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ABSTRACT

A new mechanism that induces barotropic instability in the ocean is discussed. It is due to the air–sea

interaction with a quadratic drag law and horizontal viscous dissipation in the atmosphere. The authors show

that the instability spreads to the atmosphere. The preferred spatial scale of the instability is that of the

oceanic baroclinic Rossby radius of deformation. It can only be represented in numerical models, when the

dynamics at this scale is resolved in the atmosphere and ocean. The dynamics are studied using two super-

posed shallow water layers: one for the ocean and one for the atmosphere. The interaction is due to the shear

between the two layers. The shear applied to the ocean is calculated using the velocity difference between the

ocean and the atmosphere and the quadratic drag law. In one-way interaction, the shear applied to the at-

mosphere neglects the ocean dynamics; it is calculated using the atmospheric wind only. In two-way in-

teraction, it is opposite to the shear applied to the ocean. In one-way interaction, the atmospheric shear leads

to a barotropic instability in the ocean. The instability in the ocean is amplified, in amplitude and scale, in two-

way interaction and also triggers an instability in the atmosphere.

1. Introduction

Air–sea interaction is a key process in the dynamics of

the atmosphere, ocean, and climate system. Many as-

pects of it are not well understood today. At the air–sea

interface there is an exchange of heat, inertia, and

chemical substances, such as carbon dioxide and other

gases. The understanding of the processes is hindered by

the fact that air–sea interaction involves dynamics on

a large range of scales, frommolecularmotion to droplet

dynamics to wave dynamics and braking and up to the

scale of weather systems, involving a large variety of

physical, chemical, and even biological processes. An

explicit resolution of all these processes in numerical

models of the dynamics is impossible, even in the far

future. The important processes have thus to be param-

eterized in calculations of the atmosphere, ocean, and

climate dynamics.

Recent finescale satellite observations of the sea sur-

face show an abundance of dynamical features at the

mesoscale and submesoscale. The explanation of the

origin, turbulent dynamics, and fate of these structures

represents a formidable problem of geophysical fluid

dynamics.

Furthermore, it was shown recently that the dynamics

at these scales is not dynamically passive, but has a ma-

jor impact on the scale-dependent physics of air–sea

interaction due to their signature in the sea surface

temperature [see Small et al. (2008) and Chelton and

Xie (2010) for a recent review].

In the present work, we exclusively focus on the ex-

change of momentum. The exchange of heat is com-

pletely neglected here, which does not mean that we

question its importance for the atmosphere, ocean, and

climate dynamics. In today’s numerical models, there are

various ways and parameterizations to represent the ex-

change of momentum. They mathematically treat the

atmosphere differently than the ocean. Concerning the

atmosphere, a Dirichlet boundary condition is imposed,

which means the wind is supposed to vanish at the sur-

face, without considering the direct effect of ocean

currents. For the ocean, a Neumann boundary condition

is imposed; that is, the shear of the atmosphere on the

ocean is applied to the ocean. In calculations of air–sea

interaction, the resolution in the ocean is usually finer

than in the atmosphere, as the first baroclinic Rossby

radius of deformation, the synoptic scale, is one order of
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magnitude smaller than in the atmosphere. Such kinds

of mixed treatment in the type of the boundary condi-

tion and the resolution might be justified at large spatial

scales and long time scales but might not be adapted

when the resolution in both the atmosphere and the

ocean becomes ever finer. In the present paper, we

compare this ‘‘classical’’ implementation of the air–sea

momentum exchange to a dynamically consistent im-

plementation. We demonstrate that the results are

substantially different and that a new instability arises in

the atmosphere–ocean system.

When parameterizing the effect of small-scale turbu-

lent friction at a solid boundary, a quadratic drag law is

used. Such a drag law dates back to the work of Prandtl

and Schlichting (1934) and Schlichting and Gertsen

(2000) and has been extensively studied since then (see

Schlichting and Gertsen 2000). All these investigations

essentially confirm its robustness and applicability to all

fields of fluid dynamics. When the motion of the atmo-

sphere and the ocean is considered, a large volume of

research is dedicated to the determination of the drag

coefficient over various surfaces (Stull 1988). When the

sea surface is considered, the drag coefficient depends

on the sea state, which itself is a function of various

parameters (see, e.g., H€ogstr€om et al. 2013). The ro-

bustness of the law itself seems above any doubt.

