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Abstract

The dynamics of the wave propagation within the surf zone is represented through a weakly dispersive fully nonlinear

Boussinesq-type of model. The flow is assumed rotational and the governing equations are derived with no assumptions on the

order of magnitude of the nonlinear effects. In the modeling, the velocity field is influenced by the effects of vorticity due to

breaking, and the vorticity transport equation is solved analytically. The amount of vorticity introduced by the breaking process

is determined through an analogy with the hydraulic jump and the adoption of the concept of the surface roller.

A numerical accurate description of the effects of the surface roller is obtained by adopting an original self-adaptive-time-

varying grid, developed on purpose. Such an approach makes it possible to get a better resolution in the region with rapid

variations where the vorticity is generated, without heavily affecting the efficiency of the numerical model. Comparisons with a

weakly nonlinear version of the model show that the proposed model considerably improves the estimate of the dynamics of

wave propagations both in the shoaling and in the surf zone.

Comparisons with laboratory measurements, both for regular and irregular waves, demonstrate that the proposed model has

fairly good prediction capabilities. In particular, in contrast to other models, it provides quite good estimates of both the velocity

and the undertow profiles. Moreover, typical features of random wave breaking (such as varying breaking line, different wave

height decay, effects of groupiness) can be reproduced by the proposed model, as shown through comparisons with groupy

wave laboratory data.
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1. Introduction

Surf zone hydrodynamics, i.e. the hydrodynamics

which takes place within the region extended from the

breaking line up to the swash zone, not only is
(2005) 565–598
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interesting from the scientific point of view, but also

from a practical one, since it strongly affects coastal

processes such as sediment transport and littoral

evolution.

Such phenomena are mainly influenced by wave

breaking, which represents the main mechanism of

dissipation of the energy associated with the organ-

ized wave motion. Furthermore, since waves

approaching the shore undergo transformation pro-

cesses before breaking, such a refraction and shoaling,

the flow features within the surf zone as well as the

extent of the surf zone itself are strongly affected by

the conditions with which waves reach the breaking

point.

Therefore an accurate description of surf zone

hydrodynamics cannot be reproduced without appro-

priately looking also at the wave propagation phe-

nomena within the shoaling region.

Over the last decades, starting for example from

the work of Peregrine (1966), the Boussinesq equa-

tions have been widely developed to describe also surf

zone hydrodynamics.

From a computational point of view such depth

integrated models are more efficient compared with

the more complex Navier–Stokes equations, and more

accurate than the simpler nonlinear shallow water

equations, since they provide more physically based

results.

Due to these advantages, the scientific community

has put many efforts into overcoming some of the

main shortcomings of the original Boussinesq models.

Indeed research has been focused on extending the

applicability of such models in the region character-

ized by deeper waters (Witting, 1984; Madsen et al.,

1991; Nwogu, 1993; Gobbi and Kirby, 1999), by

improving their dispersive characteristics. Some work

has also been done to remove the original weakly

nonlinear hypothesis, i.e. that the nonlinear effects

exactly balance the dispersive ones, in order to get a

better prediction of the highly nonlinear character-

istics of the waves as they approach the breaking and

also to further take advantage of the improved

dispersive characteristics of the extended Boussinesq

models at higher frequencies, as pointed out by Wei et

al. (1995).

The main shortcoming of these models within the

surf zone is the way in which they represent the

energy dissipation due to breaking.
Different approaches have been proposed for this

process, such as the eddy viscosity model of Zelt

(1991), further developed by Kennedy et al. (2000),

or the k�e model of (Karambas and Koutitas,

1992), or the simplified roller approach of (Schäffer

et al., 1993), improved recently by Veeramony and

Svendsen (2000) and by Karambas and Tozer (2003).

In particular, noticing that one of the most significant

dissipative features of the flow within the surf zone

is the presence of a large amount of breaking

generated vorticity, Veeramony and Svendsen

(2000) derived a weakly nonlinear Boussinesq model

where the unrealistic hypothesis of irrotational flow

has been removed. Instead, in Veeramony and

Svendsen (2000), the dissipation terms due to

breaking are derived as consequence of the presence

of vorticity injected from the roller region within the

flow.

Here, starting from the above mentioned work of

Veeramony and Svendsen (2000), a fully nonlinear

Boussinesq model has been derived. Such an exten-

sion is aimed at providing a better representation of

the flow within the surf zone through a better

description of the nonlinear properties of wave motion

at breaking. Moreover a new numerical strategy of

solution is implemented in order to better represent

the breaking effects.

Comparisons with experimental literature data,

considering regular and moderately irregular waves,

will be presented and discussed to illustrate the actual

improvements of the present model.

The paper is organized as follows: at first the

derivation of the fully nonlinear continuity and

momentum equations is presented, followed by the

derivation of the analytical solution of the vorticity

transport equation up to the same order as the

governing equations. Then, the numerical proce-

dure adopted to solve the problem is described,

particularly focusing on the self-adaptive time

varying grid approach. Then comparisons of the

model results against both literature data and the

weakly nonlinear version of the model are

discussed. Finally, the problems arising from the

modelling of breaking waves through a Boussinesq

model are analyzed, such as the choice of the

breaking criterion and the estimate of the dynam-

ics of both the vorticity and, in turn, the breaking

terms.
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2. Description of the problem and mathematical

formulation

Nearshore phenomena are characterized by a high

degree of complexity, as simply sketched in Fig. 1

which, though complex, represents the physical

processes involved therein in a very schematic way.

Therefore, in order to describe the hydrodynamics of

the surf zone through an analytical approach, several

limiting assumptions have to be introduced. Here, the

hypotheses used by Veeramony and Svendsen (2000)

have been mainly maintained; thus, the Boussinesq

equations are derived for waves propagating on

relatively shallow waters, over a fixed bottom

characterized by a gentle slope.

A sketch of both the physical problem analyzed

and the main relevant variables along with the adopted

reference system is shown in Fig. 2.

We use the long wave assumption to get the

dimensionless mathematical formulation of the prob-

lem. For the horizontal coordinates x, the vertical

coordinate z and for the time t, the following relevant

scales are assumed (the hat sign indicates the dimen-

sional variable):

x ¼ k0x̂x; z ¼ ẑz

h0
; t ¼ k0

ffiffiffiffiffiffiffi
gh0

p
t̂t ð1Þ

where k0 is a reference wave number, h0 a reference

water depth, a0 a measure of the wave amplitude

and g the gravity. The surface elevation f and the
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Fig. 1. Sketch of the complex surf zone hydrodynamics
stream function w are made dimensionless as

follows

f ¼ f̂f
a0

; w ¼ ŵw

a0
ffiffiffiffiffiffiffi
gh0

p ð2Þ

The scaling of the dependent variables, e.g. the

horizontal and vertical velocities u and w, follows

from the previous scaling.

It turns out that the two dimensionless parameters,

usually adopted for shallow water waves, namely the

dispersive parameter and the nonlinear parameter,

expressed respectively as

l ¼ k0h0 and d ¼ a0

h0
ð3Þ

may be used also here to make estimates of the terms

in the governing equations. Indeed, the shallow water

assumption implies that O(l2)bO(1). If we assume

weakly nonlinear waves, it implies that O(d)bO(1).

Therefore it is consistent to neglect all terms of

O(dl2) or smaller, as it was done in Veeramony and

Svendsen (2000).

However, the assumption of weak nonlinearity

represents a source of inaccuracy for the model,

particularly close to the breaking point. Therefore in

the following no assumptions are made about the

order of magnitude of the nonlinear parameter d, and
the resulting model is fully nonlinear to terms of

O(l2). As in Veeramony and Svendsen (2000), it is

here assumed that the flow can be treated as irrota-

tional only outside the surf zone, that is, the breaking
ripples

spended
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which typically occurs on gentle sloping beaches.
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Fig. 2. Sketch of the adopted reference system and of the main variables. The boundary conditions on the vorticity x after breaking are also

represented.
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is assumed to be the unique phenomenon which

produces vorticity within the flow.

From the aforementioned variable scaling, the

vorticity x due to breaking scales as follows:

x ¼ Bu

Bz
� l2 Bw

Bx
¼ h0

d
ffiffiffiffiffiffiffi
gh0

p x̂x ð4Þ

On the basis of the previous relation it follows that

when the flow can be assumed irrotational (i.e. x =0),

the horizontal velocity is almost constant over the

depth. Indeed Eq. (4) gives Bu/Bz ~O(l2), while

within the surf zone, i.e. in presence of a rotational

motion, it is reasonable to assume x ~O(1). Thus a

strong vertical variation of u, particularly close to the

wave crest, is expected.

