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Waves generated by shear layer instabilities

By L. C. MorLaND!, P. G. SAFrMAN! aAxD H. C. YUEN?

! Department of Applied Mathematics, Caltech, Pasadena, California 91125, U.S.A.
2TRW Redondo Beach, California 90278, U.S.A4.

Stern & Adam and subsequent workers have considered the linear stability of two-
dimensional, parallel, ideal fluid flow with shear in the presence of a free surface. In
these studies a fluid current is modelled as a finite layer of constant vorticity above
a semi-infinite stagnant region, corresponding to a piecewise-linear velocity profile.
Here, an investigation of the stability of currents for several smooth velocity profiles
is presented. With surface tension present it is found that the fluid surface velocity
must still exceed the minimum wavespeed of stagnant fluid for instability to occur;
a result highlighted by Caponi et al. for piecewise-linear profiles. Instability growth
rates are found to be significantly smaller than those associated with a piecewise-
linear profile. There are also qualitative differences in the stability characteristics; in
particular, transition is associated with an exchange of stability for smooth profiles,
but not for the piecewise-linear profile.

1. Introduction

In this paper, the instability mechanism for the generation of water waves discovered
by Stern & Adam (1973), Voronovich et al. (1980), and discussed further by Caponi
et al. (1991), is extended to the case of smooth velocity profiles. The cited authors
considered the stability of a parallel, free surface flow in the particular case that the
current in the water is represented by a layer of constant vorticity of depth 4 and
surface velocity u,, lying above a semi-infinite stagnant fluid region. In this model
the role of a wind would be to produce a current in the water by viscous shearing.
The effect of two-dimensional perturbations with dependence on the horizontal
coordinate x, and time ¢, of the form e!**=°Y wags considered, where k is the
wavenumber in the x-direction and o is the angular frequency. The influence of the
dynamics of the wind flow was neglected by taking the external pressure to be
constant at the free surface. Stern & Adam and Caponi et al. applied continuity of
velocity at the interface between the irrotational and rotational fluid layers and
derived a cubic equation for the wavespeed ¢ = o/k. Voronovich & Lobanov applied
continuity of pressure at the internal interface at which there was a vortex sheet;
their analysis led to a quartic equation for the wavespeed c.

Solutions were found to exist for which ¢ has a non-zero imaginary part
corresponding to unstable modes. The unstable waves of interest are in the capillary-
gravity régime with wavelengths of the order of centimetres; the viscous timescale
is long enough that viscosity can be neglected in a first approximation to the
instability problem (see equation (4.1)). (The influence of viscosity on the instability
of the constant vorticity layer model was considered by Kawai (1977), who found
that the effect was small.)

Caponi et al. showed that a necessary condition for unstable modes is that u,; > ¢,
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where ¢, = (4¢T)t is the minimum capillary-gravity wavespeed for stagnant fluid,
and that unstable modes then exist when the vorticity layer depth exceeds a critical
value 4., which depends on u,. Here, g is the acceleration due to gravity and 7’ is
the surface tension per unit density.

This model suggests that when a sufficiently strong wind picks up over a calm body
of water there is initially no disturbance while vorticity diffuses into the fluid from
the surface, and that waves spontaneously appear due to the instability of the fluid
flow once the vorticity has penetrated into the fluid sufficiently and 4 > 4_,.

The mathematical tractability of the piecewise-linear velocity profile makes it
attractive to work with. For instance, Milinazzo & Saffman (1990) computed steady
finite amplitude waves of permanent form on a current with this profile by means of
a Fourier series type expansion. However, the piecewise-linear profile has a
discontinuity in the first derivative at the internal interface and there is a common
belief that not only quantitatively but qualitatively incorrect results can be
predicted by piecewise-linear profiles. In this paper we present the results of a
numerical investigation of three smooth profiles and compare the results with the
piecewise-linear profile.

