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Abstract. Historically, our understanding of the air-sea surface stress has beenderived from engineering studies of
turbulent flows over flat solid surfaces, and more recently, over rigidcomplex geometries. Over the ocean however,
the presence of a free, deformable, moving surface gives rise to a more complicated drag formulation. In fact, within the
constant stress atmospheric turbulent boundary layer over the ocean, the total air-sea stress not only includes the traditional
turbulent and viscous components but also incorporates surface wave effects such as wave growth or decay, air-flow
separation, and surface separation in the form of sea spray droplets.Because each individual stress component depends on
and alters the sea state, a simple linear addition of all stress components is toosimplistic. In this paper we present a model
of the air-sea surface stress which incorporates air-flow separation and its effects on the other stress components such as
a reduction of the the surface viscous stress in the separated region as suggested by recent measurements. Naturally, the
inclusion of these effects leads to a nonlinear stress formulation. This model reproduces the observed features of the drag
coefficient from low to high wind speeds despite extrapolating empirical wave spectra and breaking wave statistics beyond
known limits. The model shows the saturation of the drag coefficient at high wind speeds for both field and laboratory
fetches, suggesting that air-flow separation over ocean waves and its accompanying effects may play a significant role in
the driving physics of the air-sea stress, at least at high wind speeds.

Keywords: Sea drag, Breaking wind waves, Sea roughness, Wave boundary layer, Air-flow separation

1. Introduction

Accurate evaluation and prediction of the stress at the surface of the ocean is critical to a large
range of problems including air-sea heat, moisture, and gas exchanges because turbulent diffusivity
generally dominates its molecular counterpart by orders of magnitude, and thus, is the primary
mechanism for transport. Unfortunately, the range of scales involved renders direct numerical simu-
lation inadequate for models of these air-sea processes. Furthermore, high resolution data are sparse,
and detailed experiments are unsuitable for routine field observations. Therefore, most applications
require that the surface stress be derived from readily obtained and resolved variables. For flow over
a smooth, flat plate, upon which boundary layer turbulence theory is derived, this approach is quite
successful because the stress in the vicinity of the surface can be considered to be constant, resulting
in the well-known “law of the wall.” Succinctly, the law of the wall identifies threedistinct layers:
the viscous sublayer, where molecular stresses dominate, a log layer, where the turbulent stresses
dominate, and a defect layer. Except in the defect layer, the constant stress layer assumption lead to
self similar functions for the velocity profile in the form of the classical log-linear profiles. Unlike
air-flow over flat surfaces, individual stress components for the marine boundary layer are not well
resolved, and their interactions are even more obscure. The complicating factor for the oceanic
case is the presence of a free surface at the boundary. As the wind blows over the ocean, waves
form, grow, interact with each other, and eventually break. In addition to the stress from the viscous
boundary effects and turbulence, there is also stress due to the form ofthe waves (e.g. Janssen 1989;
Edson and Fairall, 1998; Hare et al., 1997; Belcher and Hunt, 1993; Makin et al., 1995). Therefore,
the stress at the surface is highly dependent on the sea-state. For the purpose of this paper, we split
the stress from the waves (form drag) into the two main components: wave-induced and air-flow
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separation. For purely wind-wave seas, the wave-induced stress component is the momentum flux
into the ocean, which creates, feeds, and maintains the waves. Air-flow separation stress occurs
when the waves become too steep for the air to follow the surface.

In recent years, several authors have used air-flow separation to explain both an increase and a de-
crease in the drag coefficient relative to extrapolated, bulk values at high wind speeds where data are
sparse. On the one hand, field and laboratory data suggest that the drag coefficient peaks when the
10−m wind speed reaches roughly 34ms−1 and afterwards decreases (Powell et al., 2003; Donelan
et al., 2004). On the other hand, previous numerical models of surface stress that include air-flow
separation predict even higher values for the drag coefficient than those extrapolated from bulk
parameterizations (Kudryavtsev and Makin, 2001; Makin and Kudryavtsev, 2002). More recently, a
first attempt, which explicitly models air-flow separation and its resulting feedback, has reproduced
the saturation of the drag coefficient at laboratory fetches (Kudryavtsev and Makin, 2007; hereafter
KM07). The objective of this paper is to formulate an explanation for the observed behavior of
the drag coefficient in the presence of air-flow separation for both laboratory and field fetches. Our
model includes effects from air-flow separation yielding both a novel, non-linear formulation and
fundamentally different results from that previously reported.

