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ABSTRACT

The Cyclone Global Navigation Satellite System (CYGNSS) constellation is designed to provide obser-

vations of surface wind speed in and near the inner core of tropical cyclones with high temporal resolution

throughout the storm’s life cycle. A method is developed for estimating tropical cyclone integrated kinetic

energy (IKE) using CYGNSS observations. IKE is calculated for each geographically based quadrant out to

an estimate of the 34-kt (1 kt 5 0.51m s21) wind radius. The CYGNSS-IKE estimator is tested and its per-

formance is characterized using simulated CYGNSS observations with realistic measurement errors.

CYGNSS-IKE performance improves for stronger, more organized storms and with increasing number of

observations over the extent of the 34-kt radius. Known sampling information can be used for quality control.

While CYGNSS-IKE is calculated for individual geographic quadrants, using a total-IKE—a sum over all

quadrants—improves performance. CYGNSS-IKE should be of interest to operational and research meteo-

rologists, insurance companies, and others interested in the destructive potential of tropical cyclones developing

in data-sparse regions, which will now be covered by CYGNSS. The CYGNSS-IKE product will be available

for the 2017 Atlantic Ocean hurricane season.

1. Introduction

a. Tropical cyclone intensity classifications and
complications

Tropical cyclones (TCs) are routinely categorized

according to the intensity of storm winds, as either the

maximum sustained 1- or 10-min wind speed (VMAX).

Routinely used in the United States, the Saffir–Simpson

hurricane wind scale (SSHWS) categorizes hurricanes

with the 1-min sustained VMAX (Saffir 1975; Simpson

1974). Using a single, intensity-related input often does

not tell the whole story of the destructive potential of a

TC. Both size and intensity matter.

The deficiencies of the SSHWS as a predictor of de-

structive potential have been acknowledged in numerous

previous studies (e.g., Mahendran 1998; Kantha 2006;

Powell and Reinhold 2007; Irish et al. 2008; Maclay et al.

2008). The limitations of SSHWS are most clearly shown

by a comparison between the destruction fromHurricanes

Katrina (2005) and Camille (1969) (Irish et al. 2008;

Powell and Reinhold 2007). Hurricane Camille, with a

landfall intensity of 150kt (1kt5 0.51ms21), maxing out

the SSHWS at category 5, is now considered to be the

second-most-intense hurricane in the United States re-

cord, surpassed only by the 1953 Labor Day hurricane

(Kieper et al. 2016). Hurricane Katrina made landfall in

the same area, but as a category-3 storm with an intensity

of 110kt (Knabb et al. 2005). Despite being two SSHWS

classifications below Hurricane Camille, Hurricane

Katrina was a much larger storm than Camille at landfall,

which led to a significantly more destructive storm surge

(Knabb et al. 2005; Irish et al. 2008).

The comparison of hurricanes Katrina and Camille

highlights the need for a TC strength scale that depends

on both the intensity of the winds and the size of the

storm. First proposed by Powell and Reinhold (2007),

integrated kinetic energy (IKE) can be used to supple-

ment the SSHWS. IKE is defined here as

IKE5

ð
V

1

2
rU2 dV (1)

where U, the surface wind speed, is integrated over a

specified volume V of the storm, taking into account the

air density r. IKE is considered to be a better measure ofCorresponding author e-mail: MaryMorris, marygm@umich.edu
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the destructive potential of TCs than SSHWS because it

quantifies both the spatial extent and the strength of

the winds.

b. Previous IKE studies

Since first being introduced, several IKE-related

products have been proposed. IKE is now included in

the set of NOAA’s Hurricane Research Division

(HRD) Real-Time Hurricane Wind Analysis System

(H*Wind) products (Powell et al. 1998; 2010). H*Wind

IKE can be computed from H*Wind analyses that

combine all available surface wind speed observations

for storms in real time, as well as in poststorm rean-

alyzes. H*Wind products have been recently commer-

cialized, and current products are no longer publicly

available; however, the legacy dataset, created when

these products were supported through NOAA, is still

publicly available. H*Wind products are heavily reliant

on data availability—in particular, on observations col-

lected from reconnaissance aircraft. The coverage and

availability of H*Wind products is concentrated in the

Atlantic Ocean and eastern Pacific Ocean basins.