The mathematical formulation of the stability of inviscid flow in a semi-infinite
domain with a free surface differs from the stability of parallel flows of boundary
layer type only in the free surface boundary condition. The latter problem has
received considerable attention (for a recent review, see Drazin & Reid (1981)).
Squire’s transformation, which states that to every three-dimensional disturbance
there corresponds a two-dimensional disturbance (see Drazin & Reid, p. 129), still
holds with a rescaling of the physical parameters. As a consequence only the two-
dimensional stability problem need be solved. We also find that the corollary for rigid
walls that for every unstable three-dimensional disturbance there exists a more
unstable two-dimensional disturbance can also be derived for the free surface
problem ; see equation (4.2).

Two other important results in the theory of parallel flow instability are Rayleigh’s
inflection point theorem, which states that a necessary condition for inviscid
instability is that the velocity profile has an inflection point; and Howard’s
semicircle theorem, which states that in the complex c¢-plane unstable modes must lie
in the semicircle of diameter (U, — Ui,) With centre equidistant between U, and
U nax On the real axis. U, and U, ;, are respectively the maximum and minimum
velocities of the current U(y), where y is a coordinate measured vertically upwards.
The free surface problem has been examined by Yih (1972), who derives some results
analogous to those known for the boundary layer problem. In particular he shows
that Howard’s semicircle theorem extends to the free surface flow. He also derives
some sufficient conditions for stability; however, they are not applicable to the
velocity profiles being considered here as we are interested in profiles without points
of inflection that would be set up by a wind blowing with approximately constant
speed and direction. For such a profile U, and U, are both positive throughout the
ﬂuld In his abstract Yih states that unstablo modes are not possible unless there
(‘xmts a mode for which ce (U ;,, Unax); the unstable modes, if they exist, are then
contiguous to this neutral mode. Such a neutral mode can only be part of the discrete
spectrum of Rayleigh’s equation (equation (2.4a)) if the velocity profile has an
inflection point. Hence in his abstract Yih implies that Rayleigh’s theorem also holds
for the free surface flow. However, this result is not proved in the main body of the
paper and our results show it not to be the case.
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2. Mathematical formulation

Cartesian coordinates are defined with the z-axis lying along the undisturbed
surface. The position of the free surface is given by y = 9(x, t), where ¢ is time. The
fluid velocity u = (u, v) and pressure p of an incompressible, inviscid fluid under the
influence of gravity satisfy the Euler equations and the equation of continuity,

u+uVu=—-Vp+g, (2.1a)
V-u=0, (2.156)
where the fluid density has been put equal to unity, g = —gj and j is a unit vector in

the y-direction. The free surface boundary conditions are continuity of pressure and
the requirement that the free surface is a material surface of the fluid, i.e.

p=—Tn,/(1+73) on y=1, (2.2a)

and n+uVp—v=0 on y=n1. (2.2b)
At large depths the fluid velocity is required to decay to zero,

u—-0 as y-—>—o0. (2.2¢)

The undisturbed state is a steady parallel flow solution of the boundary value

problem given by (2.1) and (2.2) with u = (U(y), 0), pressure given by the hydrostatic

law p = —gy, and the fluid surface planar, y = 0. With small, time dependent two-

dimensional perturbations the velocity and pressure are u = (U+u',v"), p = —gy+p’

and the free surface is y = 7', where [p’|, [«/|, [v'| and |y’| <€ 1. Neglecting products of
small quantities in equations (2.1) and (2.2) gives the standard equations

uy+Uup+ U, 0" = —p), (2.30a)

v+ Uv, = —py, (2.3b)

uy+v, =0 (2.3¢)

in the fluid, and n+Up,—v' =0 on y=0, (2.3d)
"=gy =Ty, on y=0, (2.3€)

and (w',v)>0 as y-—>—o0. (2.3f)

We seek normal mode solutions of the form u’ = i, (y) e'**~V [k, v = ¢(y) e! o=
and 3" = ae'® D where k is the streamwise wave number and o is the angular
frequency, possibly complex. To obtain physical quantities the real parts of the
above expressions are to be taken; ¢ is in general complex valued. Eliminating the
pressure between (2.3a) and (2.3b) gives Rayleigh’s equation,

Gyy— K+ U, /(U=c)) ¢ =0, (2.40)

where ¢ = o/k is the wavespeed. Eliminating 7" between (2.3d) and (2.3¢) gives the
free surface boundary condition,

(U=c)*¢p,— (U, (U—=c)+9+Tk*)$ =0 on y=0 (2.40)
and the boundary condition at infinity, (2.3f), requires that
¢—>0 as y—>—o0. (2.4¢)

Equations (2.4) form an eigenvalue problem for c.

