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Abstract Continuum-based models that describe the propagation of ocean waves in ice-infested seas are
considered, where the surface ocean layer (including ice floes, brash ice, etc.) is modeled by a homogeneous
viscoelastic material which causes waves to attenuate as they travel through the medium. Three ice layer
models are compared, namely a viscoelastic fluid layer model currently being trialed in the spectral wave
model WAVEWATCH IIIVR and two simpler viscoelastic thin beam models. All three models are two dimensional.
A comparative analysis shows that one of the beam models provides similar predictions for wave attenuation
and wavelength to the viscoelastic fluid model. The three models are calibrated using wave attenuation data
recently collected in the Antarctic marginal ice zone as an example. Although agreement with the data is
obtained with all three models, several important issues related to the viscoelastic fluid model are identified
that raise questions about its suitability to characterize wave attenuation in ice-covered seas. Viscoelastic
beam models appear to provide a more robust parameterization of the phenomenon being modeled, but still
remain questionable as a valid characterization of wave-ice interactions generally.

1. Introduction

The polar regions have undergone major transformations over the last three decades, with satellite and in
situ observations revealing a dramatic decline of Arctic summer sea ice extent and volume [Meier et al.,
2013; Kwok and Rothrock, 2009], and a modest increase in winter Antarctic sea ice extent with significant
spatial variability [Simpkins et al., 2013]. The magnitude and trends of such changes can only be partially
captured by contemporary climate models [Stroeve et al., 2007; Jeffries et al., 2013; Tietsche et al., 2014], sug-
gesting that important physical processes are being neglected. Recent evidence has shown that ocean
waves play an important role in controlling the morphology of polar sea ice, caused by larger expanses of
open water opening up in the Arctic Basin where stronger winds can then create more energetic waves
over increasing fetches [Young et al., 2011; Thomson and Rogers, 2014]. In particular, large wave events have
recently been observed in situ to travel hundreds of kilometers into the ice-covered Arctic and Southern
Oceans, with sufficient energy to break up the sea ice [Kohout et al., 2014; Collins et al., 2015]. As a result,
there is currently considerable interest in characterizing the mechanisms governing the interactions
between ocean waves and sea ice, and to parameterizing their effects in contemporary climate models and
operational wave models (see Rogers and Orzech [2013] for the implementation into WAVEWATCH IIIVR ).

Near the ice edge, the ice cover is inhomogeneous and highly dynamic. It is composed of a mixture of ice
floes, brash, and open water, and is commonly referred to as the marginal ice zone (MIZ). Waves penetrating
the MIZ are scattered by the heterogeneous ice terrain and dissipated. The scattering process is conserva-
tive as it redistributes the wave energy spatially, so waves penetrating ice fields are gradually reflected,
causing an apparent exponential decay of wave energy with distance from the ice edge. Much attention
has been given to the development of realistic wave scattering models and extracting an attenuation coeffi-
cient characterizing the decay of wave energy (see the review papers of Squire et al. [1995] and Squire
[2007, 2011] for a comprehensive discussion). A number of nonconservative physical processes, such as
wave breaking, floe collisions and overrafting, turbulence, overwash, and sea ice roughness and inelasticity,
induce additional decay of wave energy. The complexity of modeling such (nonlinear) processes and the
lack of experimental data have prevented a quantification of their effects on wave attenuation in the MIZ.
Instead, a parameterization of all sources of dissipation is commonly used to model nonconservative wave
attenuation, also assumed to be exponential.
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The waves-in-ice model (WIM) advanced by Williams et al. [2013a, 2013b] incorporates the most complete
parameterization of wave attenuation due to both scattering and dissipative processes. The WIM describes
the advection of a wave spectrum exponentially attenuated as it propagates in the MIZ. Attenuation of the
spectrum due to scattering is provided by the two-dimensional model of Bennetts and Squire [2012], which
describes ensemble-averaged multiple wave scattering by random arrangements of ice floe edges, where
the floes are modeled as thin elastic plates. Additional attenuation is introduced as a dissipation parameter
in the thin plate equation, following the approach of Robinson and Palmer [1990]. The WIM also predicts the
change in floe size distribution due to wave-induced floe breakup, which in turn influences the attenuation
of waves. Another approach, similar to WIM, was considered by Doble and Bidlot [2013], who parameterized
the Wave Model (WAM) to include wave attenuation in the MIZ by scattering (using the model of Kohout
and Meylan [2008]), and ice roughness dissipation (based on Kohout et al. [2011]).

A simpler and potentially more convenient approach is to model the surface ocean layer (including ice floes,
brash ice, etc.) as a continuous homogeneous medium, described by a small number of rheological parame-
ters. Wave propagation through the medium is then characterized by a dispersion relation, which provides
the wavelength and attenuation coefficient of the wave modes supported by the medium. Such models are
empirical and the rheological parameters are not related to the properties of sea ice, nor can they be meas-
ured independently. The parameters can be estimated by measuring all the other quantities of the model,
e.g., wavelength, period, and attenuation, and solving an inverse problem. Although the continuum models
have recently received much attention in the sea ice community, there is no evidence that this type of
parameterization is a valid approach for modeling wave propagation in the MIZ. In particular, such models
have not been tested against the more rigorous process-based models described above and very little
experimental validation has been conducted. In this paper, we perform a comparison of three such rheolog-
ical models and devise a calibration procedure for each model using wave data recently collected in the
Antarctic MIZ [Kohout and Williams, 2013; Kohout et al., 2015].

To our knowledge, the first rheological model of sea ice goes back to Greenhill [1886], who used a simplified
thin elastic plate model to derive a dispersion relation for a purely elastic solid ice cover. The dispersion rela-
tion for a thin elastic plate floating on inviscid and incompressible water was formally derived and solved by
Evans and Davies [1968] and subsequently by Wadhams [1973, 1986] and Fox and Squire [1994]; the latter
paper considering how surface waves are reflected from the transition between open water and solid ice. In
its original form, the thin plate model only provides the wavelength of ice-coupled waves which then propa-
gate without experiencing attenuation. Dissipation was introduced in the thin plate equation by Squire and
Allan [1980] (for infinite water depth) who defined the constitutive relation of the ice cover using a four-
parameter spring-dashpot model, and later by Squire and Fox [1992] who included a viscous term proportional
to the plate’s vertical velocity based on the model of Robinson and Palmer [1990] (Both these papers are
focused on shore fast sea ice, as opposed to an open ice field). Liu and Mollo-Christensen [1988] parameterized
dissipative effects using eddy viscosity in the water under a purely elastic ice cover. The rheological contin-
uum models mentioned so far were intended to represent a solid ice cover or solitary ice floes, as opposed to
a mixed ice layer. In contrast, the viscous layer models of Keller [1998] and De Carolis and Desiderio [2002] char-
acterize wave propagation in a heterogeneous ice terrain. Recently, Wang and Shen [2010] extended Keller’s
model by including elastic effects. Their viscoelastic ice layer model, hereinafter referred to as the WS model,
is a two-dimensional fluid with a prescribed constitutive relation derived from a simple spring-dashpot formu-
lation. The WS model synthesizes the thin plate and viscous layer models described earlier, as limiting cases of
a more general formulation. The WS model has only been calibrated with data from laboratory experiments
by Zhao and Shen [2015], which cannot capture the full complexity of wave-ice interactions in ice-infested
seas generally. This notwithstanding, it has been implemented in WAVEWATCH IIIVR to describe the effect of
sea ice on ocean wave attenuation [Tolman and The WAVEWATCH IIIVR Development Group, 2014].