2. The atmospheric boundary layer

Using the bulk formulae, the turbulent momentum flux is expressed as:

−u′w′ = u2
∗ =

τ
ρa

= CD (U10−U0)
2 . (1)

The primes indicate turbulent quantities (away from the influence of viscosityand waves) and the
overbars represent ensemble averages. The air-side friction velocityand mean velocity are notedu∗
andU , respectively; the density of air is noted asρa. The quantitiesCD andτ are the bulk transfer
coefficient for momentum, i.e. the drag coefficient, and the surface stress, respectively. Finally, a
subscript 0 indicates the value taken at the interface and a subscript 10 indicates the 10−m height
value. When the flow is neutrally buoyant, the velocity profile away from the boundary, where
viscous effects are negligible, can then be evaluated from well-known lawof the wall:

U(z)−U0 =
u∗
κ

ln

(

z+δ
z0

)

(2)

whereκ is the von Karman constant (∼ 0.4); z0 is the roughness length, which parameterizes the
influence of the roughness elements at the surface on the kinematics and dynamics of the flow, and
δ = αz0, usually withα = 1, is introduced such that the profile is not singular at the surface (z = 0).

In smooth flows over a flat plate, a viscous sublayer forms near the surface in which the velocity
profile is linear rather than logarithmic. In wall coordinates,z+ = zu∗/ν andU+ =U /u∗, the profile is
also self-similar linear,U+ = z+. The van Driest damping function (van Driest, 1956) approximates
both the near-wall linear sublayer and the smooth transition to the log layer:

U+ = A1

(

1− e
−z+
A1

)

, (3)

whereA1 is a constant, typically on the order of O(10) for smooth flow (corresponding to the height
of the viscous sublayer). The presence of waves causes the flow to depart from smooth flow and
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become transitionally rough for most wind speeds. Therefore, the moving, wavy bottom boundary
needs to be considered.

3. Parameterization

3.1. BOUNDARY CONDITIONS AND PROFILE

In the model presented here, onceU10 is specified, the form for the velocity profile is determined
using a hybrid of the van Driest damping function and the standard logarithmicprofile described
above. In fact, the profile is simply the summation of the two layers with the logarithmiclayer
exponentially damped in the near-wall region, as follows:

U(z)−U0 = A1u∗ν

(

1− e
−z+
A1

)

u∗ν

u∗

+
u∗
κ

ln

(

z+δ
δ

)(

1− e
−z+
A1

)

, (4)

whereρau2
∗ν represents the viscous component of the surface stress, andA1 = 10 is the height of the

viscous sublayer in wall coordinates. Finally, the surface drift is set toU0 = 15.2u∗v

√

ρa
ρw

= 0.53u∗v

(Wu, 1983), whereρw is the density of the surface water andρau2
∗v

is the viscous component of the
surface stress. The profile given in equation 4 offers a continuous (and second-order differentiable)
formulation that smoothly connects the viscous and log layers. The modificationof the van Driest
component accounts for the roughness of the flow and converges to thestandard definition given

in equation 3 for the smooth flow limit, i.e. the limitz+ → 0 yieldsU+ = z+ u2
∗ν
u2
∗

, which reduces to

U+ = z+ in the smooth flow limit where the surface stress is entirely due to viscosity. Accordingly,
the viscous stress at the surface isν dU

dz |z=0 = u2
∗ν . Outside the viscous sublayer, the profile converges

to the standard log layer:

U(z)−U0 =
u∗
κ

ln

(

z+αz0

z0

)

, (5)

with

α = e
κA1u2

∗ν
u2
∗ . (6)

The coefficient,α , merely shifts the profile near the surface in order to match the linear sublayer
such that at the limitz+ → ∞, the profile converges to:

U(z)−U0 =
u∗
κ

ln

(

z
z0

)

. (7)

