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NOTATION 

X, e•st longitude. 
½, l•titude. 
• = f• see • d•, Mercator l•titude. 

ß 

z, height (0 •t surface, h •t 
bottom). 

t•, latitudinal wave number (quite 
generally). 

a/h 'y = 2 •-r _ • •/•-•, r = 1, 2, 
N/e 

ß .. dimensionless vertical wave num- 

u, v, w, eastward, northward, up- ber. 
ward velocity components. •(z), dimensional (local) vertical 

q, velocity amplitude. wave number (equation 12). 
p (xyzt), density. k•, i = 1, 2, 3, local Cartesian 
•(z), po, density averages. wave number components eastward, 
p, perturbation pressure + po. northward, upward. 
b = g(po -- p) + po, buoyancy. •s(a, s, •), spheroidal turning latitude 
N(z) = [- (g/po) (dp/dz)]l/2, buoy- (equation 28). 

ancy (Vais/il/i) frequency. •o, ao = 2 sin •o, reference latitude 
•, mean buoyancy frequency, 25 and frequency. 

-- 

cycles per day (cpd); n = N(z) + N. •t, at = 2 sin •t, turning latitude 
a, 9, radius and angular velocity and frequency. 

of earth. L = (•* sin 2 •)-•/•, Airy scale. 
•, s, temporal, zonal frequencies •, Airy argument (equation 43). 

[exp i(sX- •t)]. F(•), C(•), Q(•), power, co-•nd 
a = •/9 dimensionless frequency, quadra'tUre spectra. 

in cycles per day (cpd). R(a); b(a), coherence and phase 
a = s sec •, zonal frequency, in (equation 53). 

cycles per e•rth circumference. 

• On sabbatical leave from the Institute of Geophysics and Planetary Physics, University 
of California, San Diego, La Jolla, California. 
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Abstract. It is now well established by observation that a peak in the spectrum 
of horizontal motion should be anticipated everywhere in the ocean near the local 
inertia frequency, 2f• sine (latitude). The theory of wave motion in a weakly stratified, 
rotating ocean of constant depth explains this observation either by the existence of a 
frequency condensation point in wave-number space or, alternatively, by the vanishing 
of the meridional group velocity. This explanation is independent of a specific gen- 
erating mechanism, such as tidal forcing. The details of the wave structure and dis- 
persion relation are readily obtained when, as seems both likely and desirable, it is 
permissible to ignore the discrete normal-mode-producing effects of distant lateral 
boundaries. 

This theory predicts a spectral peak slightly above the inertia frequency, and this 
displacement depends on the zonal and vertical wave numbers. The peak frequency 
in the North Atlantic measurements by Fofonoff and Webster implies vertical modes of 
0(10) and a zonal wave number of 0 (several hundred cycles per earth circumference). 
When these numbers are applied to a simple coherence model, assuming phase inde- 
pendence between different wave numbers, one can account for the observed lack of 
coherence between stations separated in depth or longitude. This theory also defines a 
latitudinal scale; for vertical wave number 10 this is, typically, of 0(25 km), which is 
in qualitative agreement with Hendershott's observations in the eastern North Pacific. 

The present theoretical model is appropriate for random distributed sources. The 
observations, however, indicate a higher degree of intermittency than is implied by 
this model. We conclude that both random distributed sources and intermittent discrete 

sources must be taken into account for a satisfactory description of the phenomena. 

INTRODUCTION 

The existence of horizontal 'inertial' currents rotating (clockwise in northern 
hemisphere) at a rate of 2 sine (latitude) revolutions per day is one of the few 
features about which there is any kind of agreement among oceanographers. 
Table i gives a summaw of some of these observations; most of these obser- 
vations are close to 30 ø latitude where there is an overlap between (diurnal) tidal 
and inertial frequency. Webster [1968b] gives a more complete summary. 

Typical velocities are a few centimeters per second. The oscillations are 
intermittent, but, when they do occur, the inertial frequency is quite prominent. 
(Stating it another way, the inertial motion is associated with a prominent spec- 

TABLE 1. Serial Measurements of Inertial Currents 

Depth, Duration, 
Location m days Instrument 

Ekman and Helland- 

Hansen [1931] 
Gustarson and Kullenberg 
[1933] 
Knauss [1962] 

Reid [1962] 
Hendershott [1964] 

Day and Webster [1965] 
Webster [1968a] 

Atlantic, 30ø13'N 0-1000 6 Ekman meters 

Baltic, 57ø49'N 14 7 Ekman meters 
Pacific, 28 ø48'N 700-2300 Swallow floats 

28ø12'N 

Pacific, 30ø06'N Surface 15 GEK 
Pacific, 29ø15'N Surface 19 GEK 

29ø36'N 

30ø06'N 

Atlantic, 28ø07'N 50, 100 87 Richardson meters 
Atlantic, 39ø20'N 120 43 Richardson meters 
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•ral peak, •ypically of --+1% bandwidth wi•h peak in•ensi•y 10 db above •he 
surrounding level.) Another poin• of agreemen• is tha•, whenever simultaneous 
measurements are made a• nearby locations, •he records appear remarkably 
dissimilar, apar• from having •he same prominen• frequency, whether •he 
separation is eas•-wes•, north-south, or up-down. Thus, Webster [1968a, b] found 
small coherence between 7- and 87-meter depths at one station and only moderate 
coherence for 3-km wes•-eas• separation. Hendersho• remarks abou• •he lack 
of any obvious correlation for a 50-kin nor•h-sou•h separation. The obserw•ions 
of Fofonoff and Webster reveal an unexpected degree of intermittency in both 
space and •ime. 

Wha• determines •he observed features of these oscillatory currents (•heir 
frequency, width, spatial coherence, and intermi•tency)? We shall at•emp• •o 
discuss •hese questions, using •he superposition of many modes of •he appropriate 
planetary-gravity (pg) waves as a model. The very active developmen• of pg wave 
•heory in •he las• few years has emphasized •he •orma• modes of various ocean 
basins, although normal modes have no• been observed. Our emphasis, however, 
is on pg wave solutions tha• are no• sensitive •o lateral boundary conditions. 
These •ter•or solutions provide insigh• in•o some observed features and establish 
design criteria for a coheren• pg wave array. 

THE SPHEROIDAL WAVE EQUATION 

Fundamental equations. The small density wria•ions in •he ocean and the 
smallness of the frequencies of interes• justify the assumptions of incompressi- 
bili•y, i.e. •he Boussinesq system. The resulting perturbation equations for a 
stratified ocean are 

Ou/Ot -- 2•v sin • = --(1/a cos •) (Op/OX) (1) 

c•v/c•t -•- 2•2u sin • = --(i/a) (c•p/c•,•) (2) 

Ow/Ot = --(Op/Oz) -•- b (3) 

Ob/Ot -•- N'(z)w = 0 (4) 

(aw/az) + (1/a cos •)[(au/aX) + (or cos •/a•)] -- 0 (5) 
For frequencies •o • N, Ow/Ot in (3) is negligible. The Coriolis terms -2•w cos • 
and -•-2.•u cos • hav e been omitted in (1) and (3), •he %raditional approximation' 
[Eckart, 19,60]. Some brief remarks on their effect are made at the end of the 
section on Airy solutions. 

