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ABSTRACT

The scattering of oceanic internal gravity waves off random bottom topography is analyzed under the as-
sumptions that (i) the height of the topography is smaller than the vertical wavelength and (ii) the slope of the
topography is smaller than the wave slope. For each frequency, scattering redistributes the incoming energy
flux in horizontal wavenumber space. The scattered wave field approaches an equilibrium state where the energy
flux is equipartitioned in horizontal wavenumber space. For incoming red spectra, this implies a transfer from
low to high wavenumbers, For typical internal wave and bottom spectra, about 6.8% of the incoming energy
flux is redistributed. While this might be less than the flux redistribution caused by reflection off a critical slope,
the scattering process transfers the energy flux to higher wavenumbers than the reflection process. Scattering
might thus be equally or more efficient than reflection in causing high shears and mixing near the bottom.

1. Introduction

The interaction of internal gravity waves with bot-
tom topography has been advocated as a process that
results in mixing near the bottom. The interaction dis-
torts the incoming waves in such a way that they are
more likely to break and cause mixing. Such internal
wave-induced bottom or boundary mixing might sig-
nificantly contribute to basinwide mixing and explain
the discrepancy between the diapycnal diffusivity ob-
served in the ocean interior and the one required by
basinwide heat and mass balances. Observations and
theoretical arguments affirm boundary mixing caused
by internal waves reflected off a critical slope. In this
paper we show that internal waves scattered off short
topographic irregularities might cause even more effi-
cient mixing.

When the wavelength of the incident internal wave
is much smaller than the radius of curvature of the
topography, the wave is reflected as if encountering an
infinite straight slope. The reflection laws then require
that the magnitude of the wave slope be the same for
the incident and reflected wave. At the critical fre-
quency where the wave slope becomes equal to the
bottom slope the wavenumber, energy density, and
shear are greatly amplified and shear instability and
mixing are likely to occur. Energy and shear enhance-
ment at the critical frequency have indeed been ob-
served by Eriksen (1982) at a few sites. To obtain
quantitative estimates Eriksen (1985) considered the
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reflection of a full spectrum of incident waves and cal-
culated the energy flux that is redistributed in wave-
number space. A small fraction of this redistributed
energy flux, if converted to mixing, would be sufficient
to maintain an effective diapycnal diffusivity of mag-
nitude 10~* m? s~ basinwide. To find out how much
of the redistributed energy flux is actually available for
mixing, Garrett and Gilbert (1988) argued that only
waves reflected to high wavenumbers break and pro-
duce mixing. They therefore calculated the flux that is
redistributed to wavenumbers beyond a critical wave-
number where the critical wavenumber is determined
by the requirement that the spectrum up to this wave-
number has an inverse Richardson number of order
one. These calculations support Eriksen’s assertion and
suggest that internal wave-induced boundary mixing
is most efficient at low latitudes and steep slopes. In a
second paper, Gilbert and Garrett (1989) investigate
the effect of finite topography for a few idealized bottom
shapes and conclude that mixing should be larger over
locally convex than concave topography.

Most studies of internal wave scattering or reflection
off particular bottom shapes are based on two papers
by Baines (1971a,b) in which he reduced the problem
to the solution of a Fredholm integral equation of the
second kind. The study treats radiation conditions
properly, finds backward- and forward-reflected waves,
and has to distinguish between flat bumps with slopes
smaller than and steep bumps with slopes larger than
the wave slopes. Baines results are very general, except
for their limitation to waves propagating in a two-di-
mensional vertical plane. A closed form solution of the
Fredholm integral equation can, however, be obtained
only for a few specific simple bottom profiles.

Analyses of the scattering or reflection process usu-
ally assume that the wave equation is linear. No non-
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linear interactions among waves are considered. The
interaction with the bottom topography enters through
the kinematic boundary condition, which requires that
the velocity normal to the topography is zero at the
bottom. This condition is linear in the wave amplitude
-but nonlinear in the bottom height, as can be seen by
expanding the condition at a reference depth. Waves
.can thus be superimposed; topographic components
cannot. The scattering off an arbitrary bottom shape
cannot be obtained by studying the reflection off its
sinusoidal Fourier components. Such superposition
becomes possible, however, when we restrict ourselves
to topography for which the height is smaller than the
vertical wavelength and the slope smaller than the wave
slope. In this limit, the scattering of a fuil spectrum of
incident waves off complex topography can be obtained
by evaluating the scattering of a single wave off a single
sinusoidal bottom Fourier component and summing
over all incident waves and over all bottom Fourier
components. This weak interaction limit will be taken
in this paper.

The weak interaction limit was first applied by Cox
and Sandstrom (1962) to the interaction with bottom
topography using a vertical modal representation of
the internal wave field. Later, Miiller and Olbers (1975)
derived the complete scattering integral in a vertical
WKB approximation. Based on a rough order-of-mag-
nitude estimate, Olbers and Pomphrey (1981) argued
that bottom scattering is unimportant for typical ocean
conditions, but Rubenstein (1988) found significant
transfers in a detailed study. Rubenstein started from
a formula given in Baines (1971a) and derived the
probability that a wave is scattered from wavenumber
k, to wavenumber k,. Unfortunately, he interpreted
this probability as a density in vertical wavenumber
space, whereas it is a probability in horizontal wave-
number space, as can be seen from dimensional ar-
guments. Also, the formula given in Miiller and Olbers
(1975) is not correct. A é function and a numerical
factor are missing. For these reasons, we derive the
scattering integral by a systematic perturbation expan-
sion of the governing equations and boundary condi-
tion. The derivation of the scattering integral is given
in the first part of the paper (sections 2 through 4).
Section 5 introduces the concept of the redistributed
energy flux. In section 6 we then prove an H theorem,
which states that scattering at random bottom topog-
raphy always causes the wave field to approach an
equilibrium spectrum where the energy flux is equi-
partitioned in horizontal wavenumber space. For red
wave spectra this implies a transfer of the energy flux
from low to high wavenumbers, a most significant re-
sult. To evaluate the rate at which the incoming energy
flux is scattered to high wavenumbers, we have to spec-
ify both the spectrum of the incoming wave field and
the spectrum of the bottom topography. Our estimates
of the transfer are based on the Garrett and Munk 1976
internal wave spectral model (Desaubies 1976) and on
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Bell’s (1975) bottom spectrum. Relevant features of
these spectra are discussed in sections 7 and 8. The
transfer rates as a function of frequency and horizontal
wavenumber are given in sections 9 and 10 for the
three- and two-dimensional cases, respectively. Section
11, finally, compares our scattering with Eriksen’s re-
flection results.