As the air-flow tends toward the fully rough regime, the slope of the viscous sublayer velocity
profile, in wall coordinates, decreases relative to the smooth case. Consequently, the viscous sub-
layer only plays a dominant role at low winds speeds, while the form drag dominates the stress for
moderate to high wind speeds. The only remaining variables yet to be definedare the two friction
velocities,u∗ andu∗ν . Their parameterization is the subject of the next section.
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3.2. SURFACE WAVES

In the present model, the bottom boundary is a surface wind-wave field ofdeep water, gravity
and capillary wave modes. The wavenumber range is specified with an implicit lower limit, kmin =
0.072g/u2

∗ (Plant, 1982) whereg ≈ 9.81 is the gravitational acceleration constant. The spectrum fol-
lows an empirical, directional wavenumber spectrum,Ψ(k,θ) (Elfouhaily et al., 1997), wherek and
θ are respectively the wavenumber and angle between the wind and wave propagation directions.
This empirical wave spectrum captures the observed fetch dependent nature of both the high wave
number (Cox and Munk, 1954; Jähne and Riemer, 1990; Hara et al., 1994) and low wave number
(Phillips, 1985; Kitaigorodskii, 1973) regimes. Therefore, the spectrumis not only a function of
the friction velocity,u∗, but also the inverse wave age,Ω, which is a function of normalized fetch,
X∗ = Xg/U2

10 :

Ω = U10/cp = 0.84tanh
(

(X∗/X0)
0.4

)−0.75
, (8)

whereX is the fetch,cp is the peak wave phase speed andX0 = 2.2×104 is an empirical constant
(Elfouhaily et al., 1997).

3.3. SURFACE STRESS AND AIR-FLOW SEPARATION

Banner and Peirson (1998) found that the surface stress in the smooth flow limit is the upper limit for
the tangential stress at the surface in the laboratory. Intuitively, and in theabsence of contradicting
data, this result seems reasonable for extension to field cases as a first approximation. In the model,
the viscous surface stress without accounting for the effect of air-flow separation,τ0

ν = ρa
(

u0
∗ν

)2
,

is approximated by the equivalent stress in the smooth flow limit. Here, the superscript 0 refers to
values that do not consider the feedback effects of the air-flow separation. By prescribing the 10-m
wind speed, profile form (equation 4), and roughness length for smoothflow, i.e. z0 = 0.11 ν

u0
∗
, the

equivalent stress for smooth flow can be found.
For the total stress at the surface in the presence of air-flow separation, the individual stress

components (viscous, wave-induced, and separation) are converged upon and summated using:

τ|z=0 = ρau2
∗ = f1τ0

ν + f2τ0
w + f3τ0

s , (9)

whereτ0
w andτ0

s are the surface wave-induced and separation stresses (without air-flow separation
feedback effects), respectively. The parameters,f1, f2, and f3 account for the effects of airflow
separation on these stresses and will be discussed shortly. The wave-induced stress,τ0

w, is found by
the integration of the contributions from all waves:

τ0
w|z=0 = ρw

∫ ∞

kmin

∫ π
2

− π
2

β (k, θ)ωkΨ(k, θ)cosθdθdk, (10)

whereβ (k, θ) is the wave growth rate, andω is the wave angular frequency. Except for the use of
the hybrid velocity profile (equation 4), the separation stress,τ0

s , is modelled as in Kudryavtsev and
Makin (2001); their equation (14) with minor modification can be written as:

τ0
s |z=0 = ρaεbγ

∫ 20π

0

∫ π

−π
us(k)

2cosθΛ(k, θ)dθdk, (11)

whereεb is the characteristic slope of the breaking wave,γ is an empirical constant relating the pres-
sure drop due to the separation region to the velocity of the air-flow, and finally us(k)=U(εb/k)cosθ −
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c(k) is the wind speed at height,z = εb/k, in reference to the wave phase speedc(k). The up-
per wavenumber limit for contribution to the separation stress is taken to be 20π as Makin and
Kudryavtsev (2002). The effect of air-flow separation on each of these stress components must now
be considered.