A convenient separation of variables is given by 

COS cos -- •a Re Z(z) exp i(sX -- o•t) (6) 
P •aP(•) 
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We will consider • as positive and s as either positive or negative. U, V, P, Z, 
and W are dimensionless, and (4) is automatically satisfied. In terms of the 
non-dimensional frequency 2 a - •/9, equations 1-3 produce 

aU(•) -t- 2 sin •V(•) : sP(•) (s) 

2 sin •U(•) • a V(•) - -cos • dP/d• (9) 

N•(z) W(z) = aal2 •' dZ/dz (10) 

and the continuity equation (5) yields a separability condition, with the separa- 
tion constant 72' 

4a dW 

aZ dz 
4 U -!- cos • 

aP cos •' • 
2 

- x (11) 

Vertical equation. The z part of (11) together with (10) provides an 
equation for IV 

d•'W/dz •' •- K•'W = 0 K(z) = (•/2a)(N(z)/•) (12) 
For the bottom boundary condition we set W - 0 at z - -h, thus ignoring the 
important dynamic effects of bottom topography. At the (perturbed) surface the 
total pressure -po (p - gz) vanishes; hence Op/Ot - gw - O. The solutions (6) 
and (7) for (p, w) and the expression for Z from the first equation (11) lead to 
the surface boundary condition 

dW/dz- (g,•'/412•'a2)W = 0 at z = 0 
Both boundary conditions imply a zero flux of energy across the surface in 
question, thereby ignoring wave generation by atmospheric effects and wave 
dissipation in bottom boundary layers. 

For the simple case of uniform and weak stratification, i.e. N2(z) = constant = 
•' <• g/h, the solutions are trigonometric: 

-- 

W = sin •(z •- h) • = (•/2a)(N/•) (13) 
This satisfies the boundary condition at the sea bottom; at the surface we find 

-- -- 

Nh CN 212a 
- C - (14) tan C g • 

where C, as defined, will be the phase speed of a (hydrostatic) gravity wave in a 
nonrotating system. The allowable values (to be designated 7,, C,, r = 0, 1, 2, -.. ) 
are discrete and can be found to a first approximation by setting first •h/C • 1, 

-- 

then CN/g (( 1 in (14). 

External mode (r - 0)' 

Co = %/gh • 200 m/sec -• •o • • 22 (15) 

I•ternal modes (r •_ 1)' 

- • C• = hN/•rr • 2.5/r m/sec -• • • I (16) 
2 Hence, • is in the convenient unit of cycles per day (cpd). Most investigators prefer 

the definition • -' w/29, which eliminates many factors of 2 in the equations. 
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The numbers are based on h = 4 km and/9 = 2 X 10 -• see -•. The largeness of 
• for the internal modes will play an important role in the Airy solutions of the 
next section. For r = 0, W is essentially a linear function of z; for r > 1, W = 
sin r,r(1 q- z/h). r is therefore the number of nodal levels in W(z). 

For nonuniform N(z), the distortion of the high-order modes can be allowed 
for with WKBJ approximation 

sin •(z) dz - C, cos •(z) 
(17) 

f I N(z) dz C, h• I o - - - N dz •(z) • _• r•r r•r 
The 'local' vertical wave number is •(z) - d•/dz, in agreemen• with (12). 

Large 7 approximation. The latitude equations come from (8), (9), and 
•he latitude par• of (11). I• is conveniens •o introduce •he Mercator coordinate 
which removes •he polar singularities to infinity' 

g = In [(1 q- sin •)/cos •] sin • = tanh g (18) 

d•/dg = cos ½ =sech 

[cf. Eckart, 1960]. Equation 8 s•ays as it is' 

aU = sP - 2 sin •V (19) 
and can be used to eliminate U from (9) and (11)' 

dP+2Ssin•p(4sin2• ) = -- a V (20) 

dV 2s (•2• cos'• • sin• V = . P (21) dg a 4 

The latitude eigenfunc•ions •radi•ionally have been analyzed in terms of •he 
pressure function P. Lonquet-Higgins [1965] and Dikii [1966] have shown, how- 
ever, bha5 •he equation for V has some advantages when 7 is large. Elimination of 
P gives •he primitive wave equation 

d'• q- •'•V = • •'• cøs• sin d• [? - •-'• • •-•os • •J• • - s sin • V (22) 
where 

= -- -- s '• (23) •'• v :• cos • •(¬o "• sin • •) (2s/a) cos• - 
Longue•-Higgins and Dikii presen• arguments •ha• •he righ• side of (22) is 
negligible for large • (and small s); in •ha• even• one obtains t. he spheroidal wave 
equation 

(d • V/du •) q- • V = 0 (24) 
Two impor•an• special eases of [he dispersion rela[ion (23), written as 

a -- a (a, fi, y; •) wi•h .a - s see •, are 
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corresponding to equatorial and turning latitude approximations, respectively. 
The former viewpoint is equivalent to results obtained from the 'equatorial beta 
plane' approximation sin • - •, cos • - I [Rattray, 1964] 's 

• • - : •(2n• 1) -• • • • • - •) - 2s/• s • • • 

Discrete modes naturally arise in •his case because integer values of n are re- 
quired for fini•eness of V a5 large •. 

We shall be concerned instead wi•h •he second viewpoinS, which leads •o 
Airy solutions valid in •he vicinity of •he (spheroidal) •urning laSi•ude, • 
(defined by fi•(•) - 0). These solutions are essentially confined •o a s•rip of 
order 7 -•/• in • - • and are •herefore insensitive •o conditions farther away. This 
freedom allows us to ignore specific boundary conditions in latitude and •o 
in•e•re• •he approximate solutions as a continuous spectrum. This procedure is 
meaningful for •he in•ernal modes (77/• • 50 r •/•) bu• is dubious for the external 
mode (7o •/• • 3). Dikii [1966] and Longuet-Higgins [1965, 1968] have analyzed 
•he discrete normal modes determined by polar boundaw conditions. 

Stationarity. Accepting •he spheroidal equation (24) as being valid for 
large 7, we can in•erpre5 fi as •he (local) sou•h-no•h wave number. Equation 
23, w•en as a -- a(.a, fi, 7; •), •hen expresses frequency as a (latitude depen- 
dent) funcSion of •he wes•eas• (a - s sec •), souSh-nor•h (B), and down-up (7) 
wave numbers. Following Bland[ord [1•6], we expec5 frequency specSra •o have 
maxima where a is sSa•ionary in a, fi, 7 space' 

0•/0. = o 0•/0• = o 0•/0• = o (25) 

Upon partial differentiation of (23), •hese expressions yield 

a = -cos•/a B = 0 a = 2sin• (26) 

respectively. The firs• of •hese s•a•ionari•y conditions is probably no• applicable 
for ine•ial frequencies because for any longiSudinal wavelength of inheres5 a •> 1 
and, •hus, a • 1. The •hird condition yields •he familiar ine•ial frequency. We 
shall come back •o B - 0. 

There are •wo ways of looking a• equaSions 25' (1) For a global generation 
of waves, •here will be a• any one laSi•ude cerSain narrow ranges of • correspond- 
ing •o wide ranges in a, fi, 7, and we expec5 •hese 'condensaSion points' •o be 
prominenL (2) For a local generaSion, •he disS•bance will leak off, excep• for •he 
components associated wish very small group velocity. Equations 25 are 
precisely •he condition of zero group velocity. 

Dispersion. Under •he s•a•ionari•y condition B - 0, we find from (23) 

• 1 • (27) 0 = c• • •[• (• - s• • •) - 2s/•] - s • 
or 

2sin '•s = 1 q- }a'•-- a-•-- 1 - •q-•-•-• q-• • 
a The notation 'beta' -- a -x d(2• sin q•)/dq•, introduced by Rossby, has no relation to 'is', 

the north-south wave number. 

