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Abstract 

The effect of random waves on the bottom friction is studied by assuming that the wave motion is 
a stationary Gaussian narrow-band random process. The approach is also based on simple explicit 
friction coefficient formulas for sinusoidal waves. The probability distribution functions of the max- 
imum bottom shear stress for laminar flow as well as smooth turbulent and rough turbulent flow are 
presented. The maximum bottom shear stress follows the Rayleigh distribution for laminar flow and 
the Weibull distribution for smooth turbulent and rough turbulent flow. Some characteristic statistical 
values of the maximum bottom shear stress for the three flow regimes are also given. 

1. Introduction 

The wave boundary layer affects many phenomena in coastal and offshore engineering 
as well as in oceanography, e.g., sediment transport, pipeline stability, etc. The wave 

boundary layer has been studied by itself and also in combination with the current boundary 

layer as the flow from waves combined with current represents the most common flow 

condition on the seabed for shallow and intermediate water depths, i.e. in coastal zones and 
on continental shelves. 

The combined wave and current boundary layer on the seabed has been investigated by 

many. Reviews are given in Grant and Madsen ( 1986) and Soulsby et al. ( 1993b). Results 

from theoretical models and laboratory and field experiments show that the presence of 
waves increases significantly the bottom roughness parameter for the current boundary 

layer, i.e., the roughness parameter depends strongly on the seastate. In contrast, it has been 
found that the current has little effect on the wave boundary layer. 

The wave boundary layer by itself has also been studied with experiments and theoretical 
models. There have been many laboratory experiments on the wave boundary layer, among 

which Jensen (1989) represents the most recent and detailed experimental investigation 
(see also Jensen et al., 1989). Results from measurements in the ocean have been reported 
by Lambrakos (1982) and Myrhaug et al. (1992). Theoretical modelling of the wave 
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boundary layer is based on simple eddy viscosity models or Prandtl’s mixing length hypoth- 
esis. More recent models involve a refined turbulence modelling technique (Justesen, 1988; 
Thanh and Temperville, 1991). Reviews of wave boundary layers are given in Myrhaug 
( 1986) and Nielsen ( 1992). However, few studies on the effect of the randomness of the 
wave motion on the bottom friction is available in the open literature. Recently Zhao and 
Anastasiou (1993) presented a theoretical study on bottom friction effects for random 
waves plus currents. Ockenden and Soulsby (1994) presented a method of predicting 

sediment transport for the case of currents plus irregular waves. They specified an equivalent 
sinusoidal wave which was shown to give the same mean transport rate as the irregular 
wave to within f 20% for most cases. Davies ( 1994) used a full boundary layer model to 
predict the bedload transport rate for currents plus irregular waves for some of the same 
conditions considered by Ockenden and Soulsby ( 1994). By using an equivalent sinusoidal 
wave his model predicted the same bedload transport rate as the irregular wave to within 

+ 10% for a limited number of cases. 
This paper presents the bottom friction beneath random waves. The waves are described 

as a stationary Gaussian narrow-band random process. Further, the approach is based on 
simple explicit friction coefficient formulas for sinusoidal waves. The probability distri- 
butions of the maximum bottom shear stress for laminar flow as well as smooth turbulent 
and rough turbulent flow, together with some characteristic statistical values of the maximum 
bottom shear stress for the three flow regimes are presented. 

2. Explicit friction coefficient formulas for sinusoidal waves 

The maximum bottom shear stress for sinusoidal waves is given as 

where U is the orbital velocity amplitude at the seabed,f, is the wave friction coefficient, 
and p is the density of the fluid. 

For laminar flow (Stokes’ second problem; Schlichting, 1979) 

f,~2Re-~.” 

where 

R,,E (3) 
Y 

is the Reynolds number associated with 
displacement amplitude at the seabed, and 
1. 

the oscillatory wave motion, A is the orbital 
Y is the kinematic viscosity of the fluid, see Fig. 