If ¢ is real and lies in the range of U, i.e. c€ (Upyy, Upnax), then (2.4a) has a regular
singular point at any point y, where U(y,) = c¢. Such values of ¢ with an appropriate
jump condition applied to ¢ at the singularity make up the continuous spectrum. To
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solve the general initial value problem for small disturbances requires consideration
of the continuous spectrum. However, our primary concern is with instability and
hence with wavespeeds with non-zero imaginary part. These are contained in the
discrete spectrum and have proper eigenfunctions and hence can be found via the
normal mode analysis.

In the case of the piecewise-linear profile, U, , is proportional to a delta function
with singularity at y = — 4. As a consequence ¢ has distinct analytic representations
in the rotational and irrotational regions. Stern & Adam and Caponi ef al. applied
continuity of velocity at the interface and hence, as is well known, continuity of
pressure follows since the fluid density is uniform.

For the purposes of comparing the stability characteristics of different profiles it
is necessary to have criteria for profiles to be similar. Since the piecewise-linear
profile is determined by specifying the fluid surface velocity and the vorticity layer
thickness, two profiles are considered to be comparable if both of these quantities are
equal. The natural definition for the fluid surface velocity is u, = U(0). The definition
of 4 is less obvious and we take the simplest possibility which is twice the depth of

the vorticity centroid,
2

A= Uly)dy. (2.5)
ud — 00

Three families of smooth profiles are considered in this paper; the exponential

profile, the error function profile, and the integrated error function profile, given

respectively by

Uly) = uge®'4, —oo <y <0, (2.6a)
Uly) = ugerfe(—2y/v/nd), —oo <y <O, (2.6D)

_ y'n yv'm B 4
Uly) = ud(eXp( 4A2) —~erfe ( 5 )) w <y <O0. (2.6¢)

An attractive feature of the exponential profile is that an analytic solution can be
found with ¢ = 0 which determines the neutral stability curve.

The error function profile (2.6b) is appropriate for the case of a wind which
instantaneously sets the fluid surface in motlon with constant speed u,. For example,
a laminar wind with velocity (14 (v,/v,)? pw/pa u, at a large height above the
water surface, where v and p are kmematlc viscosity and density and subscripts w
and a indicate water and air respectively, sets up the profile (2.65) with 4 growing

like
A =4/ (v 1/T). (2.7)

The integrated error function profile (2.6¢), which results in a time-dependent u,, is
appropriate for the case when the current is set up by a constant stress 7 on the
surface. For a laminar flow, u, = 247/u,, m, where 4 is now given by

A = /(T b). (2.8)
This profile lies almost midway between the exponential and error function curves.
By scaling lengths with the wavelength A, and velocities with the capillary-gravity

wavespeed ¢, = v/ (gA/2n+2n7/A), the parameter dependence is reduced to u,/c,
and 4/A. With this scaling of variables indicated by a ‘hat’ ("), equations (2.4)

become X
¢ —(ant+ 0" )(0—6) § = (2.9a)
(O =&y —(0/(0—é +2n¢§ 0 on y=0, (2.95)
)

(,75 -0 as y—>—o00, (2.9¢
Proc. R. Soc. Lond. A (1991)
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where the prime now indicates differentiation with respect to 7. Note that this
equation has no explicit dependence upon the two parameters, which enter through
the profile U(). In all cases, U(0) is u,/c, and U’(0) is proportional to (u,/c,)(A/4).
It follows that the eigenvalue problem (2.9) has solutions of the form

é=cley = O(A/4,¢0/uy), (2.10)
where €' depends only on the profile and the parameters. In particular, for each
profile the marginal stability curve Im (c) = 0 is a fixed curve in the A/4—c,/u,
plane.