In a study by Maclay et al. (2008), low-level IKE was

calculated from flight-level aircraft reconnaissance data,

and an experimental, multisatellite, IKE-based product

developed from this work is now available from the

NOAA/NESDIS/Center for Satellite Applications and

Research (STAR)/Regional and Mesoscale Meteorol-

ogy Branch (RAMMB) real-time TC data product page

(NOAA/NESDIS/STAR/RAMMB 2016). Unlike the

IKE product to be developed in this study, IKE is cal-

culated over a 1-km depth and at 700 hPa, rather than

over a 1-m depth at the surface level. Maclay et al.

(2008) went to considerable lengths to categorize the

700-hPa IKE further by a simple 0–5 scale to create

easier comparisons with the categorization employed by

the SSHWS.

IKEmetrics like the track IKE have been proposed as

more useful analysis metrics for seasonal activity: Misra

et al. (2013) followed up on this proposal. Additionally,

work has been performed on the statistical predictability

of IKE (Kozar and Misra 2014; Kozar 2015; Kozar

et al. 2016).

c. Existing sensors for surface wind speed estimation

The spaceborne sensors and imagery that have sup-

ported the above IKE products (Maclay et al. 2008;

Powell et al. 1998; 2010) include scatterometers; in-

frared, visible, and water vapor imagery; and microwave

sounders. Scatterometers provide surface wind speed

estimates but are limited to regions without heavy pre-

cipitation, saturate at high wind speeds, and are also

known to have poor revisit time (Brennan et al. 2009;

Hennon et al. 2006). Infrared and visible imagery allow

for the estimation of low-level winds by tracking cloud

features (e.g., Dunion and Velden 2002; Holmlund et al.

2001; Velden et al. 1997, 2005). Generally, the feature-

tracking methods will not work for low-level wind esti-

mation if the low-level features being tracked are

obscured by high cloud tops, for example, near the

center of a tropical cyclone. It is also possible to estimate

low-level wind parameters using infrared data, but these

methods require an estimate of storm intensity (Kossin

et al. 2007; Knaff et al. 2015; Mueller et al. 2006). Ad-

vanced Microwave Sounding Unit (AMSU) soundings

can inform estimates of the two-dimensional midlevel

wind field after solving the nonlinear balance equation.

However, AMSU estimated winds are known to be poor

near storm centers since the resolution of the product is

limited, with 50–120-km footprints (Bessho et al. 2006).

Low-level winds estimated through these methods will

have to be adjusted to the surface (Knaff et al. 2011). All

of these sensors have limited utility for estimating sur-

face wind speed in the heavy-precipitation and high-

cloud-shielded region of the TC eyewall. Additionally,

the polar-orbiting sensors will have inadequate tempo-

ral sampling for the time scales typical of TC rapid

intensification.

d. CYGNSS

The Cyclone Global Navigation Satellite System

(CYGNSS) constellation of eight small satellites,

launched on 15 December 2016, provides unique ocean

surface wind speed observations in all precipitating

conditions (Ruf et al. 2016). The mean and median re-

visit times for the constellation over the entire tropics

are 7.2 and 2.8 h, respectively. The resolution of the wind

speed product will be 253 25km2 or better, with 2ms21

retrieval uncertainty for winds less than 20m s21 and

10% retrieval uncertainty for winds greater than

20m s21. Given the ability to penetrate through the high

precipitation of a TC eyewall to observe the highest

surface wind speeds of TCs, and the rapid temporal

sampling, CYGNSS is well suited to estimate IKE.