It is worth pointing out that while Veeramony and

Svendsen (2000) used a f�Q formulation of the

governing equations (Q being the volume flux), we

here use a f� ū formulation. The depth averaged

velocity ū is related to Q through the following

relation

ūu ¼ Q

hþ df
: ð5Þ

As shown in the following, by this choice the

equations can be written in a much simpler form.
2.1. Continuity and momentum equations

With reference to the system shown in Fig. 2, the

depth integrated continuity equation, in non-dimen-

sional form, reads

Bf
Bt

þ B

Bx
u
P

hþ dfð Þ
h i

¼ 0 ð6Þ

which is exact, since no approximations have been

introduced in order to obtain it.

The momentum equation is derived from the

horizontal Reynolds equation by integrating over the

depth and by applying the bottom and surface

kinematic boundary conditions

B

Bt̂t

Z f̂f

�ĥh

ûudẑz þ B

Bx̂x

Z f̂f

�ĥh

ûu2dẑz

¼ 1

q
p̂p � ĥh
� � Bĥh

Bx̂x

þ 1

q
B

Bx̂x

Z f̂f

�ĥh

� p̂p þ ŝsxxð Þdẑz

þ R̂RS
x � ŝsBx ð7Þ

where q is the density of the water, p̂ the pressure,ŝij
the shear stresses, and R̂x

S and ŝx
B the stress on the

surface and on the bottom respectively. In Eq. (7), the

last two terms represent the horizontal components of
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the shear stresses on the free surface and at the

bottom, respectively.

Since within the surf zone the bottom generated

turbulence is, at least, one order of magnitude smaller

than the turbulence due to breaking, it seems

reasonable to neglect the effect of the bottom

boundary layer. Thus, at the bottom, a free slip

boundary condition is applied, and it is assumed that

the bottom shear stresses are negligible.

Indeed, while the bottom shear stress has a strong

cummulative effect on waves propagating over long

distances, the local effect is minimal and inside the

surf zone the dissipation due to breaking dominates

completely.

Moreover, by considering the similarity between

surf zonewaves and hydraulic jumps, it can be assumed

that the normal stresses in the x direction, sˆxx are

negligible. Indeed Svendsen et al. (2000) showed

detailed measurements under the roller of the hydraulic

jump, demonstrating that the effects of the turbulent

stresses are only about 1% of the total momentum.

Finally, for simplicity we also neglect the wind

stress, R̂x
S.

With these simplifications Eq. (7) reduces to:

B

Bt̂t

Z f̂f

�ĥh

ûudẑz þ B

Bx̂x

Z f̂f

�ĥh

ûu2dẑz

¼ 1

q
p̂p � ĥh
� � Bĥh

Bx̂
� 1

q
B

Bx̂x

Z f̂f

�ĥh

p̂pdẑz ð8Þ

In order to eliminate the pressure from this equation,

an expression for p̂ is derived by integrating between

ẑ and f̂ the vertical momentum equation and by

neglecting the stresses on the surface

p̂p ẑzð Þ
q

¼ g f̂f � ẑz
� 	

� ŵw2 þ B

Bt̂t

Z f̂f

ẑz

ŵwdẑz

þ B

Bx̂x

Z f̂f

ẑz

ûuŵw � ŝsxz
q


 �
dẑz ð9Þ

The above expression indicates that the pressure is

due to a hydrostatic contribution, as it is assumed in

the nonlinear shallow water equations, with a non-

hydrostatic contribution due to the vertical fluid

motion, i.e. to the vertical acceleration and to the

action of the adjacent water columns, which contrib-

ute to supporting the weight of the water.
An eddy viscosity vt is used to model the turbulent

shear stress sxz. Such an eddy viscosity vt can be

scaled as a function of a turbulence length scale and a

velocity scale. Therefore, it can be written

m̂mtgCmĥh

ffiffiffiffiffiffi
gĥh

q
ð10Þ

where Cv is assumed constant, experimentally cali-

brated, and taken in the range 0.01–0.03.

This is similar to Veeramony and Svendsen (2000)

but clearly a crude formulation, since it does not take

into account the vertical structure of the turbulence. It

can also be discussed whether the horizontal variation

of the turbulence is entirely controlled by the water

depth, as Eq. (10) indicates. An alternative which may

seem physically attractive would be to link vt to the

energy dissipation as done e.g. by De Vriend and

Stive (1987). However the energy dissipation due to

breaking is not a parameter that is readily available

from the solution of the governing equations and have

to be estimated by using some model, for example

assuming the similarity between breaking waves and

hydraulic jumps and using a bore-like formulation or

solving the transport equation for the depth averaged

turbulent kinetic energy, as done by Karambas and

Tozer (2003).

The scaling for v̂t is then

m̂mt ¼ lh0
ffiffiffiffiffiffiffi
gh0

p
mt ð11Þ

and the dimensionless shear stress ŝxz and the total

pressure result respectively

ŝsxz ¼ dlqgh0mt
Bu

Bz
þ l2 Bw

Bx


 �
ð12Þ

p zð Þ ¼ f � z

d

� 	
� dl2w2 þ l2 B

Bt

Z df

z

wdz

þ dl2 B

Bx

Z df

z

uwdz

� l2 B

Bx

Z df

z

mt
Bu

Bz
dzþ O l4

� �
: ð13Þ

Here the last term, which was not included in

Veeramony and Svendsen (2000), accounts for the

shear stresses within the fluid, which cannot be

neglected inside regions with strong vorticity, i.e. in
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the surf zone. Thus, the combined dimensionless

momentum equation reads

B

Bt

Z df

�h

udzþ d
B

Bx

Z df

�h

u2dzþ hþ dfð Þfx

� l2

Z df

�h

B
2

BxBt

Z df

z

B

Bx

Z z

�h

udzdzdz

� dl2

Z df

�h

B

Bx



B

Bx

Z z

�h

udz

�2

dz

�l2

Z df

�h

B
2

Bx2

Z df

z

mt
Bu

Bz
dzdz

� dl2

Z df

�h

B
2

Bx2

Z df

z

u
B

Bx

Z z

�h

udzdzdz

¼ O l4
� �

ð14Þ

In order to evaluate the integrals in Eq. (14) and obtain

a Boussinesq formulation for the equations, a velocity

profile must be specified. The procedure proposed by

Veeramony and Svendsen (2000) allows for the

rotationality of the flow to be retained, and is

adopted also here. Starting from the expression of

the vorticity x in terms of the stream function w

l2wxx þ wzz ¼ x ð15Þ

with the following boundary conditions

w � hð Þ ¼ 0 ð16Þ

w dfð Þ ¼
Z df

�h

udz: ð17Þ

By integrating Eq. (15), it turns out that the

horizontal velocity is given by:

u ¼ ub � l2 2ubxhx þ ubhxx½ � zþ hð Þ � l2

2
ubxx zþ hð Þ2

þ
Z z

�h

xdz� l2

Z z

�h

Z z

�h

Z z

�h

xxxdzdzdzþO l4
� �
ð18Þ

where ub is the horizontal velocity at the bottom.

This previous expression can be seen as composed

of two components:

u ¼ up þ ur ð19Þ
where the first term is a contribution similar to the

velocity up in classical potential flow formulation of

the Boussinesq model,

up ¼ ub � l2 2ubxhx þ ubhxx½ � zþ hð Þ

� l2

2
ubxx zþ hð Þ2 þ O l4

� �
ð20Þ

The second term is a contribution representing the

vorticity x, which can be thus called rotational

velocity ur

ur ¼
Z z

�h

xdz� l2

Z z

�h

Z z

�h

Z z

�h

xxxdzdzdzþ O l4
� �
ð21Þ

By averaging over the water column Eq. (20), the

expression of the velocity at the bottom ub can be

derived in terms of the depth averaged velocity ūp. By

retaining terms only up to O(l2), it is possible to

eliminate the dependency on ub in Eq. (20) and after

some algebra the total velocity u may be written as a

function of both the depth averaged potential velocity

ūp and the rotational velocity ur

u ¼ uPp þ l2 huPp

� 	
xx



D1

2
� z

�

þ l2

2
uPpxx

D2

3
� z2


 �
þ ur þ O l4

� �
ð22Þ

where D1=df�h and D2=d2f2�dfh +h2.
The expression (22) for the total velocity differs

from that found by Veeramony and Svendsen (2000),

since here the nonlinear terms of O(d,d2) have been

retained.