Note that the scattering of internal waves at bottom
topography is best analyzed in a representation where
the frequency and the horizontal wavenumber vector
are used as independent variables. The internal wave
vertical wavenumber is then determined by the dis-
persion relation. This representation is most appro-
priate because scattering conserves the frequency and
changes the horizontal wavenumber according to the
simple resonance rule that incident wavenumber plus
topographic wavenumber equals scattered wavenum-
ber. Most intrinsic properties of the scattering are im-
mediately apparent in the frequency-horizontal wave-
number representation but become obscured in any
other representation.

2. Governing equations

To study the scattering of internal gravity waves at
bottom topography, we consider a semi-infinite domain
bounded by a bottom at x; = A(x,, X, ). The linearized
equations for inviscid and incompressible motions in
a uniformly stratified and rotating Boussinesq fluid are

1
du+fzXu= ——Vp—%z
Po Po
Veu=0
dp+ w3936 =0 (2.1)

where the notation is standard. These equations have
internal gravity wave solutions of the form

u(x, t) = a(k)U(k) exp[i(k-x — wt)] + c.c. (2.2)
where a(k) is the wave amplitude, k = (ky, ks, k3) the

wavenumber vector,
k
L:] (k, vil kz)
w

0y (K) ak
(60) -| (i) |
Us(k) * @
_«
k

the polarization vector, and w the frequency given by

the dispersion relation

N2 az + f2 32
k2

Here fand N are the Coriolis and Brunt-Viisila fre-

quency, respectively, and a, 8, and k are the magnitudes

1/2
w=9(k)=+( ) >0. (2.4)
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of the horizontal, vertical, and total wavenumber vec-
tor, respectively.

The interaction of the waves with the bottom to-
pography arises through the kinematic boundary con-
dition

w3 —u,Vpyh =0 at x;=h(x, x) (2.5)

which states that the flow normal to the boundary is
zero. Here u, and V,, are the horizontal velocity and
gradient operator, respectively. To evaluate the inter-
action we represent the bottom topography as a su-
perposition of topographic Fourier components
h(xy, x2) = fd"ab(a)e"""‘ (2.6)
where a = (k,, k,) is the horizontal wavenumber vector
and b(a) = b*(—a) are the topographic amplitudes.
Similarly, we write the internal wave field as the sum
of an incident wave field and a scattered wave field

u(x, 1) = f A f * dlai(X)U(K)
0 0
Xexpli(k-x — Qk)#)] + cc. + f d’a f dk;

X a(k)U(k) exp[i(k-x — Qk)t)] + cc. (2.7)

where g;(k) are the amplitudes of the incident and
as(k) the amplitudes of the scattered waves. The in-
tegration limits for the vertical wavenumber follow
from the radiation condition. Incident waves must have
a downward group velocity; scattered waves, an upward
group velocity. Since the vertical group velocity is given
by

(2.8)

the incident waves must have a positive vertical wave-
number and the scattered waves a negative vertical
wavenumber, as in Eq. (2.7). The amplitudes of the
incident waves, g;(k), are regarded as given. The am-
plitudes of the scattered waves, a,(k), must be calcu-
lated.

3. Perturbation expansion

The interaction between gravity waves and bottom
topography via the kinematic boundary condition is
nonlinear in the topographic amplitude. This becomes
explicit once we expand the boundary condition

u; + h83u3 + % h26363u3 + oo — u,,-V,,h

- haguh-th — =0 (31)
at x; = 0, which becomes

us — Vy-(hu,) — V;,(% h263uh) — e =0

at x3=0 (3.2)
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upon using the incompressibility condition. We now
assume (i) that the height of the topography is smaller
than the vertical scale 87! of the waves, that is,

g=hB<1, (3.3)

(ii) that the slope ¥ = |V, k| of the topography is
smaller than the slope s = a/8 of the waves, that is,

©=17/s<1, (3.4)

and (iii) that the parameters ¢; and ¢, are of comparable
magnitude e. The expansion then represents an expan-
sion with respect to the small parameter €. The terms
of order » in the topographic amplitude are of order
€¢". Note that the slope of internal waves is given by

5= (22_—_12)”2_

N? — »?

Hence, the expansion will break down for near-inertial
oscillation where s approaches zero. A more quanti-
tative discussion of the range of validity of our pertur-
bation expansion will be given in section 8.

Next, we expand the amplitudes of the scattered
waves with respect to ¢

as(k) = a,; (k) + aV(k) + a,P(k) + - - - (3.6)
where a,("(k) is of order 7 in . The given amplitudes
of the incident wave field are regarded as being of zeroth

order. These amplitude expansions imply an expansion
of the velocity field

a=u@O+aD+ua@+ ... (3.7)

which we substitute into the kinematic boundary con-
dition (3.2). The first three orders of the boundary
condition are then given by

0
602 u3( )= 0

e u3“) = V,,(hu;,(o))

(3.5)

e w'® = v,(m,") + v,,(% hzu,,‘°’) . (3.8)

Generally, the nth order of the boundary condition
allows one-to calculate the nth-order amplitude
a,((k) in terms of lower-order and incident ampli-
tudes. We will calculate the amplitudes of the scattered
waves up to second order, using (3.8).

Upon substitution of the representation (2.7) and
the expansion (3.6) the zeroth order of the boundary
condition takes the explicit form

fa'za J:o dksai(k)Us(k) expli(a-x — Qk)?)]