(28) 
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This determines •he spheroidal 'turning latitude' • (•; s, y), œor a• this latitude 
V (p) changes œrom an oscillatory to an exponential œunction, going poleward. We 
can write (27) in the œorm 

t• •- = •(sin •' • - sin •- •)(cos • • + s•'• -•' sec •- •) 

to make explicit the vanishing of B at • - •8. •8 exists if 72 • 4 .•-• (s 
Plots of .a - a(s) for fixed • and various 7 are shown in Figure 1. A critical point 

COS z •s COS •s 
•/• sin v• sm v• 

separates gravity waves from Rossby waves; y _• ym in order for s to be real. 

Gravity waves of inertia frequency a = 2 sin •s occur at s = 0 and s = - 
but, as y --• •o, a -. 2 sin •s for all s. Because y = 105/•r is large for all internal 
modes, we can expect the observations at any latitude • to be prominently asso- 
ciated with the local inertial frequency 

• • 2 sin • (29) 

The a extremes of Rossby waves are stationary with respect to s along the 
curve as - - cos 2 •, but, because they are different for different 7 (no matter 
how large 7 is), they represent a lesser order of condensation than the inertial 
frequencies. For the interesting case of large 7, the stationary points are 

s = -x sin vs cos vs a = cot vs/x (30) 

I 

! ! 

! 
! 

! 
! 

! 
! 

7':oo •: 2 sin ½S 

-s •Sm s• s 

Fig. 1. The planetary-gravity wave dispemion s (•) according •o (27) for 
a fixed •. Positive s corresponds •o west-east propagation with phase velocity 
•/s; positive slope O•/Os to west-east group velocity. Planetary (or Rossby) 
wave solutions are separated from gravity wave solutions according to 
whether • •m or • •. Rossby phase velocities are always east-west. The 

curve •s = - cos• separates positive and negative group velocities. 



454 MUNK AND PHILLIPS 

and they correspond to the Rossby-wave cutoff frequency described by Longuet- 
Higgins [1965]. 4 Frequencies are very small, suitably long series of observations 
are lacking, and we shall therefore concentrate on (29). 

AIRY SOLUTIONS 

Airy solution to the spheroidal wave equation. The Airy solution of the 
spheroidal equation (24) can be obtained formally in the manner described by 
Erd•lyi [19'56, p. 91]. We first define a new independent variable •, which van- 
ishes 

2 •_3/2 __-- • (sin 2 •s -- sin 2 •)'/• d• 

(This expression is for northern hemisphere •; similar formulas hold for negative 
•.) After setting V = /(•) g(•), wit.h / = (d•/d•) -•/•, we obtain the following 
form of the spheroidal equation: 

d2g • {• • (d•-2[ 1 d2[• s2(sin 2 •s- sin 2 d• 2 kd•/ • •- + sin 2 •s g = 0 
Erd•lyi shows that this has an asymptotic Airy solution for large •. In terms 
of V, it is 

V= (•)-l/•g(•)= (•)-l/•Ai(_•/s•)[1 ß 0(•)• (31) 
and is not restricted to small values of •. (We ignore the Bi (-•/• •) solution 
because it increases with •; see the appendix.) 

In the viciniW of •, we have 

5 = -(sin 2•s)1/s(• - •s)[1 + • (cot 2•s)(• - •s) + "-] 

d• 
- (sin 2•s) 1/s cos •[1 + ] (cot 2•s)(• - •s) + "'] 

d• 

The argument of the Airy function can be approximated there by 

-•/s5 • (• sin 2•s)1/s(• - •s) = (• - •s)/L (32) 
where 

L = (•2 sin 2(ps) -1/s (33) 
is the Airy latitude scale. Values of L in degrees of latitude are listed in Table 2. 
The inapplicability of the theory to r = 0 is apparent. 

Airy solution to the primitive wave equation. Although (31) with its error 
of order •-• is formally correct for the spheroidal equation (24), we are really 
interested in the solution of the primitive equation (22). Near •8 (/•2 - 0), the 

ß Longuet-Higgins [1968] has shown that as • --) oo, one of the two lowest latitudinal 
modes in the solutions of (22) represents an equatorially trapped Kelvin wave, with 
• • 2 s/% s • O. V is small in this wave, and the right side of (22) is not negligible. See, 
also, Rattray [1964] and Matsuno [1966]. 
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TABLE 2. Airy Scale L in Degrees of Latitude for Turning Latitudes 
and vertical mode number r = 10 -5•' > I For r = 0, -•0 •' = 22. 

r 10 ø 20 ø 30* 40 ø 

0 29.2 23.6 21.4 20.5 

1 1.76 1.43 1.29 1.23 

2 1.11 0.90 0.81 0.78 

5 O. 60 O. 49 O. 44 O. 42 

10 0.38 0.31 0.28 0.27 

20 0.24 0.19 0.18 0.17 

50 ø 

20 5 

i 23 

0 78 

0 42 

0 27 

0 17 

60 ø 70 ø 80 ø 

21.4 23.6 29.2 

1.29 1.43 1.76 

0.81 0.90 1.11 

0.44 0.49 O. 60 

0.28 0.31 0.38 

0.18 0.19 0.24 

firs[ bracket on •he right side of (22) is approximately equal •o -0. sin •o8 [sin 2 
•0 s •- 2 8/0' 72] -Y. For .a • 2 sin • and [ s I < 7"this is essentially equal to -2. 
Under these conditions, the right side of (22) is of order L • 7 -•/a t. imes the left 
side. The 7 -1 accuracy of (31) is therefore swamped by the error inherent in (24) 
(at least for .a • 2 sin •,), and we are justified in simplifying (31). In so doing 
we abandon the validity of (31) for large • and consider only small deviations 
of • from •,' • - • = O(L). Solution (31) then reduces •o the simple form 

V = Ai( • •s)+ O(L) 
We have here •he 7 -2/a approximation to equation 31, which is a solution of the 
7 -2/a approximation (24) •o •he primitive wave equation (22). Clearly, it is more 
satisfactory •o proceed directly and systematically from •he primitive equation, 
particularly when we later require solutions to order T -•/a. 

This derivation has been performed in the appendix. Writing U(e) - Uo + 
LU1 + "', similarly for V and P, and combining •he formulas obtained with 
the definitions in •he preceding section, we find the following kinematic relations, 
each correct to an error of order L' 

u = q(n •/• cos •)(Ai(•)) cos (sX- •t) (34) 
v = q(n •/• cos •)(Ai(v))sin (sX - •t) (35) 

w = q •raL sin •) LAi •/sin (sX - •t) (36) 

•/cOs•oC• •/• /• (• dAi• P = 6a/ cos f) LAi cos 

-/co ½ b = -- qN[s• •a/ sin f) LAi - •/ cos (sX - wt) (38) 
q is an arbitrary velocity amplitude. The WKBJ •reatment has been used for •he 

-- 

z dependence, wi[h n(z) written for N(z)/N, and f(z) defined by the phase integral 
(17). a = s/cos •o is the local west-east wave number, in cycles per earth circum- 
ference. Ai(n) is •he Airy function, with the argument 

•--•o + (aL)• _ •-- •o (39) • = L 2L cos •o 
•o = 2 sin •o L = (• • sin 2•o)-•/• 

where •0 is some reference latitude. 
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Expedition space. For definiteness, we interpret the results in terms of an 
operational problem. Frequency spectra of measurements at various latitudes 
permit us to contour energy density in ½, •r space (deferring the question of 
stationarity.) A choice of 2 sin ½, •r coordinates conveniently places the turning 
latitudes near the 45 ø line in Figure 2. Consider distances of 0 (L) relative to the 
position •o of the reference ship, and frequencies of O(L) relative to the reference 
frequency .•o --, 2 sin •o. 

sin • 

2 sin •o 

2 sin •T 

Fig. 2. Airy fine structure in local 'expedition space.' AB -- 
AC -- 2L (aL)3 cos •o and •o - •T -- L (aL)•. 