The fully nonlinear model is then obtained by

substituting Eq. (22) into Eq. (14)

ūut þ duuP x þ fx þ l2

	




B� 1

3

�
h2ūuxxt �

1

2
hhxxūut � hhxūuxt

�

þ Bl2h2fxxx þ dl2



� 1

3
h2uuP xxx � hfxūuxt

þ 1

3
h2ūuxūuxx �

2

3
hfūuxxt �

3

2
hhxxuu

P
x �

1

2
hhxxūu

2

� hhxuu
P

xx � fhxūuxt � hxfxūut �
1

2
fhxxūut

þ Bh2 uuP x

� �
xx

�
þ d2l2



1

6
f2ūuxxt �

1

3
hfūuxūuxx
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� 1

3
hūuxx fūuð Þx þ h fūu2x

� �
x
� 1

2
f2ūuxt
� �

x

� 2

3
h fuuP xx

� �
x
� fxhxxūu

2 � fhxuu
P

xx

� 1

2
fhxxxūu

2 � 3

2
fhxxuu

P
x � fxhxuu

P
x

�

þ d3l2



� 1

3
f2uuP xxx � ffxuu

P
xx þ ffxūu

2
x

þ 1

3
f2ūuxūuxx

�
þ d DMð Þx þ l2 DPð Þxxt � l2Ds

�
þ dl2 DM1ð Þx þ dl2Dw þ dl2Duw

�
hþ dfð Þ�1

¼ O l4
� �

ð23Þ

In order to enhance the dispersion characteristics of

the model in deeper water the linear operator

L ¼ 1þ Bl2h2j2, with B =1/15 suggested by Mad-

sen and Schäffer (1998) has been applied.

The weakly nonlinear model of Veeramony and

Svendsen (2000) can be recovered from Eq. (23) by

assuming O(d)=O(l2) and by neglecting both terms

smaller than O(l2) and the term l2 Ds which was not

included in Veeramony and Svendsen (2000).

It is worth pointing out that due to the absence of

restrictions on the order of magnitude of d, the

traditional Boussinesq approximation, which postu-

lates the balance between the dispersive and nonlinear

effects, is no longer valid. This allows for a better

modelling of the flow close to the breaking point and

inside the surf zone where the waves show highly

nonlinear characteristics.

It must be also noticed that the terms (DM)x,

(DP)xxt,(DM1)x, Dw, Ds and Duw are all functions of

the rotational velocity ur, which, in turn, depends on

the vorticity x injected inside the flow by the

breaking mechanism. Thus, the aforementioned terms

are called breaking terms, as they represent the excess

of momentum flux (i.e. the dissipation of energy) due

to breaking.

In particular, Ds is the shear stress inside the fluid.

If we assume the eddy viscosity vt constant over depth

Ds can be written

Ds ¼ hþ dfð Þ mtur dfð Þ½ �xx þ dfx mtur dfð Þ½ �x
þ d mtur dfð Þfx½ �x � mt ūur hþ dfð Þ½ �xx ð24Þ
The terms

DMð Þx ¼
B

Bx

Z df

h

u2r � ūu2r
� �

dz ð25Þ

and

DM1ð Þx

¼ B

Bx
� ūupxx

Z df

�h

2hzþ z2
� �

ur � ūurð Þdzþ O hxð Þ

 �

ð26Þ

give the excess of momentum flux due to the vertical

variation of the rotational velocity along the water

column. The term

DPð Þxxt ¼
B

Bx

B

Bx

B

Bt
�

Z df

�h

Z df

z

Z z

�h

ur � ūurð Þdzdzdz

 �

ð27Þ

is the contribution to the pressure due to the vertical

motion (the minus sign was missing in Veeramony

and Svendsen, 2000). Finally,

Dw ¼
Z df

�h

B

Bx




B

Bx

Z z

�h

ur � ūurð Þdz
�

	 B

Bx

Z z

�h

2ūu þ ur � ūurð Þdz

 ��

dz ð28Þ

is the excess of momentum due to the vertical motion

and

Duw ¼
Z df

�h

B
2

Bx2

Z df

z

ur � ūurð Þ B

Bx

Z z

�h

ūudz




þ ūu þ ur � ūurð Þ B

Bx

Z z

�h

ur � ūurð Þdz
�
dzdz

ð29Þ

represents the stresses exerted on the vertical column

by the adjacent columns of fluid.

2.2. Vorticity transport equation

The mechanism of vorticity generation near the

free surface is still to be established firmly. Several

theories have been proposed which attribute the
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breaker generated vorticity to the pressure gradient or

to the density gradient close to the overturning roller

(Lin and Rockwell, 1995; Nadaoka et al., 1989;

Melville et al., 2002).

Here we assume, following Veeramony and

Svendsen (2000), that the vorticity is generated

primarily in the roller from where it spreads down-

wards by diffusion and convection due to turbulence.

By using this approach, the breaking strongly

influences the flow through the rotational velocity

ur. In order to determine such a velocity the vorticity

transport equation has to be integrated along with the

governing equations. In dimensionless form the

vorticity equation reads:

Bx
Bt

þ du
Bx
Bx

þ dw
Bx
Bz

¼ mt l2 B
2x
Bx2

þ B
2x

Bz2


 �
ð30Þ

Eq. (30) is able to model the transport of vorticity

inside the flow, but an appropriate source of vorticity

must be also included. Here the source of vorticity is

schematized through the roller approach. In particular,

it is assumed that the main source of vorticity is

located on the lower edge of the roller, such an

assumption is qualitatively confirmed by the exper-

imental results of Lin (1994). Indeed this author, by

analyzing the instantaneous structure of a stationary

breaking wave, shows that the discontinuous slope of

the free surface and the occurrence of the separation

beneath the surface represent a powerful source of

vorticity, as a mixing layer is formed behind the toe of

the roller. However, it is useful to stress that the

surface roller concept does not correspond to a

detailed representation of the flow, but only to a

useful macroscopic schematization of it.

According to the above considerations, the source

of vorticity is retained at the lower edge of the surface

roller and the boundary and initial conditions for Eq.

(30) can be written as follows

x x; z ¼ df; tð Þ ¼ xs ð31Þ

x x; z ¼ � h; tð Þ ¼ 0 ð32Þ

x x; z; t ¼ 0ð Þ ¼ 0 ð33Þ

Veeramony and Svendsen (2000) proposed an ana-

lytical solution of Eq. (30), since a numerical solution

would have required a heavy computational effort.
Moreover in very shallow waters the vertical grid size

required to get a sufficiently accurate description

should be very fine, leading to very small time steps to

obtain the numerical stability of the model. Here the

analytical approach used by Veeramony and Svendsen

(2000) is extended up to O(d), consistently with the

order of the Boussinesq equations.

In order to get the analytical solution, the physical

coordinates (x,z,t) are changed to the computational

coordinates (x,r,t), which are defined as

r ¼ hþ z

hþ dfe
ð34Þ

so that the computational domain is changed from

�hV zVfe to 0VrV1. In this way the irregular

physical domain is transformed into a regular rec-

tangular computational domain.

Neglecting terms of O(l2) the vorticity transport

equation in the new reference system becomes

Bx
Bt

� d



r

hþ dfe

Bfe
Bt

�
Bx
Br

þ du
Bx
Bx

� d2
ur

hþ dfe

	 Bfe
Bx

Bx
Br

þ d



w

hþ dfe

�
Bx
Br

¼ mt
hþ dfeð Þ2

B
2x

Br2

þ O l2; dhx
� �

ð35Þ

while the boundary and the initial conditions can be

rewritten as follows

x x; r ¼ 1; tð Þ ¼ xs x; tð Þ ð36Þ

x x; r ¼ 0; tð Þ ¼ 0 ð37Þ

x x; r; t ¼ 0ð Þ ¼ 0 ð38Þ

By applying the variable change

x ¼ X þ rxs ð39Þ

the boundary conditions become homogeneous and

the problem can be handled more easily. We then have

the boundary conditions

X x; r ¼ 1; tð Þ ¼ 0 ð40Þ

X x; r ¼ 0; tð Þ ¼ 0 ð41Þ

X x; r; t ¼ 0ð Þ ¼ 0 ð42Þ
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To solve Eq. (39), a pertubation method is used. It is

assumed that g can be expanded in terms of the small

parameter d as

X ¼ x 1ð Þ þ dx 2ð Þ þ d2x 3ð Þ þ O d3
� �

ð43Þ

By expanding also the following term in a Taylor

series

mt
hþ dfeð Þ2

¼ mt
h2

1� 2d
fe
h

þ O d2
� �
 �

ð44Þ

the vorticity transport equation finally reads

Bx 1ð Þ

Bt
þ d

Bx 2ð Þ

Bt
þ r

Bxs

Bt
� d

xsr
hþ dfe

Bfe
Bt

� d



r

hþ dfe

Bfe
Bt

� w

hþ dfe

�

	


Bx 1ð Þ

Br
þ d

Bx 2ð Þ

Br
þ xs

�

þ du
Bx 1ð Þ

Bx
þ dur

Bxs

Bx
¼ mt

h2



1� 2d

fe
h

�

	 B
2x 1ð Þ

Br2
þ d

B
2x 2ð Þ

Br2


 �
þ O d3

� �
ð45Þ

Eq. (45) must be solved up to O(d), consistentely with

the momentum equation where only terms larger than

O(d) do appear.