In this article, we identify several important deficiencies of the WS model. A central problem is the complexity
of its dispersion relation, which predicts multiple wave modes that are difficult to categorize and interpret
physically. For this reason, two viscoelastic beam models are also considered, which are more easily analyzed
and calibrated. The first model is similar to the thin viscoelastic beam model of Squire and Allan [1980],
although finite water depth and a simpler (i.e., two-parameter) constitutive relation are considered. The dis-
persion relation that we use resembles that proposed by Fox and Squire [1994], which is only modified by tak-
ing a complex (as opposed to real) elastic modulus, and by restricting it to two dimensions (replacing a plate
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by a beam). Hereafter, we refer to this augmented model as the FS model. The second model is the two-
dimensional version of the thin viscoelastic plate model considered by Squire and Fox [1992], which was
derived earlier by Robinson and Palmer [1990] in a different context. Subsequently it is referred to as the RP
model. The FS and RP models differ only in the way viscosity is introduced. In both models the water body
beneath the water-ice mixture layer is described as an incompressible, inviscid fluid, replicating the WS model.
We construct the FS model in order to satisfy the same deviatoric stress-strain relationship as the WS model,
so the two models take the same rheological input parameters, allowing us to compare them directly.

The simplicity of rheological viscoelastic-type models is counterbalanced by the difficulty in estimating their
parameters. Only sparse data sets exist that can be used to calibrate the models. Simultaneous measure-
ments of wave period, attenuation rate, and wavelength are required to perform the calibration, which has
never been achieved and may not be feasible with contemporary measurement techniques. In situ meas-
urements typically use multiple wave buoys to extract attenuation rate and wave period [see e.g., Wadhams
et al., 1988; Meylan et al., 2014], while attenuation rate and wavelength can be recovered using remote sens-
ing observations, e.g., synthetic aperture radar (SAR) imagery [Liu et al., 1992]. The relationship between
wave period and wavelength in ice-covered oceans (i.e., the dispersion relation) is not known, however. In
the following, we estimate the rheological parameters of the WS, FS, and RP models using wave period and
attenuation coefficients derived by Meylan et al. [2014] from the data collected by Kohout and Williams
[2013]. A method is devised to estimate the wavelength which gives the best fit of the FS model to the
experimental attenuation coefficients. Difficulties arise when using the WS model, due to the existence of
multiple sets of rheological parameters satisfying the dispersion relation for each wave measurement, sug-
gesting that the model may be inappropriate to parameterize wave attenuation due to ice in spectral wave
models, such as WAVEWATCH IIIVR .

The present article is structured as follows. After introducing basic preliminaries in section 2, we present the
assumptions and boundary conditions that define the WS, FS, and RP models in section 3. The resulting disper-
sion relations of the three models are given in section 4, and general properties of their solutions are discussed
in section 5. In section 6, we compare the WS and FS models directly for a range of parameters and analyze the
regimes where the models agree and diverge. Thereafter, we present a method to calibrate the three visco-
elastic models and one simpler viscous layer model using field data analyzed by Meylan et al. [2014] and dis-
cuss the corresponding fit to the data in section 7. Finally, we conclude our discussion in section 8 with a set of
recommendations concerning the use of viscoelastic-type parameterizations in operational wave models.

2. Preliminaries

Consider a two-dimensional seawater domain of infinite horizontal extent, bounded above by a sea ice
cover and bounded below by the seafloor. Cartesian coordinates (x, z) are defined with z pointing upward,
as depicted in Figure 1. The equilibrium water-ice interface is located at z 5 0 and the seafloor coincides

Figure 1. Sketch of (left) the WS viscoelastic fluid model and (right) the FS (or RP) viscoelastic thin beam model.
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with z52H. The surface ocean layer (including ice floes, brash ice, etc.) has uniform thickness h and is homo-
geneous with density q5917 kg m23. In the following, we refer to the surface ocean layer as the ice layer.

We consider the propagation of time-harmonic flexural gravity waves in the positive x direction, with ampli-
tude proportional to exp ð2i x tÞ, where x is the angular frequency and t denotes time. The time-harmonic
condition then allows us to replace @t52i x throughout. The seawater is assumed to be inviscid and incom-
pressible with density ~q51025 kg m23. Therefore, its motion is fully described by a complex velocity poten-
tial ~/ satisfying the Laplace equation

r2 ~/50; (1)

and the linearized Bernoulli equation

i x ~q ~/5~q g z2~P; (2)

where ~P is the water pressure and g59:8 m s22 is the acceleration due to gravity.

At the rigid seafloor, the vertical velocity vanishes, i.e.,

@z
~/ 5 0 ðz 5 2HÞ: (3)

At the water-ice interface, the kinematic condition is given by

2i x~f 5 @z
~/ 5 Uz ðz 5 0Þ; (4)

where Uz is the z component of the velocity vector field U of the ice layer and ~f is the elevation of the
water-ice interface. The form of the dynamic condition depends on the ice model under consideration.

3. Viscoelastic Ice Layer Models

We consider three viscoelastic ice layer models as mentioned in section 1: (i) the viscoelastic fluid model of
Wang and Shen [2010] (WS model), (ii) the thin viscoelastic beam model derived by introducing viscosity
into the constitutive relation of the thin plate model of Fox and Squire [1994] and reducing it to two dimen-
sions (FS model), and (iii) the beam version of the thin viscoelastic plate model of Robinson and Palmer
[1990] (RP model).

To show the relation between the WS and FS models properly, it is necessary to split the stress tensor S and
the strain tensor E of the ice layer into their deviatoric and volumetric parts, i.e., s and r, and e and e, respec-
tively. These are related by

S5s1r1; r5
1
2

tr Sf g; s5S2r 1; (5)

E5e1e1; e5
1
2

tr Ef g; e5E2e 1; (6)

where 1 is the identity tensor and tr denotes the trace. The deviatoric part is the trace-free part of a tensor
and describes volume-preserving deformations or forces. The volumetric part is proportional to the trace and
describes shape-preserving deformations or forces. Note that Wang and Shen [2010] incorrectly refer to the
deviatoric parts of the strain and strain rate tensors in their equation (4) as just strain and strain rate tensors.