The reference ship measures a horizontal velocity spectrum 

a -- ao -•- a2L •' (40) F(a; •o, a, •) N Af(v) V = -2L cos •o 
which has a 'turning frequency' (v - 0) at 

a - aT = ao •- 2L(aL) •' cos •o (41) 

and a first maximum (7 = •]max ---- -1.019) at 

a = amax = a0 •- 2L COS •o(a• •' •- 1.019) (42) 

A ship at •o exploring neighboring latitudes for the intensity at the fixed 
frequency .ao - 2 sin •o finds 

with the turning latitude at 

•, - •,o + a•.L•. (43) •= L 

• =•r =•o-L(aL)" (44) 



INERTIAL MOTION IN THE SEA 457 

and a first maximum 

• = •max = •0 -- L(•L) 2 -- i o019L (45) 

Dispersion near the turning point. Equation 41 can be recognized as an 
approximation of (27) for • near 2 sin •,o. The dispersion O•/Oa vanishes for 
a = 0 (compared with a = - % cot •,o for (27)), but in all events the dispersion 
becomes very small for all .a as the vertical wave number increases. 

The inertia waves (equations 34-38) are trapped vertically between the top 
and bottom of the oceans, and, because Bi(v) was discarded, they do not propa- 
gate north-south. Eckart [1960] and Bland•ord [1966] have described the hori' 
zontal propagation of wave packets along ray paths that are tangent to the local 
group velocity (O.•,/O,•, O•/O•, O•/O7). This is directed zonally when O,•/O• = 0 
(which in the case of (24) means B - 0), and the rays are refracted back to low 
latitudes. The Airy solutions given here describe part of the structure of such 
waves in the vicinity of their turning latitude. A more thorough analysis would 
connect the present solutions with the ray-path solution equatorward of the 
turning latitude, and, as suggested by Blandford, allow one to explore the effect 
of sources equatorward of •o. A recent paper by Jacobs [1967] performs this 
connection, for both Rossby waves and gravity waves, but does so in the context 
of the equatorial beta-plane model. An unpublished thesis by Blyth Hughes . 
(Cambridge University, 1964) treats these problems in spherical geometry. 
Hughes concentrates on the inertia-gravity waves, as we do, but gives most atten- 
tion to the special case s - 0, which we do not. 

Magnitudes of pressure and vertical displacement. The factor [cos •.o/sin 2 
•o) (Cr/•a)]•/a ~ 0.2 r -•/a in (37) and (38) represents a considerable reduction 
of p and b below the value typical of a nonrotating hydrostatic internal gravity 
wave with the same value of u. Thus, for •.o = 40 ø, r = 10, and u = I cm sec -•, 
we find p =, (pressure perturbation + po) : 2.5 cm a sec -2, corresponding to 
0.0025 cm of water pressure. The external mode and atmospheric oscillations are 
likely to produce pressure fluctuations exceeding I cm of water pressure. The 
corresponding vertical displacements (in the interior) would be w/o• = w/(2f• 
sin ,•o) - about 4-40 cm. 

The traditional ap79•oximation. The Coriolis terms - 2f•w cos • and 
+ 2 f•u cos • were omitted on the right side of the original perturbation equations 
(1 and 3) without discussion. In his book, Eckart [1960] refers to this as the 
'traditional approximation' and has indicated (pp. 130-135) that the omission 
of these 5erms may be serious when • ~ 2 f• sin •. If the detailed z, 7, and X de- 
pendence is ignored in our solutions (34)-(38), the order of magnitude of the 
2 9 cos • terms relative to the terms we have retained is (at • = •r/4) 

2•2w cos • ,,• 2 cos • r• 2 sin a 2e L2•u sin •o s• • 

2•u cos • Ur•(•) (•) • ••/a •_•/s 2 sin a 2• • •,- 

The neglect is most serious at large r. Evidently r ~ 0 (10') represents an uppe• 
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limi• to the vertical modal number for which our neglec• of •hese terms is 
reasonable. (Note, however, tha• these terms are orthogonal in z to •he re•ained 
terms.) I• is relevan• •o note •ha•, in subsequen• sections of this paper, our 
comparison of observed spectra and vertical coherence with the presen• •heory 
leads to r ~ 0(10) as a typical vertical mode; i.e., the long-term statistics of •he 
observed horizontal currents do no• seem to require appreciable energies in modes 
r >> 10. The eigenvalue problem arising from the complete equations (re•aining 
the two 2.• cos • terms and •w/•t) is nonseparable in • and z and has no• yet 
been solved. (The thesis by Hughes, referred to previously, probably represents 
the most determined attack to date.) We are encouraged to speculate that perhaps 
a major effect of the 2f• cos • terms is to eliminate, at large r, the concentration 
of horizontal kinetic energy at the turning latitude predicted by the present 
solutions. 

BAND STRUCTURE 

Foy•onoy7-Webster measurements. Table 3 and Figure 3 give the energy per 
harmonic for two sets of current records. Both spectra show 10-db peaks within 
a few per cent of the local inertial frequency. The 30ø20, measurements, however, 
show side peaks comparable in magnitude to the main peak. The 28007 ' measure- 
ments, at almost twice the resolution, have a well separated main peak; the band 
at 1.01 cpd is presumably associated with diurnal tide constituents 5 (see Table 4). 

TABLE 3. Summary of Measurements 

Webster Day and Webster Hendershott 
(unpublished) [1965] [1964] 

Depth of measurement, m 120 100 0 
Duration, days 43 106 9-18 
•o 39 ø20'N 28 ø07'N 30 ø05'N 
•o 1.268 cpd 0.942 cpd 1.0027 (K,) 
Estimated peak 1.29 4-.01 cpd 0.96 4-.005 cpd 29ø36'N :I: 15' 

On the same frequency scale we have plotted some Airy amplitudes (these 
need to be squared for comparison) for selected values of r, •, using the parame- 
ters in Table 5. (These values apply strictly to the 39o20 ' observations, but they 
are close enough for the other cases.) An increase in , shifts the Airy pattern 
toward higher frequencies, and an increase in r (~L-•/•) leads to a compression of 
the pattern, in accordance with 

a- ao = 2a2L 3 - 2L•/cos •o (46) 

We may attempt to fit the measured peak frequency in Table 3 to the principal 
Airy peak (Vm= = --1.019) by appropriate values of r, a: 

5 It is puzzling that this peak lies one harmonic above the K• frequency, whereas the 
0.93 cpd agrees with 0•. Observations at shallow depth (50 m at 28ø07'N) yield a well defined 
peak at K, frequency. 
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39o20,N 28o07,N 

r = 5 a = 120 (0 to 17(}) c• = (}3 (2(} to 85) 
r = 10 a = 308 (17(} to 394) a - 175 (129 to 210) 

(Parenthetical • values indicate sensitivity to ñ shiœts in peak œrequency by halœ 
the harmonic in•erwl.) The results are most uncertain; they indicate a •ypical 
value œor • oœ order (100) (eas•-wes• waYeleng•h 400 kin). Webster [1968b] 
reports a phase difference oœ 34 ø (coherence 0.82) between •he above star.ion at 
39ø20'N and a second station 3 km to the east, indicating tha• a wavelength is 
roughly 10 •imes •he s•a•ion separation and •ha•, accordingly, • -- order (1000). 