To determine ¢ as a function of A for given w,; and 4, say, we note that ¢, and A
are of course not independent but related by the linear dispersion relation which we

R I CRREt)

Here, A, = 2n(T/g)? is the wavelength of the slowest capillary-gravity wave. Thus
the stability properties are determined by the values of C' on the locus (2.11) in the
AJd—cy/u, plane. The dimensional growth rate o, is given by

7, = kIm(c) = ”%%i‘ m (O). (2.12)
For the case of zero surface tension, the equivalent locus to (2.11) is
&) dg A
D) = Z. 2.1
(ud) 2nul A (2.13)

Numerical solution of equations (2.9) was performed by fixing the parameters and
solving iteratively for ¢ and ¢. (Actually, we did not solve (2.9) but another set of
equations obtained by scaling speeds and lengths with ¢, and A, which proved to
be more convenient in practice.) Equations (2.9a) and (2.90) were replaced by
second-order accurate finite difference approximations; an asymptotic condition
being used for (2.90). The approximations to (2.9a) and (2.9¢) plus a normalization
condition, ¢’(0) = 1, led to a tri-diagonal system for the discrete approximation to ¢.
This system was bolved in each btep of an application of the secant method to
equation (2.95); each refinement to ¢ adjusts the approximation to ¢ through (2.9a).
This numerical procedure was found to converge rapidly to the solution except when
the true value of ¢ had a small imaginary part in which case a very accurate initial
estimate for ¢ and a fine grid for the finite difference approximations were required.

For the exponential profile the ¢' = 0 neutral curve can be determined analytically
in the A/4—c¢,/u, plane and is

A4 = (1 —(ey/ug)")/ (co/ug)® (2.14)

3. Results

Numerical results for the smooth profiles are now presented and compared with
results for the piecewise-linear profile. Figure 1 is a sketch of the loci in the complex
¢-plane of the wavespeeds of the two discrete modes associated with a smooth profile
as the wavelength varies, when there is instability for the case of capillary-gravity
waves, i.e. uy; > ¢, and 4 > 4. Also included in the diagram is the unstable section
of the equivalent loci for a piecewise-linear profile.

The horizontal and vertical axes are the real and imaginary parts of ¢ respectively
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Figure 1. A sketch of the wavespeeds in the complex ¢-plane as the wavelength varies for a smooth
profile when there is instability, shown by the ‘tongue’ emanating from ¢ = 0. Also included are
the unstable wavespeeds for a piecewise-linear profile, shown by the part ellipse. The large
semicircle is the Howard semicircle.
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Tigure 2. Marginal stability curves (dashed lines) in the A/4—c¢,/u, plane. (a) Piecewise-linear
profile. (b) Smooth profiles: ———, exponential profile; ————, error function profile. The curve for

the integrated error function lies between the two others. The solid line is the locus (2.11) drawn
for u,/c, =2, 4/A,, = 0.5. The stable and unstable regions are indicated by S and U respectively.

and the arrows indicate the direction of decreasing A. The semicircle passing through
¢ = 0 is the boundary of the region in which wavespeeds with non-zero imaginary
part must lie, as required by the extension of Howard’s semicircle theorem. When a
mode is unstable, only the wavespeed with positive imaginary part is shown. The loci
of neutrally stable modes, which lie on the real axis, are shown parallel to and
displaced from the axis for clarity.

The two modes shown in figure 1 correspond to the well-known capillary-gravity
waves that occur on stagnant fluid. As A — oo the influence of the current diminishes
and hence the wavespeeds tend to those of long waves on stagnant fluid, |c| ~
(gA/2m):. Figure 1 shows that as A decreases from infinity the wavespeed of the mode
with positive velocity decreases, attains a minimum and then increases again. For
small wavelengths the mode is convected with the surface velocity and so ¢~
uy + (217/A):. The minimum velocity is found to be greater than u, and hence by the
semicircle theorem this mode is always stable.
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The wavespeed of the second mode is large and negative at both large and small
wavelengths. At some intermediate wavelength the phase speed has a maximum; if
the physical parameters u, and 4 are such that this value is positive then the
semicircle has been penetrated and instability is possible. Our results show that for
a smooth profile, instability occurs as the real part of ¢ becomes positive; the
wavespeed locus departs tangentially from the real axis at ¢ =0. The locus
ultimately returns to ¢ = 0 through smaller values of the imaginary part of ¢, tracing
out the ‘tongue’ shown in figure 1. Because the convective entrainment of the wave
speed is less than u,, the speed of the second mode can only be positive if u; > c,,.