0
+ f d2a f dk3as(°)(k) U3(k)

X expli(a-x — QAk))] =0 (3.9)
which implies

a2 a, k;) = —ai(a, —k3) (3.10)
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for k; < 0 since Us(a, —k3) = Us(a, k;). To zeroth
order, the scattered wave has the same horizontal
wavenumber, the opposite vertical wavenumber, and
hence the same frequency as the incident wave. The
zeroth order is, of course, just the reflection at a flat
bottom, & = 0. Additionally, we find the relations

llh(O) =2 f d2a f dk;;a,-(k)
0

X Up(k) exp[i{a@-x — Q)] +cc. (3.11)

0
f do f_ dkza (k) Us(k) expli(a-x ~ Qk)1)]
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and
9, =0 (3.12)

at x; = 0, which follow from U,(a, —k;) = —Ui(a,
k3) and are needed in the following.

Note that incident (scattered) waves have positive
(negative) vertical wavenumbers. Equation (3.10) is
thus defined only for k; < 0. This restriction to per-
missible vertical wavenumbers will always be assumed
in the following.

The first-order boundary condition takes the explicit
form

=2 f d*o J:O dk’ f d’o"i(a’ + a")-Up(k)ai(k')b(a”) exp {i[(a’ + a@")-x ~ QKk')?1} (3.13)

which implies
a;' (k) Us(k)
[v3(k)|

To first order, an incident internal wave a;(k’) of hor-
izontal wavenumber @', vertical wavenumber k3, and
frequency o' = Q(a’, k3) interacts with a topographic
Fourier component b(a”) of horizontal wavenumber
a” to produce a scattered wave at horizontal wave-
number

a=a+a

(3.15)
at frequency

w=Na, k3) = N, k) (3.16)

a; P (k) Us(k)
lvs(k)|

which describes the scattering of a scattered wave.

The expression (3.10), (3.14), and (3.19) for the
amplitudes a,?(k), a,"(k), and a,?(k) are the
principal results of this section. They are obtained by
a perturbation expansion of the problem with respect
to the small parameter e.

4. Energy spectra

We now assume that the amplitudes of the internal
wave field are random realizations from a horizontally
homogeneous and stationary ensemble. The wave am-
plitudes then satisfy the conditions

{a(k)) =0
{a®)a* (k) =3 5(k — k) E(k)

(4.1)

(4.2)

=fd2a’ fow dk’;fdzoz”Zia-U;,(k’)a,-(k’)b(a”)é(a’+ a’ — a)d(Uk) — AKk')). (3.14)

and hence at vertical wavenumber

ks = — = k. (3.17)
[24

The efficiency of the scattering process is given by the
scattering cross section
D= Jv3(k)|
Us(k) |
The total effect is obtained by summing over all inci-
dent waves and topographic components that satisfy
the resonance conditions (3.15) and (3.16).

Similarly, we obtain from the second-order boundary
condition

2ia- Up(k"). (3.18)

= f d*o f_o dk’ f d*oia- Uy(kK')a V(K" )b(a")o(a’ + a” — a)5(Ak) — UKk’)), (3.19)

where angle brackets denote ensemble averages. The
polarization vector (2.3) is normalized in such a way
that E(k) represents the total energy density spectrum,
that is,

f PRE(K) = 3 ((u-u) + N} (E?)).  (43)

Here £ is the vertical displacement. For positive (neg-
ative) vertical wavenumbers E (k) represents the spec-
trum of the incoming (scattered) waves.

Similarly, we assume

(b(a)) =0 (4.4)
(b(a)b*(a')) = S(a)é(a— a') (4.5)

where S(a) is the bottom spectrum normalized such
that the variance of the topography is given by
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(h?)y = fsz(a). (4.6)
We further assume that the amplitudes of the incident
wave field and the amplitudes of the topography are
uncorrelated.

To calculate the spectrum of the scattered wave field,
we substitute the amplitude expansion (3.6) into the
definition (4.2). In a straightforward manner we obtain
an expansion of the spectrum of the scattered wave
field. At lowest order we obtain

E"(a, k;) = E{a, —k;) (4.7)

upon substituting our solution (3.10) for a,”(k). The
scattered spectrum equals the incident wave spectrum
at negative vertical wavenumbers. This result describes
the reflection at a flat bottom # = 0. The superscript
“00” is a reminder that this order arises from the prod-
uct of two zeroth-order amplitudes.

At first order we obtain

E(k)=0 (4.8)

since the incident waves and the bottom amplitudes
are uncorrelated. At second order we find two terms.
The first term arises from a product of two first-order
amplitudes and is given by

E(k) = f do fo dk’

xf d* ' Tix . E(K)S(a”) (4.9)

upon substitution of our solution (3.14). The second
term arises from two products of a zeroth- and a sec-
ond-order amplitude and is given by

E%(k) =fd2a’J; dk’

X f B2’ Ty wEx(K)S(a") (4.10)

upon substitution of our solutions (3.10) and (3.19).
The transfer function is given in both cases by

B8’ S

Thaw = 45— “a-n
o~ oa w

2
a-a+i

X 8(a' + a’ — a)6( '3+%k3) (4.11)

with n = (kz, —k;). The first term, E,''(k), is a gain
term. It describes the gain of wave energy at wavenum-
ber (a, k;) due to all incident waves (@', k3) that are
scattered at bottom components a” into wavenumber

a=da+a’ (4.12)

ks = — = kb. (4.13)
o
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The second condition implies that the frequency of the
incident and scattered waves are the same. This term
is often written in the form

Es“(k) = f dza'J; dksp(k, K)E(X') (4.14)
with
Pk, K) = [ P TiurS(a)  (415)

being interpreted as the probability that a wave of
wavenumber k' is scattered into a wave of wave-
number k.

The second term, E,%, is a loss term. It describes
the loss of energy due to the fact that an incident wave
(a, —k3) that would have appeared at wavenumber (a,
ks3) upon reflection is scattered to a different wave-
number. This term is often written as

E%(k) = —v(K)Ei(k)

with the “damping” coefficient

(4.16)

v(k) = fdza’ fow disp(k, k'), (4.17)

The terms E;'' and E? are of the same order. One
must go to the second order in the amplitude expansion
to obtain the first nontrivial correction to the scattered
spectrum

Es(a’ k3) - Ei(as _k3)
= EM(K) + E,2(k) + O(¢)

= f dZa/ f dk’:, f dza”Ti,k',,”S(a”)
0

X [E(k') — E{k)] + O(€®). (4.18)

Equation (4.18) is the principal result of this section.
Note that it differs by an algebraic factor and a 6 func-
tion from the formula given in Miiller and Olbers
(1975).