For • definitive study oœ •he Airy s•ructure one needs (o sample the spectrum 
a• least •wice per interval between adjoining Airy extremes, or roughly a• 0.005 

i 

•.-shift for r - ]0 -- O, ]00 

,I l l 
r-shift for • = 0 r -]0, 5 

' ' ' ' ' ' b,•' ' ' ' ' ' ' ' 'o,•' ' ' ' ' ' ' -0.1 -0. 0 O. 0.1 

Fig. 3. The upper panel shows observed spectra (arbitrary scale) of u(t) (open circles) and 
v(t) (solid circles). Light lines refer to Webster's frequency spectra F(•0) at fixed latitudes: •0 -- 
39ø20 ', •o -- 1.268 cpd (solid); •0 -- 28ø07 ', •0 - 0.942 (dashed). The frequency scale gives 
departures from •0 in cpd. Heavy curves refer to HendershotUs measurements of the latitude 
dependence F(•) of intensity at a fixed frequency •0 -- 1.0027 cpd. Lower panels give Airy ampli- 
tude spectra at •o -- 39ø20 ' for stated values of r, a. Bottom scale can be interpreted either as a 

relative frequency • - •0 in cpd, or as a relative latitude - 2 cos •o (• -- •o) in radians. 
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TABLE 4. 

MUNK AND PHILLIPS 

Principal Diurnal Tide Constituents 

Rel. Amp. Period, hours Frequency, cpd •oo -- arc sin • 
o, o. 377 25.80 o. 9295 27 ø43' 
P, o. 176 24.07 0.9971 29054 
K, 0.362 23.94 1.0027 30 ø05 

cpd resolution. This calls for a record length of 200 days (Tukey's 'quefrency'). 
To obtain 20 degrees of freedom at this resolution (-X/1./20 relative uncertainty) 
requires 2000 days! For the moment, this appears technically unfeasible. 

A frequency resolution of 0.005 cpd is comparable to a 'latitude resolution' 
of • degree. Can we substitute closely spaced vessels for very long records? In 
general, the answer is 'no,' because to take advantage of close spacing we need to 
confine our measurements to a comparably narrow frequency band, and this, 
again, requires long records. Inspection of Figure 2 will convince the reader thab 
frequency smearing will obliterate latitudinal fine structures and vice versa. 

Hendershott's measurements. There is a way out, however, and this forms 
the basis of I-IendershoWs pioneering effor• in 19'64. If a spectral line is naturally 
present and sufficiently strong to dominate a selected frequency band, the varia- 
tion from station to station is presumably associated with 5his one line, and there 
is no further need for refining the bandpass filter. I-Iendershott selected Kx (see 
Table 4). The vessel latitudes and associated frequencies were 

•, 29 ø15' 29 ø36 • 30 ø06 • 
2 sin •o 0.977 0.988 1.003 

The northern vessel is nearly at the reference latitude •o.o = •o(Kx) = 30ø05 ', and 
the others are to the south, giving an effective resolution of about 0.01 cpd. A 
strong neighbor, Ox, has its cutoff latitude too far south to seriously interfere. A5 
the same time, the effective bandwidth of Kx (associated with cycle per year 
splitting) is only 0.003 cpd and is sufficiently narrow no5 to blur the Airy fine 
structure of 0.02 cpd. 

TABLE 5. Parameters for •o0 = 39020 ' 

Assumed vertical mode 

-•(14, 16) 
L(33) 
a (assumed) 
EW wavelength, km 

r=5 r=10 

1580 3160 

0.00740 =0.424 ø 0.00468 =0.268 ø 
0 100 0 100 

•o 400 •o 400 

Frequencies in cpd at Turning Point and Fimt Three Airy Maxima 

• = 0 1.268 1.274 1.268 1.270 
• -- -- 1.019 1.287 1.293 1.275 1.277 
• = -- 3.248 1.305 1.311 1.292 1.294 
• -- --4.820 1.323 1.329 1.303 1.305 

I-IendershoWs measurements are plotted in Figure 3 against a latitude scale 
-2 cos •0o (•o - •oo), which is comparable to the frequency scale ,a - a• used for 
Webster's spectra. An agreement with the Airy structure can be achieved by 
selecting 
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r = 5 a = 32 (0to103) 
r = 10 a -- 172 (0 to 258) 

which is no5 altogeSher ou5 of line with Webster's measuremen5 and agrees wish 
HendershoSUs esSimates 6 and previous rough estimaSes by Cox and Sandstrom 
[1962]. 

There is • serious difficulSy, however, because a5 each of/-/endersho55's 5hree 
stations the observed energy is no5 conSained wiShin a harmonic inServal conSain- 
ing Kx bus is spread in•o neighboring harmonics, much like Webs•er's da•a. 
/-Iendersho•5 ascribes •his spreading 5o 'Doppler smearing' by variable currenSs; 
•he ploS•ed values in Figure 3 are •he mean-squared velociSies found in five 
neighboring harmonics, covering 0.86 5o 1.14 cpd. If, in facS, •here is such 
smearing, •he whole poin5 of a sharp inpu5 line is los5, and we are back 
where we sSarSed. 

Webster and Fo]onof] [1967] have measured currents for a number of days 
a• 5he 'Sidal latitudes' in 5he Sargasso Sea: 28ø50'N (depShs 55, 620, 3240 
meSers), 29ø11'N (55, 61• meters), and 29ø30•N (55 roeSets). Only 5he i•alicized 
record shows an indication of inertial curtenS. This resu15 could imply an Airy 
peak centered a5 5he midsSaSion, which is •oo narrow to reach 5he ouSer sSaSions 
(no• unlike •he/-/endersho• results) and has r values •ha• discriminate agains• 
55-me•er depth. Webster [1968b] interprets •hese da•a as an in•ermi•en• signal 
•ha5 happened •o have been received only a5 5he central sSaSion. Such inSermi55en5 
disSurbances of local inetSial frequency have been observed a5 non-tidal la•iSudes, 
and 5his inSerpreSafion implies 5haS, even a5 tidal laSiSudes, •he 5ides are no• a 
predominan5 source of inertial tooSion. 

Sample superposition spectra. The observed spectra are presumed •o be 
the result of superposiSion of 5he various r modes, each with some given disSribu- 
tion of energy as a funcSion of .a. We assume sSafisSical homogeneiSy in longiSude 
and random phase among all modes. Le5 qr • (r, .•, •r) da dq designate the mean 
square ampliSude of 5he discrete mode r in 5he interval da da centered on a, a. 
I5 then follows from (40.) and (41) tha5 

n(z) • cos 2 •r(z) f:• qr2(a)Ai•(v) da (47) F(•;z,•) = 2cos• • 
o 

= -- ao = 2 sin • v 2L, cos • 
is 5he specSrum of v(t) or u(t) a5 a fixed poin5 X, z, •. In a 5wo-dimensional 
diagram wish coordinates x = (a - ao) + 2L cos •, y - aL, curves of equal 
values of the Airy coordinate v would appear as parabolas, x = y• - v. Figure 4 
porSrays • surface whose elevation is equal 5o Ai • (y• - x). A5 point •, z a cu5 
in 5his diagram at consSan5 aL (e.g., as shown for .aL = 0 and aL = 2) gives 5he 
specSrum F(•) for a single pair .a, r. As remarked earlier, larger a values shif5 
5he specSrum toward higher frequencies, and larger r (smaller L) values com- 
press 5he frequency scale. 

•I-Iendershott computed F(•) from • quantitative r, a distribution he obtained from 
• sea-bottom scattering model. In a way, this is further than we shall go. It is difficult 
to estimate how sensitive I-Iendershott's conclusion is to the model parameters. We prefer an 
•pproach •ha t is independent of any assumed model. 
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/ 
/ 

o x 
o 2 4 6 8 ]o 

Fig. 4. A perspective view of the surface A,•(•) where • = 
y• - x. The horizontal coordinates denote x = (• - •0) + 
(2L cos •0) and y = aL. The three shaded areas show cuts 
through a volume bounded by Ai•(•) at y -- 0, y = 2, and 
x = 10. Silhouettes of the Airy ridges are shown by the quasi- 

parabolic curved lines. 