In section 2, we use a semianalytic one-dimensional

model of two superposed fluid layers to explain the

source and the physics of the instability. Two cases are

considered: translational and rotational invariant forc-

ing. A shallow water model of the same physical model

is introduced in section 3. The model is integrated nu-

merically in a 1D and 2D domain. The former converges

to a stationary state, while the latter develops insta-

bility. Results are presented in section 4 and discussed

in section 5.

2. One-dimensional model

a. Atmospheric layer

The state of a shallow fluid layer of constant depth H

that is subject to a large-scale forcing F(y), a constant

drag coefficient cD, and a viscous dissipation v in the

horizontal can be modeled by the following equation:

cD
H

ju(y)ju(y)2 n›yyu(y)5F(y) , (1)

where we have further supposed that the flow is sta-

tionary, the Coriolis parameter is zero, that its velocity

component in the y direction is vanishing, and that the

velocity component in the x direction (i.e., u) depends

on y only.

Note that the drag term and the viscous term, for a

smooth velocity field, are of equal strength at a scale

l5

ffiffiffiffiffiffiffiffiffiffiffi
nH

u0cD

s
. (2)

We show below that this scaling is modified for the

singular behavior at points of vanishing velocity.

If F(y)5 F0 cos(y/L) and n5 0, the analytic solution is

u(y)5 sgn[cos(y/L)]

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F0H

cD
jcos(y/L)j

s
, (3)

which has a vorticity of

z(y)52›yu(y)

5 sgn[cos(y/L)]

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F0H

4L2cD
sin(y/L) tan(y/L)

s
. (4)

The vorticity is singular at every point y 5 (j 1 1/2)p,

"j 2 Z. In the case of a nonvanishing viscosity, the sin-

gularity disappears.

Equation (1) can be put in nondimensional form by

setting

~n5
�

cDRe
, (5)

with � 5 H/L as the ratio of the layer thickness to

a characteristic horizontal scale and Re 5 u0L/n as the

Reynolds number based on the typical velocity scale u0
and a turbulent viscosity n. This leads to thenondimensional

equation

j~u(~y)j~u(~y)2 ~n›~y~y~u(~y)5
~F(~y) , (6)

where all the variables with a tilde are nondimensional

and of order one, except for the nondimensional vis-

cosity, which is typically ~n � 1.

The solution for ~n5 0 is now ~u(~y)5 sgn(cosy)
ffiffiffiffiffiffiffiffiffiffiffiffijcosyjp

and ~z(~y)5 sgn(cosy)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
siny tany

p
/2. We did not find an

analytical solution for ~n 6¼ 0. The numerical solutions for

different values of ~n are shown in Fig. 1. For the smaller

values of viscosity, the solution in the velocity field is

almost indistinguishable from the case of a vanishing

viscosity. The vorticity, however, goes to infinity with a

vanishing viscosity. This singularity is avoided with a

nonvanishing viscosity. In the limit of vanishing viscos-

ity, the behavior at the point of vanishing velocity is

proportional to
ffiffiffi
y

p
, the drag term is

ffiffiffi
y

p 2 5 y, and the

viscous term is 2~n›yy
ffiffiffi
y

p
5 ~ny23/2/4. By equating both
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terms, one finds that they are of equal strength at a scale

l5 (~n/4)2/5. The maximum vorticity is given by zmax 5
u/l5

ffiffi
l

p
/l5 l21/2 5 (~n/4)21/5. We measured numerically

the characteristic length scale lg as the distance between

the inflection point of z(y) and the maximum of z(y)

in numerical solutions of Eq. (6). The results are given

in Fig. 2, where a clear scaling law behavior is exposed,

for the lower values of the viscosity. The scaling law

exponents agree perfectly with the above predictions. If

we define a local atmospheric Reynolds number based

on the distance between the inflection points, we get

Rea 5 ul/~n5 l1/2l/~n5 (~n/4)6/10/~n} ~n22/5.

b. Oceanic layer

In the stationary case and with a vanishing viscosity in

the atmosphere, the force applied to the atmosphere

equals the force transmitted to the ocean at every point.

The balance is local in the horizontal. This is no longer

true for a nonvanishing viscosity and the functional form

of the velocity field in the atmosphere and the ocean

differ. The momentum balance in the atmosphere is

Fao 2 na›yyu
a5 ~Fa , (7)

where ~Fa is the force applied to the atmospheric layer

by the (exterior) pressure gradient and Fao is the force

transmitted to the ocean. We can further suppose that

the (eddy) viscosity is many orders of magnitude smaller

in the ocean than in the atmosphere. Indeed, the eddy

viscosity can be estimated using a mixing length ap-

proach n 5 Lu, where L and u are a typical length and

velocity scale, respectively (Prandtl 1925; Vallis 2006).