In the following the analytical derivation of the

O(1) and at O(d) terms will be presented.

2.2.1. O(1): basic state

The procedure to obtain the solution of the basic

state O(1) is similar to the one used by Veeramony

and Svendsen (2000), however here it is reported for

the sake of completeness. The problem at O(1) reads

Bx 1ð Þ

Bt
� j

B
2x 1ð Þ

Br2
¼ � r

Bxs

Bt
ð46Þ

with

j ¼ mt
h2

ð47Þ

Eq. (46) has to be solved along with the boundary

conditions

x 1ð Þ r ¼ 1; tð Þ ¼ 0 ð48Þ
x 1ð Þ r ¼ 0; tð Þ ¼ 0 ð49Þ

x 1ð Þ r; t ¼ 0ð Þ ¼ 0 ð50Þ

The right hand side of Eq. (46) is an odd function in

r, then it can be expanded as half-sine Fourier series

� r
Bxs

Bt
¼

Xl
n¼1

F 1ð Þ
n sin npr ð51Þ

where, for each n, by definition the coefficients may

be expressed as

F 1ð Þ
n ¼

Z 1

�1

� r
Bxs

Bt
sin npr dr

¼ � 2
Bxs

Bt

Z 1

0

rsin npr dr

¼ 2
� 1ð Þn

np
Bxs

Bt
ð52Þ

It is assumed that the solution has the form

x 1ð Þ ¼
Xl
n¼1

G 1ð Þ
n sin npr ð53Þ

where the coefficients of the series Gn
(1) are only

function of x and t. Substituting expressions (51) and

(53) in Eq. (46) gives

B

Bt


 Xl
n¼1

G 1ð Þ
n sin npr

�
� j

B
2

Br2


 Xl
n¼1

G 1ð Þ
n sin npr

�

¼
Xl
n¼1

F 1ð Þ
n sin npr ð54Þ

which becomes, after expanding the second term on

the left hand side:

Xl
n¼1

BG 1ð Þ
n

Bt
þ jn2p2G 1ð Þ

n � F 1ð Þ
n


 �
sin npr ¼ 0 ð55Þ

The last equation must be true for all the values of r,
then it has to be

BG 1ð Þ
n

Bt
þ jn2p2G 1ð Þ

n � F 1ð Þ
n ¼ 0 ð56Þ

This equation is a nonhomogeneous first order differ-

ential equation in Gn
(1), which may be solved by using
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the method of variation of parameters in order to get

the following general solution

G 1ð Þ
n ¼ Ce�jn2p2t þ e�jn2p2t

Z t

0

F 1ð Þ
n ejn2p2sds ð57Þ

where C is an integration constant which turns to be

equal to 0, by using the initial condition.

The solution of the basic state is then given by the

following coefficients

G 1ð Þ
n ¼ � 1ð Þn 2

np

Z t

0

Bxs

Bt
ejn2p2 s�tð Þds ð58Þ

This part of the solution coincides with the one

obtained in Veeramony and Svendsen (2000). How-

ever, in the present fully nonlinear model also the

O(d) solution must be taken into account.

2.2.2. O(d) perturbed state

Considering, now, the problem at O(d), this gives
rise to the following equation

Bx 2ð Þ

Bt
� j

B
2x 2ð Þ

Br2
¼ F 2ð Þ ð59Þ

with the following boundary and initial conditions

x 2ð Þ r ¼ 1; tð Þ ¼ 0 ð60Þ

x 2ð Þ r ¼ 0; tð Þ ¼ 0 ð61Þ

x 2ð Þ r; t ¼ 0ð Þ ¼ 0 ð62Þ

and where the right hand side of Eq. (59) has been

defined as

F 2ð Þ¼�2j
fe
h

B
2x 1ð Þ

Br2
þ2xs

r
h

Bfe
Bt

þ r
h

Bfe
Bt

Bx 1ð Þ

Br

�u
Bx 1ð Þ

Bx
�ur

Bxs

Bx
�w

h

Bx 1ð Þ

Br
þxs


 �
ð63Þ

after expanding the term (h+dfe)
�1 in Taylor series

about zero.

The solution of the O(1) problem, x(1), becomes

the forcing for the problem to the next order of

approximation. In analogy with the first case, also

here, it is assumed that the solution has the form

x 2ð Þ ¼
Xl
n¼1

G 2ð Þ
n sin npr ð64Þ
Since Eq. (59) is similar to Eq. (46), following the

same approach as before, the function F is expanded

as half-range sinusoidal series

F 2ð Þ ¼
Xl
n¼1

F 2ð Þ
n sin npr ð65Þ

and the coefficients of this series can be calculated as

F 2ð Þ
n ¼

Z 1

�1

F 2ð Þsin npr dr

¼ 2

Z 1

0

F 2ð Þsin npr dr ð66Þ

According to Eq. (64) the solution to Eq. (59) is then

given by the following coefficients

G 2ð Þ
n ¼

Z t

0

F 2ð Þ
n ejn2p2 s�tð Þds ð67Þ

2.2.3. Complete solution

Finally, the total expression of the vorticity results

x ¼ rxs þ
Xl
n¼1

G 1ð Þ
n þ dG 2ð Þ

n

h i
sin npr ð68Þ

Considering that the first term in Eq. (68) can also be

written as

rxs ¼
Xl
n¼1

G 0ð Þ
n sin npr ð69Þ

where Gn
(0) is determined as

G 0ð Þ
n ¼

Z 1

�1

rxssin npr dr ¼ � 2xs

� 1ð Þn

np
ð70Þ

more synthetically the solution for x can be written as

x ¼
Xl
n¼1

Gnsin npr ð71Þ

where the coefficients Gn have been defined as

Gn ¼ G 0ð Þ
n þ G 1ð Þ

n þ dG 2ð Þ
n ð72Þ

It is useful to stress that Eq. (71) differs from the

weakly nonlinear solution found by Veeramony and

Svendsen (2000), since here, for consistency with the

governing equations, the solution at O(d) has been
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also considered to get the solution of the vorticity

transport equation.

The expressions for the rotational velocity and for

the breaking terms can be derived by submitting Eq.

(71) into Eq. (21) and Eqs. (24)–(29). The details are

shown in Appendix A.

2.2.4. Similarity with the hydraulic jump

In order to specify the amount of vorticity injected

within the flow by the breaking waves, the hydraulic

similarity between the roller of a breaking wave and

the turbulent region on the front of an hydraulic jump

is assumed. Referring to the experimental investiga-

tion of three hydraulic jumps with Froude numbers

similar to those of breaking waves performed by

Svendsen et al. (2000), Veeramony and Svendsen

(2000) used a best fit of experimental data in order to

determine the roller thickness fs and the vorticity at

the lower edge of the roller xs. The expressions,

corrected from the typos appeared in Veeramony and

Svendsen (2000), are

fs
h2

ffiffiffi
n

p ¼ 0:78e�
xV
lr

xV

lr
� xV2

l2r


 �
ð73Þ

xsh2n
U1

¼ 15:75 1� xV

lr


 �
ð74Þ

where h1 and h2 represent the minimum water depth

before the jump and the undisturbed water depth

downstream with respect to the jump, respectively, n
is the ratio h2/h1 and U1 is the velocity of the flow

beneath the weir. When transferred to the case of a

moving breaking wave, the coordinate xV= � (x�xt)

is equivalent to a reference system moving at the same

wave speed (see Fig. 3).
Fig. 3. Sketch of the local reference system adopted for
Concerning the estimate of xs, at the toe of the

roller a ramping of Eq. (74), analogous to the one

adopted by Veeramony and Svendsen (2000), has

been used in the present model in order to facilitate

the numerical computations.
3. Numerical solution

The numerical scheme used to solve Eqs. (6) and

(23) is the Adams–Bashforth–Moulton. To highlight

the numerical methods used to implement the

boundary conditions, the computational schematiza-

tion of the physical domain is shown in Fig. 4. In

particular at the offshore boundary outgoing waves

are allowed to leave the domain by using the

absorbing–generating boundary condition introduced

by Van Dongeren and Svendsen (1997), while at the

onshore boundary a sponge layer has been used in

order to dissipate the wave motion at the shoreward

boundary of the domain.