Equation (4.18) can be used to calculate the energy
density E; of the scattered wave field when the energy
density E; of the incident wave field is given. This is
the point of view we will take in this paper. Equation
(4.18) can also be used as a lower boundary condition
for the radiation balance equation. The radiation bal-
ance equation describes the slow evolution (in a WKB
sense) of the energy density spectrum due to propa-
gation, refraction, and interaction processes. In terms
of the action density spectrum 4 (k, x, ¢), which is the
energy density spectrum divided by the intrinsic fre-
quency, the radiation balance equation takes the
suggestive form (Miiller and Olbers 1975)

0A+v:VA+r-Vied=S§ (4.19)

where v is the group velocity, r the rate of refraction,
and S the source function representing all the inter-
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action processes that generate, transfer, and dissipate
action. If the source function is zero, action is con-
served. The radiation balance equation must be aug-
mented by radiation conditions at the boundaries that
determine the action or energy flux through the
boundary. At the bottom such radiation conditions take
the general form

vi(a, k3)E(a, k3) + vi(a, —k3)E(a, —k3)
=D(a, k;) at x3=0 (4.20)

where D(a, k3) is the net flux of energy through the
boundary. For bottom scattering the net energy flux
through the bottom is given by

D(a, k3) = Fy(a, k3) + F(a, —k3)
= v3(aa k3)[E(a’ k3) - Ei(ay _k3)]
= v3(k)[E," (k) + E,(k)] + O(¢?), (4.21)

where F; is the energy flux of the scattered waves and
F; the energy flux of the incident waves.

5. The redistributed energy flux

In the derivation of the scattering integral (4.18) we
have followed the recipes of Miiller and Olbers (1975);
especially, we have used the three components of the
wavenumber vector as independent variables and in-
ferred the frequency from the dispersion relation (2.4).
For the actual discussion and evaluation of the scat-
tering process, it is much more convenient to change
from the k = {a, k;} representation to the {a, w, u}
representation where u = sgn(k;) and @ > 0 and to
infer the vertical wavenumber from

NZ — 0)2 1/2
- a— o,
wz _f2)

Incident waves have u = +1 and scattered waves pu
= —1. This representation is more convenient since
bottom scattering does not change the frequency.

In {a, 0} space, the net flux of energy through the

bottom is given by
Ds(as ‘.\)) = Fs(a’ w) + Fi(a, (0)

= fdza,fdzalle:,a’,a”(w)S(a”)

ks = sgn(ka)( (5.1)

X [Ei(a', ) 2D E(a 0) Z(—“’—)] (5.2)
« (43
where
. N’ —o? 1
Ta,a’,a"(w) =2 2 _;’2 aar

ia +a" —a). (53)

MULLER AND XU

479
The function
(wl _f2)3/2(N2 _ wZ)I/Z

= 5.4
V(w) w(NZ _fz) ( )

arises because the vertical group velocity is given by

V(w

U3(a, w, ”’)z _”__a__z (5'5)

in the {a, w, u} representation; Dy(a, w) is the net
energy flux through the bottom at horizontal wave-
number a and frequency w. The flux is due to an in-
coming wave { @, w, u = +1} and a scattered wave { a,
w, ¢ = —1}. Since the transfer function T 4/a(w) is
symmetric in @ and a', whereas the expression in braces
is antisymmetric in a and o', we find

fdzaDs(a, w)=0. (5.6)
The integrated energy flux through the bottom vanishes
for each frequency. For each frequency, bottom scat-
tering only redistributes the incoming energy flux in
horizontal wavenumber space.

Note that throughout this paper, spectra are always

normalized such that integration over their arguments
gives the variance. Therefore,

N 0
f doDy(a, v) = f dksDy(a, k3) (5.7)
f -

N 0
f dwE(a, ) = f dk;E(a, k3) (5.8)
i —c0
in (5.2).

6. Equilibrium solution

It immediately follows from Eq. (5.2) that Dy(a, w)
= 0 if, and only if, the incident energy density spectrum
is of the form

a
V(w)

where fis a positive but otherwise arbitrary function
of frequency. This arbitrary function reflects the fact
that bottom scattering does not change the frequency
of the incoming waves. Bottom scattering does not
spread information between frequencies. All frequen-
cies are independent. For the equilibrium solution the
incoming energy flux

Fia, w) = v3(a@, 0, p = +1)E@, 0) = —f(w) (6.2)

is equipartitioned over all horizontal wavenumbers, a
result that suggests a statistical mechanics interpreta-
tion. Indeed, the equilibrium solution (6.1) is the so-
lution that maximizes the entropy functional

E(a, ) = f(w) (6.1)

S(w) = fdza InE(a ) (6.3)
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subject to the constraint that the integrated incident
energy flux is a constant

f d’eEi(a, w) fo“’—) = const. (6.4)

This can be seen by varying the entropy functional
with respect to E; and representing the constraint by
Lagrange multipliers A(w) = f~!(w)

I N D SR A C) ) ey
6S—fda{E,-(a,w) AMw) - ]5E,(a,w)

1
62 = -—f 2 ——— 5 i s 2 S . .
S daE;Z(a, w)( Ei(a, w))*<0. (6.5)
Furthermore, we can prove an H theorem. Bottom

scattering increases the entropy
Eya, »)
E i( a, w )

= 2 Eya, w) - E(a, w)
~fdaln(l+ E(a o) )

~ 2 E:(aa w) — Ei(a’ (.IJ)
= fd “ E(a, »)

AS‘-=fd2a In

- fdzafdza'fdz“”T-s-,a',av(w)S(a")
« [E,-(a’, w) Eda, w)]

Ei(a, w) o a

= f dza f dZal f d2all ;1‘;, T:,u’,a"(w)s(a”)

X Ei(aa w)Ei(a': O))

1 o o 2

= - =0. (6.
AM@M Mmm}o (66)
Therefore, bottom scattering will cause the energy or
energy flux spectra to approach the equilibrium forms.
Of course, the equilibrium spectra diverge at high
wavenumbers, as is expected for a system with an in-
finite number of degrees of freedom. Nevertheless, the
H theorem implies that the general trend of bottom
scattering must be a transfer of energy from low to
high horizontal wavenumbers. To evaluate the rate at
which the incoming energy is scattered to high wave-
numbers, we have to specify both the spectrum of the
incoming internal wave field and the spectrum of the
bottom topography. We do this in the next two sections.

