor from Eq. (29), R1Z1.98
Ratio between effect of streaming and effect of linear waves in shallow water from

Eq. (47), R3Z0.011
Ratio between effect of linear waves in finite and shallow water from Eq. (43),

R4Z0.11

Linear waves:
twrms/r from Eq. (C3), twrms/rZ4.28!10K3 m2/s2
fw, det from Eq. (C8), fw, detZ3.39!10K3
fw, stoch from Eq. (C7), fw, stochZ4.13!10K3
Stochastic to deterministic method ratio for rms friction factor from the ratio between

Eqs. (C7) and (C8), 1.22.
4. Summary and conclusions

An approach is presented by which the effect of boundary layer streaming on the seabed

shear stresses, beneath random waves, is investigated for laminar flow as well as smooth
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turbulent flow. It is demonstrated how bottom friction formulas for regular waves can be

used to obtain the bed shear stresses resulting from steady streaming under random waves.

As a result, friction factors for steady streaming under random waves are provided, and the

effect of streaming versus the effect of linear waves is discussed. For laminar flow the

effect of second order Stokes waves is also included. Comparisons are also made by using

other friction factors for smooth turbulent flow. Finally, examples of the calculation

procedure are given using data typical for field conditions. This is of practical interest for,

e.g. flow over smooth and featureless beds as is frequently the case for freshly deposited

muds, which are commonly taken to be smooth turbulent. The bed shear stresses

enter in the calculation of, e.g. erosion and deposition of mud. The present analysis also

has physical implications for, e.g. estimation of wave energy dissipation for flow above

such beds.

The main conclusions are:
(a)
 For laminar and smooth turbulent flow the present stochastic approach gives about 40

percent and two times larger friction factors, respectively, than those obtained using

rms values in an otherwise deterministic approach. This suggests that a stochastic

approach is required for both laminar and smooth turbulent flow. For smooth turbulent

flow this is valid for all the friction factors considered.
(b)
 The typical values exemplified for shallow ð �khZp=10Þ to intermediate ð �khZ1:2Þ

water depths based on upper estimates of the rms values of the seabed shear stress,

suggest that:

† For laminar and smooth turbulent flow the relative magnitude between the

streaming effect and the linear effect increases from 1% in shallow water to 10% in

intermediate water. This is because the streaming effect in intermediate water is

about the same as in shallow water; this is a consequence of the upper validity

range of linear wave theory given by the Ursell number criterion. Consequently, the

sum of the linear and streaming effects in intermediate water is: 20% of the linear

effect in shallow water for laminar flow, and 10% of the linear effect in shallow

water for smooth turbulent flow. For smooth turbulent flow this is valid for all the

friction factors considered.

† For laminar flow the second order effect is an order of magnitude larger than the

streaming effect in shallow water, and the former is 25% of the linear effect. In

intermediate water the second order effect and streaming effect are of the same

order of magnitude; about 10% of the linear effect. The sum of the linear, streaming

and second order effects in intermediate water is about 25% of the linear effect in

shallow water.
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Appendix A. Effect of truncation on bottom friction caused by boundary layer

streaming

The cumulative distribution function of t̂str follows by transformation of random

variables when Ûðt̂strÞ is known from Eq. (16). By utilizing that pðt̂strÞZpðÛÞjdÛ=dt̂strj

and by using Eq. (10) with x̂Z Û, x̂1Z0, x̂2Z Û1 for laminar flow, and x̂Z Û, x̂1 Z Û1,

x̂2/N for smooth turbulent flow, the probability density functions of the non-

dimensional shear stress for the two flow regimes are given as follows

pðt̂strÞ Z
expðKt̂strÞ

1 KexpðKÛ
2
1Þ
; 0% t̂str % Û

2
1; laminar (A1)

pðt̂strÞ Z bt̂
bK1
str expðÛ

2
1 K t̂

b
strÞ; t̂str R t̂1 Z Û

2=b
1 ; b Z

2

3 K2s
; smooth (A2)

where Û1Z ð3!105=RermsÞ
1=2, i.e. corresponding to the upper and lower limits of the

laminar and smooth turbulent flow regimes, respectively. The cumulative distribution

functions for the two flow regimes are given as follows:

Pðt̂strÞ Z
1 KexpðKt̂strÞ

1 KexpðKÛ
2
1Þ
; 0% t̂str % Û

2
1; laminar (A3)

Pðt̂strÞ Z 1 KexpðÛ
2
1 K t̂

b
strÞ; t̂str R t̂1; smooth (A4)

This shows that the distribution of t̂str is given by a truncated exponential and a truncated

Weibull distribution for laminar and smooth turbulent flow, respectively.