The first baroclinic Rossby radius of deformation is at

least an order of magnitude smaller in the ocean than it

is in the atmosphere, and the same is true for the char-

acteristic velocities. The estimated eddy viscosity in the

ocean is more than two orders ofmagnitude smaller than

its atmospheric counterpart. The ocean layer is subject

to the force Fao at its surface and to a linear damping at

its lower boundary; its velocity and vorticity are shown

in Fig. 3. Please note that the oceanic vorticity profile

shows three extrema, instead of only one, for the at-

mosphere; this is of importance for the stability of the

FIG. 1. (top) Velocity u and (bottom) vorticity for n 5 0 (full

line), n 5 1025 (dotted line), n 5 1024 (dashed line), and n 5 1023

(dashed–dotted line) in the atmosphere. Only half of the domain is

shown; the rest can be continued by symmetry.

FIG. 2. (top) Length scale lg in the atmosphere as a function of

the viscosity ~n. For the four lower values of the viscosity ~n, the
scaling is lg } ~n2/5. (bottom) Max value of the vorticity zmax in the

atmosphere as a function of the viscosity ~n. For the four lower

values of the viscosity ~n, the scaling is zmax } ~n21/5.
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flow as vorticity maxima are key to the barotropic in-

stability, as shown by the Rayleigh and Fjortoft criterion

for barotropic instability (see Vallis 2006; Paldor and

Ghil 1997). Furthermore, the distance between the max-

ima, which is the important length scale for instability, is

governed by the atmospheric (eddy) viscosity. This leads

to an oceanic Reynolds number

Reo5
uona

uano
Rea , (8)

which is larger than the atmospheric Reynolds number.

c. Point symmetry

When the forcing and the initial conditions are point

symmetric, all variables initially depend only on the

distance r from the center of symmetry. This property is

conserved in the absence of instability. In this case, the

nondivergent dynamics in the constant depth layer is

best described by a streamfunction C with

u52›yC and y5 ›xC , (9)

where u and y are the components of the velocity vector.

The equations for a stationary solution are

2j›rC(r)j›rC(r)1 ~n›r

�
1

r
›r[r›rC(r)]

�
5 r , (10)

where we used

›xf (r)5
x

r
›rf (r) and =2f (r)5

1

r
›r[r›rf (r)] . (11)

In the case of a vanishing viscosity, the solution is

completely local and we obtain the same dependence as

in the case of an axial symmetry ›rC(r)5
ffiffi
r

p
. The scal-

ing behavior for the viscous case is also the same

l5 (3~n/2)2/5, with a different numerical prefactor.

When viscosity in the atmosphere is included then,

again the forcing transmitted to the ocean creates

vorticity extrema in a ring around the point of vanish-

ing velocity, at which extrema of opposite vorticity

reside.

3. Shallow water model

a. Physical model

The model consists of two superposed homogeneous

fluid layers, a shallow layer of the atmosphere above an

ocean surface layer. The average thicknesses are Ha 5
500m and Ho 5 200m, respectively. The actual layer

thicknesses ha(x, y, t), ho(x, y, t) vary over time and

space. The ocean surface layer superposes a motionless

layer of higher density and of infinite depth. Similarly, a

motionless layer of air of a lesser density superposes

the shallow atmosphere layer. Layers have an average

density of ra5 1 kgm23 and ro5 1000 kgm23. The fluid

motion considered extends over many days, and so the

model must take into account Earth’s rotation. Using

the f-plane approximation, we set the Coriolis parame-

ter f 5 1024 s21, a typical value at midlatitudes.

b. Mathematical model

This physical model can be described by the reduced

gravity shallow water equations as follows:

›tu
k1 uk›xu

k 1 yk›yu
k 2 f yk 1 gk›xh

k5 nk=2uk1Fk
x ,

(12)

›ty
k1 uk›xy

k1 yk›yy
k1 fuk 1 gk›yh

k

5 nk=2yk1Fk
y , and (13)

FIG. 3. (top) Velocity u and (bottom) vorticity for n 5 0 (full

line), n 5 1025 (dotted line), n 5 1024 (dashed line), and n 5 1023

(dashed–dotted line) in the ocean. Only half of the domain is

shown; the rest can be continued by symmetry.
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›th
k 1 ›x(h

kuk)1 ›y(h
kyk)5 ~F

k
h , (14)

where k5 a, o stands for the atmosphere and the ocean,

respectively. The parameters ga and go are the reduced

gravity of the atmosphere and of the ocean (i.e., the

gravitational acceleration multiplied by the fractional

density difference between the two layers). They are set

to 0.8 and 2.1022m s22, respectively. The restoring force
~F
k

h in the atmosphere and ocean acts on the layer thickness.