3.1. WS Ice Layer Model
The WS model describes the ice as an incompressible, viscoelastic (and therefore non-Newtonian) fluid. The
relationship between deviatoric stress and strain is modeled by the Kelvin-Voigt element, i.e., a spring and
dashpot in parallel [see Fl€ugge, 1975]. The deviatoric stress tensor is then given by

s52 G e12 q g @t e52 ðG2i xqgÞ e52 GV e; (7)

where G is the elastic shear modulus of the ice layer and g is a viscosity parameter related to the dashpot
constant. We have also introduced the complex Voigt shear modulus GV5G2i xqg, which depends on fre-
quency. The volumetric stress is simply given by r52P, where P is the pressure in the ice.
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Following Wang and Shen [2010], we introduce a velocity potential / and a stream function w to represent
the x and z components of the particle velocity vector field U, which are

Ux 5 2@x/2@zw and Uz 5 2@z/1@xw; (8)

respectively. Using the equations of motion and the continuity equation, the potential / and stream func-
tion w can be shown to satisfy:

2i x q /5P2q g z; (9)

r2/50; (10)

and

2i x w5
i GV

x q
r2w: (11)

Vanishing shear stress at the top and the bottom boundaries of the ice layer implies

0522 @x@z/1@2
x w2@2

z w ðz50; hÞ; (12)

respectively. Using that @tf5Uz at z 5 h, where f is the elevation of the ice-atmosphere interface (see Figure
1, left), the condition of vanishing normal stress at the ice-atmosphere interface can be written as

05x2 /12
GV

q
2@2

z /1@x@zw
� �

1 g 2@z/1@xwð Þ ðz5hÞ: (13)

Finally, using (2), (9), the kinematic condition (4), and the dynamic condition Sðz; zÞ5 ~P at z 5 0, the poten-
tials ~/; /, and the stream function w can be related as follows:

~q
q

~/5 12
~q
q

� �
g x2 2@z/1@xwð Þ1/1 2

GV

x2 q
2@2

z /1@x@zw
� �

ðz50Þ: (14)

3.2. FS Ice Layer Model
The FS model describes the ice layer as an isotropic viscoelastic thin beam. We assume relation (6) relates
deviatoric stress and strain as in the WS model. Volumetric stress and strain are related by Hooke’s law
r52 K e, where K is the bulk modulus (the factor 2 is the dimension of space).

Neglecting rotational inertia, the viscoelastic version of the Euler-Bernoulli beam equation is given by

GV h3

6
ð11mÞ @4

x
~f5P2q g h1x2 q h ~f; (15)

where ~f is the elevation of the water-ice interface, and P is the difference between the atmospheric pres-
sure from above and the water pressure from below. Moreover, m50:3 is the Poisson ratio of sea ice. This
value is chosen such that the limiting case g! 0 m2 s21 to a purely elastic thin beam, is consistent with
experimental measurements for solid ice. For different ice morphologies, another Poisson ratio could be
chosen but, as this is effectively a rescaling of GV, it is unnecessary.

Equation (15) is almost identical to the standard (purely elastic) Euler-Bernoulli beam equation, as we have
simply replaced the shear modulus G by the complex Voigt shear modulus GV. The validity of this substitu-
tion is a consequence of the correspondence principle of viscoelasticity [see Fl€ugge, 1975].

Using the dynamic boundary condition of the FS model

~P52P ðz50Þ; (16)

as well as equation (2), the kinematic condition (4), and the beam equation (15), the coupled water-ice
boundary condition is given by

05

�
GV h3

6
ð11mÞ @4

x 2x2 q h1~q g

�
@z

~/2x2 ~q ~/ ðz50Þ: (17)
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3.3. RP Ice Layer Model
The RP model is similar to the FS model, as the two models only differ in the way viscous effects are intro-
duced. Specifically, the RP model includes a friction term proportional to the vertical velocity in the equa-
tion of motion, while stresses and strains are related by the standard Hooke’s law, i.e., s52 G e and r52 K e.
The thin viscoelastic beam equation is given by

G h3

6
ð11mÞ @4

x
~f5P2q g h1x2 q h ~f1i x c~f; (18)

where c is the viscosity parameter which is distinct from the viscosity parameter g used in the WS and FS
models.

The dynamic boundary condition of the FS model (16) also holds for the RP model. Therefore, the coupled
ice-water equation is obtained in the same way as with the FS model, resulting in

05

�
G h3

6
ð11mÞ @4

x 2x2 q h1~q g2i x c

�
@z

~/2x2 ~q ~/ ðz50Þ: (19)

4. Dispersion Relations

For each model, a dispersion relation can be derived from the governing equations and boundary condi-
tions. Invoking separation of variables, plane wave ansatzes of the form exp ði k xÞ cosh ðb zÞ and exp ði k xÞ
sinh ðb zÞ are used for the potential functions ~/; /, and the stream function w, where k is the wave number
and b depends on k (see Wang and Shen [2010] for details). After some algebra, the dispersion relation can
be written in the form

D ðQ g k tanh ðH kÞ2x2Þ50; (20)

for all three ice layer models considered. Note that in (20), D and Q are functions of k and x.

4.1. WS Model
For the WS model, Q5QWS, with

QWS5

�
sinh ðh kÞ sinh ðh vÞ3ðq4x4ðN42g2k2Þ116v2G4

V k6Þ

1 8 v G2
V k3 N2 q2 x2 ð12cosh ðh kÞ cosh ðh vÞÞ

���
g k q ~q x2

ðq2 x2 sinh ðh vÞðg k sinh ðh kÞ2N2 cosh ðh kÞÞ

1 4 v G2
V k3 cosh ðh vÞ sinh ðh kÞÞ

�
11;

(21)

where

N5x2
2 k2 GV

qx
; v25k22

~q x2

GV
: (22)

Furthermore, D5DWS, with

DWS5
h
g

�
ðN2 cosh ðh kÞ2g k sinh ðh kÞÞsinh ðh vÞ

2
4 v G2

V

q2 x2 k3 cosh ðh vÞ sinh ðh kÞ
�
:

(23)

Note that the term DWS does not appear in the original equation by Wang and Shen [2010, equation (44)],
although it was taken into account in their computations. We further remark that the dispersion relation of
the WS model describes waves propagating at or in between two interfaces (water-ice and ice-atmosphere).
The corresponding wave modes can be flexural modes (upper and lower surfaces are in phase), extensional
modes (surfaces are in antiphase), or a perturbation of these two types of modes arising from viscous
effects (surfaces are out of phase). This makes it harder to interpret the physical relevance of the wave
modes predicted by the WS model.
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4.2. FS Model
For the FS model, we derived Q5QFS, with

QFS5
GV h3

6 ~q g
ð11mÞ k42

q h x2

~q g
11

5
G h3

6 ~q g
ð11mÞ k42

q h x2

~q g
112 i x q g

h3

6 ~q g
ð11mÞ k4;

(24)

and D5DFS51. In the second equality of equation (24), we expanded GV5G2i x q g so that the similarity
with the RP dispersion relation (see section 4.3) is clearly evident. We observe that the dispersion relation is
much simpler than that of the WS model. In addition, all the wave modes predicted by the FS model are
flexural modes (upper and lower interfaces are always in phase, as required by the thin beam assumption).