There are some challenges to overcome with this new

observing system. Since CYGNSS operates in a bistatic

radar type set up with GNSS transmitters, the sampling

patterns are not analogous to the continuous-swath ob-

servations typical of other spaceborne wind sensing in-

struments. Instead, CYGNSS observes winds along a

series of narrow tracks through the storm. Portions of

the wind field between the tracks are not directly sam-

pled and must be estimated as part of the IKE algorithm

discussed in this paper. It should be noted that there are

currently no plans for near-real-time ground processing

of CYGNSS data. In the future, if the CYGNSS mission
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successfully demonstrates the value of its data

products, a transition to near-real-time operations is

possible and the IKE data product could be available to

operational agencies.

e. Objectives and overview

The main objectives of this study are to develop and

characterize a CYGNSS-based IKE product for tropical

storms and cyclones (CYGNSS-IKE). Section 2 de-

scribes the datasets used. Section 3 presents the

CYGNSS-IKE algorithm concept and implementation.

The subsequent sections address the characterization of

the algorithm in three respects:

1) How well does CYGNSS-IKE perform?

2) How well can the confidence in CYGNSS-IKE be

determined from CYGNSS data alone?

3) What are the dominant error contributors to

CYGNSS-IKE?

2. Datasets

To test the CYGNSS-IKE algorithm prelaunch, a

large set of simulated observations was created using the

CYGNSS end-to-end-simulator (E2ES) (O’Brien 2014).

The E2ES generates simulated CYGNSS level 2 wind

speed data products from a time-evolving input wind

field. It properly accounts for both the spatial and tem-

poral peculiarities of the CYGNSS measurement tech-

nique by forward propagating the orbital trajectories of

every satellite in the GPS and CYGNSS constellations

and computing the location of the specular reflection

point on Earth’s surface as a function of time for every

possible GPS–CYGNSS pair. The E2ES also properly

accounts for the 25-km spatial resolution of the

CYGNSS wind speed measurements by appropriately

averaging the input wind field and for its measurement

uncertainty by corrupting the input ‘‘truth’’ winds with

noise that is statistically representative of the expected

precision of the level 2 wind speed retrieval algorithm

(Clarizia and Ruf 2016).

Simulated CYGNSS observations were generated

using real-time wind field analyses produced by the

operational version of the Hurricane Weather Research

and Forecasting (HWRF) system (Tallapragada et al.

2013) for most Atlantic and west Pacific storms during

the 2010 and 2011 hurricane seasons. HWRF wind fields

were generated for 25 different storms every 3h

throughout their life cycles. Times during which the

storm center was within 200 km of a major landmass

were excluded from this study. This resulted in a total of

201 three-hour intervals in which CYGNSS observa-

tions were simulated from the HWRF ‘‘truth’’ wind

fields. An example of an HWRF input wind field for one

of these 3-h periods, together with the simulated ob-

servations by CYGNSS that would have beenmade over

that interval of time, within 200km of the storm center,

is shown in Fig. 1. A summary of all of the storms used in

this study is given in Table 1.

3. Methodology

Determination of the IKE requires that the integral

expression in Eq. (1) be evaluated. This, in turn, requires

that the wind speed be known (or estimated) at every

location within the vicinity of the storm bounded by the

limits of integration. In the case of CYGNSS, actual

measurements of the wind occur along a series of narrow

tracks through the storm, as illustrated in Fig. 1. Values

of the wind speed in between the actual observations,

which are needed to compute the IKE, are estimated by

fitting a parametric model of the wind structure to the

observations and then using the model to interpolate

between the observations.

FIG. 1. (top)An example of anHWRFwind analysis forHurricane

Igor, 1200 UTC 13 Sep 2010. (bottom) Simulated CYGNSS obser-

vations that correspond to the HWRFwind analysis within 200 km of

the storm center for the time period 1200–1500 UTC 13 Sep 2010.
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To create an operationally relevant IKEproduct, IKE is

integrated over each geographically based quadrant out to

the 34-kt wind radius (R34). If a storm is weaker than 34kt,

theR34 threshold is not attained, and IKE is not estimated.