7. The Garrett and Munk spectral model

Spectral models of the oceanic internal gravity wave
field have been discussed at length in the literature (e.g.,
Olbers 1983). Here we list, for definiteness, the version
that we will apply and point out the features that are

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 22

relevant for the bottom-scattering problem. Since we
have formulated the problem in terms of a continuous
vertical wavenumber, we use the version generally re-
ferred to as the GM76 spectral model (Desaubies
1976). It is essentially equivalent to the Cairns and
Williams (1976) and Munk (1981) versions, which
are, however, formulated in terms of discrete vertical
mode numbers.

The GM76 model assumes that the distribution of
energy is horizontally isotropic and that the energy
spectrum per unit mass as a function of frequency and
horizontal wavenumber is given in the separable form

E(w, a)= szNoEoB(w)M (7.1)

where
B(w) = %%(wz —fH2 (7.2)
AN) =7%(1 + A2y (7.3)

and Ny =52X103s, Eg=6X107%,and b = 1.3
X 103 m. The bandwidth is given by

2 __r2:\1/2
cmm{%f%)m (7.4)
where
N2__ 2 1/2'
m=ﬂﬁf%)u (7.5)

Here j, = 3 is the frequency-independent equivalent
mode-number bandwidth. The spectrum also includes
a high wavenumber cutoff

2 _ 20172
ay(w) = (;_2:“{_0—2) Buc

where B,. = 2r/10 m™' is a frequency-independent
vertical cutoff wavenumber. In applications we will al-
ways assume N = 0.4 cph (deep ocean) and f= 0.042
cph (midlatitude, 30°) as standard parameters.

The vertical energy flux, F;(a, w), has a nonintegra-
ble singularity proportional to «~! as a approaches
zero. To remove this singularity we introduce a lower
cutoff wavenumber, o, such that the integrated energy
flux is equal to the flux obtained in a discrete modal
representation (Munk 1981). We therefore require

(7.6)

[[deFiw, )= 3 Py 1)
e j=1
which implies
w2 —f2 12 5
a(w) = (Noz — wz) ‘b‘ Jic (7.8)
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FIG. 1. Incident energy flux | Fi(a, )| (solid line), bottom spec-
trum S(a) (dash-dotted line), and redistributed energy flux D,(e,
w) (dashed line) as a function of horizontal wavenumber for three
different frequencies. The representation is variance conserving. The
wavenumbers «; and «, are the bandwidth and the high wavenumber
cutoff of the topographic spectrum, respectively. The wavenumbers
ay, oy, and a,. are the low wavenumber cutoff, the bandwidth, and
the high wavenumber cutoff of the incident internal wave spectrum,
respectively.
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with ji. = 0.5, a sensible result. The incident energy
flux F;(a, w) as a function of « for three values of w is
shown as part of Fig. 1. The integrated fluxes F;(a)
= [ doFi(a, w) and Fi(w) = [ daFi(a, ) are shown
as part of Figs. 3 and 4. The total incident energy flux,
integrated over all horizontal wavenumbers and all
frequencies, is F; = 17.6 mW m™2 for our standard
parameters.

8. Bell’s bottom spectrum

The statistical representation of seafloor topography
meets with problems related to inhomogeneity and the
presence of deterministic features. Nevertheless, spec-
tral representation captures most of the relevant prop-
erties of topography for our scattering problem. Spe-
cifically, we will apply the bottom spectrum advocated
by Bell (1975), which is of the form

S(a) = AC(a). (8.1)
Here A is the height variance
A={(h*) =(125m)* (8.2)

and C(«) the normalized wavenumber distribution

oo
(0[2 + a12)3/2 ’

0, for a> aj.

for a<a;

Cla) = (8.3)

The bandwidth «, and the cutoff wavenumber a; have
the values

a; =27-25X 107 m™ (8.4)

and

@ =27-2.5X 103 m™, (8.5)

respectively,

Having specified the spectra of the incoming internal
wave field and of the bottom topography, we can now
examine the magnitudes of our expansion parameters
€ = h/B and ¢ = /s in the root-mean-square sense.
The GM spectrum implies a vertical wavenumber
variance of

fdaE(w, «)B?
2 N
<62>= =~ Baluc =~ (]0—072;) F
fdaE(w, ) 0
(8.6)
This, together with (8.2), implies
125 ( N\'/2
€ = 2w 100 (N—O) (8.7)

which is of order 1 for the deep ocean where N/N,
~ 107", Similarly, Bell’s spectrum implies a slope
variance of
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¥ = ()7 + (3:h)%)
- f daS(e)a? = Amay ~ (02)°  (8.8)
and hence

2 27172
iv'z_w_z) (8.9)
w*—f

which is larger than 1 for w < 2 /. For typical ocean
conditions our perturbation expansion is only margin-
ally valid and breaks down for near-inertial oscillations.
Our results will, however, be qualitatively correct since
the approach to the equipartitioned spectrum is a gen-
eral tendency not limited to weak interactions. Also,
the approach to equilibrium is generally faster the larger
the nonlinearities are. Hence, our results can be ex-
pected to represent a lower bound.

€ = 02(

9. Transfer rates

The evaluation of the redistributed energy flux (5.2)
for the Garrett and Munk internal wave spectrum and
for Bell’s bottom spectrum is straightforward, though
the integral has to be evaluated numerically. The result
is presented in Fig. 1, which shows the incident energy
flux Fi(a, w), the bottom spectrum S(a), and the re-
distributed energy flux D(a, w) as a function of « for
three different frequencies. The representation is vari-
ance conserving. Bottom scattering redistributes the
energy flux from low to high wavenumbers. There is
no net flux through the bottom. The area of the negative
lobe equals the area of the positive lobe. The redistri-
bution is more efficient at low than at high frequencies.