The typical horizontal scale is the Rossby radius of

deformation Rk
d 5

ffiffiffiffiffiffiffiffiffiffiffi
gkHk

p
/f . It is one order of magni-

tude smaller in the ocean where Ro
d 5 20 km than in the

atmosphere where Rd
a 5 200 km. The domain size is

Lx 5 Ly 5 1000 km, and there are periodic boundary

conditions in both horizontal directions. In the absence

of forcing and friction, the potential vorticity (PV),

qk 5
zk1 f

hk
with zk5 ›xy

k2 ›yu
k , (15)

is conserved by the flow. The initial atmospheric height

variation is definedby the leading four terms of the Fourier

series of the sawtooth function in the y direction:

ha
o(x, y)5 300m3

�
sin(2py/Ly)2

1

3
sin(4py/Ly)

1
1

5
sin(6py/Ly)2

1

7
sin(8py/Ly)

�
.

The initial velocity field is calculated using the geo-

strophic equilibrium, so the narrow jet in the x direction

depending only on the y direction is imposed on the

atmosphere.

A restoring act forces the average (in the x direction)

of the atmospheric layer thickness projected on the

sawtooth profile toward its initial value. To this end, the

projection is compared to its initial value, and a multiple

of the initial profile is added or subtracted to restore

toward the initial amplitude of the projectedmode. Such

kinds of (large scale) restoring affect the large-scale

dynamics without directly influencing the small scales

that can evolve more freely. The restoring time is 2 days.

The variations of layer thickness in the ocean layer are

locally and linearly damped to zero, with a damping time

of 1000 days, in order to not disturb the air–sea interaction.

The two layers are only linked by frictional forces at

the interface, parameterized by a quadratic drag law.

The frictional acceleration between the two layers [see

Eqs. (12) and (13)] is defined by

 
Fk
x

Fk
y

!
56

1

rkhk

 
f kx
f ky

!
, (16)

where fx and fy are the surface forces depending on x

and y. The shear applied to the ocean is calculated using

the velocity difference between wind and ocean current:

 
f ox
f oy

!
5 raCdjuj

�
uo 2 ua

yo 2 ya

�
, (17)

with juj5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(uo 2 ua)2 1 (yo 2 ya)2

q
. The drag coefficient

is constant in our calculations: Cd 5 8.1024 is a classical

value (Stull 1988).

In one-way interactions, the shear applied to the at-

mosphere neglects the effects of ocean currents; the

ocean is a rough motionless surface:

 
f ax
f ay

!
5 raCd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(ua)21 (ya)2

q �
2ua

2ya

�
. (18)

In two-way interactions, the shear applied to the atmo-

sphere is opposite the shear applied to the ocean.

c. Numerical model

The ocean and the atmosphere basins are represented

by a rectangle of Lx 3 Ly. Periodic boundary conditions

are used in both horizontal directions. The numerical

grid is regular and contains nx 3 ny points. Fine spatial

resolutions Dx 5 Lx/nx 5 Dy 5 Ly/ny are employed to

well resolve the horizontal scales. We choose nx 5 ny 5
512 and Lx 5 Ly 5 1000 km for the 2D shallow water

model. For the one-dimensional two-component (1D-2C)

geometry we have Lx 5 1000 km (512)21, Ly 5 1000 km

and nx 5 1, ny 5 512. The horizontal components of the

velocity uk and yk, and height variations hk are calcu-

lated at each grid point. The eddy viscosity of the layers

are na5 100m2 s21 and no5 1m2 s21, which are constants

in space and time.

A second-order, centered, finite-difference method is

used for the space discretization, and a second-order

Runge–Kutta scheme is used for the time discretization.