We assume that air-flow separation only occurs in the presence of a wavebreaking event. There-
fore, the occurrence of breaking waves is the foundation for the air flow separation stress and
feedback effects. The probability of a wave crest breaking within the wavenumber range (k, k+dk)
is:

Pbr(k, θ) =
2π
k

L̃, (12)

whereL̃ = Λ(k, θ)kdθdk is the total length of breaking wave crests per unit area of ocean surface
for waves within the wavenumber range (k, k+dk). When the spectral dissipation due to breaking
is assumed to be roughly equal to the spectral wind energy input (Kudryavtsev and Makin, 2001),̃L
can be approximated as:

Λ(k, θ)kdθdk =
β (k, θ)k4Ψ(k, θ)dθdk

ωb
, (13)

whereb is the normalized dissipation rate of breaking waves.
For a monochromatic wave field, the fraction of sea surface area exposed to air-flow separation

over a breaking wave would be:
Ã = LPbr, (14)

whereL is the length of the separation region normalized by the wavelength which we willdiscuss
later. In the presence of multiple wave modes, some separated regions may overlap. For example,
in the case where a large, dominant wave crest breaks and the separated region extends such that it
covers a fraction of the surface containing subsequent smaller breaking waves, then these smaller
waves could not induce separation that would impact additional sea surface area. Therefore, noting
that the fraction of area that is not affected by air flow separation per unit wavenumber isQ(k) =
1−

∫

θ LPbr(k, θ), the fraction of area per unit wavenumber exposed to separation is the fractional
probability of unaffected area from all longer waves multiplied by the fraction of affected area of
the corresponding monochromatic wave:

Ã(k) = ∏
k′<k

[

Q(k′)
]

×
∫

θ
LPbr(k, θ). (15)

The total fraction of area exposed to air-flow separation is the area overall wavenumbers, i.e.A =
∫

k Ã(k). With the fraction of sea surface exposed to air-flow separation, the parametersf1, f2, and
f3 accounting for the effect of separation on the multiple stress components follow naturally:

f1 = 1−A, (16)

f2(k) = 1−
∫ k

0
Ã(k′), (17)

f3(k) =
Ã(k)

∫

θ Pbr(k, θ)
. (18)

The first parameterf1 simply accounts for the reduction of viscous stress due to the total sea surface
area exposed to air-flow separation. Physically, this means that the viscous stress at the surface
vanishes within the separation bubble. This is consistent with recent laboratory experiments (Reul,
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1998; Veron et al., 2007) that show the surface viscous stress is vastlyreduced in the region of
air-flow separation. The second parameterf2 assumes that there is a cascades from all longer
waves represented as a cumulative sum of the fraction of sea surface area exposed to separation
(Kudryavtsev and Makin, 2007). Finally, the third parameterf3 adjusts the separation stress from a
breaking wave statistics to the modified air-flow separation statistics. In other words, the probability
of an air-flow separation event is less than or equal to that of a breakingwave event because multiple
breaking waves could have overlapped separation regions. Accounting for feedback, the effective
viscous, wave-induced, and separation stresses respectively becomeτν = f1τ0

ν , τw =
∫

k f2dτ0
w, and

τs =
∫

k f3dτ0
s , and the total stress is now:

τ|z=0 = τν + τw + τs, (19)

wheredτ0
w anddτ0

s are respectively the spectral densities of wave-induced and separation stresses
without air-flow separation effects.

If the wave growth parameter is conceptualized as the rate of energy transferred from the wind to
waves normalized by wave energy, then the presence of multiple wave modes intuitively impacts the
energy transfer. The dependence of the growth rate on the local turbulent stress within the inner layer
stems from the theory of Belcher and Hunt (1993). Essentially, longer waves shelter shorter waves,
resulting in reduced local turbulent stress for the wave boundary layerof shorter waves whose top is
still within the wave boundary layer of the longer waves (Makin and Kudryavtsev, 1999). We follow
the assumptions made by Hara and Belcher (2002) such that the growth ratedepends upon the local
turbulent stress available for each wave mode, and the stress induced byeach wave mode is constant
within the wave boundary layer and zero outside of it. Approximating the wave-induced stress for
each wave mode as a step function simplifies the parameterization considerablyand does not seem
to render drastically different drag coefficients compared to more complexdecay functions (Makin
et al., 1995). Therefore, within the constant stress layer, the wave-induced stress discontinuously
becomes turbulent stress outside the inner region. We also assume that the separation stress from
all wave modes is part of the turbulent stress throughout the constant stress layer. Consequently,
the maximum turbulent stress available for each wave mode is the summation of the total viscous
and separation stresses and the wave-induced stress of all smaller waves. In other words, for each
wave mode the stress carried by all shorter wave modes contributes to the stress in the wave growth
parameter such that:

β (k, θ) =
Cb(k)ω(k)

ρac(k)2

(

τν + τs +
∫ ∞

k
dτw(k′)

)

, (20)

whereCb(k) is in the range 0.04±0.02 (Plant, 1982) anddτw(k′) is the spectral wave-induced stress.
To limit wave growth to the wind-wave regime, the following smooth cutoff forCb(k) is used:

Cb(k) = B−B tanh

(

c(k)
2u∗

−1.8π
)

, (21)

whereB is a constant taken to be 0.02. Thus, for young waves, the value forCb is 0.04, which
corresponds to Plant’s mean value. With increasing wave age, the constant transitions smoothly to
zero at the wind-wave limit and remains zero for all older waves, which in effect prohibits negative
wave growth (i.e. the transfer of momentum from the waves beyond the wind-wave limit to the air).

Three of the empirically derived parameters used in modelling both the separation stress and re-
sulting feedback, namely the breaking wave slope (εb), the normalized dissipation rate of the break-
ing wave (b), and the normalized length of the separation bubble (L), remain to be parametrized.
The slope of breaking waves can be less than 0.2 on the low end (Wu and Yao, 2004) and greater
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than 0.6 on the high end (Duncan, 1981). For the dominant waves, the significant slope is often used
as the characteristic breaking wave slope:

ε =
Hpkp

2
=

4kp

2

[

∫ 1.3 fp

0.7 fp

Ψ( f )d f

]
1
2

, (22)

where the subscriptp denotes peak wave properties,f is the wave frequency, andHp is the sig-
nificant wave height of the peak waves. Here, we employ a slightly different, yet equivalent char-
acteristic breaking slope as that above, and offer a unified form for thedominant and equilibrium
regimes. Indeed, for the dominant waves, the significant slope scales (by a factor of 2) with the
root-mean-square slope of the dominant waves. Thus, for both regimes,dominant and equilibrium,
we can take the characteristic breaking wave slope as:

εb(k) = 2

[

∫

S(k)dk

]
1
2

, (23)

whereS(k) =
∫ π
−π k2Ψ(k, θ)kdθ is the slope spectrum. The limits of integration for the dominant

waves are the corresponding wavenumbers to the frequency limits given for the significant slope
calculation, while the limits for the equilibrium range include all wavenumbers above the dominant
waves up to the cutoff for separation (k = 20π). Presumably, breaking wave events with small slopes
are more likely to be a spilling wave, while the breaking events at greater slopes are more likely to
be a plunging wave.

The normalized dissipation rate for breaking waves,b has been found to span a wide range of
values from 10−4 to 10−1 (e.g. Duncan, 1981; Melville, 1994; Phillips et al., 2001; Drazen, 2006;
Banner and Peirson, 2007), and is thought to depend on the slope of breaking waves (Melville,
1994). Indeed, recent work (Drazen, 2006) suggests that the dependence ofb on slope is split into
the spilling and plunging regimes, respectively:

b = ϒε
1
2

b (24)

b = χε
5
2

b . (25)

The tabulated data from Duncan (1981) suggests thatϒ is in the range 0.007−0.019. We take the
mean value from Duncan (1981) such thatϒ = 0.013. Fitting the two regimes at the slope, 0.2,
we find the valueχ = 0.325. We note here that both values are less than those reported by Drazen
(2006) who foundϒ ≈ 0.05 andχ ≈ 0.849. Yet, these values are of the same order of magnitude as
those of Drazen (2006) and offer a similar and appropriate fit to the available data.