It is worth pointing out that a widely adopted five

points Shapiro filter has been used both in the

Veeramony and Svendsen (2000) and in the present

version of the model, particularly within the surf

zone, in order to avoid spurious oscillations of the

solution. Indeed the added numerical viscosity due to

such a filter, though influences the overall dissipa-

tion, appears to be useful in order to obtain

appropriate results, particularly regarding the free

surface elevation.

In the present work, particular attention has been

given at implementing the boundary conditions of the

vorticity transport equation. Indeed, the key-point of

the proposed procedure is the definition of the amount
a moving breaking wave in the numerical scheme.
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Fig. 4. a) Physical problem and b) adopted conceptual model along with the treatment of the offshore and onshore boundary conditions.
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of vorticity at the lower edge of the roller. Fig. 5a

shows that according to Eq. (74) at the surface there is

a strong discontinuity of the vorticity close to the toe

of the roller, as the vorticity suddenly increases as the

toe of the breaking front passes a point where there is

the breaking onset, there the maximum value of

vorticity occurs very shortly. Such a discontinuity is

obviously difficult to be treated accurately within a

numerical model, and it has a tendency to generate

strong instabilities. Moreover it turns out that the total

energy dissipation in the wave depends strongly on

the accuracy at this point. Therefore in order to

describe the impulsive behavior of breaking waves a

very high accuracy should be guaranteed right at the

roller toe.

However, the roller region represent just a spatially

limited portion of the overall computational domain.

Outside this domain a rather coarse grid actually
suffices. Thus, from a numerical point of view, the use

of an uniformly spaced computational grid to solve

the governing equations results in a quite poor

representation of the roller characteristics, since only

few grid points fall within such a region.

Multi-grid methods have been developed to

describe phenomena where a great accuracy is needed

only locally, such as in a very irregular domain (Wu et

al., 1997; Spitaleri and Corinaldesi, 1997; Kania,

1999; Papadakis and Bergeles, 1999; Park and

Borthwick, 2001), while time-varying grids have been

used in some cases to model phenomena quickly

varying in time, but only in some part of the domain,

such as the evolution of the front of the free surface

profile due to a dam break (Lie et al., 1998; Jeong and

Yang, 1998; Jeong and Yang, 1999; Jha et al., 2001).

Unfortunately, these methods have often been coupled

to Volume of Fluid (VOF) methods.
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Moreover, the grid needed here must also be time-

varying, as the grid points should move with the

waves. Therefore, also the celerity of the numerical

cells should be estimated.

In this work an accurate description of the roller

has been obtained by a new algorithm which imple-

ments a self-adaptive-time-varying grid. Such a grid is

defined so that it is finer at the toe and is characterized

by grid points which vary according to the actual

dimension of the surface roller. Such a new numerical

strategy provides a better resolution in the region

where the vorticity is generated through the nested
subgrid, without heavily affecting the computational

efficiency of the model.

The formulation used to define the proposed grid,

represented in Fig. 5b, is the following

Dxg ¼
xt � xc

ng
; Dxsg ¼

Dxg

ng
ð75Þ

whereDxg is the interval of the first gross subdivisions

inside the roller region, xt and xc are the positions of the

toe and of the crest respectively, ng is the fundamental

number of subdivisions andDxsg is the interval of the

finer subdivisions, located close to the toe.
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The position xg
i of a point inside the subgrid can

then be defined as

xig ¼ xi�1
g þ

Dxg; xc V xi�1
g b xt � Dxg

Dxsg; xt � Dxg V xi�1
g bxt

(
ð76Þ

It should be noticed that the number of representative

points inside the roller is thus fixed, being equal to

2ng, and independent from the length of the roller.

Instead, the size of the subdivisions changes accord-

ing to the roller dimensions, keeping always the same

degree of accuracy inside the roller. Moreover, the

subgrid moves following the roller evolution, while

outside of the roller region the uniform grid spacing is

kept.

Fig. 5c shows the difference in evaluating xs using

the uniform fixed grid and using the subgrid, for

ng=8, demonstrating how the subgrid approach

catches better the impulsive increase of vorticity at

the toe of the roller.

The analytical perturbation solution of the vorticity

transport equation is then calculated onto the proposed

self-adaptive time varying grid. In particular, it has

been possible to overcome the aforementioned diffi-

culties about the calculations of the time and space

derivatives. The space derivatives were calculated

onto the fixed uniform grid (i.e. where the variable to

be derived are known from the solution of the

Boussinesq equations) and then transferred by linear

interpolation onto the actual moving irregular grid.

Since the grid is moving, the procedure to calculate

the time derivatives is more complex. Let (x,t) be the

real domain and (x*,t*) be the image domain

x Y x4 ð77Þ

t Y t4 ð78Þ

Being f a generic variable, the time derivatives should

be evaluated, by using the chain rule, as

Bf

Bt4
j
x4
¼ Bf

Bx
j
t

Bx

Bt4
j
x4
þ Bf

Bt
j
x
Z

Bf

Bt
j
x
¼ Bf

Bt4
j
x4
� Bf

Bx
j
t

Bx

Bt4
j
x4

ð79Þ

where it is assumed, as a first approximation, that

Bx

Bt4
j
x4
ccc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g hþ fð Þ

p
ð80Þ
However, this derivation is only valid if there is a

perfect correspondence of the number of grid points

between the real domain and the image domain,

meaning that the grid number has to be the same in

both cases. Unfortunately, this is not the case here, in

fact the subgrid introduced in the previous section, has

more points than the uniform grid, in order to increase

the accuracy within the roller region. Moreover, since

the roller moves and new rollers are generated inside

the domain as the wave propagates, the number of

points of the moving grid is not only greater than in

the fixed grid, but it also varies in time.

Due to the aforementioned limit, a different

procedure has been adopted in this work. In order to

calculate the time derivatives, the old values of the

variables have been stored and transferred, by linear

interpolation, from the moving grid at the previous

time step, n, onto the moving grid at the next time

step, n +1. Then, the time derivatives are evaluated at

the same point onto the current moving grid.

Comparisons of the time derivatives evaluated on

the uniform fixed grid and on the moving self-adaptive

grid showed that, due to the re-definition of the toe

position and to the higher resolution obtained close to

it, the method used here allows for a better prediction of

the impulsive characteristics of the wave breaking flow.
4. Comparisons with literature data

In order to test the model performances, compar-

isons with experimental literature data have been

performed both for regular waves and partly irregular

waves (in the form of groupy waves). It is worth

pointing out that while the comparison with regular

wave data was aimed at estimating the improvement

of this new model with respect to the weakly

nonlinear version of Veeramony and Svendsen

(2000), the comparison with wave groups was aimed

at validating the predictive capabilities of the model

not only with respect to the surface profile and wave

heights, but also at verifying the effects of time and

space varying wave breaking.

4.1. Regular waves

The comparison were conducted with the labora-

tory measurements by Hansen and Svendsen (1979),
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for three different wave conditions (see Fig. 6). The

objectives were to get an overall picture of the effects

of the improvements due to the fully nonlinear

characteristics of the model through its prediction of

wave height distribution along the domain, which, in

turn, represents an estimate of predictive goodness of

the breaking generated dissipation.

At the beginning of the shoaling region the

Veeramony and Svendsen (2000) model and the fully

nonlinear model provide basically the same results,

which are in very good agreement with the exper-

imental data.