For the case of the true IKE,R34 is found directly from the

fully sampled HWRF wind field that is integrated to get

the IKE. For the case of the IKE retrieved fromCYGNSS

observations, R34 is estimated iteratively using a para-

metric wind model. This parametric 34-kt wind radius is

denoted as R34.P. The CYGNSS-IKE algorithm has two

inputs: 1) the CYGNSS level 2 surface wind speed obser-

vations collected over a 3-h time period within a specified

radius of the storm center and 2) the storm center location.

The interpolation of the wind field to points between

those measured by CYGNSS takes advantage of the

approximately symmetrical nature of hurricanes by us-

ing the parametric wind model based on Emanuel and

Rotunno (2011):

y(r)5

2r

�
R

m
V

m
1

1

2
fR2

m

�

R2
m 1 r2

2
fr

2
, (2)

where Rm is the radius of maximum winds, Vm is the

maximum wind speed, r is the radial distance from

the storm center, and f is the Coriolis parameter. The

Coriolis parameter is dependent on the storm center

location coordinates. The model is illustrated in Fig. 2.

While there are many options of parametric wind

model that could be used, the one chosen has been found

to be especially amenable to use when fitting in a least

squares sense to the CYGNSS samples, because it is

continuous and has an analytical derivative. In

addition, a study by Lin and Chavas (2012) finds that the

model also has other desirable properties, when com-

pared with other parametric wind models. There are

some limitations to using Eq. (2), as discussed exten-

sively in (Chavas et al. 2015): particularly, this model is

most applicable to the region inwards of around 2.5Rm.

The simplicity of this model far outweighs the

limitations.

The CYGNSS-IKE algorithm flow is illustrated in

Fig. 3. The two free parameters of the model, Rm and

Vm, are solved for using an iterative, least squares fit of

the model to the CYGNSS observations. An example of

the cost function to be minimized is shown in Fig. 4 as a

function of Rm and Vm. The error surface is free of in-

flection points and the cost function has a single global

minimum at the optimum (Rm, Vm) value. Such a well-

behaved error surface makes the iterative algorithm

TABLE 1. A summary of all of the storms used in this study, with the storm name, the number of cases for that particular storm, the

maximum wind speed (VMAX) of the cases considered, the storm center latitude and longitude of the storm at the point in time corre-

sponding to the VMAX case, and the month and year time period for each storm.

Storm name

No. of storm

test cases VMAX (m s21)

Storm center

lat (8N)

Storm center

lon (8E)
Storm test case

month(s)

Storm test

case year

Colin 7 27 27.4 293.0 Aug 2010

Danielle 13 54 26.8 300.3 Aug 2010

Earl 5 23 15.0 324.8 Aug 2010

Estelle 8 27 17.3 250.8 Aug 2010

Fiona 4 29 24.3 293.8 Aug–Sep 2010

Frank 2 40 17.6 250.6 Aug 2010

Gaston 8 16 17.4 304.5 Sep 2010

Igor 18 66 17.6 310.7 Sep 2010

Julia 11 59 17.7 327.8 Sep 2010

Matthew 1 20 14.0 282.3 Sep 2010

Ten 1 24 19.8 250.4 Sep 2010

Adrian 10 63 14.5 254.7 Jun 2011

Bret 3 24 29.8 284.0 Jul 2011

Calvin 3 36 16.7 250.9 Jul 2011

Dora 2 41 19.4 250.6 Jul 2011

Eugene 18 61 15.7 245.3 Jul–Aug 2011

Fernanda 14 28 14.6 217.3 Aug 2011

Gert 5 26 32.9 297.3 Aug 2011

Greg 9 36 18.5 248.6 Aug 2011

Hilary 13 59 17.1 250.6 Sep 2011

Irwin 2 22 15.2 240.9 Oct 2011

Katia 19 55 27.0 294.1 Aug–Sep 2011

Maria 6 33 33.7 293.1 Sep 2011

Ophelia 8 50 24.0 296.9 Sep 2011

Philippe 11 25 14.9 326.4 Sep 2011
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relatively insensitive to the first guess (which only affects

the number of iterations required before convergence)

and means a global minimum is generally found in

each case.