4.3. RP Model
The dispersion relation of the RP model is almost identical to that of the FS model, as only the viscous terms
differ. Here Q5QRP, with

QRP5
G h3

6 ~q g
ð11mÞ k42

q h x2

~q g
112

i x
~q g

c; (25)

and D5DRP51. Note that the only difference with the FS dispersion relation is the last term of (25) which is
proportional to x, compared to being proportional to x k4 in (24).

5. Solutions of the Dispersion Relations

The three dispersion relations derived in section 4 have infinitely many complex solutions. Each solution k
to the dispersion relation corresponds to a plane wave mode and can be written as

k5j1i a52 p=k1i a; (26)

where k is the wavelength and a is the attenuation rate of wave amplitude. We are only interested in for-
ward propagating and decaying wave modes so that we only consider solutions in the first quadrant of the
complex k-plane (i.e., k > 0 and a � 0). The solutions of the WS, FS, and RP models depend on five parame-
ters: the shear modulus G, the viscosity (g for WS and FS models, and c for the RP model), the wave period
T52p=x, the ice cover thickness h, and the water depth H.

For zero viscosity (g5c50), the FS and RP dispersion relations reduce to the standard thin elastic beam dis-
persion relation, which has one real solution, one complex solution (with positive real and imaginary parts),
and infinitely many purely imaginary solutions in the first quadrant of the complex k-plane [see e.g., Evans
and Davies, 1968; Fox and Squire, 1994]. For nonzero viscosity, the solutions of the thin viscoelastic beam
dispersion relations (FS or RP) are slightly perturbed in the complex plane, so they all have positive real and
imaginary parts. We label the perturbed real and complex solutions of the FS model kFS

1 and kFS
2 , respec-

tively. Likewise, we define kRP
1 and kRP

2 for the RP model. The perturbed imaginary solutions of the FS and RP
models are not of interest here, since they describe quasi-evanescent waves with insignificant geophysical
relevance. The solutions of the FS model can be seen in Figure 2 (right) for values of the parameters
ðG; g; T ; h; HÞ5ð10 Pa; 1 m2 s21; 6 s; 1 m; 100 mÞ. The solutions of the RP model behave similarly.

The solutions of the WS model are not as simply organized in the complex plane as those of the FS and RP
models. In particular, setting the viscosity to zero we find a large number of complex solutions (with posi-
tive real and imaginary parts) scattered over the first quadrant, in addition to a large (probably infinite)
number of imaginary solutions and several real solutions. As with the FS model, all the solutions are per-
turbed in the first quadrant of the complex plane when a viscosity term is introduced. Note that, in contrast
to the FS and RP models, standard root finding methods fail in some cases due to the existence of local
maxima nearby certain solutions. Consequently, special numerical treatment is needed to overcome this
issue.

We give unique labels to the various solutions of the WS model at ðG; g; T ; h; HÞ5ð10 Pa; 1 m2 s21; 6 s;
1 m; 100 mÞ. This set has been chosen so that the solutions are well separated and can be identified in the
contour plot shown in Figure 2 (left). The two factors of the dispersion relation (20) can be treated
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separately. We designate the solutions to DWS50 (see equation (23)) by kWS
A and kWS

B and the solutions
to ðQWS g k tanh ðH kÞ2x2Þ50 by kWS

1 ; kWS
2 ; kWS

3 ; kWS
4 , ordered by increasing distance from the origin.

More solutions exist beyond the domain depicted in Figure 2, and very close to the imaginary axis, but
they are not shown as they are not geophysically relevant. In principle, these solutions may become rel-
evant as the parameters are changed, but in the following we disregard this possibility and focus on
the solutions highlighted in Figure 2.

Wang and Shen devised two criteria to identify the dominant solution kWS
dom of the dispersion relation that

has most geophysical relevance. Specifically, they defined a solution to be dominant if (i) the wavelength
is closest to the open water value, and (ii) the attenuation rate is the least among all modes. We also use
these criteria, although for some parameter configurations no solution satisfies both criteria, in which
case we keep criterion (i) only. In all the cases we simulated, we found that kWS

dom is always kWS
1 ; kWS

2 , or
kWS

A . In section 7, we show that (for the WS model) these criteria are inadequate, justifying our choice to
present a larger set of solutions. In the FS and RP models, the dominant solution is always kFS

1 and kRP
1 ,

respectively.

6. Comparison of the WS and FS Models

The WS and FS models have been constructed using the same viscoelastic constitutive relation, allowing us
to compare the solutions of the two corresponding dispersion relations directly to each other when they
are provided with the same parameters. Viscosity is introduced differently in the RP model so only qualita-
tive comparisons can be performed with the other models. Therefore, we do not include the solutions of
the RP dispersion relation in the present analysis.

For comparing the solutions of the two models, we define the difference in magnitude between two predic-
tions p and q of the two models by jlog 10ðpÞ2log 10ðqÞj5jlog 10ðp=qÞj. In the following, p and q are either
wavelengths or attenuation rates. This measure does not presume a reference solution, instead it accounts
for the magnitude of the quantities compared.

Since the parameter space is five dimensional, we can only investigate a small part of it. Of primary interest
are the rheological parameters G and g, and the thickness h, since these describe the ice. All the statements
and conclusions made in the following analysis have been confirmed for various other parameter sets and
can therefore be generalized.

6.1. Shear Modulus
In Figure 3, we compare the solutions (i.e., wavelength k and attenuation rate a) of the WS and FS models
for a wide range of shear moduli, i.e., 1 Pa � G � 1015 Pa (Wang and Shen [2010] considered G � 109 Pa
only). The other parameters are fixed to g50:05 m2 s21; T58 s; h50:5 m, and H5100 m. On the left figure,
the wavelength is scaled by the corresponding open water wavelength for finite depth, k0 say, which is the
real solution of the open water dispersion relation x22ð2 p=k0Þ g tanh ðð2 p=k0ÞHÞ50.

We observe that the wavelength of the dominant modes of the WS (red line) and FS (thick, gray line) mod-
els, denoted by kWS

dom and kFS
1 , respectively, are remarkably similar across the range of shear moduli consid-

ered (see left figure), as their difference in magnitude is always smaller than 0.07. We found that they agree
best for 106 Pa � G � 108 Pa where the difference in magnitude is less than 0.01.

In contrast, the attenuation rates (see right figure) only agree for G � 107 Pa. For lower values of G, we
observe significant discrepancy between the two models, with the WS model predicting an attenuation rate
more than 4 orders of magnitude larger than that of the FS model for G � 105 Pa. We conjecture that in this
regime, elastic forces become small and shear forces in the WS fluid model dominate. We note that it is pos-
sible to adjust the viscosity parameter g in the FS model (keeping it fixed in the WS model) such that kFS

1

agrees with kWS
dom in both wavelength and attenuation for small G (see Figure 5, right), in which case the

agreement for large G is lost.