A contour plot of D,(«, w) in (¢, w) space is shown

awD(a, w): mWm™?

] : / N
ie
y- -
o
3 a, ;a_
> i
o :
<
Sl i
= S
d 1
&+ t ; < o
04—
< - / 0.6—+
D P e e L R P
V) 10 10 10 10 10

Horizontal Wavenumber a: cpm

FIG. 2. Contours of redistributed energy flux Dy(«, w) as a function
of horizontal wavenumber and frequency in a variance-conserving
representation. The dotted lines are the low wavenumber cutoff oy (w),
the bandwidth «,(w) and high wavenumber cutoff e,.(w), respec-
tively.
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in Fig. 2, again showing the main features: redistri-
bution from low to high wavenumbers, most efficiently
at low frequencies. The total redistributed energy flux
(the total energy flux in the positive or negative lobe)
is

D =%fdwfda'D‘(a’ w)| ~ 1.20 mW m™?
(9.1)

for our standard parameters. This is about 6.8% of the
total incoming energy flux of 17.6 mW m™2, a signif-
icant fraction. '

Closer inspection of the transfer function and of the
scales of the bottom and internal wave spectrum reveals
that waves scattered to high wavenumbers come pre-
dominantly from low wavenumbers. In the gain term
we can hence assume o <€ a,, o”, and

E(d', w) = E(w)é(a').
The gain term then becomes

(9.2)

Ds“(aa w)
N~ w1+ /2 V(0)
N2t o E@aS(a) (93)

and is proportional to the incident energy flux times
the expansion parameter ¢,2. Similarly, we can assume
o <€ o, o’ in the loss term and obtain

D (a, w)
N’ — 0’1’ +f?
wl=f?2 ?

o~ —
~

V(w)E(a, o)C (9.4)
where
C= f d*aaS(a) = Aa.{ln 2oz _ 1} . (9.5
ay

The approximations (9.3) and (9.4 ) are indistinguish-
able from the numericaily evaluated solution when

- plotted in Fig. 1. They are particularly useful to estab-

lish the dependence of the redistributed energy flux on
the various parameters that enter the problem.

Integration of (9.3) and (9.4 ) over horizontal wave-
number « yields

DM (w) = fdzaDs”(a, )

N2 — 21w+ f2
=2 wz_;’z 5“’ —— V()E(@)C (9.6)

and
D% (w) = fdzaDsoz(a, w) = ~D(w). (9.7)

The approximations of the transfer integral are hence
self-consistent. A further integration over w yields the
total flux
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DM = fdw f d*aD'\ (@, w)

= 2C-1- bIN2NLE, 24 (9.8)
2 w3

which depends linearly on N?, 4, and «; and logarith-
mically on «;. For our standard parameters we find
D' ~ 3.3 mW m™2, which is larger than the redis-
tributed energy flux D,* ~ 1.20 mW m™2 since D,'(a,
w) and D,%*(a, w) cancel in part of the (a, w) plane.
One can construct various integrated measures of
the redistributed energy flux. One such measure is

prw) =} [ daiD(@w)  (99)

which integrates only over the positive (or negative)
lobe of Dy( @, ). The function D,;* (w) is shown in Fig.
3 and again shows that most of the redistribution occurs
at low frequencies. Of course [ dwD,*(w) = Ds* = 1.20

. mW m™2. Though one could construct a similar mea-
sure in wavenumber space, we show in Fig. 4 the in-
tegrated redistributed energy flux

Dy(a) = f doD(a, w) (9.10)

which characterizes the actual redistribution in hori-
zontal wavenumber space. Here D;(«) is smaller than
D,*(a)since during frequency integration cancellations
of positive and negative contributions occur. The zero
crossings of Dy(a, w) depend on frequency and wave-
number (see Fig. 2). The effect is, however, small. The
total energy flux in the positive (or negative) lobe of
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F1G. 3. Incident energy flux | F;(w)| (solid line) and redistributed

energy flux D;*(w) (dashed line) as a function of frequency in a
variance-conserving representation.
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FIG. 4. Incident energy flux | Fi(a)| (solid line) and redistributed
energy flux D;(a) (dashed line) as a function of horizontal wave-
number in a variance-conserving representation.

Fig. 4 is 1.14 mW m™2, only slightly smaller than the
total redistributed energy flux D, ~ 1.20 mW m™2,

10. Two-dimensional limit

Most of the previous investigations of the scattering
problem are based on the papers by Baines (1971a,b),
who studied the scattering process under the assump-
tion that both wave motions and bottom topography
are independent of the x; coordinate. This two-dimen-
sional limit can be obtained from our three-dimen-
sional analysis by setting

E(w, @) = E(w, 01)8( ) (10.1)
S(a) = S(a;)d(ez) (10.2)

in the scattering integral (5.2). For symmetric E(w,
a,) we then obtain

DSZD(ala w)
- f_w dety P(en, o) [Filal, ) — Fi(an, @)] (10.3)

where

N2 — ?

wZ _f2
= 2|ksk3 |[S(an — a}) + S(a1 + a1)] (10.4)

is the probability density that a wave of wavenumber
a) is scattered into wavenumber «;. This expression
for P(«a;, o) is identical to the one of Rubenstein
(1988), except that he interpreted it as a probability
density with respect to vertical wavenumber, whereas

P(ay, at) =2 |l |.S(e ~ )
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it is a density with respect to horizontal wavenumber,
as can be seen by its dimension. Thus, our resuits differ

by a factor of
w2 —f2 1/2
(4]

from Rubenstein’s results. This factor does not affect
the qualitative behavior of the flux redistribution but
its magnitude. Our redistributed energy flux is smaller
than the one calculated by Rubenstein.

The redistributed energy flux (10.3) for the two-di-
mensional geometry does not differ much from the
three-dimensional result. The total redistributed energy
flux is 1.07 mW m™2, about 10% smaller.