The time resolution is constrained by the Courant–

Friedrichs–Lewy (CFL) condition.As atmospheric waves

are 10 times faster than oceanic waves, it is the CFL

condition for the atmosphere that sets the minimum

time step Dt 5 15 s to well resolve the temporal evolu-

tion of the atmospheric dynamics.

4. Results

We integrate the numerical model in a 1D-2C and 2D

geometry. In the former, no instability can develop and

it is thus perfect to evaluate the effect and evolution of

instability that develops in the latter. Without instability

there is a perfect agreement between the two simulations,
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as forcing and damping are independent of the x direc-

tion. In all results presented, the model was run up for

2000 days and averages were calculated from the daily

snapshots from days 1000 to 2000.

a. One-dimensional two-component model

No instability develops in this geometry and the dy-

namics converge toward a stationary state. The potential

vorticity for the atmosphere and ocean along the y axis,

for one- or two-way interactions, is shown in Fig. 4.

The quadratic drag law leads to a widening of the at-

mospheric jet because it acts stronger on the faster ve-

locities. In the atmosphere, the balance between the

forcing term, drag term, and viscous term leads to van-

ishing velocities and a strong velocity gradient at y 5
260 and 740 km. This is the analog to the situation

observed in the 1D model of section 2. These charac-

teristics of the velocity field give rise to two peaks of

potential vorticity (Fig. 4). There is a minimum at y 5
260 km because the velocity gradient is positive and

a maximum at y5 740 km because the velocity gradient

is negative. The velocity field and the mean potential

vorticity are not symmetric because of the different at-

mospheric layer thicknesses: hha(y5 260 km)it,x 5 586m,

whereas hha(y5 740 km)it,x 5 408m, where angle brack-

ets accompanied by t,x denote averaging over time from

days 1500 to 2000 and over the space along the x axis.

The ocean layer submitted to the forcing of the at-

mosphere and the damping develops three extrema in

the PV, which appear around the locations where the

velocity in the atmosphere vanishes. This behavior is

explained by the one-dimensional model in section 2.

The distance of the extrema is that of the inflexion

points in the wind. Shallow water currents are found

by Paldor and Ghil (1997) to be most unstable when

the characteristic length scale is close to the Rossby

radius of deformation.

In one dimension, in the atmosphere the temporal po-

tential vorticity along the y axis is almost indistinguishable

for one- and two-way interactions. Only the shear ap-

plied to the atmosphere changes, and as oceanic velocity

is very low compared to the atmospheric velocity, the

shear applied to the atmosphere hardly varies. In the

ocean the small differences between two- and one-way

interactions are due to the feedback of the forcing on the

ocean. The qualitative behavior is the same as the well-

understood, simple, one-dimensional model discussed

in section 2. The situation is different for the fully two-

dimensional configuration, which allows for instability,

as we will show in section 4b.

b. Two-dimensional shallow water model

In this part, we present results from integrations of the

fully 2D numerical model described in section 3c.

We added an initial perturbation to the ocean. A

narrow jet in geostrophic equilibrium, perpendicular to

the atmospheric current, depending only on the x di-

rection, is imposed. It is calculated from the height

variation:

ho
o(x, y)5 100m3

�
sin(2px/Lx)2

1

3
sin(4px/Lx)

1
1

5
sin(6px/Lx)2

1

7
sin(8px/Lx)

1
1

9
sin(10px/Lx)

�
.

This initial perturbation disappears overtime and after

900 days no trace of it is visible in the ocean.

1) ONE-WAY INTERACTION

In one-way simulations, there are no dependencies on

the x direction in the atmosphere, as we do not consider

the action of the ocean for the shear applied to it and

there is no instability developing in the atmosphere. The

dynamics in the atmosphere are identical to the 1D-2C

simulation, as can be verified in Fig. 4. The atmospheric

FIG. 4. The potential vorticity (s21m21) averaged in time and x direction, along the y axis, in the (left) atmosphere

and (right) ocean for the four cases considered, as labeled.
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dynamics converge toward a balance between the large-

scale forcing, viscous dissipation, and the drag at the

lower (motionless) boundary. The development of an

atmospheric instability is inhibited by the forcing, which

acts at the basin scale, which is close to 2p times the

atmospheric Rossby radius of deformation. In the ocean,

instabilities develop as shown by the potential vorticity

anomalies in Fig. 5 in the form of two vortex streets along

lines where the average velocity differences between the

ocean and the atmosphere vanish.