The integration in (47) is parallel to the y axis of Figure 4. As a simple 
example let 

q,•(a) = q•(--a) = Q•/a, for 0.5a• • a • 1.5a• (48) 

and zero otherwise. The resulting integral has been ewluated numerically and is 
displayed in Figure 5 for selected values of • L. Evidently, •L wlues •round 1 
are most effective in producing a power spectrum with a single dominant pe•k; 
for smaller •L values the Airy line structure is retained in the composite spectrum, 
whereas l•rger •L values subdue all features. Taking •L -- 1 gives a -- 140, 200 
for r - 5, 10 at 40 ø latitude, which is consistent with our estimates based 
on Webster's spectra. 

The reader can visualize further smudging associated with the superposition 
of r modes (weighted according to Q? cos • •(z)), each mode being characterized 
by the •ppropriate stretching of •he frequency scale. In general, this will tend to 
wipe out •he fine structure •t frequencies above the principal peak. 

The u, v red shift. There is good agreement between the u spectra and 
v spectra (Figure 3). If there are differences, they are well below the present 
resolution, i.e. 0.01 cpd. We shall inquire what the expected differences, based 
on theoretical considerations, are. 

The solutions (34) and (35) give u and v both proportional to Ai(v) , so that 
there are no differences •o order L. In accordance with the expansion (A2) we 
write 

U(v) = Uo + LU1 = --Ai + 

V(v) = Vo + L V• = Ai + L V• 
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1.0 

Fig. 5. 

•.r L :0.5• 
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The integrated spectra (equation 48) plotted against x -- (• - •o) + 
(2L cos •o), for selected values of ar L. For convenience the spectra have been 

normalized by division with Qf Ai" (-1.019). 

and designate by vu = r/max '•' 8u, r/V ---- r/max '•' 'By t, he Airy arguments for which 
U, V reach their maximum; r/max ---- --1.019 is the argument for which U,o, Vo have 
their principal maximum. In the vicinity of r/max, we have 

Ai(•,,) = Ai(r/m..x) + + ... 

= 0 q- •,•r/maxAi(r/max) + -.. 

Thus 

U'(r/,•) = 0 = - (•,•r/m..xAi(r/m..x) + LU•'(r/m..x) + O(L•) 

Vt(rl, = 0 -- •,/maxAi(r/max) q- LV•t(rlmax) -[- O(L•) 

and so 

L[ Ult(•max) •'- 
•maxAi(•max) 

The expression for Ux + Vx is given in (A10). At a fixed latitude, & - & - r/v - r/u 
is simply related to the separateion in peak frequency .av - & according to (39), 
and we find, on different•iatJon, 

a,-- au = 2L 0• cos •o cot •o[2aL q- (--r•m..x) -•] (49) 

• - (rv is positive for positive ,•L, thus giving a v versus u red shift. For 
sufficiently larger negative aL value the relation is reversed. The indicated shift 
is of the order L 2 ~ 10 .4 cpd, far too small to have been detect, ed. Boundary 
influences are presumably far more important. 
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COHERENCE 

Qualitative considerations. Observational evidence consists essentially of 
the experience (some of it extending over thirty years) that the resemblance 
between inertial currents measured at nearby stations is surprisingly poor, 
whether these stations are separated east-west, north-south, or up-down. We 
would expect that phenomena whose period is of the order of a day should have 
characteristic vertical scales comparable to the ocean's depth and horizontal 
scales comparable to the earth's radius. Somehow our intuition is violated. 

Let us put the problem into somewhat more definite terms. Consider the 
contribution from multiple modes within some narrow frequency band centered 
at a. In general, different modes have different wave numbers, and a cluster of 
neighboring modes gives rise to a distribution of wave numbers, from say 
(•k)• to k• •- 1/• (•k)•. (The subscripts i refer to Cartesian components). It is 
then plausible (and will be demonstrated) that 

(•ik),(•ix), - 0(1) (50) 

defines a coherence scale (Sx)•. Certainly over distances much smaller than 
[Sx[ = O(Sk) -• even the extreme modes hardly drift out of phase, and the 
record remains essentially undistorted. For a single mode, 8k - 0, and the 
coherence distance is infinite. Thus, the coherence loss depends on the spread of 
wave numbers, as distinct from the problem of line broadening (discussed in the 
preceding section), which involves the mean wave numbers. 

Suppose the energy of baroclinic waves is largely contained in vertical mode 
numbers r - 5 to r - 15, or equivalently in wave numbers 5•r to 15•r radians per 
ocean depth. This is not inconsistent with the existing observations; further, an 
octave bandwidth (•k/k -- 0(1)) is typical of many geophysical processes. The 
vertical coherence distance is then of the order of ocean depth + 10 •r, or 200 
meters. The horizontal coherence is found to be of the order of the Airy scale, 
Lr, or 10 miles. The latter value is so very much smaller than the earth's radius 
because of the small phase velocity of high-order internal waves, and this, in turn, 
is related to the relatively weak density stratification in the oceans. An essential 
requirement in this estimate is that the various modes have no fixed phase 
relation with respect to one another. We shall return to this important point. 

From these considerations, admittedly based on hindsight, we might even 
expect to find the short coherence distances that have been reported. The re- 
mainder of this section attempts to make these arguments quantitative. 

Definitions. Let •,t), n = 1, 2, designate any two stationary time series. 
The time average_ 

Pmn(T) = <f•(t)f•(t- z)> (51) 
is called the covariance of the two series, and 

Cmn((r) •- iQmn((r) -- • Pmn(Z) exp (--iaz) dz (52) 
are the associated co-spectra and quadrature spectra. For the special case of 
m = n we have Qnn(a) = 0, and Cn•(a) = F•(a) is then known as the power 
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spectrum of f,(t). The coherence, Rm•(•r), and relative phase, •m,(,a) are defined 
by 

Cron •- iQmn -- (Cmmann)l/2Rmn exp i•m,• (53) 
Interpretation. We refer to the literature on time series [for example, 

Jenkins, 1961; Haubrich, 1965; Bendat and Piersal, 1966] for further discussion, 
but some brief remarks are perhaps in order as to why we regard Rm• (a) a meas- 
ure of the resemblance between records m and n. If )•2(t) is the result of any 
linear transformation of f• (t), plus a noise, e.g., 

f•(t) -- fl(/ -- •) kernel (•) d• -]- noise (t)• (54) 

then [1 -- R•(a)] C•(a) 3a measures the noise energy of f•(t) in the band 
.a -+ •/• 3a. If R(.a) - 1, then f•(t) is perfectly predictable from fx(t) by realiz- 
able linear devices (or their numerical equivalents). With increasing noise, the 
coherence drops, as do the resemblance and predictability. This is the most 
familiar way of looking at coherence and is satisfactory for one-dimensional 
linear processes, because then the convolution integral in (54) allows for a 
frequency-dependent attenuation and phase delay between records I and 2. 

In the case of a multi-dimensional problem, such as ours, however, the 
process f, (t) in any one frequency band •r -+ % .at may be associated with two 
(or more) modes, each with its own attenuation and delay, and the linear trans- 
formation (54) is unable to cope with mode separation. By assumpt•ion, the 
modes bear no fixed phase relation with respect to one another, and each mode 
fades in and out with a time scale (.t;.a) -x of the reciprocal bandwidth. The 
'instantaneous' phase difference 4•(a) alternates between values appropriate to 
each of the modes. Again coherence' (and predictability) is lost, quite apart from 
any noise in the system. Under these circumstances the coherence scale turns 
out to be in accord with statement 50. 