The rms value is given as follows:

t̂str rms hðE½t̂2
str�Þ

1=2 Z
ffiffiffi
2

p 1 K 1 C Û
2
1 C 1

2
Û

4
1

	 

eKÛ

2
1

1 KeKÛ
2
1

2
4

3
5

1=2

; laminar (A5)

t̂str rms Z G 1 C
2

b
; Û

2
1

� �� �1=2

eÛ
2
1 ; smooth (A6)

The value of t̂str which is exceeded by the probability 1/n is given as follows:

t̂str 1=n Z ln n K ln 1 C ðn K1ÞeKÛ
2
1

h i
; laminar (A7)

t̂str 1=n Z ðln n C Û
2
1Þ

1=b; smooth (A8)

The effect of truncation on the rms value for laminar flow is considered by the ratio

between the quantities given in Eqs. (A5) and (21), and is denoted as Rstr rms. The ratios for

the 1/nth values are denoted as Rstr 1/n, and are given as the ratio between the quantities

given in Eqs. (A7) and (23). Fig. A1 shows these ratios versus Rerms in the range 104 to 3!
105. It appears that the results for t̂str rmswhich are not truncated, deviate less than about

10% from the truncated results for Rerms(7!104, which should be acceptable for
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practical purposes. Thus the range of validity, based on the distribution which is not

truncated, is Rerms(7!104. The validity ranges for t̂str rms and t̂str 1=n with nZ3, 10 are

summarized in Table 1.

The effect of truncation on the rms value for smooth turbulent flow is considered by the

ratio between the quantities given in Eqs. (A6) and (22), and is denoted Rstr rms. The ratios

for the 1/nth values are denoted as Rstr 1/n, and are given as the ratio between the quantities

given in Eqs. (A8) and (24). Fig. A2 shows these ratios versus Rerms in the range 3!105 to

108 for sZ0.175 (Myrhaug, 1995). It appears that the results for t̂str rms which are not

truncated, deviate less than about 10% from the truncated results for RermsT3!106,

which should be acceptable for practical purposes. Thus the range of validity, based on the

distribution which is not truncated, is RermsT3!106. The validity ranges for t̂str rms and

t̂str 1=n with nZ3, 10 are summarized in Table 2.
Fig. A2. The truncated to not truncated ratios for t̂str rms and t̂str 1=n with nZ3, 10 vs. Rerms for smooth turbulent

flow.
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Appendix B. Laminar bottom friction beneath nonlinear random waves including

effect of truncation

Myrhaug and Holmedal (2003) based the approach essentially on the same

assumptions as in Section 2.2, except for using the Damgaard et al. (1996) bottom

friction formula for second order regular waves, which is assumed to be valid for second

order nonlinear irregular waves as well. Similarly, the probability density function of the

non-dimensional maximum bed shear stress, t̂, was determined by transformation of

random variables. One should note that the transformation was made by using the

Rayleigh distribution in Eq. (9), rather than the truncated Rayleigh distribution in

Eq. (10). Although the approach was an approximation, t̂rms and t̂1=n for nZ3, 10 are

overpredicted by less than 10% for Rerms(105 (i.e. covering the entire laminar flow

regime), justifying the approach.

However, if the transformation is made correctly by using the truncated Rayleigh

distribution in Eq. (10), then the probability density function of the non-dimensional

maximum bed shear stress is given as follows

pðt̂Þ Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1C4Drms t̂

p
K1

Drms

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1C4Drmst̂

p exp K
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1C4Drms t̂

p
K1Þ2

4D2
rms

� �

1 KexpðKÛ
2
1Þ

; 0% t̂% t̂2 (B1)

and with the cumulative distribution function

Pðt̂Þ Z
1 Kexp K

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1C4Drms t̂

p
K1Þ2

4D2
rms

� �

1 KexpðKÛ
2
1Þ

; 0% t̂% t̂2 (B2)

where the maximum bottom shear stress, tm, is made dimensionless by twrms, i.e.