The anomalies are about twice as strong at 260 as at

740 km. Indeed, the greater the distance between the

potential vorticity maxima, the stronger and bigger are

the instabilities, which is why eddies aremore developed

at 260 km. These instabilities lead to a turbulent dissi-

pation of energy in these latitudes and decrease the

amplitude of oceanic potential vorticity peaks.

The size of the ocean eddies created by instability can

be estimated from Fig. 5. For a quantitative deter-

mination of the scale of the turbulent structures, we

determine the Taylor scale:

l(y)5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hz2it,x

2hu21 y2it,x

vuut , (19)

where averages are taken in time (from days 1500 to

2000 of the integration) and along the x axis. Results for

the ocean (not shown) give a size at the locations of in-

stability that vary around the Rossby radius of defor-

mation (Ro
d 5

ffiffiffiffiffiffiffiffiffiffiffi
goHo

p
/f 5 20 km). At y 5 740km, we

have hhoit,x 5 176m, leading toRo
d 5

ffiffiffiffiffiffiffiffiffiffi
goho

p
/f 5 18:8 km;

and at y 5 260km, we have hhoit,x 5 215m, which leads

to Ro
d 5

ffiffiffiffiffiffiffiffiffiffi
goho

p
/f 5 20:7 km. Although the Taylor scale

varies, the values are close to the oceanic Rossby radius

of deformation, and taking into account the difference of

the layer thickness, the trend is well respected and scales

are smaller at 740 than at 260km, as can also be seen in

Fig. 5.

In the atmosphere, which has no variability, neither in

x nor in time, the Taylor scale reaches zero at the loca-

tion where the velocity vanishes and vorticity is large.

This proves that the ocean adapts to the dynamics of the

atmosphere at large scale, but develops its own dynamic

with a typical scale on the order of the oceanic Rossby

radius of deformation. This agrees well with the results

of Paldor and Ghil (1997), who found the most unstable

mode of a shallow water current having a cosh velocity

profile tobe connected to theRossby radius of deformation.

The size of the eddies is then around 2pl, and we see that

there are numerous eddies at y5 740km and 6 eddies are

present at y5 260km along the periodic x direction.

2) TWO-WAY INTERACTION

For two-way interactions, the time-averaged potential

vorticity is very different between the 1D and the 2D

simulation, which is due to the nonlinear terms in x that

are neglected in 1D.

The main characteristic of the two-way simulation in

2D is the formation of two atmospheric perturbations

(Fig. 6): one between 680 and 800 km and another

FIG. 5. Potential vorticity anomaly (s21m21), in 2D, for one-way

interaction in the ocean at t 5 2000 days.

FIG. 6. Potential vorticity anomalies (s21m21), in 2D, for a two-

way interaction in the (top) atmosphere and in the (bottom) ocean

at t 5 2000 days.
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between 150 and 350 km. These eddies are formed just

above the line of oceanic eddies and move along the

x direction with the mean flow. They lead to a significant

turbulent dissipation of energy that expands and

strongly reduces the two potential vorticity extrema.

Around 260 km, the anomaly is 10 times lower than the

one around 740 km because of the thicker atmospheric

layer in this latitude that stabilizes the fluid.

The time-averaged atmospheric potential vorticity

peaks are larger than in one-way simulations, so that the

action induces in the ocean three potential vorticity

extrema that are farther apart. As they are more distant,

ocean instabilities are bigger and stronger, as we can see

in Figs. 5 and 6.

To better analyze the size of instabilities in the two

layers, we again considered the Taylor scale. It is on the

order of 30 km in the ocean, larger than in the one-way

case due to the retroaction of the atmosphere. This can

be explained by the observation that the atmospheric

scale, which represents the forcing, is also increased. It

still compares well to the oceanic Rossby radius of de-

formation in the ocean, which is around 20 km. Near y5
740 km, hhoit,x 5 183m, leading to Rd

o 5 19.1 km; and

near y5 260 km, hhoit,x 5 221m, leading to Rd
o 5 21 km.

As we have seen previously, turbulent scales are larger

around 740 than around 260 km because of the ticker

layer at 260 km. The trend is respected and scales are

greater than in one-way simulations.

For two-way simulations, a turbulent scale in the y

direction on the order of 10 km appears in the atmo-

sphere. The smallest scale of the atmosphere corre-

sponds well to the smallest scale in the ocean. This scale

does not correspond to the characteristic scale Rd
a 5

200 km that usually develops in the atmosphere. The

atmospheric turbulent scale is on the order of the oce-

anic Rossby radius of deformation and is the imprint of

the ocean dynamics. It shows that the unstable dynamics

in the atmosphere is a slave to the ocean dynamics.