The transition to instability for the smooth profiles is an exchange of stability, i.e.
¢ =0 when Im (c) = 0. This is not the case for the piecewise-linear profile, which in
addition to the capillary gravity-like modes has a discrete mode associated with the
vorticity layer. The-phase speed of the vorticity mode is bounded by zero and the
fluid surface velocity, taking the value u, at infinite wavelength and tending to zero
as the wavelength tends to zero. Instability occurs as a result of collisions on the
Re (¢)-axis between the slow capillary-gravity like mode and the vorticity mode;
consequentially the former mode does not become unstable immediately upon
entering the semicircle and a piecewise-linear profile has narrower bands of unstable
wavelengths than a smooth profile. Here ‘collision’ is used to mean that two distinct
modes have the same wavespeed at the same wavelength. The part ellipse in figure
1 sketches the instability locus in the complex c-plane for the piecewise-linear
profile. The details of the collisions on the real axis leading to the instability locus
have been omitted.

Voronovich et al. noted that these collisions produce instability because they are
between modes with energy of opposite sign. It is of interest to interpret the
production of instability by a smooth profile in terms of energy ; however, we are not
aware of a satisfactory definition for the energy of an infinitesimal rotational
disturbance to a flow of non-uniform vorticity.

When surface tension is absent, the phase velocities of the modes associated with
the smooth profiles are monotonic functions of wavelength and tend to u, as the
wavelength tends to zero. In the case of the unstable mode, the wavespeed tends to
u, through complex values.

Figure 2a and b show the marginal stability curves (Im (¢) = 0) and neutral curves
(¢c=0) in the A/4—c,/u,; plane for the piecewise-linear and smooth profiles
respectively. These are shown by dashed lines. It should be emphasized that these
lines are functions only of the profile. The solid lines in figure 2 are the loci given by
equation (2.11). These depend on the values of u,/c,, and 4/A,,. Those shown are for
ug/cm = 2 and 4/, = 0.5. For fixed values of u,; and 4, instability occurs when the
value of A is such that the solid line lies inside the instability regions, which for the
smooth profiles is below the dashed line. The minimum of the solid line occurs when
¢o = ¢, and A = A, It follows again that instability can only occur if u, > c,,. As 4
decreases, the solid line moves to the right. It follows that for each value of u,, there
is a minimum value of 4 which we have called 4., such that instability can only
occur when 4 > 4,.4,. When 4 = 4, the solid line is tangent to the dashed line.

The marginal stability curve for the piecewise-linear profile, figure Za, differs
qualitatively from the neutral curves, figure 2b, for the smooth profiles in that it
consists of two branches ; the instability region is the wedge bounded by the two. The
smooth profiles have neutral stability curves consisting of a single branch and the
region of instability lies below the curve. Thus the piecewise-linear profile stabilizes
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Figure 3. Properties of most unstable waves as functions of vorticity layer thickness for
/¢ = 2. (@) Growth rate; (b) phase speed; (¢) wavelength. ——, Piecewise-linear profile; ——-,
error function profile.
when 4 becomes large, but the growth rates of the smooth profile instabilities are

found to be so small when 4 is large that this difference is more apparent than real.
Figure 2 also shows that the upper branch of the marginal stability curve of the
piecewise-linear profile lies close to the marginal stability curves of the smooth

erite Indeed, the

profiles and hence that both profile types give similar values of 4
piecewise-linear profile reproduces quite well the dependence of the geometry of the

instability region on the various parameters.
With zero surface tension the dashed curves in figure 2a and b remains unaltered.
However, the solid line locus is now given by equation (2.13). It can be seen that for
any non-zero u, and 4 there are always unstable modes for small enough A.
In figure 3a the maximum growth rates of the piecewise-linear and error function
profiles are compared over a range of 4 for u,/c, = 2. The figure demonstrates the
much larger growth rates of the piecewise-linear profile when compared with a
smooth profile. The exponential profile has smaller growth rates than the error
function profile and the growth rates of the integrated error function lie between the
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Table 1. The most unstable wave at a range of values of w,/c,,