However, further onshore, just before the breaking

point, the weakly nonlinear model performance

compares poorly with the data: the weakly nonlinear

Veeramony and Svendsen (2000) model overestimates

the increase in wave height. These discrepancies are

essentially eliminated in the fully nonlinear model.
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Fig. 6. Wave height distribution of regular waves on a plane beach. Solid li

(Veeramony and Svendsen, 2000); diamonds: data from Hansen and Svend

T =2.5s, H0=0.040m; (c) Test R: T=3.33s, H0=0.043m.
The same result was found by Wei et al. (1995), who

compared their fully nonlinear model with the weakly

nonlinear one of Wei and Kirby (1995) and by

Madsen et al. (2002).

Such a poor representation, right before the break-

ing point, strongly affects the characteristics of waves

within the surf zone. It is also interesting to recall that

in comparison traditional sinusoidal wave theory

strongly underpredicts the wave height increase

toward breaking.

Inside the surf zone, the fully nonlinear model

agrees quite well with the experimental data, both in the

transition region, characterized by higher gradient of

wave height and in the inner surf zone. At the breaking

point, however, there is a slight underprediction of the

wave height value. Moreover, it may be worth noticing

that the last test (Test Q) actually corresponds to

plunging breaker conditions. At least in principle, no
8 10 12

8 10 12

8 10 12
]

ne: fully nonlinear model; dash-dotted line: weakly nonlinear model

sen (1979), h0=0.36m, (a) Test O: T=2.0s, H0=0.038m; (b) Test Q:
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Boussinesq model should be able to handle such a case,

since equations that describe the surface position by

just a vertical elevation at each horizontal point cannot

describe the overturning or the double connected free

surface flows, that occur during the first stages of a

plunging breaker. The results shown in Fig. 6c show the

difficulty the model has in representing such condi-

tions. In particular within the transition region, the

dissipation is not strong enough, while within the inner

surf zone the agreement tends to be more acceptable

and the overall model prediction, even if not very

accurate, is quite reasonable in this case as well.
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Fig. 7. Time series of the surface profile of a regular wave at different loca
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Within the shoaling region, Hansen and Svendsen

(1979) provided the instantaneous time series for the

surface profile at four locations (see Fig. 7), the last

one being as close as possible to the breaking point

(Fig. 7d). We see that the model agreement with

experimental data is quite good for all the gage

locations during shoaling, particularly for the fully

nonlinear model, while the weakly nonlinear version

shows again an overshoal, which leads to an early

breaking (Fig. 7d). Again at the breaking point the

wave height is slightly underpredicted by the fully

nonlinear model. This behavior becomes more evident
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tions up to breaking. Solid line: fully nonlinear model; dash-dot line:

(1979). T =2.5s, H0=0.040m at (a) h/h0=1.00; (b) h/h0=0.38; (c)
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with longer waves. Another apparent feature, shown

in Fig. 7d, is that the experimental data show a

secondary oscillation of the wave profile, which is

recovered also by the Boussinesq model.

This analysis also confirms the good dispersive and

nonlinear properties of the model. It is interesting to

note that the choice of the depth integrated velocity ū

as dependent variable gives good results, at least in

the nearshore region, even though more complex

approaches, such as the choice of a velocity at some

particular reference level (see for example Madsen

and Schäffer, 1998 and more recently Kennedy et al.,

2001), have been proposed in order to improve the

dispersive and nonlinear properties of Boussinesq-

type of equations.

With respect to the surface profile’s development

within the surf zone, the experiments of Ting and Kirby

(1996) have been considered for comparisons. The

measurements were obtained on a plane beach with a

slope very similar to that of Hansen and Svendsen

(1979). Fig. 8 shows the comparisons of the surface

profile evolution at four locations within the surf
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Fig. 8. Evolution of the surface profile of a regular breaking wave. Solid

(V&2000); dots data: from Tink and Kirby (1996). T=2.0s, H0=0.12

hb =10.528; (a) (x�xb)/hb =13.618.
zone. Ting and Kirby (1996) noted that the wave

shape remains unchanged within the inner surf zone,

which starts at (x�xb)/hb=7.462, where xb and hb
are the location and the water depth at the breaking

point respectively. The present fully nonlinear numer-

ical model seems to reproduce the constant shape

behavior quite well. However it can be observed both

a slight overestimate of the crest elevation and the

presence of a second harmonic of the surface profile,

which is characteristic of Boussinesq-type models

and which prevents the model itself from reproduc-

ing the well known saw-tooth shape. On the other

hand the strong mismatch of the weakly nonlinear

model results with the experimental data here is due

to the poor representation of the shoaling properties,

which in turn leads to an early breaking.

The model performance has also been compared to

the data by Cox et al. (1995) which provides not only

the surface profiles but also the velocity profiles for

both nonbreaking and breaking waves. Cox et al.

(1995) carried out their experiments using the same

set-up of Ting and Kirby (1996). However, while the
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latter experiments had a smooth bottom, in the case of

Cox et al. (1995) the bottom was made rough by gluing

sand to it. It should be pointed out that in the present

version neither Veeramony and Svendsen (2000) nor

the present model account for dissipations due to the

bottom boundary layer. Moreover the data of Cox et al.

(1995) are phase-averaged, therefore the profiles

appear smoother than those of Hansen and Svendsen

(1979).

In Fig. 9 both the results from Veeramony and

Svendsen (2000) and the present fully nonlinear

model are reported along with the experimental data.

Within the shoaling region (see Fig. 9Aa and Ba) the

weakly nonlinear model and the present model

provide basically the same results, as the velocity

profile is almost constant. When the wave is about to

break (see Fig. 9Ab and Bb), the data show a rate of

shoaling which is in better agreement with Veeramony

and Svendsen (2000)’s results. The velocity profiles

predicted by the present fully nonlinear model,

however, agree better with the data, while Veeramony

and Svendsen (2000) underestimates the velocity

under the crest.

Finally, within the surf zone (see Fig. 9Ac and Bc),

it can be noticed that the agreement with the velocity

data is again better for the present model. For the

surface profile, it is found that the crest elevation is

slightly overestimated. This is probably due to the

nonlinear properties of the model. Indeed, the wave

shape calculated with the present fully nonlinear

model is closer to the measured one, particularly at

the wave front. Moreover concerning the velocity

profile, the overestimation of the velocity has essen-

tially been eliminated.

In order to test the dispersive capabilities of the

model, the wave celerity prediction has been tested in

Fig. 10 against the experimental data of Hansen and

Svendsen (1979).

The wave speed c is not an output of the numerical

model, but can be estimated from the knowledge of

the surface elevation. Indeed, generally speaking the

wave speed c is expressed with reference to a well

defined point of the surface profile. Here, after

subtracting the mean water level from the time series
Fig. 9. Comparisons on velocity profiles at different locations as measure

Veeramony and Svendsen (2000); (B) fully nonlinear model. H =0.115m,

breaking point); (c) h/h0=0.27 (inner surf zone).
of the surface elevation, the zero-up crossing point of

the surface profile has been chosen as representative

one. Therefore c has been evaluated by moving

averaging the celerity cinst of each individual zero-

up crossing point, which is expressed as

cinst ¼
Dx

Dtzero-up
ð81Þ

where Dx is the distance between two sections of the

numerical grid and Dtzero-up is the time for the zero-up

crossing point to go from the previous to the next

section.

The numerical results match the data for the

spilling breaker case (see panel (a) and (b)). It is

noticed that for the case of a plunging breaker (Fig.

10c) the data show a quite big scatter at sections

further offshore, probably due to the difficulty, also

indicated by Hansen and Svendsen (1979), in detect-

ing the reference point when small irregularities of the

surface profiles are present. The present model seems

to have the same problem for such a case.

Finally in Fig. 11 a comparison with the undertow

profile measurements provided by Cox and Kobaya-

shi (1997) is shown. It is pointed out that only a model

accounting for the strong depth variation of the

instantaneous velocity profile due to the rotational

part of the velocity such as the one presented here is

able to describe the vertical variation of the undertow

current generated by the breaking waves. Irrotational

Boussinesq models predict a depth uniform undertow

profile, as is also demonstrated by the undertow

profiles outside the breaking point. The agreement

with data is quite good, except at the third section

(Fig. 11c), where the wave has just started to break,

and the simulated waves will start breaking a bit later.

It may be worth reminding here that both models did

not consider the effects of the bottom boundary layer,

thus a finite velocity value is obtained at the bottom.