11. Comparison with reflection

Reflection off a sloping bottom also leads to a re-
distribution of the energy flux in wavenumber space.
To compare the reflection and scattering process, we
consider without loss of generality a uniformly sloping
bottom in x, direction, x3 = vX,, where ¥ = tangy is
the slope and 0 < ¢y < w/2. The normal vector n
= (—%, 0, +1) is assumed to point into the fluid. Re-
flection requires that the velocity of the incident and
reflected wave normal to the slope is identically zero
on the slope. This implies the reflection laws

AUk") = UK (11.1)
k' = kyi . (11.2)
k]’ + ‘)’k3r = k]i + 'yk3i (1[3)

which state that the frequency and the wavenumber
parallel to the bottom do not change upon reflection.
The superscripts i and 7 stand for incident and reflected,
respectively.

The three-dimensional reflection laws have been an-
alyzed by Eriksen (1982, 1985) and turn out to be
algebraically quite complex. For comparison with the
scattering process we consider, without loss of essential
physics, the simpler two-dimensional case; that is, we
assume k' = k,” = 0. The reflection law can then easily
be visualized in the (k;, k3) plane of Fig. 5, which shows
the frequency cone
k32 _ N L w2
k12 w2 _ f2
for a particular frequency. Constancy of frequency and
alongslope wavenumber require that the incident and
reflected wavenumbers lie on the intersections of the
frequency cone with lines perpendicular to the bottom
slope. A wave is an incident wave when its group ve-
locity is toward the slope, n- v < 0, and a reflected
wave when its group velocity is away from the slope,
n-v > 0. Figure 6 shows the regions of permissible

incident wavenumbers in (k,, k3) space and the regions
to which the incident wavenumbers are reflected. A

tan2f = (11.4)

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 22

(b)

FIG. 5. Schematic diagram showing the two-dimensional reflection
laws in the horizontal-vertical wavenumber plane. The heavy solid
straight line represents the bottom slope, the light solid lines represent
the frequency cone. The dashed line is perpendicular to the bottom

slope. An incoming wave with wavenumber OP is therefore reflected
to a wave with wavenumber OP'. If the slope of dashed line is smaller
than the slope of the frequency cone, the reflection is subcritical as

in (a). If the slope of the dashed line is larger than the slope of the
frequency cone, the reflection is supercritical as in (b).

particular role in this diagram is played by the fre-
quency cone that has a slope perpendicular to the bot-
tom slope, tan%§ = cot?p,, which is the cone of the
critical frequency

w’ = N%sin%py + 2 cos2pyp. (11.5)
In this case v+ n = O for either the incident or reflected
wave. The behavior of the reflection process is different
for supercritical, w > w,, and subcritical, »w < w,, fre-
quencies. The areas of super- and subcritical reflection
are also indicated in Fig. 6.

The amplitudes of incoming and reflected waves
must satisfy the relation

a(k )n'rU(k ) , ai(k')n- ’U(k ) _ 0 (1L6)
{vs (k)| lvs(k")|

where the representation of the internal wave field is

analogous to (2.7). This relation becomes singular

when n- U = 0, which again occurs at the critical fre-
quency w,. If a statistical ensemble is introduced, the
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FIG. 6. Regions of permissible incident and reflective waves in the
horizontal-vertical wavenumber plane. The heavy solid straight line
represents the bottom slope. The light solid lines represent the critical
frequency cone. The cross-hatched and stippled regions are permissible
incident wavenumbers. For the cross-hatched regions the reflection
is subcritical, for the stippled region the reflection is supercritical.
The regions to which the incident wavenumbers become reflected
are indicated by the arrows.

relation between reflected and incident energy density
spectrum takes the simple form

E.(k(, ks') _ (n-UK)\?{( |vs(k")]
Ei(ki, ki) ( los(k")| ) (n- U(k")
which is equivalent to Eriksen’s (1985) relation
E(o, ky) _ ( k_s)
E(o', k3') k'
upon change of independent variables. These relations
are of course equivalent to the condition

E.(k/, ki) In- v(k/, ki) | dki'dky
Ei(klia ksi)|ﬂ' V(kli, k3i)| dklidk3i

which states that there is no energy flux through the
bottom. This statement has the same form in any rep-
resentation.

For comparison with the scattering process we have
to calculate the redistributed energy flux

Dyw, a) = F(w, o) + F(w, @) (11.10)

as a function of frequency and horizontal wavenumber
a = k. Since for each value of w and « there are
two reflected waves with inclination 6, and 6,[0
= arctan(ks/k,)] and two incident waves with incli-
nations 83 and 6,, the redistributed energy flux is the
sum of four terms

D,(6, a) = E\(6,, a)va(01, @) + E(62, a)n(02, )
— Ei(63, a)v,(63, @) — Ei(84, a)v,(0s, a) (11.11)

2
) =1 (11.7)

(11.8)

=1 (119)
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where
v,,(0, 0‘) = |ll' V|

N2 _f2

wa

sinf cos?8 cos(f — ¢p)| (11.12)

is the magnitude of the normal component of the group
velocity. In (6, ) space the reflection laws take the

form
—0;, for w> w,
8, = (11.13)
—8;,— 7w, for w<ow,
i _ 005(0r+ 900) (1114)
o |cos(d, — ¢o)
Er(ara ar) o
Ei(0;,a') o ( )
which imply
2 cos(8; — ¢o)
=2 | Elw ajf————""—|] ~ Eiw,
D, a) E]( (w a cos(6, + ¢0) ) (w a))
cos(8; + ¢o)
(0, ) |————|. (11.16
X vl ) cos(8; — o) ( )

Hence, the redistributed flux consists of two contri-
butions. If we choose 6, to be in the third quadrant,
then

cos(6: + ¢o) =R<I, (11.17)
cos(f, — o)

and
costlat el _p-in g (1118)
cos(f — o)

In the first contribution the reflected waves come from
larger horizontal wavenumbers; in the second contri-
bution from smaller horizontal wavenumbers. These
two contributions are shown in Fig. 7 for a frequency
w = 1.5 f. The first contribution redistributes the energy
flux from higher to lower wavenumbers, the second
contribution from lower to higher wavenumbers. In
total, there is a redistribution from medium toward
lower and higher wavenumbers (Fig. 8). In Figs. 7 and
8 the bottom slope is v = 0.07, implying a critical
frequency w, = 1.2 f for our standard parameters. When
w approaches the critical frequency, R becomes zero
and waves are reflected to zero and infinite wave-
number.