For smooth turbulent flow Jonsson (1980) suggested the friction coefficient formula 
f, = 0.0465Re-0~‘, b ut since then new data for smooth turbulent flow have been published 
(Jensen et al., 1987). They also found that the flow becomes fully turbulent after Re reaches 
the value of approximately 3 X 106, see Fig. 1. Based on these results the following friction 
coefficient for smooth turbulent flow is suggested, obtained as a best fit by eye, 

(2) 
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fw =0.0450Re-0~'75 

which is shown in Fig. 1. 

(4) 

For rough turbulent flow Soulsby et al. (1993a) proposed the following friction coeffi- 
cient formula, obtained as the best fit to the data in Fig. 2, 

f,=1.39 % 0 
-0.52 

where ~0 is the seabed roughness parameter. 
Thus Eqs. (2) and (4) have the form 

fw=rRe-” 

while Eq. (5) has the form 

-d 

(5) 

(6) 

where r, s, c and dare constants. 

random; - - - _ _ 

10’ 

Reynolds number, Re. sinusoidal waves 

Wms 
random waves 

Re, 

Fig. 1. Wave friction coefficient vs. Reynolds number for laminar and smooth turbulent flow. Laminar flow: 

(-) Eq. (2) for sinusoidal waves; (-.-.--) Eq. (44) with CY,= 1.772 for random waves with rms value; 

( - - - ) Eqs. (43) and (47) for random waves with significant value. Smooth turbulent flow: ( - . - ) 
Jonsson (1980) for sinusoidal waves; (-- - -_) Myrhaug (1989) theory for sinusoidal waves; (-) JZq. (4) 
for sinusoidal waves; (-.-.--) Eq. (45) with as = 0.0422 for random waves with rms value; ( - - - ) Eqs. 

(43) and (48) for random waves with significant value. All the data are for sinusoidal waves/oscillations: ( X ) 

Kamphuis (1975); ( A ) Jensen et al. (1987). 
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Fig. 2. Wave friction coefficient vs. amplitude to roughness ratio for rough turbulent flow: (- - -_) Myrhaug 

(1989) theory for sinusoidal waves; (--) Eq. (5) (Soulsby et al., 1993a) for sinusoidal waves; ( - - . - 1 
Eq. (46) with (~a = 1.27 for random waves with rms value; ( - - - ) Eqs. (43) and (49) for random waves 

with significant value. All the data are for sinusoidal waves/oscillations: ( + ) Bagnold ( 1946); ( X ) Kamphuis 

(1975); (El) Jonsson andcarlsen (1976); (A) Sumeret al. (1987); (0) Sleath (1987). 

3. Bottom friction for random waves 

3. I. Probability distribution of maximum bottom shear stress 

The basis for the present approach is that the maximum bottom shear stress for sinusoidal 
waves given in Eq. ( 1) combined with Eqs. (2) to (5), is valid for random waves as well. 
Consequently it is assumed that each wave can be treated individually. The accuracy of this 
assumption should be validated by using a full boundary layer model to calculate the shear 
stress under random waves. However, the preliminary results by Davies (1994) suggest 
that this assumption can be used to predict integrated effects such as the bedload transport 
rate with a reasonable degree of accuracy. Thus this assumption is considered to be adequate 
as a first approximation. Further it is assumed that the free surface elevation l(t) is a 
stationary Gaussian narrow-band random process with zero expectation and the one-sided 
spectral density S,,(o) , where w is the cyclic wave frequency. Thus the present approach 
should be applicable for the description of the bottom friction beneath irregular waves 
occurring in wave groups in intermediate water depths. However, when the water depth 
decreases the waves will begin to shoal and the waves become nonlinear. Consequently 
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both the Gaussian and the narrow-band assumption will no longer be valid. The accuracy 
of the narrow-band assumption will be discussed subsequently. 

Based on the present assumptions the bed orbital displacement a(t) as well as the bed 
orbital velocity u(t) will be stationary Gaussian narrow-band random processes with zero 
expectations and with the one-sided spectral densities 

s (+gw_ 
an smh’kh 

and 

(9) 

respectively, where k is the wave number determined from the dispersion relationship 
w2 = gktanh kh, h is the water depth, and g is the acceleration of gravity. 