However, the forcing of the atmosphere is at large scales

at the scale of the atmospheric Rossby radius of de-

formation and has therefore a strong damping effect on

the dynamics of the atmospheric synoptic scale and

hinders the development of instability at the synoptic

scale. Increasing the domain to allow for unforced de-

velopment in the atmosphere at its synoptic scale also is

beyond our actual computer resources.

The forcing at large scales explains that in the x di-

rection, turbulent scales are on the order of the atmo-

spheric Rossby radius of deformation. But note that in

the x direction, there is only one structure in the domain,

showing that the larger synoptic scale in the atmosphere

leaves its imprint in the dynamics of the instability,

which cannot extend in the y direction due to the forcing.

We have so far only considered the statistically sta-

tionary turbulent state of the instability, but not its initial

evolution. There are two processes involved: first, the

spinup of the ocean by currents due to the wind shear at

the surface, which has a typical spinup time scale of

tspinup 5 (horo)/(cDr
au) ’ 300 days; and second, the

characteristic time scale of the barotropic instability,

which is around a few tenths of a day. The latter is much

shorter than the former, and indeed small amplitude

barotropic instability is observed early in the experi-

ment, but only attains its full amplitude and a stationary

state at time scales characteristic of the ocean spinup.

The spinup time is inversely proportional to the thick-

ness of the oceanic surface layer, which also means that

in surface mixed layers much shallower than the 200m

used here, it proceeds much faster. The numerical cal-

culations with shallower ocean layers are, however,

more involved due to the finer resolution necessary and

the increased stiffness of the system.

5. Discussion

We have demonstrated that the complicity of turbu-

lent friction between the air and the ocean and the

horizontal turbulent friction in the atmosphere triggers

a barotropic instability in the ocean that propagates to

the atmosphere. The simple model used is composed of

two superposed shallow water layers; the turbulent

friction is parameterized by the classical drag law and

the horizontal turbulent exchange of vorticity by a con-

stant eddy viscosity. The physics of the instability is

depicted and its explanation is based on physical argu-

ments that apply also to more involved models and to

the nature of the air, sea, and their interaction.

Paldor and Ghil (1997) demonstrated the importance

of the Rossby radius of deformation for the barotropic

instability of currents. They found that their jet was

stable if narrower than pR, whereR is the Rossby radius

of deformation. Wider jets are stable for perturbations

smaller than pR, with a maximum growth rate for scales

around 2pR. In view of their work, neither the stability

of the atmospheric layer, in one-way interactions, nor

the instability of the ocean layer in our calculations are

a surprise, although our system of forced and dissipative

dynamics is far from the free jets studied by Paldor and

Ghil (1997). More surprising is that the unstable ocean

dynamics manage to trigger a sustained submesoscale

instability in the atmosphere. The present work is an

example of how the interaction of the atmosphere and

ocean can give rise to new, interesting dynamics.

A prerequisite to observe the here-discussed in-

stability in numerical models of ocean and atmosphere

dynamics is the fine resolution. The atmospheric model
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has to resolve the scales corresponding to the oceanic

Rossby radius of deformation. As in coupled simula-

tions, atmospheric models are usually run at coarser grid

scales than the oceanic model; today, this is not the case

in most simulations performed.

The present results are obtained using a model based

on two shallow water layers with constant viscosities in

the atmosphere and the ocean that differ by two orders

of magnitude. The difference in the viscosity will also

appear in fine-resolution models using large eddy sim-

ulations (LES) as the coefficients that are calculated

based on characteristic scales in space and velocity that

are both higher in the atmosphere than in the ocean.

Furthermore, LES schemes that are based on velocity

gradients will amplify the dissipation near points of

vanishing wind stress, where horizontal gradients are

amplified by the quadratic drag law.

Research of how the here-discovered instability

mechanism acts in more complicated models for ocean

and atmosphere dynamics and the research of small-scale

structures in the ocean near lines and points of vanishing

wind stress are the next step. We want to emphasize once

more that the discussed instability is not numerical but be-

cause of the physics of air–sea interaction. Fine-resolution

observations provided by satellite data of the sea surface,

together with observations of the ocean wind stress, will

be used to track down this instability in the ocean.
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