We further observe a discontinuity in wavelength at G � 105 Pa and a corresponding maximum in attenua-
tion for the dominant solution of the WS model (red curve). This feature is associated with a change of dom-
inant solution, as kWS

dom5kWS
1 for G � 105 Pa and kWS

dom5kWS
2 for larger shear moduli, i.e., the dominant WS

solution jumps to another wave mode. This behavior is specific to the WS model.
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We also depict kWS
3 and kFS

2 in Figure 3 (dot-dashed blue and thick dashed gray curve, respectively). We find
that kFS

2 is qualitatively very similar to kWS
3 in the entire range of shear moduli, for both wavelength and

attenuation rates. In terms of wavelength, the two solutions agree to within less than 0.45 orders of magni-
tude (0.15 for G � 104 Pa). In terms of attenuation, they agree to within less than 0.3 orders of magnitude
(0.1 for G � 103 Pa).

6.2. Viscosity
We now fix G and vary the viscosity g in the range 1023 m2 s21 � g � 106 m2 s21. All other parameters
remain as before. Note that Wang and Shen [2010] restricted their analysis to g � 1 m2 s21. In section 6.1,
we showed that at G5108 Pa; kWS

2 is the dominant solution of the WS model and that kFS
1 is close to it in

Figure 2. Selected contours of (left) jDWSðj1i aÞj and (right) jDFSðj1i aÞj with roots indicated by red crosses. Dashed lines indicate a50 and j52 p=k0, where k0 is the open water wave-
length. This contour plot was generated for the standard parameter set ðG; g; T ; h; HÞ5ð10 Pa; 1 m2 s21; 6 s; 1 m; 100 mÞ.

Figure 3. (left) Relative wavelengths k=k0 and (right) attenuation coefficients a of various solutions of the FS and WS model for varying shear modulus G. Red (thin, solid) and blue (thin,
dot-dashed) lines indicate the solutions kWS

dom and kWS
3 , respectively. Thin gray dotted lines show how kWS

1 and kWS
2 continue when they are not dominant. Thick solid gray lines represent

the dominant solution kFS
1 of the FS model. Thick dashed gray lines represent kFS

2 . For these plots, we chose g50:05 m2 s21; T58 s; h50:5 m, and H5100 m.
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both wavelength and attenuation rate. The solutions of the FS and WS models are depicted in Figure 4 for
this value of the shear modulus.

The good agreement of the dominant solutions kWS
dom5kWS

2 and kFS
1 at G5108 Pa remains when the viscosity

is changed over several orders of magnitude (red line and thick, solid, gray line, respectively). Specifically,
the difference in magnitude stays below 0.005 and 0.18 for wavelengths and attenuation coefficients,
respectively. The same holds for the solutions kWS

3 and kFS
2 (dot-dashed blue line and thick, dashed, gray

line, respectively), as the difference in magnitude of the predicted wavelengths and attenuation coefficients
remains below 0.062 and 0.045, respectively, over the entire range of viscosities.

We also calculated the dependence of the solutions on g for G5102 Pa, for which the models were
found to differ in section 6.1. At this G, kWS

1 is the dominant solution of the WS model. Results are
presented in Figure 5.

As we have shown in section 6.1, the dominant solutions kWS
dom and kFS

1 agree in wavelength, but differ con-
siderably in attenuation rate at g50:05 m2 s21. This is true for g � 102 m2 s21, where the differences in mag-
nitude are smaller than 0.013 for wavelength, but larger than 2.5 for attenuation rate. As g gets larger,
however, the discrepancy in attenuation rates diminishes. For g > 104 m2 s21, the differences in magnitude
stay below 0.003 and 0.3 for wavelength and attenuation rate, respectively. The secondary solutions kWS

3

and kFS
2 also agree better at large g. In terms of wavelength, the difference in magnitude lowers from 0.41 at

g51023 m2 s21 to 0.06 at g5106 m2 s21. The attenuation rates of kWS
3 and kFS

2 differ by less than 0.1 in mag-
nitude for the entire range of g.

As discussed at the beginning of section 5, as g! 0 m2 s21, the FS dispersion relation reduces to the thin
elastic beam dispersion relation, with kFS

1 being the real solution and kFS
2 the complex solution with positive

real and imaginary parts. Correspondingly, kWS
dom becomes one of the real solutions of the WS model for zero

viscosity, and kWS
3 stays off the real and imaginary axes.

6.3. Thickness
We now investigate the sensitivity of the solutions with respect to the ice cover thickness in the range
0 m � h � 10 m. Results are shown in Figure 6 for G5108 Pa and in Figure 7 for G5102 Pa.

For both values of the shear modulus G considered, we observe that as h! 0 m, the dominant wavelengths
kFS

1 and kWS
dom both approach the open water wavelength k0, and the dominant attenuation rates aFS

1 and
aWS

dom approach zero, as one would expect. The secondary solutions of both models also agree well, as both
the real and imaginary parts of kFS

2 and kWS
3 are growing asymptotically to infinity in the limit. As h increases,

the behavior of the solutions differ significantly for low and high shear modulus, however.

Figure 4. (left) Relative wavelengths k=k0 and (right) attenuation coefficients a of various solutions of the FS and WS model for varying viscosity g at G5108 Pa. Line styles and other
parameters are as in Figure 3.
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For G5108 Pa, we have a good agreement between the two models over the range of thicknesses consid-
ered in both wavelength and attenuation rate. The differences in magnitude remain below 0.035 and 0.2
for wavelength and attenuation rate, respectively.

For G5102 Pa, a significant discrepancy occurs in both wavelength and attenuation rate between the solu-
tions of the WS and FS models. Specifically, the difference in magnitude of the dominant wavelength rises
with increasing h from 331024 at h50:01 m to 0.36 at h510 m. Meanwhile, the difference in magnitude of
the dominant attenuation coefficients drops from 7.7 down to 0.3 over the same range of h. The differences
in magnitude of the secondary solutions kFS

2 and kWS
3 show a complicated behavior for h � 2 m. However, as

the thickness increases, the difference in magnitude of k rises from 0.04 at h52 m to 0.77 at h510 m, while
the difference in magnitude of a falls from 0.66 down to 0.11 over the same range of h. As in section 6.1, we
conjecture that shear effects in the WS fluid model are significant compared to elastic effects in the regime
of low G, which explains why the two models behave differently. We also note that the solutions of the WS
model exhibit complicated features for h � 2 m, which is the regime of interest for the subsequent analysis.
This behavior is difficult to explain physically. In contrast, the solutions of the FS model are well behaved in
this range of thickness.

Figure 5. Same as Figure 4 but for G5102 Pa.

Figure 6. (left) Relative wavelengths k=k0 and (right) attenuation coefficients a of various solutions of the FS and WS model for varying thickness h at G5108 Pa. Line styles and other
parameters are as in Figure 3.
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7. Model Calibration With Experimental Data

We now turn our attention to the problem of using the rheological models described in sections 3 and 4 to
predict wave attenuation in ice-covered seas. The WS, FS, and RP models are empirical linear parameteriza-
tions of the combined dissipative and scattering mechanisms experienced by ocean waves due to the pres-
ence of sea ice. Consequently, the parameters of the models must be estimated so that the predicted wave
attenuation rates are consistent with field observations. We devise a method to estimate the rheological
parameters ðG; gÞ, for the WS and FS models, or ðG; cÞ, for the RP model, using experimental data. The
method is based on inverting the dispersion relation of each model for the rheological parameters, given
the set ðk; a; T ; h;HÞ of measured or estimated parameters.