Let z(x,y) denote a general function of two random variables x and y. Then the probability 
distribution of z, is given as the non-exceedence of the level z’ by 

P(z’) =Prob [z(x,y) _<z’l = 
II 

p(x,y)dxdy (10) 

Z’ (X’Y’) 

wherep(x,y) is the joint probability density function of x and y, and the integration is over 
a region R,, including all the points of the x,y-plane where z(x,y) I z’. Thus the probability 
distribution of r,/p can be obtained ifp(A,U) is known. 

For a narrow-band process the waves are specified as a “harmonic” wave with cyclic 
frequency wand with slowly varying amplitude and phase. Then the bed orbital displacement 
is given as (see e.g. Sveshnikov, 1966) 

a(t) =A(~t)cos[wt+@(~t)] (11) 

where E* 1 is introduced to indicate that the bed orbital displacement amplitude A and the 
phase @are slowly varying with t. Then the bed orbital velocity is given as 

da(t) 
u(t) =-= 

dt 
oA(et)sin[wt+@(et) -f] +0(e) (12) 

where the term 0( E) represents terms of order E. As a first approximation, which is consistent 
with the narrow-band assumption, the terms of 0( E) are neglected, and accordingly the bed 
orbital velocity amplitude is related to the displacement amplitude by U= WA, where U is 
slowly varying with t as well. 

The accuracy of the approximate relation obtained by neglecting the terms of O(E) in 
Eq. ( 12) is discussed in Sveshnikov ( 1966). A test of the accuracy is the error in the 
variance of the derivative of the random function a(t) . It appears that this error is small in 
the case of a narrow-band spectrum. Overall some of the main features are covered by using 
the narrow-band approximation. 

For a narrow-band process the conditional probability density function of lJ given A is 
given as 

p(UIA)==S(U-WA) (13) 



264 D. Myrhaug / Coastul Engineering 24 (1995) 259-273 

where Dirac’s delta-function is defined as 

I fw~(x-o~=f(n (14) 

Thus the joint A,U-distribution is given as 

p(A,U) =P( UIA)p(A) =p(A) 6( U- WA) (15) 

NOW A and U will both be Rayleigh-distributed with the probability density functions 

p(A) =2$exp 
rms 

and 

P(U)=2gexp --g _( ) mls 

(16) 

(17) 

respectively. A,,, and U,, are the root-mean-square (rms) values of A and U, respectively, 
and are related to the zeroth moments mOaa and mouu of the amplitude and velocity spectral 

densities, respectively, or corresponding to the variances of the amplitude (a:,) and the 
velocity (a:,), given by 

m a 

A 9, = 2moa, = 
Sll( w) 
=dW 

0 0 

(18) 

and 

m m m 

U&=2m ouu=2cr~,=2 S,,(w)dw=2 
I I 

W2S,,(W)dw=2 
I 

w2S,( @) 

sinh’kh 
do 

0 0 0 

(19) 

From Eq. ( 19) it also appears that mo,, = mzaa, where mzaa is the second moment of the 
amplitude spectral density. 

It is noticed that p( U) in Eq. (17) is obtained from Eq. (15) by integration of A. A 
reasonable choice for w is the mean zero-crossing wave frequency, which is obtained from 
the spectral moments of a(t) as 

(20) 

where Eqs. ( 18) and ( 19) have been used. 
By using Eqs. (l), (6), (lo), ( 15)) ( 16), (20) and ( 14) the probability distribution 

function of the normalized maximum bottom shear stress for laminar and smooth turbulent 
flow is given by 

P(t) = 1 -exp( -tl’(‘-S)); t20 (21) 
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where 
2-2s 

(22) 

2 1 
U,L.S = x rRezU& (23) 

U A 
Re_ = nns 

lJ 
(24) 

Similarly, by using Eqs. ( l), (7), (lo), ( 15), ( 16), (20) and ( 14) the probability distri- 
bution function of the normalized maximum bottom shear stress for rough turbulent flow is 
given by 

P(t) = 1 -exp( -?“2-d)); t20 (25) 

(26) 

(27) 