The frequency-integrated redistributed energy flux
D,(a) = [ dwD/(a, ») is shown in Fig. 9. The flux is
mainly redistributed from medium to higher wave-
numbers with only a small fraction reflected to lower
wavenumbers. The total flux in the positive (or nega-
tive) lobe is about 2.86 mW m~2, about 15.7% of the
incoming energy flux of 18.2 mW m™2 Note that the
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FIG. 7. The two contributions to the redistributed energy flux for
the reflection process. The incident energy flux | Fi(«a, w)| (solid
line), the reflected energy flux F,(«, w) (dashed line), and the re-
distributed flux D,(a, w) (dotted line) are shown as a function of
horizontal wavenumber « for frequency w = 1.5 fin a variance-con-
serving representation. The bottom slope is v = 0.07 and the critical
frequency is w, = 1.2f. In case (a) the reflected waves have wave-
numbers in the third quadrant. Reflection redistributes the energy
flux from high to low wavenumbers. In case (b) the incident waves
have wavenumbers in the first quadrant. Reflection redistributes the
energy flux from low to high wavenumbers. The wavenumber ay is
the low wavenumber cutoff of the internal wave spectrum.

incident energy fluxes differ slightly for the scattering
and reflection process. For the scattering problem, the
incident flux is the downward flux; for the reflection
problem, the incident flux is the flux normal to the
slope. Most of the redistribution comes from frequen-
cies around the critical frequency. This is evident from
Fig. 10, which shows the redistributed energy flux
DY (w) = 2 [ da|D,(w, «)| as a function of fre-
quency. The total redistributed energy flux is D,"
=3.89 mW m™2,

All our results are of course compatible with Erik-
sen’s ( 1985) analysis of the reflection process. Here we
have given the results in the («;, «) representation in
order to facilitate the comparison with the scattering
process. The essence of this comparison is captured in
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Fig. 11, which compares D(«) for the reflection and
scattering processes. Reflection redistributes a larger
amount of the incoming energy flux than does scat-
tering (2.86 mW m™2 as opposed to 1.07 mW m™).
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in a variance-conserving representation. The bottom slope is v
= 0.07 and the critical frequency is w, = 1.2 f. The wavenumbers
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wavenumber cutoff of the incident internal wave field, respectively.
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However, scattering transfers the energy flux to much
higher wavenumbers and might hence be more efficient
than reflection in increasing the shear and inverse
Richardson number. Indeed, Garrett and Gilbert
(1988) find that the energy flux has to be transferred
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FIG. 10. Reflection at a straight slope. Incident energy flux | Fy(w)|
(solid line) and redistributed energy flux D,*(w) (dashed line) as a
function of frequency in a variance-conserving plot. The bottom slope
is ¥ = 0.07 and the critical frequency is w. = 1.2 f.
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FG. 11. Comparison of two-dimensional scattering and reflection.
Incident energy flux | Fi(a)| (solid line), energy flux D.(«) redis-
tributed by scattering (dashed line), and energy flux D,( «) redistrib-
uted by reflection (dotted line) in a variance-conserving represen-
tation.

beyond a critical wavenumber a, ~ 2 X 107* cpm to
lower the Richardson number below unity and to be-
come available for mixing. Using this critical wave-
number we find that reflection liberates 0.25 mW m™2
for mixing, whereas scattering liberates 0.85 mW m™2,
more than three times as much! Of course, these num-
bers hold only for our standard parameters (y = 0.07,
f=0.042 cph, N = 0.4 cph, etc.), which are supposed
to represent typical ocean conditions. As shown in
Garrett and Gilbert, the transfer to high wavenumbers
by critical reflection is enhanced for steeper slopes and
smaller f/N values. We find that scattering becomes
more efficient for larger values of N and larger and
more rugged topography.

12. Summary and conclusion

When internal waves interact with bottom topog-
raphy, they change their horizontal wavenumber but
not their frequency. There are at least two limiting cases
where incoming low wavenumbers are changed to
much larger outgoing wavenumbers. One process is
reflection at a critical or near-critical slope. The other
process is scattering at high-wavenumber bottom ir-
regularities. In this paper we analyzed the scattering
process and compared it to critical reflection analyzed
previously by Eriksen (1982, 1985), Garrett and Gil-
bert (1988), and Gilbert and Garrett (1989). The scat-
tering or reflection to high wavenumbers is of impor-
tance since high-wavenumber waves are likely to break
and cause mixing. Such internal wave-induced mixing
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near boundaries might significantly contribute to ba-
sinwide mixing and explain discrepancies between
mixing observed in the ocean interior and required to
satisfy basin heat and mass balances.

The scattering process was analyzed in the weak in-
teraction limit where both waves and bottom Fourier
components can be superimposed. The weak interac-
tion limit requires the vertical wavelength to be larger
than the bottom height and the wave slope to be larger
than the bottom slope. For typical ocean conditions
these conditions are only marginally satisfied, especially
the slope condition, which breaks down for near-in-
ertial waves. On the other hand, internal waves inter-
acting with bottom topography tend to approach a sta-
tistical equilibrium, where for each frequency the en-
ergy flux is equipartitioned in horizontal wavenumber
space. Indeed, we were able to explicitly prove an H
theorem in the weak interaction limit. As the inter-
action between waves and topography becomes stron-
ger, one expects the approach toward statistical equi-
librium to be more efficient. Our weak interaction re-
sults might therefore represent lower bounds.

The derivation of the scattering integral in the weak
interaction limit is straightforward but is given in this
paper because previous results (Miiller and Olbers
1975; Rubenstein 1988) contain algebraic errors. The
efficiency of the scattering process is assessed by eval-
uating the scattering integral for a typical incident in-
ternal wave field [the Garrett and Munk 1976 spectral
model (Desaubies 1976)] and for a typical bottom
spectrum [Bell’s (1975) spectral model]. The scattering
process then redistributes about 6.8% of the incoming
energy flux from low to high wavenumbers, mostly at
near-inertial frequencies.

Comparison with the critical reflection process shows
that the scattering process generally redistributes less
energy flux but to higher wavenumbers. Scattering at
high-wavenumber bottom irregularities might thus be
equally or more efficient than critical reflection in
causing boundary mixing.
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