To our knowledge, the wavelength k, attenuation rate a, and period T of waves traveling through an ice
field have never been measured simultaneously. Therefore, we rely on experimental measurements of wave
energy attenuation coefficients against wave period. A synthesis of five experimental data sets collected in
the Bering Sea and Greenland Sea between 1978 and 1983 was conducted by Wadhams et al. [1988]. How-
ever, we will use a more recent data set in which five contemporary wave sensors were deployed in the Ant-
arctic marginal ice zone to measure wave energy attenuation and wave period [Kohout and Williams, 2013;
Kohout et al., 2015]. The spectral analysis of the data was performed by Meylan et al. [2014] and we use the
results presented in Figure 4 of that paper to calibrate the three rheological models considered here. The
method used to estimate the corresponding wavelengths is described in the following subsections.

Throughout the following analysis, we assume a water depth of H54:3 km, which is typical of the region
where Kohout et al. [2014] conducted their experiments [Wolfram Research, Inc., 2014; GEBCO, 2014]. We
also assume an ice thickness of 1 m. The sensitivity of the results with respect to ice thickness is discussed
in section 7.1. Note that Meylan et al. [2014] provided decay rates for wave energy, while the attenuation
rate a defined earlier is for wave amplitude. The difference has been taken into account by halving the
decay rates of Meylan et al. [2014], since the wave energy is proportional to the square of the amplitude.

7.1. FS Model
A major advantage of the FS and RP models over the WS model is that their dispersion relations can be
solved analytically for the rheological parameters and the solutions are unique. In the FS dispersion relation,
GV5G2i xqg appears only once, so a straightforward inversion yields

GV56
~q x2 coth ðH kÞ2g k ~q2h k q x2

h3 k5 ð11mÞ : (27)

Since the wavelength k52p=ReðkÞ has not been measured by Kohout and Williams [2013], we estimate it
via an optimization procedure (described below in this section). Experiments by [Wadhams and Holt, 1991]

Figure 7. Same as Figure 6 but for G5102 Pa.
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(section 6.3) using synthetic aperture
radar (SAR) imaging have shown that
the wavelength increases when a wave
travels from open water into an ice
field. Therefore, it is reasonable to
assume that the wavelength at each
period is greater than k0.

To simplify the analysis, we assume that
kðTÞ5f k0ðTÞ, where f is a constant that
we seek to optimize such that the FS
model fits best to the data. We compute
(27) for each measured period from 6 s
to 20 s and for f from 1 to 2 with 0.05
increments. For each value of f, we then
calculate the mean shear modulus �G
and mean viscosity �g over all T. Note
that weighting the mean with the
inverse squared errors of the data gives
almost identical results. We then com-
pute aFS

1 ðTÞ5ImðkFS
1 ÞðTÞ for each ð�G; �gÞ

pair and find that the FS model fits the
data best when f 5 1.70, in the least
squares sense. The corresponding rheo-
logical parameters are G5�G � 4:93

1012 Pa and g5�g � 5:03107 m2 s21.

The attenuation curve predicted by the
FS model for the estimated parameters is plotted in Figure 8 alongside the experimental data. The model
fits the data well within the error bars for all periods. We estimate the discrepancy between model and data
by computing the weighted sum of squared deviations D. For the FS model, D � 0:4.

The inset in Figure 8 shows the dispersion relation (i.e., wavelength versus wave period) for the rheological
parameters computed above. We observe significant variations in relative wavelengths with kFS

1 � 7:2 k0 at
T56 s and � 1:3 k0 at T520 s, which seems inconsistent with our initial assumption that kFS

1 51:7 k0 for all
wave periods. However, our calibration procedure allows for this apparent inconsistency: the assumption
kFS

1 ðTÞ51:7 k0ðTÞ was satisfied when we solved (27) for each particular value of T considered, but this
relationship does not hold once we fix G5�G and g5�g and use the dispersion relation to predict
kFS

1 ðTÞ. It is highly plausible that in reality the relative wavelength will be different for each period, and will
depend on the type of ice cover. Only with a simultaneous measurement of T, k, and a could a reliable test
be designed.

Our choice of ice thickness for the model, i.e., h51 m, is somewhat arbitrary, although reasonable, as the
measurements were made in first year ice with a thickness ranging from �0:5 m to 1 m [see Kohout et al.,
2015]. It is therefore important to discuss the sensitivity of our calibration method with respect to this
parameter. Doubling or halving the thickness, we were able to find new values of �G and �g that give a similar
fit to the attenuation coefficients derived by Meylan et al. [2014], suggesting that thickness does not play a
significant role in our analysis.

We observe that the shear modulus G � 1012 Pa obtained using our calibration procedure is much larger
than that of a solid ice cover (about 109 Pa). Moreover, the viscosity g � 107 m2 s21 is 9 orders of magnitude
larger than 1022 m2 s21, a value determined experimentally by Newyear and Martin [1999] and Wadhams
et al. [2004], noting that they fitted data to the viscous layer model of Keller [1998] which differs significantly
from the FS model. Although our calibration may seem unphysical, we emphasize that the FS model is
empirical and does not properly represent all processes causing wave attenuation, e.g., colliding and over-
rafting floes, turbulence, wave breaking, inelasticity, scattering, and other phenomena. In particular, the
parameters cannot be measured directly as they do not represent observable physical processes.

Figure 8. Comparison of attenuation rates versus wave period between predic-
tions of the FS model (blue line) and experimental attenuation coefficients derived
by Meylan et al. [2014]. The attenuation curve is generated for optimized wave-
length k51:70 k0 and parameters G54:931012 Pa; g55:03107 m2 s21; h51 m,
and H54300 m. The inset displays the relative wavelength against wave period
(i.e., the dispersion relation) for these estimated rheological parameters.
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Consequently, no restrictions on the acceptable values of the rheological parameters, except positiveness,
can be imposed.

7.2. RP Model
As in the FS model, we are able to invert the dispersion relation of the RP model for the shear modulus G
and viscosity c analytically. After lengthy algebra, we obtain

G5½6 cos ð2 H að Þ1cosh ð2 H jÞÞ3 ðða21j2Þ ðg ~q2h q x2Þ cos ð2 H aÞ

2 ða21j2Þ ðg ~q2h qx2Þ cosh ð2 H jÞ1 ~q x2 ðj sinh ð2 H jÞ2a sin ð2 H aÞÞÞ�

= ½h3 ða625 a4 j225 a2 j41j6Þ ð11mÞ3 ðsin2ð2 H aÞ1sinh2ð2 H jÞÞ�;

(28)

c5½ðcos ð2 H aÞ1cosh ð2 H jÞÞ3 ð4 a j ða42j4Þ ðg ~q2h q x2Þ cosh ð2 H jÞ

24 a j ða42j4Þ ðg ~q2h qx2Þ cos ð2 H aÞ1 ~q x2 ðj ð5 a4210 a2 j21j4Þ sin ð2 H aÞ

1 a ða4210 a2 j215 j4Þ sinh ð2 H jÞÞÞ�= ½ða625 a4 j225 a2 j41j6Þx

3 ðsin 2ð2 H aÞ1sinh2ð2 H jÞÞ�;

(29)

where j52 p=k and x52 p=T , as before.