In particular it can be noticed that the weakly

nonlinear model of Veeramony and Svendsen (2000)

overestimates both the undertow values at the bottom

and the slope of the undertow profile, while the fully

nonlinear model proposed here is able to better

reproduce the real dynamics of such a phenomenon.
d by Cox et al. (1995) (dots) with (A) weakly nonlinear model of

T =2.2s, (a) h/h0=0.70 (shoaling zone); (b) h/h0=0.53 (close to the
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Such a characteristic, in particular, is extremely

important for the prediction of the net sediment

transport in nearshore regions.

4.2. Wave groups

Comparisons of the proposed model with the expe-

rimental data of Svendsen and Veeramony (2001) are

also presented. Particularly the time series of the free

surface and the spatial distribution of the wave heights,

both outside and inside the surf zone, are analyzed.

It may be worth noticing that instead of adding

together two sinusoidal waves with slightly different

frequencies, the wave groups in Svendsen and

Veeramony (2001) were generated at the wavemaker

by patching together five cnoidal waves with the same

wave period but different wave heights.

A preliminary analysis of the raw experimental

data was carried out in order to specify the input
wave group for the model. The specific aim of the

present work is to analyze the short wave motion.

However, the irregular characteristics of the waves,

cause also generation of a long-wave motion in the

laboratory tank as well as inside our computational

domain. The main difference between the laboratory

and the numerical wave tank was that the first one

had a moving shoreline, whereas in the latter a

sponge layer along with a wall boundary condition at

the end of the tank were used. Preliminary analysis

have shown that the simulation of the correct long

wave effect would require a different shoreline

boundary condition, so such a phenomenon is not

covered in the present paper. Therefore, a high pass

filter has been used to cut off frequencies much lower

than the peak frequency fp. This also implies that we

are not in these computations including any possible

influence such low frequency oscillations might have

on the breaking characteristics.
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As waves propagating over the slope have

different wave heights, the shoaling process will

increase the wave heights differently. At the same

time an energy exchange between different frequen-

cies takes place. Therefore each individual wave of

the group reaches the breaking condition at a

different location. Therefore how and where the

single wave starts to break is difficult to predict and

at the same time is extremely important for the

pattern of the free surface variation inside the breaking

zone.
Svendsen and Veeramony (2001) measured the

time variation of the breaking point location,

providing then the opportunity to verify the behavior

of the model with respect to such an important

mechanism. In Fig. 12, the results obtained for two

different case studies, characterized by different

values of the wave groupiness (G =F20 and

G =F50, respectively) are compared with the exper-

imental data. The results from the model are

averaged over about 10 group periods. As the wave

groupiness increases, the breaking zone, i.e. the
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region where the waves start breaking, becomes

larger. The model is able to catch properly this

spatial and time variation of the moving breaking

point, even though it underpredicts the width of the

breaking zone in the case with 50% groupiness.

Fig. 13 shows the comparisons with the measured

surface elevation time series. The first two panels

correspond to sections in the shoaling zone, while the

last three are inside the surf zone. The agreement of

the calculated free surface is fairly good, in both

regions. In particular it can be noticed that both in the

experimental measurements and in the numerical data

the groupiness of the waves is conserved after the

breaking point.

It should also be noticed that at some stage there is a

phase shift of the smallest waves within the group with

respect to the data. As an example, see Fig. 13c where

the four waves after the highest wave are all out of

phase with respect to data, and Fig. 13d, where the first

two of these waves are again in phase with the

measured ones. Such a behavior could be due to
the different long wave motion within the physical

and the numerical tank.

In order to illustrate such a discrepancy, an

analysis of the time variation of the mean water

level has been carried out, by averaging the surface

elevation within each wave group according to the

following expression

MWLg ¼
1

5Tg

Z tiþ5Tg

ti

g dt for ti ¼ 0; 5Tg; 10Tg; N

ð82Þ

where Tg is the period of each wave within the

group. The time variation of the mean water level

MWLg calculated by the model is plotted in Fig. 14

against those obtained with an analogous analysis of

the raw experimental data. The comparison between

the computed and the measured MWLg shows a

fairly good agreement in the deeper part of the

domain, up to h/h0=0.287, whereas the mean water

level is overestimated in shallower waters. Moreover
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it should be noticed that in the simulations long-

period oscillations appear, whereas the experimental

data do not show any of such strong variations.

Those long oscillations could influence the perio-
dicity of the calculated surface profile and thus they

could be responsible for the aforementioned phase

differences between the computed and the measured

surface profile.
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Moreover, Svendsen and Veeramony (2001)

noticed in their data a change of the position of the

highest waves of the group, relative to the others.

They noticed also that both before breaking and close

to the shoreline some of the individual waves of the

group increase their period (and thus their length) at
the expense of other waves of the same group, due to

the fact that the highest waves travel faster than the

smallest ones. These variations occurs within the

wave group, since obviously the group period cannot

change. This process is more evident when the

groupiness is higher. As Fig. 15 shows the model
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recovers pretty well the aforementioned features, such

as the changes of wave height distribution inside the

group and the period and length variation of the

individual waves.
The spectral characteristics of the computed sur-

face profile have been compared with those of the

measured one. In Fig. 16 the power spectra are

reported at different sections along the slope, starting
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from the toe of the shore (see Fig. 16a). It can be

noticed that both in the measurements and in the

numerical results at the beginning of the slope the

main energy content is concentrated at the peak

frequency and at its harmonics. On the other hand,

the model results, as well as the measurements, also

show that energy of the long waves is at the

groupiness period fp/5. As the waves move shoreward

the power spectrum of the experimental data show

additional peaks at multiples of the group period,

which are due to nonlinear interactions. While the

trend of the computed power spectrum agrees fairly

well with the data, the model transfer of energy at the

neighboring frequency appears sometimes weaker

with respect to the data.

Since the wave groups at the offshore boundary

were generated as in the experiments, i.e. patching

together five different cnoidal waves with different

wave heights having the same wave period, here for

each component of the wave group the spatial

distribution of wave height along the x-axis is shown

in Fig. 17 and compared with the experimental data.
The wave heights have been recovered from the time

series of the surface profiles by analyzing the history

of the waves, that is by following the waves as they

move forward, as schematically shown by Fig. 15,

where the propagation of Wave 3 is followed both in

time and space.

Fig. 17 shows the comparisons with data distin-

guishing between Wave 1, Wave 2, Wave 3, Wave 4

and Wave 5, respectively. The agreement is very good

both in the shoaling region and in the inner surf zone.

The very satisfactory wave height prediction within

such a large surf zone is worth to notice, because it

confirms the good dissipation properties of the model,

which is entirely due to the effects of the roller. In the

transition region, particularly for Wave 1 and Wave 2,

which are also the smallest waves of the group (see

Fig. 17a and b), the experimental data show a double

trend, one with a positive curvature of the distribution,

i.e. with a trend more similar to that of the other

components and similar to the model results, the other

with a negative curvature which the model is not able

to reproduce. The first type of behavior is physically
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associated with a well defined position of the breaking

point and to smoother changes of the wave character-

istics at the first instant of breaking, while the other

type could be due to an unstable equilibrium of wave

configuration, such as the breaking can occur sooner
or later on the slope. When this latter condition

occurs, i. e. when after some instability the wave starts

breaking more onshore, the energy dissipation gra-

dient has to be larger, as the total energy to be

dissipated is always the same, no matter where the
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breaking point is located. Indeed the wave height

experimental data in Fig. 17a and b show an higher

gradient for the second trend right after breaking.

Then at some point within the inner surf zone the two

conditions get to the same value of wave height (see

Fig. 17a) and from there on show the same trend

again.
5. Model characteristics at breaking

As the model aims at improving the description of

waves propagating within the surf zone, some peculiar

features of the model related to the breaking have

been analyzed.

5.1. Breaking criterion

The main limitation of the Boussinesq models is

probably due to their inability to intrinsically predict

where and when the breaking starts. Indeed an

external, empirically calibrated criterion is necessary

in order to trigger the breaking. Here the one proposed

by Schäffer et al. (1993), based on a critical value of

the wave steepness, has been adopted, since it allowed

for easily determining the roller location.

In particular, such a criterion set the initiation of

breaking when the slope of the waves reaches the

critical value ab, which in the present model has been

assumed equal to 30, while the breaking is stopped if

the wave slope is less than a0, here equal to 10. It

should be pointed out that the first value, which is

higher than the range suggested by Schäffer et al.

(1993), allows for simulating better the position of the

breaking point.

In order to show an interesting extra feature of the

present model, the adopted criterion has been tested

against the Stokes criterion, based on the surface

velocity, which in contrast to many other criteria does

not need any calibration procedure.