t̂ Z
tm

twrms

; twrms Z rReK0:5
rms U2

rms (B3)

and

t̂2 Z Û1ð1 CDrmsÛ1Þ; Û1 Z
3!105

Rerms

� �1=2

(B4)

By definition

Drms Z 1 C
1

p

� �
3 �kHrms

8 sinh3 �kh
Z 1 C

1

p

� �
3 �kArms

4 sinh2 �kh
(B5)

and the rms wave height is given as

Hrms Z 8

ðN

0
SzzðuÞdu

� �1=2

(B6)

One should note that Drms represents a characteristic asymmetry of the shear stress in

a sea state of random waves. Moreover, twrms and Drms are the quantities obtained by
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substituting the rms-values in the regular wave formulas. More details are given in Myrhaug

and Holmedal (2003).

The rms-value is given as follows:

t̂rms Z

ðt̂2

0
t̂

2pðt̂Þdt̂

� �1=2

(B7)

The value of t̂ which is exceeded by the probability 1/n is given as follows:

t̂1=n Z ln n K ln 1 C ðn K1ÞeKÛ
2
1

h in o1=2

! 1 CDrms ln n K ln 1 C ðn K1ÞeKÛ
2
1

h in o1=2
� �

; Rerms(3!105

(B8)

For linear waves (DrmsZ0)

t̂1=n Z ln n K ln 1 C ðn K1ÞeKÛ
2
1

h in o1=2

; Rerms(3!105 (B9)

The rms friction factor is defined as follows:

fw; rms Z
ðtm=rÞrms

1
2

U2
rms

(B10)

By taking Û1 (and t̂2) as infinitely large (i.e. by not truncating the distribution), Myrhaug

and Holmedal (2003) obtained the following results

t̂rms Z 1 C1:36Drms; Rerms(105 (B11)

and

t̂1=n Z
ffiffiffiffiffiffiffiffi
ln n

p
ð1 CDrms

ffiffiffiffiffiffiffiffi
ln n

p
Þ; Rerms(105 (B12)

For linear waves Eqs. (B11) and (B12) reduce to t̂rmsZ1 and t̂1=nZ
ffiffiffiffiffiffiffiffi
ln n

p
, respectively.
B.1. Effect of truncation

The effect of truncation on the rms value is considered by the ratio between the

quantities given in Eqs. (B7) and (B11), and is denoted as R1, rms. The ratios for the

1/nth values are denoted as R1, 1/n and are given as the ratio between the quantities

given in Eqs. (B8) and (B12). Fig. B1 shows these ratios versus Rerms in the range

104 to 3!105 for DrmsZ0, 0.05, 0.10, 0.15, 0.20. It appears that the results for t̂rms,

t̂1=3 and t̂1=10 which are not truncated, deviate less than about 10% from the truncated

results for Rerms(105, which should be acceptable for practical purposes. These

results are consistent with the results in Myrhaug and Holmedal (2003), stating that

Eqs. (B11) and (B12) are valid for Rerms(105. The validity ranges for t̂rms and t̂1=n

with nZ3, 10 are summarized in Table 1.



Fig. B1. The truncated to not truncated ratios for t̂rms and t̂1=n with nZ3, 10 vs. Rerms for DrmsZ(0, 0.05, 0.10,

0.15, 0.20) for laminar flow.
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B.2. Effect of nonlinearity

The effect of nonlinearity is investigated by comparing the results for nonlinear waves

with those obtained for linear waves. For t̂rms and t̂1=n these ratios are denoted as R2, rms

and R2, 1/n, respectively. Fig. B2 shows the nonlinear to linear ratio results for t̂rms and t̂1=n

with nZ3, 10 versus Drms for RermsZ104, 5!104, 105, 3!105. For the range of Drms

values given here, it appears that the nonlinear to linear ratios for t̂rms and t̂1=n vary from

1.0 to about 1.3 depending on Rerms and n. This shows the importance of including

nonlinear effects. The results for RermsZ104 can be taken as representative for the not



Fig. B2. Nonlinear to linear ratios of t̂rms and t̂1=n with nZ3, 10 vs. Drms for given values of Rerms for laminar flow.
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truncated distribution and are given by