The population of CYGNSS observations that are used

in the parametric fit is all those samples lying within a dis-

tance RLimit of the storm center. The value of RLimit is ini-

tially set to 200km. After the first iteration, the estimate of

R34 given the parametric model, R34.P, is compared with

RLimit. If they are not sufficiently close, then RLimit is set

equal toR34.P, a new population of observations is selected,

and the processes is repeated.Eventually (in practicewithin

just a few iterations), the values ofR34.P andRLimit converge

and the parametric-model estimation is complete.

The IKE is calculated from the parametric wind

model by

IKE5
r
0
Dz

2

ð2p
0

ðR
0

y(u, r)2r dr du, (3)

where y is given by Eq. (2) and r is the radial distance

from the storm center. The integration extends out to

R 5 R34.P, with an assumed Dz of 1m, and a con-

stant density r0 of 1.15 kgm23—as suggested by

Holland (1980).

4. Results

a. CYGNSS-IKE performance

The performance of the CYGNSS-IKE estimates is

assessed by comparison with the true IKE derived by

direct integration of the high-resolution HWRF wind

fields. All 201 cases are considered. A portion of the 201

cases serve as test cases but do not meet the strength or

observation criteria to compute IKE at the R34 thresh-

old. There are two scenarios for which IKE is not esti-

mated in a particular quadrant: 1) the quadrant was not

observed by CYGNSS, or 2) CYGNSS did not observe

winds that would have supported an estimate of R34

from the parametric-model fit. For example, if the

quadrant wind field is well sampled by CYGNSS, but

most of the wind speed estimates are lower than 34kt,

the parametric model trained to the observations will

not predict, or support, winds over 34 kt. The perfor-

mance statistics reported here are for comparisons when

both HWRF and CYGNSS-based estimates of R34 IKE

are possible. For the rest of the paper, unless otherwise

noted, IKE refers to a quadrant-specific calculation

of IKE.

First, as an example, Fig. 5 demonstrates IKE esti-

mates possible over the course of the lifetime of one

storm. Figure 5 shows the CYGNSS-IKER34.P and

HWRF-IKER34 values every 3 h throughout the life cy-

cle of Hurricane Igor (2010) for instances of available

simulated CYGNSS observations for all four storm

quadrants. In general, the CYGNSS-IKE agrees closely

FIG. 3. A flowchart describing the steps within the CYGNSS-IKE algorithm.

FIG. 2. A visualization of the parametric wind profile embedded

within the CYGNSS-IKE algorithm. This model is described by

Eq. (2), based on the work of Emanuel and Rotunno (2011) and

recommended by Lin and Chavas (2012).
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with the HWRF-IKE. However, Fig. 5 also highlights

two main limitations of the current CYGNSS-IKE es-

timation process. At elapsed time 50h, CYGNSS-IKE is

not estimated for the NW and NE quadrants, while it

was estimated from HWRF. In this case, CYGNSS did

not have sufficient observations to support an estimate

of R34 strength in the parametric model. Weaker case

points sometimes miss the R34.P threshold—a re-

quirement for IKE to be calculated in these methods—if

they are not sampled sufficiently. A sufficient number of

observations is required in a quadrant to accurately

represent the wind field and support the parametric-

model estimator. An example of the effects of sample

size on performance can be seen in Fig. 5 in the south-

east quadrant at 253h, where CYGNSS-IKE is much

less than HWRF-IKE. Outliers like this will be flagged

based on CYGNSS coverage over a particular storm.

Figure 6 shows the overall performance of the

CYGNSS-IKEestimate in comparisonwithHWRF-IKE.