Indeed, for a breaking wave: the surface particles,

located downstream with respect to the crest (point 3

in Fig. 18a), are accelerated downward and move

faster than the wave, then a turbulent shear is

generated to sustain this motion; the surface particles

upstream (point 1 in Fig. 18a) move with a velocity

smaller than the wave speed c, since there is no force

able to accelerate them upward, while at the crest
(point 2 in Fig. 18a) the surface velocity is about equal

to c. Thus, in other words, the continuous steepening

of the front, due to the vertical acceleration, is limited

by the generation of shear stresses, which reach their

maximum value close to the lower edge of the roller.

Therefore a very delicate test for the model prediction

capabilities is the evaluation of us compared to c. As a

confirmation of the quite good breaking prediction,

Fig. 18b shows the ratio us/c for a breaking wave (as a

reference the dimensionless surface profile f/h has

also been shown). It may be noticed that the ratio us/c

is always less than one on the back of the wave and

that the maximum of velocity occurs close to the crest

on the wave front.

It is worth pointing out that an important feature of

the criterion based on the surface velocity and the

wave speed is that there are no empirical parameters

to be calibrated. Thus, from a physical point of view,

it is remarkable that the model results agree, at least

qualitatively, in a fairly good manner with such a

criterion, even though the philosophy of the breaking

criterion implemented into the model is quite different

from that of the Stokes breaking criterion.

5.2. Vorticity dynamics

As already stressed, the main novelty of the

model of Veeramony and Svendsen (2000),

improved in the one presented here, is that the

distribution of vorticity due to wave breaking is

included as an essential part of the flow inside the

surf zone. As a matter of fact, the presence of

vorticity inside the flow allows us to derive the

expressions for the breaking terms, which represents

the excess of momentum flux relative to an irrota-

tional Boussinesq model. This is also the contribu-

tion to the momentum flux that causes the energy

dissipation due to the breaking process.

Fig. 19 shows the time variation of the vorticity

during the breaking processes at three sections, the

first one being very close to the breaking point, where

breaking starts, the second one in the transition region

and the third one within the inner surf zone. The

vorticity, generated at the lower edge of the roller

region, is both spread downwards by diffusion

mechanisms and is left behind as the wave propagates

onwards. As a dual to the aforementioned mechanism,

Fig. 20 shows the evolutions of the corresponding
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breaking terms. It appears that the contribution to the

pressure (DP)xxt due to the action of the roller plays

the key role during the first stages of breaking but it

decays as the wave moves onshore, while the excess

of momentum flux due to the vertical distribution of
the vorticity, (DM)x, tends to eventually be the main

responsible for dissipating wave energy as the

propagation continues. Also contributions like the

action exerted by the adjacent water columns, Duw,

cannot be neglected.
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Considering the hydraulic similarity between

breaking waves and hydraulic jumps, it can be

noticed that the excess of momentum flux in

breaking waves acts similarly to that generated in

hydraulic jumps (Svendsen et al., 2000). Indeed, in

both cases, it is necessary to satisfy the momentum

balance and also to prevent the steepening of the

turbulent front. Besides, considering the case of a

hydraulic jump, the only significative breaking term

is (DM)x, since the term (DP)xxt vanishes for the

steady-current case and all the other terms are quite

small. Considering the analysis on weak turbulent

hydraulic jumps carried out by Svendsen et al.

(2000), other similarities between the two types of

flow can be noticed. Indeed, in both cases the

maximum of the excess of momentum flux appears

within the roller region, close to the toe and it does

not die out, but it remains quite large much further
downstream of the end of the actual roller (see Fig.

20 here and Fig. 6 in Svendsen et al., 2000).
6. Conclusions

A fully nonlinear Boussinesq model for breaking

waves has been derived and implemented by assum-

ing that the motion of the breaking waves is rotational.

The vorticity generated by the breaking has been

determined by solution of the vorticity equation in

addition to the Boussinesq equations for the full

motion. Such a model can be seen as an extension of

the weakly nonlinear one developed by Veeramony

and Svendsen (2000).

In order to improve the modeling of the rapid

variations in the motion in the neighborhood of the

turbulent front of the breaking wave, a self-adaptive,
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time-varying grid has been implemented in the roller

region of the waves. This new algorithm allows to

make the computational grid points move with the

roller and moreover to refine the grid at the toe of the

roller, where the most rapid variations occur in the

relevant variables.

The validation of the model was organised in two

stages. Initially, for the case of regular breaking

waves, the results of the fully nonlinear model

proposed here were compared both with the numerical

results of the weakly nonlinear model of Veeramony

and Svendsen (2000) and with literature experimental

data. Then, the fully nonlinear version was tested

against irregular waves (in the form of wave groups

published by Svendsen and Veeramony, 2001). The

latter data set included information about time and

space varying breaking points similar to what occurs

in random waves.
From the aforementioned analysis it turned out

that:

! In the shoaling zone, before breaking, the proposed
fully nonlinear model eliminates the overshoaling

due to the inaccuracy of the weakly nonlinear

model of Veeramony and Svendsen (2000), which

thus strongly affects the results within the surf

zone.

! The good prediction of the wave height variation of
the present model is very accurate both within the

shoaling and the surf zone, showing that the

breaking terms and the energy dissipation have

been modeled appropriately. This was found true

also for plunging breaker, where the numerical

results were reasonable, even though, in principle,

this kind of breakers cannot be handled by such a

model.
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! The comparisons with the very detailed data from

Hansen and Svendsen (1979) showed that the

model is able to predict quite accurately the flow

conditions, both in the shoaling region and inside

the surf zone, supporting also the choice of the

depth averaged velocity as reference velocity for

the Boussinesq model.

! The comparisons with the velocity field data of

Cox et al. (1995) showed that the present model

allows to correctly estimate the increase of velocity

under the crest of a breaking wave, as opposite to

the weakly nonlinear model, which overestimated

it. Following the assumption of the roller effects,

also comparison with undertow profiles were

possible, showing that also in this case the present

model provides quite better predictions than

Veeramony and Svendsen (2000)’s model.

! The quite good comparisons with the measure-

ments of wave height and surface profile in the

case of groupy waves also demonstrated that the

model is able to recover the moving breaking line,

which is a characteristic of irregular waves, and the

effects of the breaking process on the groupiness

of the waves, such as the wave phase shift and the

transfer of wave energy at multiples of the group

frequency.

Finally, by analyzing some features of waves at

breaking, an ex-post validation of the breaking

criterion was performed, thus supporting at least

qualitatively the realistic behavior of the model also

from this critical point of view.
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Appendix A. Calculation of breaking terms

The expression for the breaking terms can be

derived from the value of the rotational velocity ur,

computed from the analytical solution of the vorticity

transport equation, expressed as

x ¼

Xl
n¼1

Gnsin npr z b fe

xs

f � z

f � fe


 �
fe b z b f

8>><
>>: ð83Þ

The contribution from the roller region to the vorticity

profile has been included by approximating the

vorticity through a linear polynomial, which has the

value of xs at the lower edge of the roller and zero at

the surface. Therefore the expression of the rotational

velocity reads

ur ¼

Z z

�h

x dz z b fe

urb þ
Z z

fe

x dz fe b z b f

8>><
>>: ð84Þ

with urb being the rotational velocity at the lower edge

of the roller.

The expressions used for computing the breaking

terms are reported in Eqs. (85) and (86), and are

derived under the assumptions that for the O(l2)

terms, namely DPxxt , DM1, Dw and Duw, the

contribution coming from the roller region is assumed

to be small.

DM ¼ hþ feð Þ3


 Xl

n¼1

Gn

np

�2

þ 1

2

Xl
n¼1

G2
n

n2p2

�

þ u2rb f � feð Þ þ 2

3
urbxs f � feð Þ2 þ 2

15
x2

s f � feð Þ3

�
hþ feð Þ2

Pl
n¼1

Gn

np þ urb f � feð Þ þ 1
3
xs f � feð Þ

h i
hþ f

ð85Þ

DPð Þxxt ¼
B
2

Bx2



� hþ feð Þ4

Xl
n¼1

BGn

Bt

� 1ð Þn

n3p3

� 4 hþ feð Þ3Bfe
Bt

Xl
n¼1

Gn � 1ð Þn

n3p3

�
ð86Þ
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DM1 ¼ 2ūupxx hþ feð Þ4
Xl
n¼1

Gn

n3p3
� 1ð Þn ð87Þ

Dw ¼ B

Bx
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