Finally, we need to parametrize the fractional length,L, of the sea surface affected by air-flow
separation. Earlier models proposed thatL = 0.75cosθ , whereθ is the angle between the wind
and wave propagation directions (Csanady, 1985). Kudryavtsev andMakin (2007), assumed that
the flow reattached at the following crest, i.e.L = 1, in the case of copropagating wind and waves.
This certainly is the upper bound and realistically, the length of the separatedregion is less than the
wavelength. In both cases, the length of the air-flow separation region normalized by wavelength
is a constant fraction of the wavelength. The length of the area exposed tothe separation bubble,
however, presumably depends upon the slope of the wave (Reul et al., 2007). Thus, we propose that

L(k) =

(

εb(k)
1
2 +

1
4

)

cosθ . (26)
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Figure 1. (a) Drag coefficient as a function of wind speed for a 10m fetch (solid line) along with the experimental data
of Kunishi and Imasoto (circles) and Donelan et al. (2004) (squares). Model results from KM07 (dashed line) are also
included. (b) Fraction of the viscous (line), wave-induced (dashed),and separation (dash-dotted) stresses as a function of
wind speed for 10m fetch.

For the range of breaking slopes considered here,L ranges between 0.55 and 1 when the angle
between the wave and wind directions is zero. We note, however, that the model results are not very
sensitive to the choice ofL and are qualitatively similar to the case whenL = 0.75cosθ for all wave
modes.

4. Results

We present here the model output for both laboratory and field fetches and compare the predictions
with available data and parameterizations.

4.1. LABORATORY COMPARISON

Experimental data at laboratory fetches offer insight not only into the behavior of the drag coefficient
at high wind speeds but also into the relative contributions of each stress component at lower wind
speeds. This combination of data can be used to assess the role of air-flowseparation at extreme
conditions. Kunishi and Imasoto (see Kondo, 1975) performed a wind flume experiment at high
wind speeds and found that the increase of the drag coefficient with windspeed lessened above
U10 = 27ms−1. Furthermore, their data points for the highest two wind speeds suggest that the drag
coefficient may actually plateau at high wind speeds. Recently, Donelan etal. (2004) found that the
drag coefficient indeed becomes independent of wind speed aboveU10 = 33 ms−1. Figure 1a plots
the results from the model for a fetch of 10m. For comparison, we also show the experimental drag
coefficients from Kunishi and Imasota (see Kondo, 1975) and Donelanet al. (2004)1, as well as the
model results from KM07. At low wind speeds, our model compares well withthat of KM07, but

1 The data from Donelan et al. (2004) was averaged over the differentmethods used in their study, as suggested by
Mark Donelan - personal communication
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both models predict a higher drag coefficient than either experimental dataset. At moderate wind
speeds, our drag coefficient is substantially higher. This is most likely dueto an overestimation of
the viscous stress, which will be discussed subsequently. At the higher wind speeds, both models
show a trend toward the saturation of the drag coefficient. Figure 1b shows the relative contributions
of stress components as a function of wind speed. The maximum fraction of separation stress is
roughly 0.6 compared to 0.9 in KM07. It is difficult to directly compare the stress fractions to KM07
since the total stress used to normalize the stress components is different between the models. For
example, the fraction of viscous stress would be lower at higher wind speeds, if the total stress were
higher. Likewise, if the viscous stress were lower, the fraction of wave-induced and separation stress
would also be higher.

We now consider an additional modification of the viscous stress. The laboratory experiments
of Jähne and Riemer (1990) suggest that the small gravity-capillary waves near the viscous scale
are not completely smeared out of existence. Therefore, the waves, whose inner region,li(k) = δ/k,
lies completely within the viscous sublayer, i.e.li(k) < 10ν/u0

∗ν , must depend on the viscous stress
for growth rather than the turbulent stress which is negligible within this layer.Thus, the wave-
induced stress for these waves should be subtracted from the viscous stress from the smooth flow
limit before accounting for the air-flow separation effects. Although the value for δ is still debated,
we take the conservative estimateδ = 0.1, and in conjunction with the conservative estimate for the
viscous sublayer height, we find a lower bound of wave growth due to viscous stress. Therefore, the
fully modified viscous stress, accounting for both air-flow separation andsmall wind wave growth
becomes:

fν = f1

(

1−

∫ ∞
kν

dτw

τν

)

, (27)

wherekν =
δu0

∗ν
10ν .