((a) Piecewise-linear profile; (b) error function profile; (¢) integrated error function profile;
(d) exponential profile.)

ud/cm A/Am A/Am cr/cm Am Ui/cm
(a) 1.75 0.250 0.653 0.323 0.602
2.0 0.175 0.541 0.404 1.226
2.25 0.135 0.481 0.483 2.069
2.5 0.105 0.408 0.551 3.136
() 1.75 0.299 0.823 0.263 0.051
2.0 0.234 0.764 0.369 0.191
2.25 0.187 0.707 0.467 0.475
2.5 0.150 0.649 0.553 0.936
() 1.75 0.313 0.843 0.236 0.025
2.0 0.245 0.785 0.336 0.109
2.25 0.197 0.732 0.432 0.294
2.5 0.161 0.681 0.520 0.617
(d) 1.75 0.372 0.870 0.235 0.008
2.0 0.291 0.817 0.333 0.043
2.25 0.235 0.767 0.430 0.137
2.5 0.194 0.722 0.522 0.319

two. Also shown are the corresponding wavelengths and phase speeds in figure 3b and
c. In contrast with the growth rates the phase speeds and wavelengths are similar for
the two profiles. Table 1a—d give details of the wave of maximum growth rate at
different values of u, for the four profiles. The tables show the sensitivity of growth
rate to profile type and the relative insensitivity of vorticity layer thickness,
wavelength and phase speed.

4. Comments

This paper has been concerned with instabilities arising in free surface flow when
the current has a smooth velocity profile, and a comparison has been made with the
piecewise-linear profile. Our numerical results using three distinct smooth profiles
show that the profiles have qualitatively the same behaviour with good quantitative
agreement, except that the growth rates for the piecewise-linear profile are an order
of magnitude larger.

The analysis has been based on the assumption that the velocity profiles are quasi-
steady. That is, the time for viscosity or turbulence to modify the profiles is assumed
large compared with the time for the disturbance to grow. The condition for this to
hold is

o, > /4% de. v <, 4, 4.1)

according to the data shown in figure 3a and table 1.

Squire’s transformation enables us to compare the growth rates of three-
dimensional disturbances. For a three-dimensional disturbance proportional to
el@*5) ynder the influence of gravity ¢ and surface tension per unit density 7', the
standard approach (see, for example, Drazin & Reid 1981) shows that for a given
profile the three-dimensional and two-dimensional growth rates are related by,

4 u o - 4 u
U:sD(d/\m,ﬂ/\m,;\—",El)=50'2D<o_t/\m,;\——~, d), (4.2)
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where & = (a2+ %)}, and ¢,, and A, are respectively the minimum wavespeed and
corresponding wavelength associated with scaled gravity and surface tension given
by g= (&/a)?g and T = (a&/a)*T. To compare the growth rates of the three-
dimensional disturbance with a two-dimensional disturbance under the influence of
the same gravity and surface tension, (4.2) is rewritten as

4 ug\  «a 4 ouy
T3p (“/\m>ﬂ/\ma/\macm) - 0?0-217 (a/\m>)lm>o_wm)a (43)

by noting that A, is unaffected by the scaling of g and 7', and ¢, is multiplied by &/c.
Hence a non-zero f is equivalent to a reduced surface velocity and consequently the
maximum growth rate is less than that for § = 0. There is therefore a directional
selection mechanism in this instability.

These results are for profiles without inflection points. A gusty wind can be
expected to produce inflexion points in the undisturbed profiles of velocity, which
will presumably produce instabilities with much larger growth rates. This is a
problem for further study.

We thank Dr S. Cowley for many helpful discussions and in particular his advice concerning the
numerics. Partial financial support by the Office of Naval Research (Grant N000-14-89-J-1164) is
gratefully acknowledged.
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