CYGNSS-IKE is estimated 412 times out of all 201 storm

test cases. The two colors signify the quality control (QC)

applied. Red dots indicate that the QC flag, developed in

the following section, has been applied to that estimate.

b. Quality control threshold determination

To create estimates of IKE product trustworthiness,

additional analysis was performed to create a QC flag

for the CYGNSS-IKE estimate. Ideally, a QC flagwould

throw out as many outliers as possible, while still

retaining the cases with good performance. Instinctively,

one would expect sampling coverage by CYGNSS to

control the quality of the IKE estimate. A number of

sampling thresholds were tested in combination to

determine a practical CYGNSS-IKE QC flag. Figure 7

supports the decision making process for the ultimate

QC flag choice. In the top subplot of Fig. 7, the IKE

error is plotted with respect to two types of QC flags that

are used in combination. IKE error is here defined as the

normalized RMS difference (RMSD), with normaliza-

tion of the difference between HWRF and CYGNSS-

IKE by the HWRF-IKE being performed before the

root-mean-square calculation.

To pass the QC test requires that

num
obs

.N , (4)

where numobs is the number of observations over a

storm quadrant and N is the minimum number of ob-

servations allowed, and that

ratio
s
.S , (5)

where ratios is the sampling ratio defined as

ratio
s
5

num
obs

R
34.P

(6)

in units of number per kilometer. The term S is the

minimum sampling ratio required. On the Fig. 7 x axis, is

ratios: larger ratios correlates with better sampling over

the extent of 34-kt winds. Each line in Fig. 7 shows the

QC defined by Eq. (4), which only controls for the

minimum number of observations needed for IKE es-

timation. Operated in combination, Eqs. (4) and (5) al-

low us to discard cases with poor sampling by CYGNSS.

In general, the higher the threshold, the lower the error

in the CYGNSS estimate. However, as noted in the

bottom subplot of Fig. 7, the threshold also affects data

coverage (i.e., fraction of remaining storm quadrant

overpasses for which an IKE estimate is produced). The

choice for the threshold should be an appropriate bal-

ance between data coverage and performance. We

propose a QC flag that requiresN5 10 observations and

S5 0.1 observations per km; this threshold operates just

above the ‘‘knee in the curve’’ with respect to perfor-

mance and provides 88% data coverage.

The results of applying the chosen QC can be seen in

Fig. 6, where red dots denote cases in which the flag is

applied. Black dots show the cases that would remain

after QC. The chosen QC flag gets rid of most of the

outliers without a large loss of good cases.

c. Error decomposition

There are four main sources of error in the CYGNSS-

IKE estimation. The first source results from the use of a

FIG. 4. An example of the cost function to be minimized, RMSD,

is shown as a function of the parametric-model free variables, Rm

andVm fromEq. (2) for theHurricane Igor test case at 1200UTC 13

Sep 2010. For further reference and connection, Fig. 1 shows the

HWRF wind field and corresponding CYGNSS observations that

were input into the CYGNSS-IKE estimation process for this

test case.
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parametric wind model that is not representative of the

true wind speed distribution. Second, CYGNSS sam-

pling varies between 3-h intervals, with poorer coverage

generally leading to worse estimates of IKE. Third, the

CYGNSS wind speed measurements are not noise free,

and the retrieval uncertainty will contribute to errors in

the CYGNSS-IKE estimate. Fourth, imperfect knowl-

edge of R34 will impact the performance of the algorithm

because R34.P determines the population of observations

used and defines the outer limit of integration of the IKE.

To compare the impact of these sources of errors, four

experiments were run, each with a different type of wind

speed input to the algorithm. The first experiment

assumes gap-free sampling of the wind field at the high-

resolution HWRF reporting intervals. The samples are

also assumed tobe exact, with noCYGNSSmeasurement

error. The parametric wind model is fit to these obser-

vations and then used to estimate IKE. Errors in the es-

timated IKE will in this case be due only to deviations of

the true wind field from the parametric wind model.