One can also regard each mode as comprised of standing plane waves with 
propagation vector kl (for inertial waves k• is nearly vertical). From this point of 
view, multimodes are regarded as superpositions of independent pencil beams, 
and, unless t, he modes are individually resolved, they lead effectively to beam 
broadening of the order .8k/k and attendant coherence losses. Again, the results 
are in accord with statement 50 [Munk, Miller, Snodgrass, and Barber, 1963]. 

The case of pg waves. Inertial solutions (u, v) are of the type 

•,(t) = •(t; X,, ,,, z3 = Ai(,3 cos •z, cos (sX,- •t) (55) 

for stations n = 1, 2, where •(z) is a slowly varying (compared with h/r) vertical 
wave number (equations 12 and 17). We presume that all pertinent statistics are 
stationary in time (invariable with respect to translation of the t axis). 

The situation differs with respect to the space axes. (1) We may assume east- 
west stationarity for X displacements, within limits imposed by climatological 
and bathymetrical considerations. (2) We may assume quasi-stationarity for z 
displacements, provided that these displacements do not exceed the stratification 
scale height (N-l.d•/dz) -1, typically i km at abyssal depths. Alternatively, one 
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could presume stationarity with regard to a 'stretched' z axis, •(z) = [N(z)/•]z. 
(3) Conditions are definitely not stationary in v near the turning latitude. 

Two-mode coherence. A simple model is that of two modes of almos• equal 
frequencies a, a' (both lying within the narrow band a ñ • 3a), but significantly 
different wave numbers s, s'. The frequency doublet is a simple device for avoid- 
ing fixed phase relations between the modes. Later we shall show that the re- 
sults are a useful guide to a many-mode distribution, provided that we interpret 
the wave number separation in the double• as some sor• of weighted spread in 
the multiple•. 

East-west separation. Consider two stations separated only in longitude; 
then from (55) 

L(t) • a cos (sX• - at) + a' cos (s'X• - a't) 

for stations n = 1, 2. On computing the quantities (51), we find 

p•(r) = p22(r) = «a 2 cos ar + •a '• cos 

p•(•) = •a • cos (• + s •k) + •a '• cos (•'• 
wi•h 8X = Xa - Xl. We now ignore the slight difference in • and •', writing each 
as •. For simplicity let a = a'; then 

C• + iQl• = •a•[exp (--is $k) + exp (--is' 
It follows tha• 

R12 -- cos «(el8. e]X) •)12 : • •X (57) 
with 

as = s - s' = «(s + s') 

Near the origin, the coherence drops as R•2 = i - • (as ß ax) 2 + -.., 
which is consistent with the general remarks leading to (50). The additional 
'lobes' centered at. as ß ax = 2•, 4•, -.. are related to the assumed doublet 
structure and are not generally significant. Thus, for a superposition of j inco- 
herent modes, with frequencies a• all within 

and 

[•(t) - •. ai cos (siX• -- a•t) 
i 

C• = C22 = « •.ai 2 

Ci2 + iQl• = « • a• • exp (-is• $x) 
i 

(58) 

R 2 ai ai cos (si si,) /•XI(• ai•) • 

For closely spaced s modes of equal amplitudes, we can replace •he summations by 

(59) 
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The coherence drop near the origin is i - 1/• (A •X) 2 q- -.., similar to that of 
(57), but successive lobes are now greatly suppressed. For a tapered distribution 
of s modes, the lobes might be altogether absent. We conclude that the doublet 
model is an adequate representation of multipiers near the origin, with the doublet 
spacing at about half the multiplet'spread. 

Up-down separation. Next, we have measurements separated only ver- 
tically. 

f**(t) = a cos at cos Kz** q- a cos a't cos K'z** 

am, , = «a2(cos KZ m COS KZ** + COS K'Z m COS K'Z**) 

and 

R 2 - 1 -•a4[sin 2•2 sin « $K $z q-sin • $z sin $• 2] •' •' -- C•C•.• (60) 
:For •he case of a single mode, a• = 0, and we recover R - 1. For well 

separated modes, • and a• are of •he same order, and R • -- I - O (a• ß az) •', in 
accordance wi•h our general expectation. 

North-south separation. Finally, we have a latitudinal separation wi•h 
s•ations a• • and • and a mode doublet characterized by 

and similarly for 

and 

q9 n -- q9 o er -- a o 

7** = L q- (aL)'• -- 2L cos •o 
a' L', (r' (but (r nearly equal to (r'). We find 

f**(t) = a cos at Ai(•**) q- a' cos a't Ai(•d) 

Cron = «a•Ai(vm)Ai(v•) + 

R •'= I •a4[Ai(v')Ai(v•")- Ai(yl')Ai(y•)]• •' - C•C•.•. (61) 
For a single mode, w = r•d, and so R 2 - 1. For well separated modes and nearby 
stations, R 2 - I - 0 (a•/L) •'. Accordingly, the coherence is determined by the 
Airy scale. 

In all the foregoing derivations, the underlying assump[ion is that the modes 
bear no fixed phase relation wi[h respect [o one another. If [he relative phases are 
fixed, the coherence be[ween any two sta[ions is unity, regardless of the complex- 
ity of the mode s[ructure. (Formally, this follows by taking all • in (48) to be 
iden[ical.) Random phase rela[ionships be[ween modes result if [he modes are 
generated by independent random processes, or they may be coherenfiy generated 
and subsequently 'randomized' by transmission through a time-variable medium. 
For example, baroclinic tides are found to be incoherent with respect to one 
another and wi[h respec[ to [he tide-producing forces [Radok, et al., 1967]. The 
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baroelinie modes are believed •o be generated by bo•t•om scattering of •he baro- 
ntopic (or surface) •ide. I• can be demonstrated •ha• minor fluctuations in •he 
•hermoeline would soon destroy all existing phase relations. 

Fofo•toff-Webster measurements. There is little to go by beyond •he general 
agreemen• •ha• records a• neighboring s•a•ions bear surprisingly little resemblance 
(see •he introduction). The only quantitative measurements known •o us are •hose 
reported by Day and Webster [1965], Webster and FofonolJ [1967], and Webster 
[1968b]. In •he firs• report, no signifiean• coherence was found between currents 
a• 50 and 100 me•ers. In •he •hird report, Webster no•es a coherence of R - 0.34 
between currents a• 7- and 88-me•er depths a• one location, and R = 0.67 be- 
tween •he 88-me•er eurren• a• •his location, and 98 ñ 10 me•ers a• • second 
location • displaced by 3 km in an eas•-wes• direction. 

To estimate •he vertical coherence, we may •ake N(50 m)/• - 100 epd. 
Suppose •he prominen• modes ex•end from r = 5 •o r -- 15. Then from (12) 

i5• = •'1• - % N(50 m) _.. 300 /•r N(50 m) = 0.025 radians 
2a 9 2a 9 meter 

and coherence is signific•nfiy reduced for separations exceeding $z -- ($•)-• = 40 
me•ers. Therefore, •here is • le•s• no confiic• here. 

For •n e•st-wes• separation of 3 kin, the result (57) implies «$k.$x -- 
•rccos 0.67; hence, $k -' 0.5 km -•. The measured phase difference of 34 ø suggests a 
w•velength of 10 station separations, or 30 km (somewhat l•rger •h•n the Airy 
scMe L • 25 km). The mean w•ve number is then 0.21 km -•, and the relative spread 
$k//• -' 2. It is possible th• verticM separation of perhaps 10 me•ers may •ccount 
for some coherence loss; hence, •he spread is not qui•e so bro•d. 