We used the RP model to find an optimal wavelength in the same way as for the FS model. With this
method, we find that the RP model fits the attenuation coefficients derived by Meylan et al. [2014] best,
when f 5 1.00, G � 9:23109 Pa, and c � 6:9 Pa s m21. Because the optimal factor is f 5 1.00, we also
checked if the RP model makes better predictions when f< 1, but that was not the case. The fit to the data
is plotted in Figure 9 (solid blue line). We find a weighted sum of squared deviations of D � 2:2, so the fit is
not as good as with the FS model (D � 0:4). Specifically, for these parameters, the RP model agrees well
with the data for T�11 s, but underestimates the attenuation for lower periods. Other methods for finding
G and c can result in a better fit, however. For instance, by manually changing the parameters to G � 3:23

107 Pa and c � 6:0 Pa s m21, we obtain a fit with a weighted sum of squared deviations of D � 0:5 (see dot-
dashed blue line in Figure 9). However, with the new parameters the predicted wavelength is very close to

the open water wavelength for all T,
which seems unrealistic as an ice layer
should change the wavelength.

7.3. WS Model
In contrast to the FS and RP models, the
dispersion relation of the WS model
cannot be inverted analytically, so we
used Newton’s method to estimate GV

numerically. The procedure is further
complicated by the existence of multi-
ple GV solutions to the inverse problem.
Consequently, for each data point con-
sidered, several pairs of positive rheo-
logical parameters ðG; gÞ can be used to
fit one of the many solutions of the WS
dispersion relation to that data point.
The number of possible calibrations can
be reduced by demanding that G�109

Pa and g�1 m2 s21 as suggested by
Wang and Shen [2010], although we
argued in section 7.1 that such restric-
tions are not physically justified for the
types of empirical model considered
here. Moreover, several or no solutions
may satisfy these restriction criteria for a
given set of parameters.

Figure 9. Same as Figure 8 for the RP model. The systematic optimization proce-
dure described in the text (solid blue line) yields the optimized parameters
k51:0 k0; G59:23109 Pa; c56:9 Pa s m21; h51 m, and H54300 m. The fit was
improved by manually changing the parameters to G � 3:23107 Pa and c � 6:0
Pa s m21 (dot-dashed blue line).
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The fact that the WS model provides multiple solu-
tions to the inverse problem makes its calibration dif-
ficult. Specifically, the optimization procedure
devised in section 7.1 for the FS model cannot be
used here as, even using Wang and Shen’s restriction
criteria for G and g, multiple solutions may exist for
each wave period and wavelength. Zhao and Shen
[2015] encountered the same issue, but we believe
that they did not fully appreciate its severity. To sim-
plify the calibration, we consider the measured
attenuation rate at T510 s only, i.e., 1:231025 m21.
Assuming k51:70 k0; h51 m, and H54300 m, as for

the FS model, we compute four possible calibrations that satisfy Wang and Shen’s criteria. The four ðG; gÞ
pairs are listed in Table 1. Each of these pairs can then be used in the WS dispersion relation to predict the
same mode k52 p=k1i a. It is unclear, however, if this mode is the dominant mode kWS

dom or any of the stand-
ard set of solutions, i.e., kWS

1 ; kWS
2 ; kWS

3 ; kWS
4 ; kWS

A , or kWS
B , defined in section 5. Therefore, we compute the

standard solutions for each ðG; gÞ pair in Table 1 and compare them with the value of k estimated from the
data. We find that none of these ðG; gÞ pairs predicts k as a dominant mode at T510 s (i.e., one of the stand-
ard solutions 6¼ k is dominant instead). That is, no matter which calibration we choose, the solution that fits
the data is not the dominant one according to the dominance criteria (i) and (ii) discussed in section 5. This
challenges the suitability of these criteria for selecting the mode with most geophysical relevance. Further-
more, k matches with one of the standard solutions for only one of the four pairs, i.e.,
ðG; gÞ5ð1:63105 Pa; 2:831021 m2 s21Þ, in which case k5kWS

1 while kWS
dom5kWS

2 . We select this calibration for
investigating the fit to the data.

The attenuation curves of kWS
1 ; kWS

2 , and kWS
A are shown in Figure 10 with the attenuation coefficients

derived by Meylan et al. [2014], as these three solutions become alternatively dominant as the wave
period changes. For T�16 s; kWS

2 dom-
inates. Between T � 16 s and 18 s, no
solution satisfies both criteria (i) and
(ii), but kWS

A is closest to the open
water wavelength, and is therefore
considered dominant, following crite-
rion (i) only. For T�18 s; kWS

dom5kWS
1 . As

mentioned earlier, although kWS
dom5kWS

2

at T510 s, the solution that fits the data
point at T510 s exactly (and for which
the model was calibrated) is kWS

1 . In
fact, kWS

dom5kWS
2 underestimates the

attenuation in that regime, but kWS
1

and kWS
A both fit well. Moreover, for

T � 18 s, both kWS
A and kWS

2 fit the data
well, but kWS

1 , which is dominant,
underestimates the attenuation rate
(although within error bars). Interest-
ingly, kWS

A fits the observations within
error bars for all T. The same is true for
kWS

1 , although the agreement is not as
good as with kWS

A . When the criteria (i)
and (ii) are applied (or just (i) if both
cannot be satisfied simultaneously),
we compute D � 5:1, while when at
each T the best fitting solution is
selected, we obtain D � 0:2. We also
find D � 0:2 if we select kWS

A for all

Table 1. A Sample of ðG; gÞ Pairs That Solve the WS Inverse
Problem at T510 s and Satisfy the Restriction Criteria of
Wang and Shen [2010]a

G ðPaÞ g ðm2 s21Þ

6:43105 1.1
3:73101 4:831029

1:63105 2:831021

9.2 2:2310210

aThe solutions were obtained for attenuation rates
derived by Meylan et al. [2014]. The wavelength k51:70 k0

was chosen such that the FS model fits best to the data.
Other parameters are h51 m and H54300 m.

Figure 10. Same as Figure 8 for the WS model. The red, blue, and brown lines
correspond to kWS

1 ; kWS
2 , and kWS

A , respectively. Lines in the main figure are solid if
the solution is a dominant mode and dashed otherwise. The optimized
parameters were k51:70 k0; G51:63105 Pa; g52:831021 m2 s21; h51 m, and
H54300 m, such that one solution (kWS

1 here) fits the data point at T510 s
exactly.
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periods. This shows that the WS model
can potentially fit the data, but the
dominant solution criteria (i) and (ii)
need to be revised. It is not clear how
the physical solution could be selected
when observational data are not given,
however.