By using the results in Eqs. (21) to (27) and substituting the actual values for r, s, c and d 
from Eqs. (2)) (4) and (5), the results for the three flow regimes are given by 

P(t) = 1 -exp( -P); t=&>O, laminar 
PU2,L 

(28) 

P(t) = 1 -exp( -+.212); t=Z”--0, smooth 
p&i- 

(29) 

P(t) = l-exp( -t’.35); t=7m20, rough 
PdR 

(30) 

where 

u’. L = A. 2Re;'.'Uk (31) 

1 
~2 =-.00450Re-0~‘75U2 *s 

2 . Ims lnx3 
(32) 

(33) 

It appears that the maximum bottom shear stress is Rayleigh distributed for laminar flow, 
while 7,/p is Weibull-distributed for smooth turbulent and rough turbulent flow. Fig. 3 
shows the probability distribution functions P( t) in Weibull scale for the three flow regimes. 
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Fig. 3. Probability distribution function of normalized maximum bottom shear stress in Weibull scale: ( - - - ) 

laminar flow, Eq. (28); (---) smooth turbulent flow, E!.q. (29); c&----J rough turbulent flow, Eq. (30). 

3.2. Some characteristic statistical values 

When the probability distributions are known, the characteristic statistical values of the 
maximum bottom shear stress in random waves can be obtained. For a Weibull-distributed 
random variable x with the distribution function 

P(x) = 1 -exp( -27; x20, p>o 

the expected (mean) value and the variance of the random variable are given by, respectively 
(see e.g. Bury, 1975) 

E[x] = r( 1 +;) 

Var,xl =r(1+@0+;) (36) 

where Tis the Gamma-function. By using these results, E[ 7,/p] and the standard deviation 

u%Jp= Wd%Jpl )I’* can be calculated, and the results are given in Table 1. 
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Table 1 

Some characteristic statistical values for the three flow regimes. u’.,, uls and u?, are defined in Fqs. (31), (32) 
and (33)) respectively 

Laminar Smooth turbulent Rough turbulent 

“7m/p 0.52 0.83 0.75 

0 5 ; n=3 
P I,” 

0 
II! ; n=lO 
P */I* 

0 
7” ; n=lOO 
P I/,, 

1 

1.048~:~ 1.081~:~ l.O72u:, 

1.517& 1.990&s 1.855~2, R 

2.146~2,~ 3.526~2,~ 3.100& 

1.416& 1.818& 1.7OOUI R 

Other statistical quantities of interest are the value of the maximum bottom shear stress 
which are exceeded by a certain percentage. Let (7,/p) r,,, denote the value of r,,,lp which 
is exceeded by the probability 1 In, which is determined by 

By using Eqs. (37) and (21) to (27), the following results are obtained for: 

laminar and smooth turbulentjow 

7, 0 P l/n 

= (Inn)‘-“ut,,, 

(37) 

(38) 

rough turbulentjow 

%I 0 - p 1/.=(lnn)1-d/2~Z,R (39) 

As examples the values which are exceeded by 33, 10 and l%, i.e. for n = 3, n = 10 and 
n = 100, respectively, for the three flow regimes are given in Table 1. 

Further, the expected value of the l/n highest values of r,,,lp is given by 

(40) 
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Table 2 

Probability of exceeding characteristic statistical values, see also Table 1 

Laminar Smooth turbulent Rough turbulent 

cl 0.886( 1 +n.o.s2) 0.93X(1 +n.0.83) 0.917(1+n.0.75) 

Q,(~,;n=o 0.456 0.396 0.411 

Q,(L); n= 1 0.163 0.146 0.151 

Ql(tJ; n=2 0.0381 0.0484 0.0467 

Q,(f,,);n=3 0.00583 0.0149 0.0127 

Q,(t,z); n=4 0.000583 0.00429 0.00309 

Q2 0.135 0.127 0.129 

By using Eqs. (40) and (21) to (27)) the following results are obtained for: 

laminar and smooth turbulentjow 

1 =nT(2-s)Q(x’=21nnIv=4-2s)u~L,s 

rough turbulentJEow 

#(:),,.I =ne? Q(x*=21nnl v=4-d)utR 

(41) 

(42) 

where Q( x2 I v) is the x2 probability exceedence function with Y degrees of freedom (Ch. 
26.4, Abramowitz and Stegun, 1972). 