The second experiment also assumes observations of

the wind field without any CYGNSS measurement er-

ror, but now only at the locations at which CYGNSS

would have sampled. In this case, errors in the estimated

IKE will be due to both deviations from the ideal wind

model and gaps in the wind observations. The third

FIG. 5. A comparison of the IKE estimated fromHWRF wind fields (truth) and simulated CYGNSS observations

(retrieved) over the life cycle of Hurricane Igor (2010) as a function of the elapsed time since tropical depression

formation at 0600 UTC 8 Sep 2010 (Pasch and Kimberlain 2011). For further reference and connection, Fig. 1 shows

the HWRF wind field and corresponding CYGNSS observations that were initially input into the CYGNSS-IKE

estimation process at elapsed time 126 h.
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experiment is most realistic and assumes CYGNSS ob-

servations with realistic noise levels and at their appro-

priate sample locations. The fourth experiment is similar

to the third experiment, but we assume perfect knowl-

edge of R34, which is calculated from HWRF for this

analysis. Differences between the IKE calculated from

these experiments and the HWRF-IKE allow for com-

parisons of the dominant error contributors to the

CYGNSS-IKE estimation process.

Table 2 reports the results of these experiments.

Overall, the CYGNSS-IKE performance is quite good,

with 6.5% total unexplained variance due to all causes.

The table also compares the percent unexplained vari-

ance that can be attributed to the individual sources of

error. There is an increase in unexplained variance as

the experiments include sparser and noisier wind fields.

However, imperfect knowledge of R34 also impacts the

performance of this estimation process. With perfect

knowledge of R34, the unexplained variance using true

CYGNSS observations decreases from 6.5% to 3.9%,

which is closest to the performance from the first, per-

fectly sampled, and noise-free experiment.

d. Storm center sensitivity

Since one of the inputs to the IKE algorithm is an

estimate of the storm center location—which, for this

study, comes from HWRF analyses—additional tests

were performed to determine the sensitivity of the

CYGNSS-IKE estimate to the accuracy of the storm

center location. It is well known that the storm center is

challenging to define for poorly organized storms. To

test storm center location sensitivity, the coordinates

were varied from the HWRF best estimate to locations

60.58 in latitude. The CYGNSS observations were then

reassembled according to the new (erroneous) storm

FIG. 7. (top) IKE RMS normalized difference between HWRF-

IKE and CYGNSS-IKE with respect to two QC flags operated in

combination. Each line represents the minimum number of ob-

servations allowed for a test case. Each line is plotted against

a second QC flag, which controls for the ratio of the number of

observations per the 34-kt wind radius in the parametric model

(R34.P). (bottom) Fraction of data left for all combinations of QC

applied. The QC choice of .10 samples and .0.1 samples per ki-

lometer leaves 88% of the test cases.

FIG. 6. A comparison of CYGNSS-IKE with the IKE estimated

from HWRF for test cases defined from a set of simulated

CYGNSS observations of Atlantic-basin and Pacific-basin storms

occurring during 2010–11. Of 201 storm test cases, IKE is estimated

for a particular quadrant 412 times. Red dots denote cases in which

QC is flagged.
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center location. CYGNSS-IKE was found to be essen-

tially insensitive to errors in storm center latitude within

about 15 km north and south of the best estimate of

storm center location. Outside of this range, the esti-

mated IKE begins to degrade in accuracy. Center posi-

tion uncertainty estimates vary widely depending on the

strength of the storm, as well as the data available for

position estimation (Torn and Snyder 2012; Landsea and

Franklin 2013). For example, Torn and Snyder (2012)

estimated position uncertainty to be around 37–65 km.

While position uncertainty estimates from these studies

are usually larger than 15km, the authors hypothesize

that the availability of CYGNSS data could be used to

improve position estimates.

5. Discussion

Generally, the CYGNSS-IKE estimate is skillful.

Performance depends most on the number of CYGNSS

observations available for a given IKE estimate, which

led to the formulation of a useful quality control flag. A

CYGNSS-IKE estimate is generally more reliable as the

number of samples increases. If a quality control flag is

applied that limits estimates to cases with a minimum of

10 CYGNSS observations and a 0.1 sampling ratio, 88%

of the coverage remains, the performance metrics im-

prove, and the dominant source of IKE retrieval error is

no longer the number of CYGNSS observations.