The procedure was repeated by fitting
the WS model to the data at T516 s,
which confirmed the outcomes of our
analysis.

7.4. WS Model Without Elasticity
In the previous sections, we found that
all three viscoelastic models (WS, FS,
and RP) can fit the attenuation coeffi-
cients derived by Meylan et al. [2014]
for some values of the rheological
parameters. Purely viscous rheological
models have also been used to model
wave propagation in ice-infested seas
as mentioned in section 1, and have
been calibrated with success for pan-
cake ice [see e.g., Doble et al., 2015]. It
is then reasonable to investigate the fit

to the attenuation data of Meylan et al. [2014] by a simpler viscous layer model, which does not include elas-
tic effects. We consider the thin viscous layer model proposed by Keller [1998], which can be derived from
the WS model by removing the elastic constant (G50 Pa), assuming small ice layer thickness (h� g x22),
and small Reynolds number (x h2 g21 � 1). This leads to the dispersion relation

g5i

�
~q x2 ðx22g h k2Þ1k ðg2 h k2 ð~q2qÞ2g ~q x21h q x4Þ tanh ðH kÞ

�

=

�
4 k2 ð~q x31k x ðh qx22g ~qÞ tanh ðH kÞÞ

�
;

(30)

which we have already solved for g.

At each period T, we numerically solve the imaginary part of (30), which does not involve g, for the wave-
length k. All other parameters are as before. We find two physically relevant solutions for k at each T, both
of which are very close to the respective open water wavelength. We substitute these into (30) to obtain g
at any particular T. By taking the mean of all g for each group, we find two possible calibrations: g515:73

103 m2 s21 and g56:6 m2 s21, with D � 1:1 and D > 3000, respectively. The dominant solutions are easy to
identify (as in the FS and RP models), and are visualized in Figure 11. A reasonable agreement is seen at
high wave periods, but significant discrepancy is observed at low wave periods. We were not able to
improve the fit of this model by manually changing g. This analysis suggests that elastic effects cannot be
neglected in rheological models for MIZ-type ice covers.

8. Conclusions

In this work, we have considered three viscoelastic-type models for the attenuation of ocean waves propagating
in the MIZ. All three models are empirical parameterizations of the observed attenuation phenomenon and
describe the ice layer as a homogeneous viscoelastic continuum, which is fully characterized by a dispersion rela-
tion. We sought to determine the conditions under which the viscoelastic fluid model proposed by Wang and
Shen [2010] (WS model) can be replaced by a simpler thin viscoelastic beam model. Two beam models were
considered. In the first one (FS model), viscous effects are introduced into the constitutive relation of the thin

Figure 11. Same as Figure 8 for the thin viscous layer model of Keller [1998]. The
blue solid and dot-dashed lines correspond to the calibrations g515:73103 m2

s21 and g56:6 m2 s21, respectively.
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elastic beam, while in the second one (RP model), viscous effects appear as a friction term proportional to the
vertical velocity in the equation of motion of the thin beam. The deviatoric stress-strain relation used in the FS
model is identical to that of the WS model, so we were able to compare the solutions of their dispersion rela-
tions directly. We have then used wave data collected in the Antarctic MIZ and analyzed by Meylan et al. [2014]
to calibrate the three models and assess their ability to predict wave attenuation in ice-covered seas.

Some major drawbacks associated with the WS model have been identified. First, the dispersion relation is
difficult to solve numerically with some features requiring special numerical treatment, e.g., local maxima
located close to roots in the contour plot of the dispersion relation. Second, the dispersion relation has
many solutions of potential relevance, so identifying the one that has most geophysical relevance, referred
to as the dominant solution, is not straightforward. Although Wang and Shen [2010] provide criteria to iden-
tify this mode, we found much evidence suggesting that these criteria are inappropriate in some circum-
stances. In particular, the solutions that best agree with observations do not satisfy the dominant mode
criteria of Wang and Shen [2010]. Finally, there exist many solutions to the inverse problem of calibrating
the rheological parameters of the WS model using measurements of waves traveling through ice. The
inverse solutions are estimated numerically. No selection criteria have been advanced that provide good
agreement with attenuation data and predict a dominant wave mode.

Unlike the WS model, the FS and the RP beam models have dispersion relations that can be solved in most
situations using standard root finding techniques. Only two relevant solutions exist and the dominant
mode is readily identified. It was demonstrated that the solutions of the FS dispersion relation are in close
agreement with those of the WS model for a wide range of parameters. Discrepancies exist when the rheo-
logical elastic modulus and the viscosity are small, as shear forces in the WS fluid model become dominant.
This does not tend to favor one model over the other, however, as the parameters of these models are
entirely empirical, with no physical relevance.

A calibration procedure was conceived to fit the two beam models to the attenuation coefficients derived
by Meylan et al. [2014]. The dispersion relations of both the FS and RP models can be inverted analytically
for the rheological parameters and the solution is unique. We overcame the lack of wavelength data in our
procedure using an optimization technique which estimates the wavelength at each data point that pro-
vides the best fit. The FS and RP models were found to be able to predict wave attenuation rates that fit all
data points within error bars. Although either of these models can be used to predict wave attenuation of
this data set, it would be unwise to generalize this finding to other situations.

The WS model was also found to predict attenuation rates that fit the data, but they correspond to wave
modes that are not dominant when the criteria of Wang and Shen [2010] are used. It is thus clear that the
dominance criteria cannot be used unambiguously to predict wave attenuation with the WS model. When
the best fitting wave mode, regardless of type, is selected at each period, however, the WS model is closer
to the data than the FS and RP models.

The simpler thin viscous layer model of Keller [1998] was also considered. We found that the viscous layer
model predicts a worse fit to the attenuation data than the WS, FS, and RP models, suggesting that elasticity
may be an important component of fitting these models to MIZ data.

Finally, we conclude this study with the following recommendations for modeling wave attenuation in ice-
covered seas:

1. In this article, we found that the dominance criteria of the WS model need to be revised, if they are to be
used in spectral wave models such as WAVEWATCH IIIVR to predict attenuation; alternatively, simpler con-
tinuum models such as the FS or RP models could be used.

2. We reiterate the fact that substantial additional wave attenuation data obtained for a range of ice condi-
tions are needed to calibrate and test the validity of rheological models such as the WS, FS, and RP models,
including simultaneous measurements of wave periods, attenuation coefficients, and wavelengths, which
is not logistically achievable with contemporary (in situ or remote sensing) measurement techniques.

3. From a modeling perspective, process-based models (e.g., scattering, floe collisions, wave breaking, etc.)
offer a viable and more physically defensible alternative to rheological models, as they are capable of
estimating wave attenuation directly in terms of observable ice conditions, such as floe size distribution
and ice concentration.
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