As an example the values for n = 3, i.e. corresponding to the significant value of the 
maximum bottom shear stress, are given in Table 1 for the three flow regimes. 

The probabilities of exceeding the various characteristic statistical values for the three 
flow regimes are given in Table 2. The statistical values considered here are the expected 
value, the expected value plus one to four standard deviations, as well as the probabilities 
of exceeding the significant value. It appears that the probabilities of exceeding the signif- 
icant values and the expected value plus one standard deviation are about the same, i.e. in 
the range 13 to 16%. 

3.3. Friction coeficient 

The friction coefficient for random waves is defined from Eq. ( 1) as 
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%llP fw=r (43) 

2 u2 

where r,,,lp is represented by an appropriate statistical value, e.g. one of the values given 
in Table 1, and U is represented by U_. The friction coefficients associated with the various 
statistical values are given by 

fW = a,_Rez’, laminar (44) 

f, = cxsRe,I$175, smooth (45) 

rough (46) 

where (Y=. (us and cu, are constants depending on the statistical relationship of t-,/p used in 
Eq. (43). The actual values of these constants together with the appropriate relationship 
used for ~,lp, are given in Table 3. As an example the friction coefficients based on E[ r,/ 

p], i.e. Eqs. (44) to (46) with czL= 1.772, cus = 0.0422 and (Ye= 1.27, are shown in Figs. 
1 and 2 as the curves marked “random; rms”. 

Alternatively the random waves can be re resented by the significant values. By using 
that the significant values are given by US = P 2 U,, and A, = fiA,.,,,,, the expected value of 

the maximum bottom shear stress is given by 

Table 3 

The constants a,, as and aR in Eqs. (44). (45) and (46), respectively, and the appropriate relationships for T,,,/ 

p they are associated with, see also Table 1 

Luninar 

% 

Smooth turbulent 

ffS 

Rough turbulent 

ffR 

0 7m ;n=3 
P I/?, 

0 
II? ;n=lO 
P I,,, 

0 7” ;n=lOO 
P l/n 

EE( 1 1 3!! P 1,;) 

2.0.886( 1 +n.0.52) 0.0450.0.938( 1 +n.0.83) 1.39.0.917(1 +n.0.75) 

1.772 0.0422 1.27 

2.693 0.0722 2.22 

3.615 0.112 3.18 

4.536 0.147 4.13 

5.458 0.182 5.08 

2.096 0.0486 1.49 

3.034 0.0896 2.58 

4.292 0.159 4.31 

2.832 0.08 18 2.36 
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E 5 =1 0 f- 2 . 3e; O.’ Uz, laminar 
P 

(47) 

smooth (48) 

E($=;.0.76~~“‘s2~~, rough 

where 

(49) 

The results for (T _,,,p/ E [ 7,/p] given in Table 1 are also valid in this case. Similar expres- 

sions can also be found for the other statistical quantities. Thus the friction coefficient for 
random waves can alternatively be obtained from Eq. (43) where U is taken as lJ, and by 
using the appropriate statistical relationship for rmlp. As an example the friction coefficients 
using Eqs. (47) to (49) are shown in Figs. 1 and 2 as the curves marked “random; 
significant”. 

3.4. Discussion 

Ockenden and Soulsby ( 1994) presented a method for predicting sediment transport for 
the case of currents plus irregular waves. Their approach uses the wave friction coefficient 
for rough turbulent flow given in Eq. (5). In their case the maximum bottom shear stress 
for waves only is given by Eqs. ( 1) and (5) where A is replaced by A, = a,,T,/2n; that is, 
an amplitude associated with the peak period TI, in the s ectrum and the standard deviation 

of the velocity u,, (see Eq. 19). U is taken as U,, = P 2 a;,. In order to compare this with 