When usingf1 in the model, the only mechanism for the viscous stress to depart from the smooth
flow limit is the effects air-flow separation. It is reasonable to believe that thesmallest capillary-
gravity waves play an important role in altering the viscous stress relative to the smooth flow limit,
hence the introduction offν . Figure 2 plots the viscous stress produced by the model versus the total
stress along with laboratory data from Banner and Peirson (1998). Forcomparison, the data from
Kukulka and Hara (2005), hereafter KH2005, is also shown. Note thatthe jaggedness of the results
for both our model and KH2005 are due to the data spanning different fetches. We can infer from
figure 2 that viscous stress reduction caused by air-flow separation is likely not the only mechanism
for the reduction of viscous stress relative to the smooth flow limit. In fact, ourmodel overestimates
the viscous stress when usingf1, that is when it accounts only for the separation effects on the
viscous stress. The laboratory fetches for these runs are especially small, (2.45 m, 3.10 m, and
4.35 m), so that the smallest waves arguably affect the viscous stress proportionately more than for
longer fetches. Nevertheless, when accounting for both the effects due to separation and the wave
growth of the smallest waves (by usingfν ), the predicted viscous stress follows the experimental
data of Banner and Peirson (1998) quite well. Figure 3 is the extension of figure 2 to higher wind
speeds (i.e. total stress) for a 4.35 m fetch. At high wind speeds, both estimates ofτv are roughly
the same, which is a consequence of more prevalent air-flow separation and of a thinner viscous
layer. Because of the latter, the inner regions of few waves are encapsulated by the viscous layer
at high wind speeds. In other words, the additional influence of the waves on the viscous stress is
significant at either short fetches, such as laboratory conditions, or perhaps in the field under low
wind speeds. Consequently, the drag coefficient, when including the effect of the smallest waves on
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Figure 2. Viscous stress as a function of total stress calculated with no feedback (closed circles),f1 (closed squares), and
fν (closed triangles) along with the experimental data of Banner and Peirson(1998) (gray circles) and the Kukulka and
Hara (2005) model results with sheltering and infinite wave growth constants,cβ = 9.4 (open circles) andcβ = 6.7 (open
squares).

the viscous stress, does not substantially change at the lowest and highest wind speeds, but within
the wind speed range 10-25ms−1, it is slightly reduced from that shown in figure 1. Therefore,
while this additional feedback mechanism perhaps explains the viscous stress at lower wind speeds,
it does not explain the flattening drag coefficient at high wind speeds as seen in the experimental
data of Donelan et al. (2004).

4.2. FIELD COMPARISON

Field fetches of a kilometer or more have more practical importance than the laboratory fetches
discussed in the previous section. With increasing fetch, the wave field becomes more developed for
each particular wind speed, which means that the short, laboratory fetches provide steeper waves
and consequently more fractional area affected by air-flow separation. In the ocean, less sea surface
area exposed to separation yields less stress due to separation such thatthe drag coefficient reaches
full saturation. Figure 4a shows our predicted drag coefficient for 10km and 100km fetches as
well as the infinite limit. For comparison, we also plot the drag of Large and Pond (1981), the data
from Taylor and Yelland (2000), and the data from Powell et al. (2003)along with the KM07 model
results for a 100km fetch. For the most part, all of the data collapses on the Large and Pond (1981)
estimate at lower wind speeds. At moderate wind speeds, the 100km and infinite fetch cases seem
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Figure 3. Viscous stress as a function of total stress for a fetch of 4.35m calculated with no feedback (line),f1 (dashed),
and fν (dotted) with the range of experimental data from figure 2 denoted by the solid box.

to follow Taylor and Yelland (2000). All of the modelled field drag coefficients plateau somewhere
between 35ms−1 and 45ms−1, even in the infinite fetch limit. The drag coefficient at 10km fetch
follows the upper limit of the Powell et al. (2003) data up to 40ms−1 but never decreases as their
data suggest. This downward trend with decreasing fetch is consistent withthe conclusion of Moon
et al. (2004) that the observed reduction of the drag coefficients of Powell et al. (2003) could be
due to an extremely limited fetch. Figure 4b plots the fraction of the individual stress components
to the total stress for 100km fetch. Compared to the 10m fetch shown in 1b, separation stress does
not play as much of a role as it only carries 40 percent of the stress at thehighest wind speed. The
maximum fraction of separation stress is roughly 0.4 compared to 0.6 in KM07. This is partly a
consequence of their model taking the upper bound limit on the length of the separation bubble,
thereby maximizing the separation effects in their model. Since there is less separation stress, there
is also less fractional area exposed to separation compared to the 10m fetch case, which is easily
seen by the greater fraction of viscous stress at the highest wind speeds.