For a nor•h-sou•h separation, •he expected coherence loss over a distance 
L (• 0.3 ø latitude) is consis•en• wi•h I-IendershoWs finding •ha5 measurements 
• 0.5 ø separation did no• resemble one another. 

PERSISTENCE 

Fo[ono•-Webster measurements. A• any given s•a•ion •he inertial mo•ion 
is characterized by a high degree of in•ermi•ency. Figure 4 of Day and Webster 
[1965] shows groups of d•ys of high inertial activity a• 28ø07'N, apparently 
following severe s•orms and separated by •imes of relative calm. The 'events' are 
not very well defined, lying perhaps 5 db above •he mean level. As an example, 
hurricane Daisy on October 6, 1962, was followed by 5 days of high activity 
centered on October 16 a5 50-me•er depth, and 10 days centered on October 18 
at 100 me•ers. Figure 6 of Webster [1968] shows •he resul5 of (complex) de- 
modulation a5 inertial frequency of curren• measurements a• 39ø20'N, 70øW, 
7-me•er depth. Much of •he energy in •his 40-day record is contained in •he firs• 
week's high activity. 

Model o• random, distributed sources. This is essentially the view adapted 
in our paper. We assume • f•ir degree of spatial homogenei•y, wi•h a 'noise' 
centered near •he inertial frequency within a bandwidth of •he order of L cpd. The 

• The absence of • surface float •t the second location makes the precise depth of the 
current meter uncertain and subject to some variation in time. 
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persistence of a band-limited noise is roughly the reciprocal bandwidth, or of •he 
order L -x ~ 100 days. The reported persistence is of the order of a week. 

Model of coherent, local seneration. Suppose tha• inertial waves from a 
source at (0, 0) are observed at (x•, t), i = 1, 2, 3. The energy is propagated along 
'rays' of constan• •, according •o 

= 

and •he solution of the three equations of (62) together with known dispersion 
•r(k•) determines k•(x•, t) and a(x•, t). If energy is fed in•o a limited range of 
values of k•, •, 5he duraSion a• a point x• may be quite limited and differ from tha5 
a5 a neighboring poin5 x?. In this way one might be able •o account for the ob- 
served in•ermit•ency in space and •ime. Bland•ord [1966] gives some discussion 
along this poinf• of view. 

If the source is concentrated, the wave trains associated with various k• a• a 
frequency • bear some fixed phase relations, and the currents at x• and x? are 
coherent (provided 5ha5 5hey are above instrumental noise level). 

Conclusion. Both models are lacking. The random, distributed sources can- 
no5 accoun5 for the reporSed intermittency, and the coherent, local generation 
cannot accoun5 for the observed loss of coherence beSween stations. 

The truth mus5 lie beSween 5hese two extreme viewpoints. In order for our 
interpretation of 5he observed band and coherence structure to have any claim to 
reality, i5 is necessary tha5 the observed motion a5 a poin5 be the result of a5 
leas5 several independent generators. 

APPENDIX 

We consider motion near a re/erence latitude •o with frequencies near •he 
inertia frequency • -• 2 sin •,o. The spheroidal wave equation suggests 

L = (•" sin 2•o) -'/a (A1) 
as the appropriate scale for the latitudinal 'fine structure.' We set • - •o + L,•, 
d/d•q• = 0(1), and 

• = 2 sin •o q- 2L• 

In the equations of motion (8), (9), and (11), we first insert the magnitudes 
U = qtL ø = at, V = •L', P = (PL •, and s = $L •, where at, •, (p and $ are of 
order unity and l, m, and n are integers to be determined. The principal terms, 
after using (A1), are 

2 sin •,oqt q- 2 sin •o•L' = $(PL •+• 

2 sin •oqt + 2 sin •o•L • = -cos •o (d6'/drtx) L '"-x 

$qlL •+• q- cos •o (d'D/drh)L • = -} cos •o(PL 

An examination of the possible balances (for [he [hree possibilities l _< - 1, • = 0, 
and l >_ + 1) shows that l mus[ be zero; m and n can then be either m = 2, 
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n >_ -- 1 or n -- -- 1, m _> 2. These are allowed for by defining the series 

U= Uo+LU• + ... 

¾ = ¾o + + ... 
P = 4L•(Po q- LP• q- ...) 

sL = O(L ø) 

sin • and cos • are now expanded in • - •o - Lrll, and to sufficient order we have 

(sin •o q- Lo'•)(Uo q- LUg) q- (sin •o q- Lr• cos •o)(Vo q- L V•) = 2L(sL)Po 

dPo 
(sin •o q- Lr/• cos •o)(Uo q- LUg) q- (sin •o q- Lo'•)(Vo q- LV•) = --2L cos •o 

(dVo + Z drl• (sL)(Uo q- LUg) q- (cos •o -- L• sin •O)\d• • d• / 
= [cos •o + L(a• cot •o -- 2• sin •o)](Po + LP•) 

The zero-order relations are 

Uo= -Vo (twice) 

dVo sL 
Po - dr/• cos •o ¾o 

The first-order relations from the first two equations are now 

(A3) 

(A4) 

sin •o(U• q- V•) q- (r/• cos •o - a•)Vo = 2(sL)Po 

dPo 
sin •o(U• q- V•) - (r/• cos •o - a•)Vo = -2 cos •o dv• 

Sub[raeting [hese and combining wi[h (A4) resul[s in 

d• • • + = XCOS •o/ COS •o 

This relation can be written as [he s[andard Airy equalion 

(A6) 

if we define 

(d •' Vo/d•') - • Vo = 0 (A7) 

COS q•o/ COS 

= •-- •o • (aL)2_ a- 2sin•o (A8) L 2L cos •o 

where a - s/cos •o. (A7) has the two solutions Ai(v) and Bi(v). The Bi(v) 
solution increases exponentially with positive v. It is required to represent 
tudinally traveling waves, for which Vo ~ Ai ñ (-1)1/2Bi, or to form standing 
waves that would satisœy boundary conditions oœ Vo - 0 at two arbitrary values 
of 7. Our philosophy here is to ignore Bi, based on the general hypothesis that the 
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complicated shape of •he real oceans makes a normal mode analysis unsatis- 
factory. [We also remark that for frequencies .• close to 2 sin •o, (aL) 2 of order 
uni•y, and L small (r _> 1), an observation poin• close •o •,o need be only a shor• 
distance equatorward (abou• 1 degree of latitude) of any idealized poleward 
boundary before •he Bi(•) contribution in a normal mode analysis would con- 
tribu•e li•le to t.he solution at the observation point.] The solution wi•hou• B• 
ignores •he passage of waves in a latitudinal direction across • ~ •o. From •he pre- 
liminary ray •rea•men• given by Eckavt [1900, p. 170] i• can be seen •ha• •his 
occurs only for • > 2 sin •o, i.e. for our fl• > 0. Our •rea•men•, with i•s neglec• of 
B•, •herefore ignores •he occurrence of (presumably) •ransien• situations in which 
•he dominan• spectral peak is no• close •o •he inertia frequency 2 sin •o. I• 
should, however, give a reasonable zero-order description of •he s•a•istically 
s•ationary conditions near • - 2 sin •o, although our neglec• of currents and 
horizontal variations in h and N • mus• be kep• in mind. 

In addition •o U.o - - ¾o - -Ai (,•), we have 

P = 4L'•Po = 4L'•[dVo/d•7 - (aL)Vo] (A9) 
We shall require •he combination U• + ¾•, which can be obtained by adding 

(A5) and (AO)' 

U• q- V• = cot •o[2aL(dVo/d•) q- (• q- a'•L ') Vo] 
= co• •o[2aL(dAi(•)/dv) + (• + a'•L')Ai(•)] (A1) 
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