ðR2; rms;R2;1=3;R2;1=10Þ Z 1 C ð1:36; 1:05; 1:52ÞDrms (B13)

which were the results given in Myrhaug and Holmedal (2003).
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B.3. Friction factor

Following Myrhaug and Holmedal (2003) the rms wave friction factor corresponding to

the distribution which is not truncated, is given as

fw; stoch Z 2ReK0:5
rms ð1 C1:36DrmsÞ; Rerms (105 (B14)

For linear waves (DrmsZ0)

fw; stoch Z 2ReK0:5
rms (B15)

Similarly, the deterministic wave friction factor is given as

fw; det Z 2ReK0:5
rms ð1 CDrmsÞ; Rerms(3!105 (B16)

For linear waves the deterministic and stochastic results coincide, i.e. Eq. (B16) reduces to

Eq. (B15).
Appendix C. Smooth turbulent bottom friction beneath linear random waves

Myrhaug (1995) based the approach on the same assumptions as in Section 2.2, and

similarly the probability density function of the non-dimensional maximum bed shear

stress, t̂, was determined by transformation of random variables. One should note that the

transformation was made by using the Rayleigh distribution in Eq. (9), rather than the

truncated Rayleigh distribution in Eq. (10). Although the approach was an approximation,

it will be shown here that t̂rms is underpredicted by less than 10% for RermsT3!106

(i.e. covering the entire smooth turbulent flow regime), justifying the approach.

However, if the transformation is made correctly by using the truncated Rayleigh

distribution in Eq. (10), then the probability density function of the non-dimensional

maximum bed shear stress is given as follows

pðt̂Þ Z bt̂bK1 expðÛ
2
1 K t̂bÞ; t̂R t̂1 Z Û

2=b
1 ; b Z

1

1 Ks
(C1)

and with the cumulative distribution function

Pðt̂Þ Z 1 KexpðÛ
2
1 K t̂bÞ; t̂R t̂1 (C2)

where the maximum bottom shear stress, tw, is made dimensionless by twrms, i.e.

t̂ Z
tw

twrms

; twrms Z
1

2
rrReKs

rmsU
2
rms (C3)

This shows that the distribution of t̂ is given by a truncated Weibull distribution.

Now t̂rms and t̂1=n are given by Eqs. (A6) and (A8), respectively, in Appendix A with

bZ1/(1Ks). By taking Û1 (and t̂1) as zero (i.e. by not truncating the distribution),

Myrhaug (1995) obtained the following results

t̂rms Z ½Gð3 K2sÞ�1=2 (C4)



Fig. C1. The truncated to not truncated ratios for t̂rms and t̂1=n with nZ3, 10 vs. Rerms for smooth turbulent flow.
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and

t̂1=n Z ðln nÞ1Ks (C5)
C.1. Effect of truncation

The effect of truncation on the rms value is considered by the ratio between

the quantities given in Eq. (A6) with bZ1/(1Ks) and Eq. (C4), and is denoted as Rrms. The

ratios for the 1/nth values are denoted as R1/n, and are given as the ratio between the

quantities given in Eq. (A8) with bZ1/(1Ks) and Eq. (C5). Fig. C1 shows these ratios

versus Rerms in the range 3!105 to 108. It appears that the results for t̂rms which are not

truncated, deviate less than about 10% from the truncated results for RermsT3!106,

which should be acceptable for practical purposes. Thus the range of validity, based on the

distribution which is not truncated, is RermsT3!106. The validity ranges for t̂rms and t̂1=n

with nZ3, 10 are summarized in Table 2.
C.2. Friction factor

The rms friction factor is defined as follows

fw; rms Z
ðtw=rÞrms

1
2

U2
rms

(C6)

By substituting Eqs. (A6) and (C3) in Eq. (C6) the rms wave friction factor corresponding

to the stochastic approach, can be obtained. The friction factor corresponding to the

distribution which is not truncated is obtained as (Û1Z0, t̂1Z0)

fw; stoch Z rReKs
rms G 1 C

2

b

� �� �1=2

Z rReKs
rms½Gð3 K2sÞ�1=2; b Z

1

1 Ks
(C7)
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Similarly, the deterministic wave friction factor is given as

fw; det Z rReKs
rms; Rerms T3!105 (C8)
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