The nondimensional roughness length, or Charnock constant, can further illustrate the differ-
ent effect of air-flow separation for laboratory and field fetches. Accounting for the smooth flow
roughness, the nondimensional roughness due to surface gravity waves is:

Z∗
0 =

g
(

z0−
0.11ν
u∗ν

)

u2
∗

. (28)
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Figure 4. (a) Drag coefficient as a function of wind speed for 10 km (solid), 100km fetch (dash-dotted), and infinite
(dotted) fetches along with the experimental data of Large and Pond (1981) (light gray), Taylor and Yelland (2000) (dark
gray) and Powell et al. (2003) (gray symbols). Model results from KM07 (dashed line) are also included. (b) Fraction of
the viscous (line), wave-induced (dashed), and separation (dash-dotted) stresses as a function of wind speed for a 100km
fetch.

Figure 5 shows the nondimensional roughness length for several fetches as a function of wind
speed. There is similar behavior for all fetches. The peak roughness,however, shifts to higher wind
speeds with increasing fetch, which corresponds to the further development of the wave field with
increasing fetch. At low wind speeds, the Charnock coefficient is within the estimates from the San
Clemente Ocean Probing Experiment (SCOPE; Edson and Fairall, 1998) and Taylor and Yelland
(2000). At high wind speeds, our results are within the Powell et al. (2003) error ranges for wind
speeds up to 50ms−1. It is also interesting that the roughness reaches a minimum at high wind
speeds for the 10m fetch. This suggests that the roughness coefficient for field fetches could also
reach a minimum at extremely high wind speeds since the behavior of field and lab fetches is similar,
but shifted, at the lower wind speeds. If this is indeed the case, air-flow separation effects would be
unable to cause the reduction of the drag coefficient at high wind speedsas seen in the data of Powell
et al. (2003) because a reduction in the drag coefficient requires a decreasing roughness coefficient.

5. Discussion and conclusion

Although empirical wave spectra and breaking wave statistics are extrapolated beyond known limits,
the present model appears to reproduce the observed trend of the drag coefficient better than avail-
able models, which also use similar extrapolations. We note however that the spectral description
of the wave induced stress and separation stress (equations 10 and 11)rely on the assumption that
the wave field can be adequately represented by linear Fourier modes. This assumption might be
questionable in the presence of frequent breaking at the higher wind speeds. We also note that the
breaking wave statistics used here may very well underestimate actual breaking events, as they rely
on equilibrium between input and dissipation, which might not be the case in growing seas, and
are based on estimate of the dissipationb which is contentious to this day. This could be especially
prevalent in the laboratory. Furthermore, air-flow separation may also occur without any observable
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wave breaking, though this remains controversial. In any event, it is likely that air-flow separation
is probably more prevalent than its parameterization in both previous studies and this one (Veron et
al., 2007).

Nonetheless, this nonlinear stress model, which incorporates air-flow separation effects, can
qualitatively reproduce the observed features of the drag coefficientat low and high wind speeds.
These results, to the best of our knowledge, are the first, which explicitly includes air-flow sepa-
ration, and reproduce the complete saturation of the drag coefficient at high wind speeds for field
scale fetches. We note however, that the effect of sea spray may also need to be considered at
higher wind speeds as recent studies have predicted a significant momentum exchange due to spray
(e.g. Andreas, 2004; Makin, 2005; Barenblatt et al., 2005). In fact,if sea spray generation is also
a function of wave slope, its contribution to the air-sea momentum flux may in factfurther reduce
the predicted drag coefficient past 40ms−1 and further improve the agreement between predicted
and observed drag at high wind speeds (figure 1 and figure 4). This isthe subject of current work
and will be reported in subsequent publications. Our results indicate that air-flow separation over
ocean waves and the accompanying effects and feedbacks on the multiple stress components may
account for a significant portion of the physics that drive the observed trends. Finally, the model
results suggest that air-flow separation on a range of scales eventuallycauses a complete saturation
of the drag coefficient regardless of the fetch.
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