the present approach a mean JONSWAP spectrum with peakedness factor y= 3.3 is con- 
sidered. In this case Tp = 1 .28Tmo2 (see e.g. Fig. 11 in Myrhaug and Kjeldsen, 1987) where 
T = 2rrl w,,,. By using Eqs. ( 19) and (20) the Ockenden and Soulsby version of Eq. 
(yy gives the factor cm = 1.39( 1.28/fi) -OS’ = 1.46, which is close to the factor 1.49 
associated with (7,/p), ,3 in Table 3. Thus it appears that the Ockenden and Soulsby version 
of Eq. (5) for irregular waves is close to the value of the maximum seabed shear stress 
exceeded by the probability l/3. The probability of exceedence of Ockenden and Soulsby’s 
expression of the maximum bottom shear stress by using the distribution in Eq. (30) is 
0.34. 

The most appropriate statistical value to use will depend on the problem dealt with. The 
mean value of the maximum bottom shear stress might be a relevant quantity to use to 
represent the dissipation of irregular surface water waves in e.g. physical models for pre- 
dicting coastal and ocean flow circulations. However, in other applications, such as in 
suspended sediment calculations beneath irregular waves, the maximum bottom shear stress 
which is exceeded by a certain percentage might be a more appropriate value to use. 

No data are available in the open literature at present, and therefore no conclusion can be 
drawn on the ability of this approach to describe measured data. However, although these 



D. Myrhaug / Coastal Engineering 24 (1995) 259-273 271 

friction coefficient formulas are simple, they are believed to be adequate as a first approxi- 
mation to represent the bottom friction beneath random waves. 

4. Conclusions 

The paper presents bottom friction beneath random waves by assuming that ( 1) the 
waves are described as a stationary Gaussian narrow-band random process, and (2) simple 
explicit friction coefficient formulas for sinusoidal waves are valid for random waves as 
well. The probability distribution functions of the maximum bottom shear stress for laminar 
flow as well as smooth turbulent and rough turbulent flow are presented. The maximum 
bottom shear stress follows the Rayleigh distribution for laminar flow and the Weibull 
distribution for smooth turbulent and rough turbulent flow. Some characteristic statistical 
values for the three flow regimes are also given. However, which of the statistical values to 
be used will depend on the problem dealt with. It appears that the friction coefficient formulas 
for sinusoidal waves can be used for random waves as well, if the wave parameters are 
represented by the rms- or significant values, and that the constants in the formulas are 
changed. Although these friction coefficient formulas are simple, they should be adequate 

as a first approximation to represent the bottom friction beneath random waves. 

5. Nomenclature 

a 

A 

c, d 
EL 1 
fw 
g 
h 
k 

m0aam2aa 

mOuu 

P 
P 

Q 
r, s 
Re 

L ( 0) 
L(w) 
S,,( w> 
t 
Tmo2 

Tp 

bed orbital displacement 
bed orbital displacement amplitude 
constants 
expectation of random variable 
wave friction coefficient 
acceleration of gravity 

water depth 
wave number 
zeroth and second moment of bed orbital displacement spectral 

density 
zeroth moment of bed orbital velocity spectral density 
probability density function 
probability distribution function 
probability exceedence function 

constants 
Reynolds number 
spectral density of bed orbital displacement 
spectral density of bed orbital velocity 
spectral density of free surface elevation 
time coordinate; also normalized maximum bottom shear stress 
mean zero-crossing period 
peak period 
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bed orbital velocity 
factors used for normalization of maximum bottom shear stress, see 

Eqs. (31) to (33) 
bed orbital velocity amplitude 
variance of random variable 
seabed roughness parameter 
constants used in friction coefficient, see Eqs. (44) to (46) 
Gamma-function 
Dirac’s delta-function 
small parameter 
free surface elevation 
kinematic viscosity of fluid; also degrees of freedom in x2 probability 

distribution 
density of fluid 
variance of bed orbital displacement 
variance of bed orbital velocity 
standard deviation of maximum bottom shear stress 
maximum bottom shear stress 
probability distribution 

cyclic wave frequency 
mean zero-crossing wave frequency 

laminar 
root-mean-square value 

rough 
significant value 
smooth 
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