Other parameters were considered for use as a quality

control parameter, but nothing else gave as much skill as

the sample number flag. One potential parameter con-

sidered was the RMSD between the retrieved para-

metric wind model and the CYGNSS observations.

However, the RMSD was found to be well correlated

with the number of CYGNSS samples. With fewer

samples, the RMSD of the parametric wind model fit

tends to go down since it is generally easier to fit a model

to fewer points. Thus, a low RMSD in this case does not

mean the parametric wind model explains the wind field

better, and so does not predict a better IKE estimate. An

accurate IKE estimate requires the wind field to be well

sampled, not that the RSMD in the parametric model

be low.

Generally, the CYGNSS-IKE estimate performs

better in intense storms because the parametric wind

model is more applicable in these cases—stronger

storms tend to be better organized and hence corre-

spond more closely to the parametric model. Figures 8

and 9 summarize the relationship between relative IKE

error and maximum wind speed (VMAX). Figure 8

compares data for quadrant-IKE, while Fig. 9 shows

the results from total (sum over all quadrants) IKE. In

Fig. 9, only cases where estimates of IKE were available

for all four quadrants are considered. Figure 8 shows

that the large outliers in quadrant-IKE performance

occur more often in cases with low VMAX; many of the

low-intensity outliers result from large overestimates of

the IKE. Aside from the outliers at low VMAX,

CYGNSS-IKE performs relatively consistently across

the range of intensity. Figure 9 shows the results if

considering total-IKE over the entire storm. Perfor-

mance improves for these cases relative to the results in

Fig. 8. Improvements from quadrant-IKE to total-IKE

are likely due to two main things. First, comparisons of

total-IKE are only made for cases in which all four

quadrants have IKE estimates. Second, quadrant-IKE

errors will partially cancel out after summation.

TABLE 2. Percent unexplained variance for experiments that

used different input wind fields into the CYGNSS-IKE algorithm,

where percent unexplained variance is (1 2 R2) 3 100%.

Experiment input winds

Unexplained

variance (%)

HWRF wind field 4.3

Noise-free CYGNSS wind speed

observations

4.8

Noisy CYGNSS wind speed

observations

6.5

Noisy CYGNSS wind speed

observations with perfect RLimit 5 R34

3.9

FIG. 8. The relative, quadrant-specific, IKE error of cases after

QC with respect to the maximum wind speed found in the HWRF

wind field. Quadrant normalized IKE error 5 (truth 2 estimated)/

truth, where the truth here is derived from HWRF.
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Overall, Figs. 8 and 9 show there is a low bias in the

CYGNSS-IKE, regardless of whether it is a total or

quadrant-specific value. The bias in CYGNSS-IKE is

likely due to the fact that we are training the parametric

model to the CYGNSS observations in a best-fit sense to

estimate the full wind field. CYGNSS-IKE is calculated

out to the radial extent of the 34-kt winds in the para-

metric model, rather than the true extent. Future work

will include analyzing this bias further on a wider range

of cases, as well as determining solutions to correct it.

6. Conclusions

CYGNSS will provide the opportunity to observe

tropical cyclones (TCs) with unprecedented temporal

and spatial sampling. With this new observing system

come challenges and questions to be explored. In this

paper we consider how well IKE can be estimated from

its observations.

With applications ranging from storm surge pre-

diction to situational awareness, users of the CYGNSS-

IKE product could include operational and research

meteorologists, insurance companies, and anyone in-

terested in TCs generated in data-sparse, but CYGNSS-

covered, regions. IKE is particularly useful considering

it is often more correlated with storm surge at TC

landfall than is the VMAX or intensity of the storm.

Future work includes investigating ways of improving

these methods, especially postlaunch with CYGNSS

observations. Additionally, the parametric wind model

algorithm has several potential applications outside of

IKE estimation. A variety of useful parameters—

intensity and wind radii—could be derived using the

parametric wind model algorithm and CYGNSS data.
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